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About Matrix.xla 
About Matrix.xla 
Matrix.xla 
Matrix.xla is an Excel add-in that contains useful functions for matrices and linear 
Algebra:  

Norm. Matrix multiplication. Similarity transformation. Determinant. Inverse. 
Power. Trace. Scalar Product. Vector Product.  

Eigenvalues and Eigenvectors of a symmetric matrix with Jacobi algorithm. 
Jacobi's rotation matrix.  Eigenvalues with the QR and QL algorithm. 
Characteristic polynomials. Polynomial roots with the QR algorithm. 
Eigenvectors for real and complex matrices 

Generation of a random matrix with given eigenvalues or of given Rank or 
Determinant. Generation of useful matrices: Hilbert's, Householder's, 
Tartaglia's. Vandermonde's 

Solving a system of linear equations: Linear System with iterative methods: 
Gauss-Seidel and Jacobi algorithms. Gauss-Jordan algorithm, step by step. 
Singular Linear System.  

Linear Transformations:. Gram-Schmidt Orthogonalization. Matrix 
factorizations: LU, QR, SVD and Cholesky decomposition.   

 
This tutorial is divided into two parts. The first part is the reference manual of Matrix.xla. The 
second part explains with practical examples how to solve several basic problems in matrix theory 
and linear algebra.  
 
Why Matrix.xla has the same functions as Excel? 
Yes, The same functions, such as determinant, inversion, multiplication, and transpose, are in both 
Excel and Matrix.xla. They perform the same tasks. And in many case they return the same 
values. But they are not exchangeable in every situation.  

The main difference lies in the algorithms used; in other words, in the way in 
which the functions are implemented. In Matrix.xla, the algorithms are open, and 
people can verify how each function works. The function that performs matrix 
inversion in Excel and in Matrix.xla, for example, can give different results, 
especially in high-accuracy calculations. Their main difference is that the 

Matrix.xla Inversion function uses the popular Gauss-Jordan algorithm - explained in many books 
and web pages - while the Excel built-in functions are written in inaccessible, proprietary code. In a 
few other cases we have simply created new functions to avoid the original, verbose names 
(MTRANSPOSE(), or MATR.TRASPOSTA () in Italian version, are substituted by the more handy 
MT() )  

Chapter 

1 

Matrix.xla 
algorithms 
are open 
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Array functions 
What is an array function 
A function that returns multiple values is called an "array function". Matrix.xla contains lots of these 
functions. All functions that return a matrix are array functions. Inversion, multiplication, sum, vector 
product, etc. are examples of array functions. On the contrary, Norm and Scalar product are scalar 
functions because they return only one value. 

In a worksheet, an array function returns always a rectangular (n x m) range of 
cells. To insert this function, select before the (n x m ) range where you want to 
insert the function, then, you must use the keys sequence 
CTRL+SHIFT+ENTER;. The sequence must be used just after inserting the 
function parameters. Keep down both CTRL and SHIFT keys (the order of 
depressing them doesn't matter) and then press ENTER.  

If you miss this sequence or use only the ENTER key, the function only returns the first cell of the 
array 

 

How to insert an array function 
The following example explains, step-by-step, how it works 

System solution 
Assume that you have to solve a 3x3 linear system. Ax = b 

                     















=

431
221
111

A

 














=

3
2
4

b

 
 

The function SysLin returns the solution x; but to see all the three values you must preselect the 
area where you want to insert these values. 

 

Now insert the function 
by menu, or by clicking 

on the icon    

Select the area where 
you want to paste the 
result 

 

 
 

 
 

Ä 
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Select A5:C7 as the area of matrix A "A5:C7", and E5:E7 as the constant vector b "E5:E7" 
 

 
 
Now - attention! - give the "magic" keys sequence CTRL+SHIFT+ENTER  
That is: 

• Press and keep down the CTRL and SHIFT keys 

• Press the ENTER key 

 
All values will fill all the cells that you have selected. 
 

 
 
The solution appears in the selected area 
Note that Excel shows the function within two curvy brackets { }. These symbols indicate that the 
function returns an array. You cannot insert them by yourself. 
 
The output of an array function acts as a single unit. No part of the output array, can be modified or 
deleted. To modify or delete the output of an array function, you must select  all the array cells. 
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Adding two matrices 
The CTRL+SHIFT+ENTER rule is valid for any function or operation when the result is a matrix or 
a vector. 
Example - Adding two matrices  









+







 −
10
01

12
21

 
 
We can use the MAdd() function of Matrix.xla but we can also directly use the addition operator 
"+".    

In order to perform this addition, follow these steps. 

1) Enter the matrices into the spreadsheet. 

2) Select empty cells so that a 2 × 2 range is highlighted.  

3) Write a formula that adds the two ranges. Either write =B4:C5+E4:F5 directly or write "=", 
then select the first matrix; then write "+" and select the second matrix. Do not press Enter. At 
this point the spreadsheet should look something like the figure below. Note that the entire 
range B8:C9 is selected.  

 

 
 

4) Press and hold down CTRL + SHIFT  

5) Press ENTER. 

If this procedure is followed correctly, the spreadsheet should now look something like this 

 

 
 

This trick can work also for matrix subtraction and for the scalar-matrix multiplication, but not for the 
matrix-matrix multiplication. 

Let's see another useful examples 
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Linear combination of two vectors 
The following example shows how to calculate the linear combination of two vectors   
 

 
 
 
Scalar product of two vectors 
The following example shows how to calculate the scalar product of two vectors   
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How to get help on line 
Matrix.xla provides help on line that can be recalled in the same way as any other Excel function 
When you have selected the function that you need in the function wizard, press the F1 key 
 

  
 

 
 

Of course you can call the help on-line also by double clicking on the Matrix.hlp file or from 
the starting pop-up window or from the “Matrix Tool” menu bar 
 
 

F1 

Note that all the 
functions of this add-in 
appear under the 
category “Matrix” in the 
Excel function wizard 
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 MATRIX installation 
MATRIX add-in for Excel is a zip file composed of the following files: 

• MATRIX.XLA Excel add-in file 
• MATRIX.HLP Help file 
• MATRIX.CSV Function information (only for XNUMBERS add-in) 
• FUNCUSTOMIZE.DLL1 Dynamic Library for add-in  

 

How to install 
Unzip and place all the above files in a folder of your choice. The add-in is contained entirely in this 
directory. Your system is not modified in any other way. If you want to uninstall this package, 
simply delete its folder - it's as simple as that! 

To install, follow the usual procedure for installing an Excel add-in: 

1) Open Excel 

2) From the Excel menu toolbar select "Tools" and then select "Add-in".. 

3) Once in the Add-in Manager, browse for “Matrix.xla” and select it 

4) Click OK  

 
After the first installation, matrix.xla will be added to the Add-in list manager 
When Excel starts, all add-ins checked in the Add-in Manager will be automatically loaded  
If you want to stop the automatic loading of matrix.xla simply deselect the check box before closing 
Excel 
 
If all goes OK you should see the welcome 
popup of matrix.xla the first time you activate 
Matrix.xla in the Add-in Manager dialog box. 
Afterwards, when Excel automatically loads 
Matrix.xla, this popup remains hidden. 

 The Matrix Icon   is added to the main menu 
bar.  By clicking on it, the Matrix Toolbar appears 

 
 

 

The Matrix category. All the functions contained in this add-in will be visible in the Excel function 
wizard  under the Matrix category. 

 

                                                      

1 FUNCUSTOMIZE.DLL appears by courtesy of Laurent Longre  ( http://longre.free.fr) 

http://longre.free.fr
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Update to a new version 
When you update to a new version you must replace the older files with the new version. 
Do not keep two different versions on your PC, and, in general, never load two different versions, 
because Excel would make a mess of it. 
 

How to uninstall 
This package never alters your system files 
If you want to uninstall this package, simply delete its folder. Once you have canceled the 
Matrix.xla file, remove the corresponding entry in the Add-in Manager list, by following these steps: 

1) Open Excel 

2) Select <Add-in...> from the <Tools> menu. 

3) Once in the Add-in Manager, click on the Matrix.xla 

4) Excel will inform you that the add-in is missing, and ask you if you want to remove it from the 
list. Answer "yes".  
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About complex matrix formats 
 
Matrix.xla supports 3 different complex matrix formats: 1) split, 2) interlaced, and 3) string 
 
  Split format   Interlaced format String format 

   
 
As we can see, in the first format the complex matrix [ Z ] is split into two separate matrices: 
the first contains the real values, and the second one the imaginary values. This is the default 
format. 
 
In the second format, the complex values are written as two adjacent cells, so that each 
individual matrix element occupies two adjacent cells. The number of columns is the same as 
in the first format, but the values are interlaced, so that each real column is followed by an 
imaginary column and so on. 
This format is useful when the elements are returned by complex functions 
 
The last format is the well known “complex rectangular format”. Each element is written as a 
text string "a + bi" or "a + bj"; therefore the square matrix is still square. This is the most 
compact and intuitive format for integer values. For non-integer values the matrix may 
become illegible. We must also point out that these elements, being strings, cannot be 
formatted with the standard tools of Excel, but must be converted back to numbers with the 
Excel commands IMREAL and IMAGINARY. 
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WHITE PAGE 
 



T U T O R I A L  F O R  M A T R I X . X L A  

 16 

Functions Reference 

Functions Reference 
This chapter lists all functions of the MATRIX.XLA add-in. It is the 
printable version of the on-line help file MATRIX.HLP 

 
 
GJstep 
MAbs 
MAbsC 
MAdd 
MAddC 
MAdm 
Mat_Hessemberg 
MBAB 
MBlock 
MBlockPerm 
MChar 
MCharC 
MCharPoly 
MCharPolyC 
MCholesky 
MCmp 
MCond 
MCorr 
MCovar 
MCplx 
MDet 
MDet3 
MDetC 
MDetPar 
MDiag 
MDiagExtr 
MEigenvalJacobi 
MEigenvalMax 
MEigenvalPow 

MEigenvalQL 
MEigenvalQR 
MEigenvalQRC 
MEigenvalTTpz 
MEigenvec 
MEigenvecC 
MEigenvecInv 
MEigenvecInvC 
MEigenvecJacobi 
MEigenvecMax 
MEigenvecPow 
MEigenvecT 
MExp 
MExpErr 
MExtract 
MHilbert 
MHilbertInv 
MHouseholder 
MIde 
MInv 
MInvC 
MLeontInv 
MLU 
MMopUp 
MMult3 
MMultC 
MMultS 
MMultsC 
MMultTpz 

MNorm 
MNormalize 
MOrthoGS 
MpCond 
MPerm 
MPow 
MPowC 
MProd 
MPseudoinv 
MQH 
MQR 
MQRiter 
MRank 
MRnd 
MRndEig 
MRndEigSym 
MRndRank 
MRndSym 
MRot 
MRotJacobi 
MSub 
MSubC 
MT 
MTartaglia 
MTC 
MTH 
MTrace 
MVandermonde 
PathFloyd 

PathMin 
PolyRoots 
PolyRootsQR 
PolyRootsQRC 
ProdScal 
ProdScalC 
ProdVect 
RegrCir 
RegrL 
RegrP 
Simplex 
SVDD 
SVDU 
SVDV 
SysLin 
SysLin3 
SysLinC 
SysLinIterG 
SysLinIterJ 
SysLinSing 
SysLinT 
SysLinTpz 
TraLin 
VarimaxIndex 
VarimaxRot 
VectAngle 

 
 

Chapter 

2 
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Function MAbs(V) 
Returns the absolute value ||V|| (Euclidean Norm) of a vector V         
 

∑= 2
ivV

 
 
The parameter V may be also a matrix; in this case the function returns the Frobenius norm of the matrix 
 

∑= 2
ijF

aA
 

 
 

Function MAbsC(V, [Cformat]) 
Returns the absolute value ||V|| (Euclidean Norm) of a complex vector V 
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
The parameter V may be also a matrix; in this case the function returns the Frobenius norm of the matrix 
The optional parameter Cformat sets the complex input format (default = 1) 
 

 
 
See About complex matrix format 
 
 

Function MAdd(A, B) 
Returns the sum of two matrices 
 

 
according to the definition: 

  
 
For example, the  sum of (2 x 2) matrices is 
 

 
 
Note: EXCEL has a simply way to perform the addition of two arrays. For details see How to insert an 
array function...     
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Function MAddC(A, B, [Cformat]) 
Returns the sum of two complex matrices 

 
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
The optional parameter Cformat sets the complex input/output format (default = 1)    
 

 
 
 

Function MBAB(A, B) 
Returns the product: 

BABC   1−=  
 
This operation is also called the "similarity transform" of matrix A by matrix B 
Similarity transforms play a crucial role in the computation of eigenvalues, because they leave the 
eigenvalues of the matrix A unchanged. 
 
For real symmetric matrices, B is orthogonal. The similarity transformation is the also called "orthogonal 
transform"  
 

 
 
 

Function MDet(Mat, Mat, [IMode], [Tiny]) 
Returns the determinant of a square (n x n) matrix.  
IMODE switch (True/False) sets the floating point (False) or integer computation (True). Default is false. 
Use IMODE  only with integer matrices of moderate size. 
Tiny (default is 0) sets the minimum round-off error; any value with an absolute value less than Tiny will 
be set to zero.  
 

For n = 1  

    [ ] 1111det aa =  

For n = 2  

   
12212211

2221

1211det aaaa
aa
aa

−=








 
For n = 3 

122133233211132231322113122331332211

333231

232221

131211

det aaaaaaaaaaaaaaaaaa
aaa
aaa
aaa

−−−++=















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Clearly, the computation of the determinant of a large matrix is one of the most tedious of all Math. 
Fortunately we have Numeric Calculus...! 
 
Example - The following matrix is singular, but only the integer computation can give the exact answer 
 

 
 
 
 

Function MDetC (Mat, [Cformat]) 
This function computes the determinant of a complex matrix. 
The argument Mat is an array (n x n ) or (n x 2n) , depending of the format parameter  
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string the  
The optional parameter Cformat sets the complex input/output format (default = 1) 
A complex split or interlaced matrix must always have an even number of columns 
 
The example shows how to compute the determinant of a complex matrix written in three different 
formats. 
 

 
 

 
 
 
 
 

The first complex matrix is in 
the split format (default): real 
and imaginary values are in 
two separated matrices. 
 
 
 
The second example shows 
the same matrix in interlaced 
format: imaginary values are 
adjacent to real parts. 
 
 
 
 
The last example shows the 
rectangular string format 
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Function MDet3(Mat3) 
This function computes the determinant of a tridiagonal matrix. 
The argument Mat3 is an (n x 3 )  array representing the (n x n ) matrix  
 
A triangular matrix is: 
 























55

444

333

222

11

000
00

00
00
000

ba
cba

cba
cba

cb

 
 
In order to save space we handle only the three 
diagonals 
 
Example: to find the determinant of a 18x18 
tridiagonal matrix we pass to the function only 54 
values (the first cell of the colum a and the last of 
the column c are always 0) instead of 324 values. 

 
 
 

Function MDetPar(Mat) 
Computes the parametric determinant D(k) of a (n x n) matrix containing a parameter k 
This function returns the polynomial string D(k) or its vector coefficients depending on the range selected. 
If you have selected one cell the function returns a string; if you have selected a vertical range, the 
function returns a vector. In that last case you have to insert the function with the ctrl+shift+enter key 
sequence. 
The function accepts one parameter. 
Any matrix element can be a linear function of k: 

kmqa ijijij ⋅+=  
 
The maximum degree of the polynomial D(k) is 9. 
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Function MInv(Mat, [IMode], [Tiny]) 
Returns the matrix inverse of a given square matrix 

       
1−= AB  

IMODE switch (True/False) sets the floating point (False) or integer computation (True). Default is false. 
Integer computation is intrinsically more accurate for integer matrices but also more limited because it 
may easily reaches the overflow error. Use IMODE  only with integer matrices of low size. 
Tiny (default is 0) sets the minimum round-off error; any absolute value less than Tiny will be set to zero. 
If by this chosen criterion the matrix is singular, the function returns "singular". 
If the matrix is not square the function returns "?" 
 
Example: the following matrix is singular but only the MInv function with integer computation can give the 
right answer                    
 

 
 
 

Function MPseudoInv (A) 
Computes the Moore-Penrose pseudo-inverse of a (n x m) matrix   
Def: the minimum-norm least squares solution x to a linear system   

bAxbAx
x

−⇒= min         
 

is the vector   

( ) bAAAAx TT +−
==

1

 

The matrix  +A   is called the pseudo-inverse of A 
If the matrix A has dimension (n x m), its pseudo-inverse has dimension (m x n)  
One of the most important applications of  SVD decomposition is 

TVDUA ⋅⋅=        ⇒     
TUDVA 1−+ ⋅=  

 

 
 
Note: the pseudo-inverse coincides with the inverse for non-singular square matrices.  
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Function MPow(A, n) 
Returns the integer power of a square matrix 

 
 

Function MPowC(A, n, [Cformat]) 
Returns the integer power of a complex square matrix 
Use CTRL+SHIFT+ENTER to insert this function 
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
Optional parameter Cformat sets the complex format of input/output (default = 1) 
 

 
 
 

Function MExp(A, [Algo], [n]) 
This function approximates the exponential of a given square matrix [A] 

[ ] ∑
∞

=
+=

1
!

1

n

n
n

A AIe
 

This function uses two alternative algorithms: the first one uses the popular power series 

errAAAAInAEXP n
n +++++= !
13

6
12

2
1 ...),(  

 
For n sufficiently large, the error becomes negligible, and the sum approximates the exponential matrix 
function. The parameter "n" fixes the max term of the series. If omitted the expansion continues until 
convergence is reached; this means that the norm of the nth matrix term becomes less than Err = 1E−15.  

ErrAn
n <!
1

 
 
When using this function without n, especially for a large matrix, the evaluation time can be very long. 
The second, more efficient, method uses the Padé approximation1. It is recommendable especially for 
large matrices.  
We can switch the algorithm by the optional parameter Algo. If "P" (default) the function uses the Padé 
approximation, otherwise it uses the power series 
 
 

Function MExpErr(A, n) 
This function returns the truncation n-th matrix term of the series expansion of a square matrix [A].  It is 
useful to estimate the truncation error of the series approximation 

n
n AnAEXP !
1),( =

 
 

                                                      
1 This routine was developed by Gregory Klein, who kindly consented to add it to this package 
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Function MProd(A, B, ...) 
Returns the product of two or more matrices 

BAC ⋅=  
As known, the product is defined as: 

 
Where j   is summed over for all possible value for  i  and  k  
 
Dimension rule: If A is (n x m) and B is (m x p) , then the product is a matrix (n x p) 

 
Note: If A and B are square (n x n) matrices, the product is also a square (n x n) matrix. 
Matrix multiplication is associative. Thus: 

( ) ( ) CBACBA ⋅⋅=⋅⋅  
But, generally, it is not commutative: 

ABBA ⋅≠⋅  
The function MProd can perform the product of several matrices, even with different dimensions. 

...21 ⋅⋅== ∏ AAAY j j  
 

 
 
Note. If you multiply matrices with different dimensions, pay attention to the dimension rules above. This 
function does not check it. The function will return #VALUE if this rule is violated.  
 
 

Function MMultS(Mat, k) 
Multiplies a matrix by a scalar 









⋅⋅
⋅⋅

=








2221

1211

2221

1211

akak
akak

aa
aa

k
 

 
It can be nested in other function. For example, if the range A1:B2 contains the 2x2 matrix  [1 , 2, / -3 , 8 ] 
MDet(MMultS(A1:B2; 3)) returns the determinant 126 of the matrix [3 , 6, / -9 , 24 ] 
Tip: EXCEL has a simply way to perform the multiplication of an array by a scalar. For details see "How 
to insert an array function..."  
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Function MMultSC(Mat, scalar, [Cformat]) 
Multiplies a complex matrix by a complex scalar 






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The parameter Mat is a (n x m) complex matrix or vector  
The parameter scalar can be a complex or real number, in split or string format. 
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
The optional parameter Cformat sets the complex input/output format (default = 1) 
See About complex matrix format 
 
Example. Performs the following complex multiplication 

















−−
−−+−

−+
⋅−=

10j4j9j
145j54j17
30j55j4

)j2(C  

We can use either the split or string format 
 

  
 
 
This function also multiplies a complex vector and 
a complex number 
 

...or a real vector and a complex number 
 

 
 

 
 

Function MMult3(Mat3, Mat) 
This function performs the multiplication of a tridiagonal matrix and a vector or a rectangular matrix 
Mat3 is a (n x 3) array  
Mat can be a vector (n x 1) or even a rectangular matrix (n x m) 
The result is a vector (n x 1) or a matrix (n x m) 
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This function is useful when you have to multiply a tridiagonal matrix larger than 256 x 256 and a vector 
because pre-2007 Excel cannot manage matrices larger than 256 columns wide.  
 
Example. The diagonal and sub-diagonals are passed to the function as vertical vectors 
 

 

 
 

=⋅ xA  
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Note how compact and efficient this input is. This is true especially for large matrices  
 
 

Function MMultTpz(tpz, v) 
 
Perform the multiplication between a Toeplitz matrix and a vector 
Parameter Tpz is a Toeplitz matrix written in the compact  vector form (2n-1) . See Toeplitz matrices  for 
further details 
Parametr b is the vector (n) of constant terms 
 
Of course this function came in handy when the 
Toepliz matrix is written a compact form. 
Otherwise you can use the M_MULT or the built-in 
MMULT Excel function as well 

 
 
 

Function MSub(A1, A2) 
Returns the difference of two matrices 

21 AAC −=  
 
Tip: EXCEL has a simply way to perform the multiplication of an array by a scalar. For details see "How 
to insert an array function..."  
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Function MSubC(A1, A2, [Cformat]) 
Returns the difference of two complex matrices 

21 AAC −=  
 
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
The optional parameter Cformat sets the complex input/output format (default = 1) 
 
Example. 

 
 
 

Function MTrace(Mat) 
Returns the trace of a square matrix, i.e., the sum of the elements of the first diagonal 

∑= iiaAtrace )(  
Example. 

 
 
 

Function MDiag(Diag) 
Returns to standard (expanded) form the diagonal matrix having the vector "Diag" as its diagonal 
 
Example.  

 
 

Function MDiagExtr(Mat, [Diag]) 
This function extracts the diagonals of a matrix1 
The optional parameter Diag selects the diagonal to extract.  
Diag = 1 (default) extracts the first diagonal; Diag = 2 extracts the secondary one.  
 
Example. 

                                                      
1 (Thanks to an idea of  Giacomo Bruzzo) 
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Function MT(Mat) 
Returns the transpose of a give matrix, that is the matrix with rows and columns exchanged  
 

 
 
This function is identical to TRANSPOSE() Excel built-in function  
 
 

Function MTC(Mat, [Cformat]) 
Returns the transpose of a complex matrix, that is the matrix with rows and columns exchanged  
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This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
Optional parameter Cformat sets the complex input/output format (default = 1) 
Use CTRL+SHIFT+ENTER to insert this function 
Example. Transpose the following (3 x 2) complex matrix 
 

 
 
 

Function MTH(Mat, [Cformat]) 
Returns the transpose-conjugate of a complex matrix 









−−+

−
=⇒
















++
−

=
jjj

j
A

j
jj
j

A H

634
0221

      
0

6322
41
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This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
 

 
 
 

Function MRank(A) 
Returns the rank of a given matrix1 
Examples: 
 

  

 

 
When Det = 0 the Rank is always less then the max dimension n 
Differently from the determinant, rank can be computed also for rectangular matrices. In that case, the 
rank can’t exceed the minimum dimension; that is, for a 3x4 matrix the maximum rank is 3. 
 
 

Function MIde(n) 
Returns the identity square matrix. 
This function is useful in nested expressions  
Example: Compute the matrix  A − λ I  for the parameter λ = 1 
 

 

Note that we have used the power array 
arithmetic of Excel 
 
But we could use the following nested 
expression: 
{=MAdd(A10:C12, D10*MIde(3))} 

 
 

Function ProdScal(v1, v2) 
Returns the scalar product of two vectors 

ii vvVV ,2,121 ⋅=• ∑  
Note that if V1 and V2 are the same vectors, this function returns the square of its module. 

                                                      
1 (Thanks to the original routine developed by Bernard Wagner.) 
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22 vvvvVV iii ==⋅=• ∑∑  
 
Note that if V1 and V2 are perpendicular, their scalar product is zero. In fact, another definition of scalar 
product is: 

)cos( 122121 α⋅⋅=• VVVV
 

 

 
 
Vectors can be in vertical or horizontal format as well. 
 
 

Function ProdVect(v1, v2) 
Returns the vector product of two vectors 
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Note that if V 1 and V 2 are parallels, the vector product is the 
null vector.  
Vectors can be in vertical or horizontal form as well.   

 
 
 

Function VectAngle(v1, v2) 
Computes the angle between the two vectors V1, V2 . 
The angle is defined as: 

           



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
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⋅
•

=
21
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α
    

 
Example. 

 
 

α
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Function MEigenvalJacobi(Mat, Optional MaxLoops) 
This function performs the Jacobi sequence of orthogonal similarity transformation and returns the last 
matrix of the sequence. It works only for symmetric matrices. 
The optional parameter MaxLoops (default=100) sets the max number of steps of the sequence. 
The Jacobi algorithm can be used to find both eigenvalues and eigenvectors of symmetric matrices 

n
TTT

nnn
T

nn

TTT

T

PPPAPPPPAPA

PPAPPPAPA

PAPA

... ...

 

21121

21122122

111

=⋅⋅=

=⋅⋅=

⋅⋅=

−  
 
For n sufficiently large, the sequence {Ai} converges to a diagonal matrix, thus  

[ ]λ=
∞→ nn

Alim
 

while the matrix 
PPPPPU nnn 231....−=  

converges to the eigenvectors of A. 
All these matrices A, U, P can be obtained by the functions: MEigenvalJacobi, MEigenvecJacobi , 
MRotJacobi  
 
Example: Solve the eigenvalue problem of the following symmetric matrix 
















=

720
262
025

A

 

 
 
As we can see, the Jacobi method has found all Eigenvalues and Eigenvectors with few iterations (10 
loops). The function MEigenvalJacobi returns in the range A7:C9 the diagonal matrix of the eigenvalues. 
Note that elements beyond  the first diagonal have an error of less than 1E-15.  
At the right side - in the range D7:F9 - the function MEigenvecJacobi returns the orthogonal matrix of the 
eigenvectors. 
Compare with the exact solution 
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Note that you can test the approximate results by the similarity transformation 

UAU ⋅= −1λ  
 
You can use the standard matrix inversion and multiplication functions or the MBAB function also in this 
package, as you like. Note that - only in this case - the matrix inversion is very simple, because: 

TUU =−1
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Eigenvalues problem with Jacobi, step by step 
Suppose you want to study each step of the Jacobi method. The functions MEigenvalJacobi, 
MEigenvecJacobi and MRotJacobi are useful if you set the parameter MaxLoop=1. In this case, they 
return the first step of Jacobi's iteration. Here is how they work.  
 
A1 = MEigenvecJacobi(A) 
A2 = MEigenvecJacobi(A1) 
A3 = MEigenvecJacobi(A2) 
...... 
A10 = MEigenvecJacobi(A9) 
 
Each matrix is one step of Jacobi's Iterative method 
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In order to quickly obtain the above iterations follow these simple steps: 

• At the first time, insert in range A7:C9 the function MEigenvalJacobi(A3:A7). 
• Give the "magic" key sequence CTRL+SHIFT+ENTER to paste an array function 
• Leave the range A7:C9 selected and copy it (CTRL+C) 
• Select the next range A11, and paste (CTRL+V) 
• Copy it (CTRL+C) 
• Select the next range A15, and paste again (CTRL+V), etc. 

 
By the sequence of copying and pasting- you can perform all Jacobi iterations, as you like. 
In the middle, we see the Jacobi's rotation matrices sequence. We can easily obtain these it by the 
function MRotJacobi() in the same way as the eigenvalues matrix 
 
P1 = MRotJacobi(A), P2 = MRotJacobi(A1), P3 = MRotJacobi(A2),  etc. 
 
This function searches for the max absolute values of off-diagonal elements, and generates an 
orthogonal matrix in order to reduce it to zero by similarity transformation 

111 PAPA T ⋅= . 

Finally, at the right, we see the iterations of eigenvectors matrix. It can be derived from the rotation matrix 
by the following iterative formula: 

   1

11

−⋅=
=

nnn UPU
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Function MRotJacobi(Mat) 
This function returns Jacobi orthogonal rotation matrix of a given symmetric matrix.  
This function searches for the max absolute values out of the first diagonal, and generates an orthogonal 
matrix in order to reduce it to zero by similarity transformation 

111 PAPA T ⋅= . Where: P1 = MRotJacobi(A) 
 
For further details see Function MEigenvalJacobi(Mat, Optional MaxLoops)  
 
Example - find the rotation matrix that makes zero the highest non-diagonal element of the following 
symmetric matrix. 
 

-5 -4 -1 -3 4 

-4 -6 0 -2 5 

-1 0 5 4 8 

-3 -2 4 -5 1 

4 5 8 1 -10 
 
The rotation matrix, in that case is  
 

1 0 0 0 0 

0 1 0 0 0 

0 0 cos(α) 0 sin(α) 

0 0 0 1 0 

0 0 -sin(α) 0 cos(α)  

where the angle α is given by the formula: 
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Function MBlock(Mat) 
Transforms a sparse square matrix (n x n) into a block-partitioned matrix  
From theory we know that, under certain conditions, a square matrix can be transformed into a block-
partitioned form (also called block-triangular form) by similarity transformation. 

PAPB T  =  
 
where P is a (n x n) permutation matrix. 
 

The highest absolute values are  a53 = a35 = 8  (in red) 
The similarity transformation with the rotation matrix will make 
just these elements zero. 
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For returning the permutation matrix see the function MBlockPerm 
 
Note that not all matrices can be transformed in block-triangular form. From theory we know that it can be 
done if, and only if, the graph associated to the matrix is not strongly connected. On the contrary, if the 
graph is strongly connected, we say that the matrix is irreducible. A dense matrix without zero elements, 
for example, is always irreducible. 
Example: 
 

 
 
 
 

Function MBlockPerm(Mat) 
Returns the permutation matrix that transforms a sparse square matrix (n x n) into a block-partitioned 
matrix. Under certain conditions, a square matrix can be transformed into a block-partitioned form (also 
called block-triangular form) by similarity transformation. 

PAPB T  =  
where P is a permutation matrix (n x n). 
This function returns the permutation vector (n); for transforming it into a permutation matrix use the  
Function MPerm 
 
Example. Find the permutation matrix that transforms the given matrix into block triangular form 
 

 
 
Note that not all matrices can be transformed into block-triangular form. If the transformation fails, the 
function returns “?”.  This usually happens when the matrix is irreducible.  
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Also this matrix has several 
zeros (one more then the matrix 
of the previous example). But in 
this case does not exist any 
permutation that transform it into 
a block-partitioned matrix. 
Therefore the function returns 
"?". 
We say that the matrix is 
"irreducible" 

 
 

 

Function MEigenvalQR(Mat) 
Approximates real or complex eigenvalues of a real matrix by the QR method1, 
returns an (n x 2) array 
 
The example below shows that the given matrix has two complex conjugate eigenvalues and only one 
real eigenvalue  
 

 
 
Example.  Find the eigenvalues of the following symmetric matrix. Being symmetric, there are only n real 
distinct eigenvalues. So the function returns only an (n x 1) array  
 

 
 
 
 

                                                      
1 This function uses a reduction of the EISPACK FORTRAN HQR and ELMHES subroutines (April 1983) 
HQR and ELMHES are the translation of the ALGOL procedure. 
 NUM. MATH. 14, 219-231(1970) by Martin, Peters, and Wilkinson. 
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Function MEigenvalQRC(Mat, [Cformat]) 
Approximates real or complex eigenvalues of a real matrix by the QR method  1 
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
Optional parameter Cformat sets the complex input/output format (default = 1) 
See About complex matrix format  
Example. Find the eigenvalues of the following complex matrix.  
 

 
 
The matrix could also be passed in compact string format 
 

 
 
Note that the result is always in split format 
 
 

Function MEigenvec(A, Eigenvalues, [MaxErr]) 
This function returns the eigenvector of a matrix A (n x n) associated with the given eigenvalue  

xx A  ⋅= λ  

If "Eigenvalues" is a single value, the function returns a (n x 1) vector. Otherwise if "Eigenvalues" is a 
vector of eigenvalues, the function returns the (n x n) matrix of eigenvectors. 
The optional parameter MaxErr  is useful when the eigenvalues are affected by round-off error. In that 
case the MaxErr should be proportionally adapted. Otherwise the result may be a NULL matrix.  If 
omitted, the function tries to detect by itself the suitable MaxErr for the approximate eigenvalues 
 

 

                                                      
1 This function uses a reduction of the EISPACK FORTRAN COMQR and CORTH subroutines (April 1983) 
COMQR is a translation of the ALGOL procedure  
MATH. 12, 369-376(1968) by Martin  and Wilkinson. 
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Function MEigenvecC(A, Eigenvalue, [MaxErr]) 
This function returns the complex eigenvector associates with a complex eigenvalue of a real or complex 
matrix A (n x n). The function returns an array of two columns (n x 2): the first column contains the real 
part, the second column the imaginary part. 
It returns an array of four columns (n x 4) if the eigenvalue is double. The first two columns contain the 
first complex eigenvector; the last two columns contain the second complex eigenvector. And so on. 
The optional parameter MaxErr  (default 1E-10) is useful only if your eigenvalue has an error. In that case 
the MaxErr should be proportionally increased (1E-8, 1E-6, etc.). Otherwise the result may be a NULL 
matrix.  
Look at this example:  
 

 

The given matrix has 3 eigenvalues: 
 
  2 , 5+j , 5−j 
 
For each eigenvalue, the function 
MEigenvecC returns the associate 
eigenvector that, in general, will be complex. 
 
Note that for the real eigenvalue 2, the 
function returns a real eigenvector 
 
Note also that for conjugate eigenvalues will 
get also conjugate eigenvectors 
 
 

 
The function works also for complex matrices. Example: assume to have to find the eigenvector of the 
following matrix for the given eigenvalue 
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Thus, the eigenvector for j−= 5λ   
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Function MEigenvecJacobi(Mat, Optional MaxLoops) 
This function performs Jacobi orthogonal similarity transformation sequence and returns the last 
orthogonal matrix. It works only for symmetric matrices. 
The optional parameter MaxLoops (default=100) sets the max steps of the sequence. 
 
This function returns the orthogonal matrix Un  that transforms to a diagonal form the symmetric matrix A, 
for n sufficiently high 

[ ] n
T
n UAU ⋅≅λ  

The matrix Un is composed by eigenvectors of A 
 

 
 
For further details see Function MEigenvalJacobi 
 
 

Function MEigenSortJacobi(EigvalM, EigvectM, [num]) 
This function1 sorts the eigenvalues and returns the first eigenvector associated to the absolute highest 
eigenvalue. 
EigvalM is the diagonal eigenvalues (n x n ) matrix and EigvectM is the (n x n ) eigenvector unitary matrix 
as returned by MatEigenValue_Jacobi and MatEigenVector_Jacobi. 
The optional parameter num (default num = n) sets the number of the vectors returned 
 
Example 
 

 
 
 
 

 Function MEigenvalQL(Mat3, [IterMax]) 
This function returns the real eigenvalues of a tridiagonal symmetric matrix. It works also for an 
asymmetrical tridiagonal matrix having all real eigenvalues. 
The optional parameter Itermax sets the max number of iteration allowed (default Itermax =200). 
This function uses the efficient QL algorithm 
If the matrix does not have all-real eigenvalues, this function returns "?" 
This function accepts tridiagonal matrices in both square (n x n) and (n x 3 ) rectangular formats. 
 

                                                      
1 This function appears thanks to the courtesy of Carlos Aya 
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Example. Find all eigenvalues of the following 19 x 19 matrix 
 

 
 
Note that all 19 eigenvalues are close to 
each other, in a short interval 
 

2.18.0 << kλ  
 
Other algorithms have difficulty in this 
pathological case. 
On the contrary the QL algorithm works 
fine, giving a high general accuracy. 
 

 
 
 

Function MEigenvalTTpz(n, a, b, c) 
Returns the eigenvalues of a tridiagonal toeplitz (n x n) matrix.  
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For the toeplitz tridiagonal matrices, there is a nice close formula giving all eigenvalues for any size of the 
matrix dimension. See chapter “Tridiagonal toeplitz matrix”. 
Example :  
find the eigenvalues of the 40 x 40 tridiagonal toeplitz matrix having a = 1, b = 3, c = 2.  
Because a*c = 2 > 0, all eigenvalues are real. 
 

It has been demonstrated that: 

• for n even - all eigenvalues are real if a*c>0; all eigenvalues are 
complex otherwise. 

• for n odd - all n-1 eigenvalues are real if a*c>0; all n-1 eigenvalues 
are complex otherwise. The last n eigenvalue is always b. 
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Ffind the eigenvalues of the 40 x 40 tridiagonal toeplitz matrix having a = 1, b = 3, c = −2.  
Because a*c = −2 < 0, all eigenvalues are complex. 
 

 
 
 

Function  MEigenvecT(Mat3, Eigenvalues, [MaxErr]) 
This function returns the eigenvector associated with the given eigenvalue of a tridiagonal matrix A  

xx A  ⋅= λ  
 
If Eigenvalues is a single value, the function returns a (n x 1) vector. Otherwise if the parameter 
Eigenvalues is a vector of all eigenvalues of matrix A, the function returns a matrix (n x n) of 
eigenvectors. 
Note: the eigenvectors returned by this function are not normalized. 
The optional parameter MaxErr  is useful only if your eigenvalues are affected by an error. In that case 
the MaxErr should be proportionally adapted. Otherwise the result may be a NULL matrix.  If omitted, the 
function tries to detect by itself the best error parameter  
 
This function accepts both tridiagonal square (n x n) matrices and (n x 3 ) rectangular matrices. 
The second form is useful for large matrices. 
 
Example.  
Given the 19 x 19 tridiagonal matrix having eigenvalue L = 1, find its associate eigenvector  
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Function MChar(A, x) 
This function returns the characteristic matrix at the value x. 

xIAC −=  
 
where A is a real square matrix; x is a real number. 
The determinant of C is the characteristic polynomial of the matrix A 
 

 
 
 

Function MCharC( A, z, [Cformat]) 
This function returns the complex characteristic matrix at the value z. 
 

IAC z−=  
 
where A can be a real or complex square matrix; z can be a real or complex number. 
The determinant of C is the characteristic polynomial of the matrix A 
 
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
The optional parameter Cformat sets the complex input/output format (default = 1) 
 
A complex split or interlaced matrix must have always an even number of columns 
 
Example.: Compute the matrix I A λ−   for  j51−=λ  
where A is the complex matrix 
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Example.: Compute the matrix I A λ−   for  j21+=λ    
where A is the real matrix 
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Function MCharPoly(Mat) 
This function returns the coefficients of the characteristic polynomial of a given matrix. If the matrix has 
dimension (n x n), then the polynomial has nth degree and n+1 coefficients.  
As known, the roots of the characteristic polynomial are the eigenvalues of the matrix and vice versa. This 
function uses the fast Newton-Girard formulas to find all the coefficients. 
 

 

In the example the characteristic polynomial of 
matrix A is 
 

1629918)det( 23 +−+−=− λλλλIA  
 
Solving this polynomial (by any method) can be 
another way to find eigenvalues 
 
 
 

   
 Note: computing eigenvalues trough the characteristic polynomial is in general less efficient than other 
decomposition methods (QR, Jacobi), but becomes a good choice for low-dimension matrices (typically < 
6°) and for complex eigenvalues.  See also Function PolyRoots(Coefficients, [ErrMax])  
 
 

Function MCharPolyC( Mat, [CFormat]) 
This function returns the complex coefficients of the characteristic polynomial of a given complex matrix. If 
the matrix has dimension (n x n), then the polynomial has nth degree and n+1 coefficients.  
As know, the roots of the characteristic polynomial are the eigenvalues of the matrix and vice versa.  
This function uses the Newton-Girard formulas to find all the coefficients. 
 
It supports 3 different matrix formats: 1 = split, 2 = interlaced, 3 = string 
The optional parameter Cformat sets the complex input/output format (default = 1) 
 
The function always returns an array of 2 columns 
 

 
 
As we can see the characteristic polynomial of the above complex matrix is 

jzjzjzjzzP 248)222()79()25()( 234 +++−+++−=  
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Function PolyRoots(poly) 
This function returns all roots of a given polynomial 
poly can be an array of (n+1) coefficients [a0, a1, a2...] or a string like "a0+a1x+a2x^2+..." 
This function uses the Siljak+Ruffini algorithm for finding the roots of an nth degree polynomial 
For high accuracy or for stiff polynomials you can find more suitable rootfinder routines in the 
Xnumbers.xla add-in 
If the given polynomial is the characteristic polynomial of a matrix (returned, for example, by  MCharPoly ) 
this function returns the eigenvalues of the matrix itself. 
Computing eigenvalues through the characteristic polynomial is in general less efficient than other 
decomposition methods (QR, Jacoby), but becomes a good choose for low-dimension matrices (typically 
< 6°) and/or for complex eigenvalues. 
 
Example: find the eigenvalues of the following matrix 
 

 
 
Note: we can also use the nested function: {=PolyRoots(MCharPoly(A))} 
 
 

Function MEigenvalMax(Mat, [IterMax]) 
Returns the dominant eigenvalue of a matrix. 
A dominant eigenvalue, if it exists, is the one with the maximum absolute value. 
Optional parameter: IterMax sets the maximum number of iterations allowed (default 1000). 
This function uses the power iterative method 
 
Power method - Given a matrix A with n eigenvalues, real and distinct, we have 

||...|||| 21 nλλλ >>  
Starting with a generic vector x0, we have: 
 
 
 
 
 
Tip. This algorithm is started with a random generic vector. Often it converges, but sometimes not. So if 
one of these functions returns the error “limit iterations exceeded”, do not worry. Simply, re-try it. 
 
A global localization method for real eigenvalues 
This method is useful for finding the radius of the circle containing all real eigenvalues of a given matrix 
Example. Find the circle containing all eigenvalues of the following matrix 
 

1
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10 8 -5 2 
8 4 3 -2 
-5 3 6 0 
2 -2 0 -2 

 
The matrix is symmetric so all its 
eigenvalues are real. 
 
  
 
The matrix trace gives us the sum of eigenvalues, so we can get the center of the circle by: 

n
Atracec )(

=
 

We find the dominant eigenvalues   λ1  by the function MEigenvalMax 
 
The radius can be found by the 
formula: r = |λ1|-c 
We have found the center 
 C = (4.5 ; 0) with a radius  R = 11.7.  
If we plot the circle and the roots, we 
observe a general good result 
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λ1  = 16.2
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This method works also for 
asymmetric matrices, having real 
eigenvalues. 
Example: find the circle containing all 
eigenvalues of the following matrix 
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Function MEigenvecMax(Mat, [Norm], [IterMax]) 
Returns the dominant eigenvector of matrix Mat 
The dominant eigenvector is related to the dominant eigenvalue. 
Optional parameters are:  
IterMax: sets the maximum number of iterations allowed (default 1000). 
Norm: if TRUE, the function returns a normalized vector |v|=1  (default FALSE) 
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Remark: This function uses the iterative power method 
For further details see the function MatEigenvalue_Max  
 
 

Function MEigenvalPow(Mat, [IterMax]) 
This function returns all real eigenvalues of a given diagonalizable matrix. 
Optional parameters are:  
IterMax: sets the maximum number of iterations allowed (default 1000). 
Norm: if TRUE, the function returns a normalized vector |v|=1  (default FALSE) 
This function uses the iterative power method. This algorithm works also for asymmetric matrices having 
real eigenvalues 
 
Example: find all eigenvalues and eigenvectors of the given matrix 
 

 
 
We have used the functions MEigenvalPow and MEigenvecPow. We can see the small values instead of 
0. This is due to the round-off errors. If you want to clean the matrix, remove these round-off errors with 
the function MMopUp  
 

Function MEigenvecPow(Mat, [Norm], [IterMax]) 
This function returns all eigenvectors of a given diagonalizable matrix. 
Optional parameters are:  
IterMax: sets the maximum number of iterations allowed (default 1000). 
Norm: if TRUE, the function returns normalized vectors |v|=1  (default FALSE) 
This function uses the iterative power method. This algorithm works also for asymmetric matrices having 
real eigenvalues 
 
See also function MEigenvalPow  
 

 
 
 

Function MEigenvecInv(Mat, Eigenvalue) 
This function returns the eigenvector associated with an eigenvalue of a matrix A using the inverse 
iterative algorithm 

xx A  ⋅= λ  
 
If Eigenvalues is a single value, the function returns a (n x 1) vector. Otherwise if Eigenvalues is a vector 
of all eigenvalues of matrix A, the function returns a matrix (n x n) of eigenvector. 
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The eigenvector is normalized with norm = 2 . 
This method is adapted for eigenvalues affected by large errors, because it is more stable than the 
singular system resolution. 
 
Example.: Given a matrix A and its eigenvalues λi , find the associated eigenvectors 
 

 
 
 
 

Function MEigenvecInvC(Mat, Eigenvalue, [CFormat]) 
This function returns the eigenvector associated to a complex eigenvalue of a complex matrix A by the 
inverse iteration algorithm 

xx A  ⋅= λ  
 
If "Eigenvalue" is a single value, the function returns a complex vector. Otherwise if "Eigenvalues" is a 
complex vector, the function returns the complex matrix of the associated eigenvectors. 
 
The inverse iteration method is adapted for eigenvalues affected by large errors, because it is more 
stable than the singular system resolution of the function MEigenvecC . 
 
Example.: Find all eigenvectors of the following complex matrix, having the following eigenvalues 
 

4+3j 2-4j 4+5j 5-4j 
1+2j 2 1+2j 2-j 
-2+4j 4+2j -2+2j 2+6j 
3-3j -3-3j 3-3j 1-3j  

] 2j  , i  , 3j1  , 4 [ −+=λ  

 

 
 
 
About perturbed eigenvalues 
Often we know only an approximation of the true eigenvalue. When the error is large the stability of the 
algorithm for finding the associate eigenvector plays a crucial role. The above example shows a critical 
situation because all eigenvalues are very closed to each other, having only a 4% of difference. In this 
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case a small error in the eigenvalues could cause a large error in the eigenvectors. In this situation the 
inverse iterative algorithm is handy. It has great stability. Let’s see this example 
First of all we define a sensitivity coefficient for measuring the instability. 
 
Instability Sensitivity 
 

λ
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Where: 

λ = eigenvalue 
λ* = perturbed eigenvalue 
u = eigenvector 
u* = perturbed eigenvector 
 

 
Now we compare the response of two different algorithms at the perturbed eigenvalue: the singular linear 
system solving (traditional method) and the iterative inverse algorithm. The first one is used by 
MEigenvec() function while the last one is used by the MEigenvec_inv function. 
 

  Singular linear system method Iterative inverse method 
λ  λ ∆ λ  λ ∆ λ 

100  100.0001 0.0001  100.3 0.3 
       

u  u |∆ u|  u |∆ u| 
1  0.99981665 1.83E-04  1.00000000 0 

12  12.00028336 2.36E-05  12.00000085 7.12E-08 
7  7.00005834 8.33E-06  7.00000046 6.58E-08 

-3  -3.00003333 1.11E-05  -3.00000020 6.58E-08 
-1  -1.00000000 0  -1.00000007 6.58E-08 

 
The iterative inverse algorithm returns an eigenvector affected by a very small error even if the error of 
the eigenvalues is substantial (0.3%). On the other hand, the first method computes a sufficiently 
accurate eigenvector only if the eigenvalue error is very small (0.0001%). Note that for larger errors the 
first method fails, returning the null vector. 
On the contrary, the iterative inverse algorithm tolerates a large amount of error in the eigenvalue. This 
can be shown by the instability factor 
 

Singular linear system method   Iterative inverse method  
λ ∆ λ | u | Σ|∆ u|  λ ∆ λ | u | Σ|∆ u| 

100.0001 0.0001 14.28 0.000226  100.3 0.3 14.28 2.69E-07 
         

S1 = 15.85    S2 = 6.3E-06   
 
 
As we can see, the difference is quite evident. In the last case the ill-conditioned matrix (with eigenvalues 
very close to each other) exhibits an instability factor of the iterative inverse algorithm less then 105 times 
the other one. Clearly this is a good reason for using it. 
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Matrix Generator 
This is a set of useful tools for generating several types of matrices 
 
Function MRnd(n, [m], [Typ], [MatInteger], [Amax], [Amin], [Sparse]) 
Function MRndEig(Eigenvalues, [MatInteger]) 
Function MRndEigSym(Eigenvalues) 
Function MRndRank(n, [Rank], [Det], [MatInteger]) 
Function MRndSym(n, [Rank], [Det], [MatInteger]) 
Function MHilbert (n) 
Function MHilbertInv(n) 
Function MHouseholder(x) 
Function MTartaglia(n) 
Function MVandermonde(x) 
 
 
Function MRnd(n, [m], [Typ], [MatInteger], [Amax], [Amin], [Sparse]) 
Generates a random matrix 
Parameters are: 

n = rows 
m = columns (default m = n) 

Typ =   ALL (default) - fills all cells 
        SYM - symmetrical 
        TRD -  tridiagonal 
        DIA -  Diagonal 
        TLW -  Triangular lower 
        TUP -  Triangular upper 
 SYMTRD  Symmetrical tridiagonal 
 
MatInteger = True (default) for integer matrix, False for decimal 
Amax   = max number allowed 
Amin   = min number allowed 
Sparse = decimal, from 0 to 1; 0 means no sparse (default), 1 means very sparse 
 

  
 
Note: The generation is random; it’s means that each time that you recalculate this function, you get 
different values. If you don't want change the values, preserve them with Edit > PasteSpecial > Values. 
 
Function MRndEig(Eigenvalues, [MatInteger]) 
Returns a general real matrix with a given set of eigenvalues 
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Function MRndEigSym(Eigenvalues) 
Returns a symmetric real matrix with a given set of eigenvalues 
 

 
 
Function MRndRank(n, [Rank], [Det], [MatInteger]) 
Returns a real matrix with a given Rank or Determinant 
Note: if Rank < max dimension then always Det = 0 
 
Function MRndSym(n, [Rank], [Det], [MatInteger]) 
Returns a real symmetric matrix with a given Rank or Determinant 
Note: if Rank < max dimension then always Det = 0 
 
Function MRndUni(n, [MatInteger]) 
Returns an unitary matrix (Det=1) 
 
Function MHilbert(n) 
Returns the (n x n) Hilbert's matrix 
Note: this matrix is always decimal 
 
Function MHilbertInv(n) 
Returns the inverse of the (n x n) Hilbert's matrix. 
Note: this matrix is always integer 
 
Hilbert matrices are strongly ill-conditioned and are useful for testing algorithms 
In the example below we see a (4 x 4) Hilbert matrix and its inverse.  
 

 
 
Function MHouseholder(x) 
Returns the Householder matrix of a given vector  x = (x1, x2, ...xn) by the formula: 

22
X

XXIH
T

−=
 

This kind of matrices are used in several important algorithms as, for example, the QR decomposition 
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Function MTartaglia(n) 
Returns the Tartaglia matrix of order n 
This kind of matrix (also called Pascal matrix) is ill-conditioned and is useful for testing of algorithms 
In the example below we see a (5 x 5) matrix 
 

 

Definition: Tartaglia's matrix is defined as 
 

11 =ja
 

∑
=

−=
j

k
kiij aa

1
 )1( 

 

 
Function MVandermonde(x) 
Returns the Vandermonde matrix of a given vector  x = (x1, x2, ...xn) 

 
 
This matrix is very common in many field of numeric calculus like the polynomial interpolation 
Example: Find the 4th degree polynomial that fits the following table 
  

x y 
-2 600 
-1 521 
1 423 
4 516 
6 808 

 
 

 
 
 

The generic 4th degree polynomial is 
4

4
3

3
2

210)( xaxaxaxaaxp ++++=

We can find the coefficients a = (a0, a1, a2, a3, a4) solving the 
linear system  

V a = y  Where V is the Vandermonde's matrix  
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Function GJstep(Mat, [Typ], [IntValue], [tiny]) 
This function, also available in macro version, has been developed for its didactic scope. It can trace, step 
by step, the diagonal reduction or triangular reduction of a matrix by the Gauss-Jordan algorithm. 
Optional parameter Typ can be "D" for Diagonal or "T" for Triangular; the default is D. 
Optional parameter IntValue = TRUE forces the function to conserve integer values through all steps. 
Default is FALSE. 
Optional parameter tiny set the minimum round-off error. (default 2E-15) 
The argument Mat is the complete matrix (n x m) of the linear system 
Remember that for a linear system: 

bAx =  
A is the system square matrix (n x n) 
x is the unknown vector (n x 1) 
b  is the vector of constant terms (n x 1) 

[ ]bAC   ,=  
C  is the complete matrix of the system 
 
Example - Study the Gauss-Jordan algorithm for the following system  
 
  
    A = 
 
 
First of all, put all columns in an adjacent 3x4 matrix, for example the range A1:D3. Select the cells where 
you want the matrix of the next step, in, e.g., the range A5:D7. Insert the array-function  
 

  
 
As we can see, the algorithm has exchanged rows 1 and 3, because the pivot a11 was 0 
Now, with the range A5:D7 still selected, copy the active selection with CTRL+C 
Move to the cell A9, and give the command CTRL+V. The next step will be performed. Continuing in this 
way we can visualize each step of the elimination algorithm 
 

 
 

 

0 -10 3 
2 1 1 
4 0 5 

105 
17 
91 

b = 
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The process ends when the 3x3 matrix becomes the identity matrix. The system solution appears in the 
last column (4, -6, 15) 
 
Example. Invert the 3x3 matrix by the Gauss-Jordan method 
 
  
    A = 
 
 
For inversion add the 3x3 identity matrix adjacent to the right. 
 

  
 

 

Thus, the inverse matrix is 
 
 
  
    A-1 = 
 
 

3 -3 1 
-3 5 -2 
1 -2 1 

 
 
For further details see:  Several ways for using the Gauss-Jordan algorithm  
 

1 1 1 
1 2 3 
1 3 6 
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Function SysLin(A, b, [IMode], [Tiny]) 
This function solves a linear system by the Gauss-Jordan algorithm. 

bx A =     or    BXA =  

A  is the system square matrix (n x n) 
x  is the unknown vector (n x 1) or the unknown matrix (n x m) 
b  is the vector of constant terms (n x 1) or a (n x m) matrix of constant terms 

The optional parameters: IMode (default False) sets the floating point (False) or integer arithmetic (True). 
Integer computation is intrinsically more accurate when the original matrix A contains only integer 
elements, but it is also more limited because it may easily reach the overflow limit. Therefore, use IMode  
only with integer matrices of low size. 
The optional parameter Tiny (default is 1E-15) sets the minimum round-off error; any value in absolute 
less than Tiny will be set to 0. 
If the matrix is singular the function returns "singular" 
If the matrix is not square the function returns "?" 
 
As known, the above linear equation has only one solution if - and only if -, Det(A) ≠ 0 
Otherwise the solutions can be infinite or even non-existing. In that case the system is called "singular".  
Example. 

 
 
The parameter b can also be a matrix of m columns. In that case, SysLin simultaneously solves a set of 
m systems. 
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Example. 
 

 
 
Note that in this case we have set the IMode = True,  that forces the integer exact algorithm. In floating 
point the approximate average error of the solution would be about 1E-14 
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Function SysLin3(Mat3, y) 
This function solves a tridiagonal linear system. 
The argument Mat3 is the array (n x 3) representing the (n x n) matrix of the linear system 
Remember that for a linear system: 

A x  = y 
A  is the system square matrix (n x n) 
x  is the unknown vector (n x 1) 
y  is the constant terms vector (n x 1) 

As known, the above linear equation has only one solution if - and only if -, det(A) ≠ 0 
Otherwise the solutions can be infinite or even non-existing. In that case the system is called "singular". 
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Example - let' se how to solve a 16 x 16 
tridiagonal linear system  A x = y 
We pass to the function only 46 values (the 
first cell of a and the last of c are always 0) 
instead of 256 values. 
 
Tip: note that this trick allows us to solve 
systems larger that 256 x 256 (the max square 
matrix in a pre-2007 Excel worksheet) 

 
 
 
 

Function SysLinIterG(A, b, x0, [Nmax], [w]) 
This function performs the iterative Gauss-Seidel algorithm with relaxaction for solving a linear system, 
and has been developed for its didactic scope in order to study the convergence of the iterative process. 

bx A =  

Parameter  A  is the system matrix (range n x n) 
Parameter  b   is the system vector (range n x 1) 
Parameter  x0  is the starting approximate solution vector (range n x 1) 
Parameter  Nmax  is the max step allowed (default = 200) 
Parameter  w is the relaxation factor (default = 1) 
 
The function returns the vector after Nmax steps; if the matrix is convergent, this vector approaches to the 
exact solution. 
 
In the example below the 20th iteration step of this iterative method is shown.  
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As we can see, the values approximate the exact solution [4, -3, 5]. Precision increases with an 
increasing number of steps (of course, for a convergent matrix) 
 

 
 
For Nmax=1, we can study the iterative method step by step 
 

x1   = SysLinIterG(A, b, x0) 
x2   = SysLinIterG(A, b, x1) 
x3   = SysLinIterG(A, b, x2) 
...................................... 
x20 = SysLinIterG(A, b, x19) 

 
In the example below we see the trace of the iteration values 
 

 
 
Usually, the convergence speed is quite low, but it can be greatly accelerate by the Aitken extrapolation 
formula, also called as "square delta" extrapolation, or by tuning the relaxaction factor w. 
 
 

Function SysLinT(Mat, b, [typ], [tiny]) 
This function solves a triangular linear system by the forward and backward substitution algorithms.  

bx A =  

A  is the triangular - upper or lower - system square matrix (n x n) 
x  is the unknown (n x 1) vector or the (n x m) unknown matrix 
b  is a constant (n x 1) vector or a constant (n x m ) matrix  

As known, the above linear system has only one solution if - and only if -, det(A) <> 0 
Otherwise the solutions can be infinite or even non-existing. In that case the system is called "singular".  
 
The parameter b can be also a (n x m) matrix B. In that case the function returns a matrix solution X of 
the multiple linear system 
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Parameter typ = "U" or "L" switches the function from solving for the upper-triangular (back substitutions) 
or lower-triangular system (forward substitutions); if omitted, the function automatically detects the type of 
the system. 
Optional parameter Tiny (default is 1E-15) sets the minimum round-off error; any absolute value less than 
Tiny will be set to 0. 

Example of (7 x 7) system 
 

 
 
 

Function SysLinIterJ(A, b, x0, [Nmax]) 
This function performs the iterative Jacobi algorithm for solving a linear system and was developed for its 
didactic scope in order to study the convergence of the iterative process. 

bx A =  

Parameter  A  is the system matrix (range n x n) 
Parameter  b   is the system vector (range n x 1) 
Parameter  x0  is the starting approximate solution vector (range n x 1) 
Parameter  Nmax  is the max step allowed (default = 1) 
 
The function returns the vector at Nmax step; if the matrix is convergent, this vector is closer to the exact 
solution. 
 
This function is similar to the SysLinIterG function.  
For further details see Function SysLinIterG  
 
 
 

Function SysLinSing(A, [b], [MaxErr]) 
Singular linear system can have infinitely many solutions or even none. This happens when DET(A) = 0. 
In that case the following matrix equations: 

0=x A   or  bx A =  
 
define an implicit Linear Function - also called Linear Transformation - between the vector spaces, that 
can be put in the following explicit form 

dCxy +=  

where C is the transformation matrix and d is the known vector; C is a square matrix having the same 
columns of A, and d the same dimension of  b 
This function returns the matrix C in the first n columns; eventually, a last column contains the vector d 
(only if b is not missing). If the system has no solution, this function returns "?" 
The optional parameter MaxErr sets the relative precision level; elements lower than this level are forced 
to zero. Default is 1E-13. 
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This function solves also systems where the number of equations is less than the number of variables; In 
other words, A is a rectangular matrix (n x m) where n < m 
 
Example: Solve the following system 
 

 
 
The determinant of the matrix A is 0. The system has infinite solution given by matrix C and vector d 
 
Example 1: Find the solution of the following 
homogeneous system 
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Because the determinant is 0, the homogeneous 
system has always solutions; they can be put in the 
following form 

                          y = C x 

 
 
Looking at the first diagonal of the matrix C  we discover a 1 in column 3, row 3. This means that there is 
only one independent variable; all the others are dependent variables. This means also that the rank of 
the matrix is 2. 
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Changing values to the independent variable x3 we get all the numerical solution of the given system  
Example, setting  x3 = 1 we have y = [46, -7, 1]T ,  x3 = -1 we have y = [ -94, 14, -2]T and so on.  
 
Example 2: Find the solution of the following homogeneous system 
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By inspection of the first diagonal, we see that 
there are 2 elements different from 0. So the 
independent variables are x2, and x3. This means 
that the rank of the matrix is 1  
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It is easy to prove that this linear function is a plane in R3. In fact, eliminating the variable x2 and x3 we 
get: 

321 43 yyy +−=  
And substituting the variables y1, y2, y3   with the usually variables x, y, z,  we get: 

043 =−+ zyx  
Example 3: Find the solution of the following non-homogeneous system 

 

bx A =  
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As we can see, the rank of the given system is 2; so 
there is one independent variable. The solutions can be 
written as: 

dCxy +=  
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Function SysLinTpz(A, b) 
Solves a Toeplitz linear system by Levinson method 
Parameter A is a Toeplitz matrix that can be written as a common square matrix (n x n) or also in a 
compact and efficient vector form (2n-1) . See Toeplitz matrices  for further details 
Parametr b is the vector (n) of constant terms 
 
Example: 
 

 
 
The SysLinTpz function saves more than 700% of the elaboration time. It is suitable for large matrices. 
But of course there is a also drawback: not all Toeplitz linear system can be computed. Sometime the 
algorithm fails and returns “?” even if the Toplitz matrix is not singular. When this happens we have to 
come back to the SysLin function 
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Levinson’s method has been demonstrated to be successful when the matrix is diagonal dominant 
 
 

Function TraLin(A, x, [B]) 
This function performs the Linear Transformation   

bAxy +=  
Where: 
A is the (n x m) matrix of transformation 
b is the (n x 1) known vector default is the null vector 
x is the (m x 1) vector of independent variables  
y is the (n x 1) vector of dependent variables  
 

 
 
 
This function accepts also matrices for x and  b; in that case the matrix transformation is 

BAXY +=  
Where: 
A is the matrix (n x m) of transformation 
B is the known matrix (n x p); default is the null vector 
X is the matrix of independent variables (m x p) 
Y is the matrix of dependent variables (n x p) 
 
Matrix Geometric action 
Linear transformations have a useful geometric interpretation1. 
Take a point x (x1, x2) of the plane and compute the linear transform y = [A] x, where A (2 x 2) is a matrix, 
y (y1, y2) a point. We wonder if there is a geometrical relation between the points x and y. 
The relation exists, and becomes evident once we perform the transformation of the points belonging to 
the unitary circle. 
In Excel we can easily generate the unitary circle pattern with the formula 

x = (cos(k⋅∆α) , sin(k⋅∆α))       for k = 1, 2 …N        where ∆α = 2π/N 
 
If x is a row-vector it is useful to have the dual Linear Transform for row-vectors 
 

TTTT bAxy +=  
 
Here is a possible arrangement. 
 

                                                      

1 A smart, cool, geometric description was developed by Todd Will at University of Wisconsin-La Crosse. I suggest to 
have a look at his web pages  http://www.uwlax.edu/faculty/will/svd/ . . For those that think that Linear Algebra cannot 
be amusing. Don’t miss them. 

http://www.uwlax.edu/faculty/will/svd/
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The blue line corresponds to the unitary circle points; the pink line belongs to the transformed y points. 
Thus, the circle has been transformed into a centred ellipse; if we also add b ≠ 0, we get a translated 
ellipse. Each point of the unitary circle has been projected on the ellipse.  
 
We have to point out that the projection is not 
radial but it happens in a very strange way. Look 
at the image  to the right. It shows how a point on 
the circle moves to the ellipse by the linear 
transformation. 
It seems as if the circle would be enlarged 
(stretched), and then rotated (like a “whirlpool”). 
 
Other dimensions 
The effect is the same – changing the name – in 
higher dimension 
      
Space Original pattern    Transf. pattern 
R2 circle ⇒  ellipse 
R3 sphere ⇒  ellipsoid 
Rn hyper-sphere ⇒  hyper-ellipse 
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Function MOrthoGS(A) 
This function performs orthogonalization with the modified Gram-Schmidt method 
Argument A is a matrix (m x n) containing n independent vectors. 
This function returns the orthogonal matrix U = [u1, u2, ..un]  
 

( )nvvvvU  ...,  ,  , 321=  
Where: 
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     1

 
 
In this example, we determine an orthogonal basis for the subspace generated by the base-vectors 
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Note that we can build the orthogonal basis by two different processes: using the Gram-Schmidt 
algorithm or the QR factorization. 
 
 
Gram-Schmidt Orthogonalization 
This popular method is used to build an orthogonal-normalized base from a set of n independent vectors. 

( )nvvvv ,.... ,  , 321  
The orthogonal basis U is build with the following iterative algorithm 
 

For k = 1, 2, 3...n 
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Developing this algorithm, we see that the vector k is built from all k-1 previous vectors 
At the end, all vectors of the bases U will be orthogonal and normalized. 
 
This method is very straightforward, but  it is also very sensitive to the round-off error. This happens 
because the error propagates itself along the vectors from 1 to n 
 
 
The so-called "modified Gram-Schmidt" algorithm, shown here, is a more stable variant 
 

For k = 1, 2, 3...n 
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 For j = k+1, ...n 
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Function MCholesky(A) 
This function returns the Cholesky decomposition of a symmetric matrix 

TLLA ⋅=  
where A is a symmetric matrix, L is a lower triangular matrix 
This decomposition works only if A is positive definite. That is: 

vvAv ∀>⋅⋅      0  
or, in other words, when the eigenvalues of A are all-positive. This function always returns a matrix. 
Inspecting the diagonal elements of the returned matrix we can discover if the matrix is positive definite: if 
the diagonal elements are all positive then the matrix A is also positive definite.  
 
Example - Determine if the given 
matrices are positive definite  
 

 A    B  
3 1 2  5 2 1 
1 6 4  2 2 3 
2 4 7  1 3 1 

 
On the left, we see the decomposition of 
matrix A; the triangular matrix L has all 
diagonal elements positive; then the 
matrix A is positive definite and the 
eigenvalues are all positive. 
On the contrary, the decomposition of the 
matrix B shows a negative number at 
position a33; then we can say that B is not 
positive definite and at least one 
eigenvalues is negative. 

 

 
This decomposition is useful also for solving the so-called "generalized eigenproblem"  
 
 

Function MLU(A, optional Pivot) 
This function returns the LU decomposition of a given square matrix A. It uses Crout's algorithm 
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Where L is a lower triangular matrix, and U is an upper triangular matrix 
If the square matrix has (n x n) dimension, this function returns a matrix (n x 2n) where the first n columns 
are the matrix L and the last n columns are the matrix U. 
The parameter Pivot (default=TRUE) activates the partial pivoting. 
Note: that if partial pivot is active (TRUE) the LU decomposition may refer to a permutation of A.  
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Note: LU decomposition without pivoting does not work if the first diagonal element of A is zero 
 

 
 
As we can see, int that case, the matrix product B is different from the given matrix A 
We will see how to solve the problem by introducing a permutation matrix. 
 
LU and Linear System. The LU decomposition is often used to solve linear system 

 A x = b    ⇒   LU x = b   ⇒   L (Ux) = b 

The original system is now split into two simpler systems. 

 L y = b (1)             U x = y        (2) 

First of all, we solve the vector y from the system (1), then, substituting y into (2), we solve for the vector  
x. Solving a triangular system is quite simple.  
 
 
 
 
 
 
 
 
 
 
 
For a good and accurate explanation of this method see [2]  
 
When pivoting is activate the right decomposition formula is   A = P L U  , where P is a permutation matrix 
This function can return also the permutation matrix in the last n columns 
Globally, the output of MLU function will be: 
 

Columns 1, n Matrix L 
Columns n+1, 2n Matrix U 
Columns 2n+1, 3n Matrix P 

 
 
Example: find the factorization of the following 3x3 matrix A  
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Forward substitution. For lower triangular 
system like L y = b 
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Backward substitution. For upper triangular 
system like U x = y 
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Example: find the factorization of matrix A with a11 = 0  
 

 
 
Note that the permutation matrix is returned in the last 3 columns just for practical reason. Often the user 
is not interested in the matrix P (for example if the pivot = false then P = identity matrix). Selecting only 
the first 6 columns and pasting the function MLU,  the P matrix stays hidden. 
Rememeber that, in the matrix product PLU,  the permutation matrix must always be the first (see image). 
 
 

Function MQR(Mat) 
This function performs the QR decomposition of a square (n x n) matrix   

 RQA ⋅=  
 
A is a rectangular (m x n) matrix1, with m >= n.   
Q is an orthogonal (m x n) matrix  
R is an upper triangular (n x n) matrix.  
This function returns a matrix (m x (n + n)), where the first (m x n) block is Q and the first n rows of the 
second (m x n) block is R. The last m - n rows of the second block are all zero. 
 
The QR decomposition forms the basis of an efficient method for calculating the eigenvalues. See also 
the function MEigenvalQR(Mat, Optional MaxLoops, Optional Acc)  
 
Example 1°: Perform the QR decomposition for the given square matrix 
 

 
 

                                                      
1 Thanks to Ola Mårtensson for the rectangular version of QR algorithm 
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Example 2° Perform the QR decomposition for the given rectangular matrix 
 

 
 

 
 

Function MQRiter(Mat, [MaxLoops]) 
This function performs the diagonalization of a symmetric matrix by the QR iterative process 
The heart of this method is the iterative QR decomposition  

nnnnnn QRARQA
QRARQA
QRARQA

RQAQRA

=⇒=
=⇒=
=⇒=
=⇒=

+1

223222

112111

1

     
      
       
          

 
 
If the matrix  A has:  | λ1 | > | λ2 | > | λ3 | >... | λn | , then the sequence converges to the diagonal matrix of 
eigenvalues  

[ ]λ=+∞→ 1lim nn
A

 
If the matrix is not symmetric the process gives a triangular matrix where the diagonal elements are still 
the eigenvalues. 
Optional parameter MaxLoops (default 100) sets the max iteration allowed. 
 
Example. 
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Function MQH(A, b) 
This function performs the QH decomposition of the square matrix A with the vector b 
The functions returns a matrix (n x 2n), where the first (n x n) block contains Q and the second (n x n) 
block contains H.  

TQHQA  =  

where Q is an orthogonal matrix and H is an Hessenberg matrix. 
If A is symmetric, H is a tridiagonal matrix 
This function uses the Arnoldi-Lanczos algorithm. 
 

 
 
 
 

Function MExtract(A, i_pivot, j_pivot) 
Returns the sub-matrix extracted from A by eliminating one row and one column 
i_pivot =row to eliminate  
j_pivot = column to eliminate 
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Function PathFloyd(G) 
This function, now available also in macro version, returns the matrix of all shortest-path pairs of a graph. 
This is an important problem in Graph- Theory and has applications in several different fields: 
transportation, electronics, space syntax analysis, etc. 
The all-pairs shortest-path problem involves finding the shortest paths between all pairs of vertices in a 
graph that can be represented as an adjacency matrix [G] in which each element aij - called node - 
represents the "distance" between element i and j. If there is no link between two nodes, we leave the cell 
blank or we can set any non-numeric symbol you like: for example "x" 
This function uses Floyd sequential algorithm  
 
 
Example. - A simple directed graph and its adjacency matrix G 
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Function PathMin(G) 
Returns a vector containing the shortest paths of a graph; the row and column of the cell 
This function uses the PathFloyd() function to find the all-pairs shortest paths of the given graph G  
 
PathMin(G) =>  [ path_min, i_min ; j_min ] 
 
 
 
Graphs theory recalls 
Find the shortest distance between 6 sites drown in the following road map 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The map can be expressed in the following matrix 
 

1 2 3 

4 5 6 

18 Km 

10 

15 Km 

10 Km 

8 Km 

5 Km 

8 Km 

9 Km 

24 Km 



T U T O R I A L  F O R  M A T R I X . X L A  

 67 

 city 1 city 2 city 3 city 4 city 5 city 6 
city 1 0 18 x 10 x x 
city 2 18 0 15 10 8 x 
city 3 x 15 0 x 9 8 
city 4 10 10 x 0 x 24 
city 5 x 8 9 x 0 5 
city 6 x x 8 24 5 0 

 
In the cell 1,2 we fill the distance between city 1 and city 2, that is 18 Km;  
In the cell 1,3 we fill "x" because there is not a direct way between city 1 and city 3. 
In he cell 1,4 we fill the distance between city 1 and city 4, that is 10 Km. 
And so on... 
We observe that the matrix is symmetric because the distance dij is the same of dji; so we really have to 
compute only half the matrix. 
The above "adjacent matrix" reports only the direct distances between each pair of cities.  
But we can join, for example, city 1 and city 3 in several different paths: 
city 1 - city 2- city 3   = 18 + 15 = 33 Km 
city 1 - city 4 - city 6 - city 3   = 10 + 24 + 8 = 42 Km    etc. 
 
The first one is the shortest distance path for city 1 and city 3 
We can repeat this search for any other pair, and find the shortest path for all pairs of cities. But it will 
tedious. The Floyd algorithm automates just this task. Applying this algorithm to the above matrix we get 
the following matrix 
 

 city 1 city 2 city 3 city 4 city 5 city 6 
city 1 0 18 33 10 26 31 
city 2 18 0 15 10 8 13 
city 3 33 15 0 25 9 8 
city 4 10 10 25 0 18 23 
city 5 26 8 9 18 0 5 
city 6 31 13 8 23 5 0 

 
This matrix reports the shortest distance between each couple of city pair of cities 
For example the shortest distance between city 1 and city 5 is 26 Km 
 

 city 1 city 2 city 3 city 4 city 5 city 6 
city 1 0 18 33 10 26 31 
city 2 18 0 15 10 8 13 
city 3 33 15 0 25 9 8 
city 4 10 10 25 0 18 23 
city 5 26 8 9 18 0 5 
city 6 31 13 8 23 5 0 
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9 Km 

24 Km 
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For example the shortest distance between city 3 and city 4 is 25 Km 
 

 city 1 city 2 city 3 city 4 city 5 city 6 
city 1 0 18 33 10 26 31 
city 2 18 0 15 10 8 13 
city 3 33 15 0 25 9 8 
city 4 10 10 25 0 18 23 
city 5 26 8 9 18 0 5 
city 6 31 13 8 23 5 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As we can see, finding the shortest paths is simple for a low set of nodes, but becomes quite difficult for a 
larger set of nodes. 
 
The problem is more difficult if the paths are "oriented"; for example if one or more ways are only one-
directional 
 
Let see this example 
 
 
 
 
 
 
 
 
 
The adjacent matrix is built in the same way; the only difference is that in this case the matrix is 
asymmetric. 
For example between the node 1 and node 2 there is a direct path of 1 km, but the reverse is not true  
 

 node 1 node 2 node 3 node 4 
node 1 0 1 x x 
node 2 x 0 1 3 
node 3 x x 0 x 
node 4 3 x 4 0 
 
 
Applying the Floyd algorithm we get the following matrix 
 

1 2 3 

4 5 6 

18 Km 

10 Km 

15 Km 

10 Km 

8 Km 

5 Km 

8 Km 

9 Km 

24 Km 

1 2 

4 3 

1 km 

3 km 
1 km 

3 km 

4 km 
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 node 1 node 2 node 3 node 4 
node 1 0 1 2 4 
node 2 6 0 1 3 
node 3 x x 0 x 
node 4 3 4 4 0 
 
Reading this matrix is simple: 
 
To go from node 1 to the node 2 there's the shortest path of 1 km; to return from node 2 to node 1 there's 
the shortest path of 6 km 
 

 node 1 node 2 node 3 node 4 
node 1 0 1 2 4 
node 2 6 0 1 3 
node 3 x x 0 x 
node 4 3 4 4 0 
 
 

 node 1 node 2 node 3 node 4 
node 1 0 1 2 4 
node 2 6 0 1 3 
node 3 x x 0 x 
node 4 3 4 4 0 
 
 
We note that from node 3 there is no path to reach any other nodes. The row of node 3 has all "x"'s 
(meaning no paths) except for itself. But it can be reached from all other nodes. 
 
Let's see how use this array function in Excel 
 
Shortest path 
First of all, write the adjacent matrix (we have also shown column and row headers but they are 
dispensable) 

 
 
Now choose the site of the shortest-path matrix; that is the matrix returned by function PathFloyd. It must 
beinserted as an array function. That returns a 6 x 6 matrix 
Example. Assume that you choose the area below the first matrix: select the area B10:G15 and now 
insert the function Path Floyd(). Now you must input the adjacent matrix; select the area B2:G7 of the first 
matrix 
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Now gives the "crtl+shift+enter" keys sequence  
That is: 

1. Press and keep down the CTRL and 
SHIFT keys 

2. Press the ENTER key 
 
The solution values fill all the cells that you have 
selected. 
Note that Excel shows the function surrounded by 
two braces { } 
These symbols mean that the function returns an 
array. 
 
The matrix returned is the shortest-path matrix  
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Singular Value Decomposition  -  
 
Function SVDU(A)  
Function SVDD(A)  
Function SVDV(A)  
 
Singular Value Decomposition of a (n x m) matrix A  provides three matrices, U, D, V  performing the 
following decomposition1: 
 

                      
TVDUA ⋅⋅=  

Where:  p = min(n, m) 

U  is an orthogonal matrix (n x p) 
D  is a square diagonal matrix (p x p) 
V  is an orthogonal matrix (m x p) 
 

 
Each of the above functions returns one of the SVD matrices.  
 
Example. 
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Example. Find the SVD decomposition for the given matrix 
 

 
 
From the D matrix of singular values we get the max and min values to compute the condition number  
m 2 , used to measure the ill-conditioning of a matrix. In fact, we have: 

m = 7.95 / 1 = 7.95 

The SVD decomposition of a square matrix always returns square matrices of the same size, but for a 
rectangular matrix we should pay a bit more attention to the correct dimensions.  
Let’s see this example 
 

                                                      
1 Some authors give a different definition for SVD decomposition, but the main concept is the same. 
2 With respect to the norm 2 
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Sometimes it happens that the matrix is singular or “near singular”. The SVD decomposition evidences 
this fact, and allows computing the matrix rank in a very fast way. You have to count the singular values 
greater than zero (or greater than a small value, usually 1E-13 ).  For this we need only the singular 
values matrix returned by the function SVDD. Let’s see. 
 

 
 
 
Nomenclature: The matrices returned by the SVD are sometimes called 

U ( hanger ),   D  (stretcher),  V (aligner). 

So the decomposition for a matrix A can be written as1  

(any matrix) = ( hanger ) x (stretcher) x (aligner) 
 
 
 

Condition Number  
 
This number is conventionally used to indicate how ill-conditioned a matrix is  
Formally the condition number of a matrix is defined by the SVD decomposition as the ratio of the largest 
element to the smallest element of diagonal matrix  
Given the SVD decomposition: 

                             
TUDVA =  where: [ ]  ...  , 21 nddddiagD =  

 
The condition number is defined as: )(min/)(max jjii dd=κ         i = 1... n   , j = 1...n 

 
                                                      

1 For further details see in Internet the web pages “Introduction to the Singular Value Decomposition” by Todd Will, 
UW-La Crosse, Wisconsin, 1999 and the web pages “Matrices Geometry & Mathematic” by Bill Davis and Jerry Uhl  

In this example the true 
rank of the given (5x5) 
matrix is only 3, 
because there are only 
3 singular values 
different from zero. 
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A matrix is ill-conditioned if its condition number is very large. For  32bit double precision arithmetic this 
number is about 1E12. It can be easily calculated from the D matrix returned by the function SVDD 
 

 
 
In this case, the 4x4 Hilbert matrix has c ≅ 15514 
 
The following functions return directly the condition number of a matrix and its decimal logarithm 
 
Function MCond(A)  
Function MpCond(A)  
 
MCond = κ  
MpCond = -log10(κ)  
 
 
The following graph shows the pκ = - log10(κ) of Hilbert matrices of increasing order 
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Function MMopUp(M, [ErrMin]) 
This function eliminates all round-off errors from a matrix. Each element that is has an absolute value less 
than ErrMin is substituted by zero. 
 







⇒

<⇒
=

otherwise0

ErrMin0 j i
j i

a
a

 
 
Parameter ErrMin is optional (default ErrMin = 1E-15) 
 

 
 
As we can see, MMopUp improves the readability 
 
 

Function MCovar(A) 
Returns the covariance matrix (m x m) of a given matrix (n x m)   
The (column) covariance is defined by the following formulas: 
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Where 
 
 
See also the matrix correlation function MCorr() 
This function is similar to the Excel built-in function COVAR for two variables. 
 
 

Function MCorr(A) 
Returns the correlation matrix (m x m) of a given matrix (n x m) 
The correlation matrix is definite by the following formulas: 
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Note. Correlation matrix has always diagonal =1 
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See also the matrix covariance function MCovar 
 
Example - find the covariance and the correlation matrix for the following data table: 
 

x1 7 4 6 8 8 7 5 9 7 8 
x2 4 1 3 6 5 2 3 5 4 2 
x3 3 8 5 1 7 9 3 8 5 2 

 
There are three variables x1, x2, x3 and 10 data observations. The matrix will be 3 x 3. 
In the first columns A, B, C we have arranged the row data (orientation is not important). 
In the last row we have calculate the statistics: average ix   and standard deviation xiσ  for each column. 
 
In the column D, E, F we have calculated the normalized data; that is the data with average = 0 and 
standard dev. = 1.  
 
We have calculated each column ui with the following simple formulas: 
 

 
 
At the right we have calculated the covariance matrices for both row and normalized data: They are 
always symmetric. 
At the right-bottom side we have calculated the correlation matrix for the row data; we note that the 
correlation matrix of row data and the covariance matrix of normalized data are identical. That is: 

 Covariance(Normalized data) ≡   Correlation(Row data)    

The function MCorr() is useful to get the correlation matrix without performing the normalization process 
of the given data. 
Correlation is a very powerful technique to detect hidden relations between numeric variables 
 
 

Function RegrL(Y, X, [Intcpt] ) 
Computes the multivariate linear regression with the SVD method1. 
Parameter Y is the (n x 1) vector of the dependent variable.  
Parameter X is a list of independent variables. It may be a (n x 1) vector for monovariable regression or a 
(n x m) matrix for multivariate regression. 
Parameter Intcpt calculates the intercept y(0) = a0. Default is True 
The function returns a (m+1 x 2) arry containing the coefficients of the linear regression in the first column 
and the standard deviation in the second column.. 
 

                                                      
1 REGRL is maintained only for compatibility. From Excel 2003, the buil-in function LINEST is accurate as REGRL. 

xi

iij
ij

xx
u

σ
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Example - find the linear regresion of the following data table 
 

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
y 5.12 6.61 8.55 10.07 11.35 12.47 13.48 14.41 15.27 16.07 16.82 17.54 18.22 18.86 

 
The linear model is: y = a0 + a1 x 
 

 
 
In Matrix.xla there is no specific function for regression statistics but they can be computed using the 
standard statistic functions and the formula as shown in the above worksheet arrangement 
 
The function RegrL can also return the standard deviation of the estimate. For that simply select an array 
of two columns before inserting RegrL. 
 

 
 
Setting intcpt = False , forces the regression intercept to zero. 
 

 
 
 
 



T U T O R I A L  F O R  M A T R I X . X L A  

 77 

 

Function RegrP(Degree, Y, X, [Intcpt] ) 
Computes the polynomial regression f(x) of a dataset of points  [x i, yi]. 

m
mxaxaxaaxf ...)( 2

210 +++=  
Parameter Degree set the degree m of the polynomial. 
Parameter Y is a (n x 1) vector of the dependent variable.  
Parameter X is a (n x1) vector of the independent variable. 
Parameter Intcpt calculates the intercept y(0) = a0. Default is True 
The function returns a (m+1 x 2) arry containing the coefficients [a0, a1, a2, ...am].of the linear regression in 
the first column and the standard deviation in the second column.. 
 
Example: Given a table of (x, y) points, find the 6th degree polynomial approximating the given data 
 

 
 
The function RegrP can also return the standard deviation of the estimate. For that simply select an array 
of two columns before inserting RegrP. 
 

 
 
 
NIST Certification Test 
The following table gives the LRE results from RegrL and RegrP on the NIST linear regression data set 
 

StRD  Datasets Difficulty Model of class min avg max 

Norris low Linear 12.3 13.3 14.4 
Pontius low Quadratic 11.7 13.3 14.9 
NoInt1 low Linear 14.7 14.9 15.0 
Filip high Polynomial 7.4 7.4 7.5 
Longley high Multilinear 11.7 12.3 12.7 
Wampler1 high Polynomial 9.7 11.3 13.9 
Wampler2 high Polynomial 13.1 13.7 15.0 
Wampler3 high Polynomial 9.5 11.3 14.0 
Wampler4 high Polynomial 9.5 11.2 13.8 
Wampler5 high Polynomial 7.2 8.9 11.6 

 
The average LRE for all datasets is about 11.8. 
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Function RegrCir( X, Y ) 
It computes the LS circular regression of a dataset [xi, yi].  
It returns a (3 x 2) array containing the radius R and the center coordinate (Xc, Yc) of the best fitting circle 
in the sense of the least squares.  

222 )()( RYyXx cc =−+−  
 
The second column contains the standard deviations of the estimates. 
 

R R Stand. Dev. 
Xc Xc Stand. Dev. 
Yc Yc Stand. Dev. 

 
Example. 
 

 
 

 
In the above example the best fitting circle has the parameters:  

R = 1.90 (± 0.13), Xc = 2.05 (± 0.05), Yc = 0.18 (± 0.09) 
 
Of course when the dataset (xi, yi) contains exactly 3 points, the function RegrCir returns the exact 
interpolating circle. 
Example. Find the circle interpolating the points A(1,5), B(3,5), C(4,1) 

 

 

 
 
Compare with the exact result 

64/425)8/21()2( 22 =−+− yx  
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Function MCmp(Coeff) 
Returns the companion matrix of a monic polynomial, defined as: 

 
 

 
 
Parameter Coeff is the complete coefficient vector. If an ≠ 1, the function performs the normalization 
before generating the companion matrix 
Example: 
 

  
 
 
 

Function MCplx([Ar], [Ai], [Cformat]) 
Converts 2 real matrices into a complex matrix 
Ar is the (n x m) real part and Ai is the (n x m) imaginary part 
The real or imaginary part can be omitted. The function assumes the zero-matrix for the missing part.  
Example 
 
A pure real matrix can be written as 

MCplx(Ar) = [ ] [ ]0jAr +  
A purely imaginary matrix can be written as 

MCplx(, Ai) = [ ] [ ]iAj+0       (remember the comma before the 2nd argument) 

 
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
Optional parameter Cformat sets the complex input/output format (default = 1) 
 
Use CTRL+SHIFT+ENTER to insert this function 
 
This function is useful for passing a real matrix to a complex matrix function, such as, for example the 
MMultC. If we have to multiply a real matrix by a complex vector, we can use the MMultC function; but, 
because this function accepts complex matrices, we have to convert the matrix A into a complex one 
(with a null imaginary part) by the MCplx function and then pass the result to MMultC. In other words we 
have simply to nest the two functions like that 
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Function PolyRootsQR(poly) 
This function returns all roots of a given polynomial 
Poly can be an array of (n+1) coefficients [a0, a1, a2...] or a string like "a0+a1x+a2x^2+..." 
This function uses the QR algorithm. The process consists of finding the eigenvalues of a companion 
matrix with the given polynomial coefficients.  
This process is very fast, robust and stable but may not be converging under certain conditions. If the 
function cannot find a root it returns “?”. Usually it is suitable for solving a polynomial up to 10th degree 
with a good accuracy (1E-9 – 1E-12) 
 
Example: Find all roots of the following polynomial of 8 degree 

P(x) = 240 − 68x −190x2 − 76x3 + 79x4 + 28x5 −10x6 − 4x7 + x8 
 

 
 
As we can see the polynomial has four real and four complex conjugate roots 
 
 

Function PolyRootsQRC(Coefficients) 
This function returns all roots of a given complex polynomial 
Parameter Coefficients is a (n+1 x 2) array, where n is the degree of the polynomial 
If the function cannot find a root it returns “?”. Usually this function is suitable for solving polynomials up to 
the 10th degree 
This function uses the QR algorithm. The process consists of iteratively applying the QR decomposition to 
the complex companion matrix.  
 
Example. Find all the roots of the following polynomial 
 

jzjzjzjzzP 248)222()79()25()( 234 +++−+++−=  
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Function MRot(n, theta, p, q) 
Returns the orthogonal matrix (n x n) that performs the planar rotation over the plane defined by axes p 
and q 
Parameter theta sets the angle of rotation in radians 
Parameters p and q are the columns of the rotation and must be: p <> q  and p ≤ n and q ≤ n 
 
Example: In the 3D space, the canonical rotation matrices are 
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Where:  c = cos(θ) . s = sin(θ) 
Note that all rotation matrices have determinant = 1 
 
Example. Given two vectors in R2 (v1, v2) ,  find the same vectors after a rotation of 30° deg 
 
The transformation formula is: 
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That can be arranged in the following way: 
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Function VarimaxRot(FL, [Normal], [MaxErr], [MaxIter]) 
This function computes the orthogonal rotation for a Factor Loading matrix using the Kaiser's Varimax 
method for 2D and 3D factors 
Parameter FL is the Factor Loading matrix to rotate (n x m). The number of factors m, at this release, can 
only be 2 or 3. 
Optional parameter Normal = True/False chooses the "Varimax normalized criterion". That is, it indicates 
if the matrix of loading is to be row-normalized before rotation (default = False) 
Optional parameter MaxErr set sets the accuracy required (default = 10^-4). The algorithm stops when 
the absolute difference of two consecutive Varimax values is less than MaxErr 
Optional parameter MaxIter sets the maximum number of iterations allowed (default=500) 
 
Algorithm 
The Varimax rotation procedure was first proposed by Kaiser (1958). Given a numberOfPoints × 
numberOfDimensions configuration A, the procedure tries to find an orthonormal rotation matrix T such 
that the sum of variances of the columns of B*B is a maximum, where B = AT and * is the element-wise 
(Hadamard) product of matrices. A direct solution for the optimal T is not available, except for the case 
where numberOfDimensions equals two. Kaiser suggested an iterative algorithm based on planar 
rotations, i.e., alternate rotations of all pairs of columns of A. 
For Varimax criterion definition see Varimax Index    
 
This function is widely used, by now, in many primarily (and expensive) statistical tools, but because it is 
very rare in freeware software, we have added it to our add-in. 
Let's see how it works with one popular example 
 
Example 2D- Initial Factors Matrix 
 
 Factor 1 Factor 2 

Services 0.879 -0.158 

HouseValue 0.742 -0.578 

Employment 0.714 0.679 

School 0.713 -0.555 

Population 0.625 0.766 
 
Rotate Factors Matrix: method Varimax 
 

 
 
As we can see the varimax index is incremented after the varimax rotation method. Each variable has 
maximized or minimized its factors values  
Factor Loading is a very large topic and its explanation is out of the scope of this tutorial. See the 
specialized statistical literature. 
 

The goal of the method is to try to 
maximize one factor for each 
variable. This will make evident 
which factor is dominant (most 
important) for each variable. 
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Function VarimaxIndex(Mat, [Normal]) 
Returns the Varimax value of a given Factor matrix Mat 
Varimax is a popular criterion (Kaiser (1958) to perform orthogonal rotation of Factors Loading matrices. 
Usually, the rotation stops when Varimax is maximized 
Optional parameter Normal = True/False indicates if the matrix is to be row normalized before computing 
 
Varimax, for a (p x k) matrix A (i.e., with p rows and k columns), is defined as follows: 
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Function MNormalize(Mat, [NormType], [Tiny]) 
Performs the normalization of a real (n x m) matrix. 
The optional parameter Normtype indicates what normalization is performed 
The optional parameter Tiny  sets the minimum error level (default 2E-14) 
 

|| minv
vu i

i =
 

Normtype = 1.   
All vector’s components are scaled to the non-zero minimum of the 
absolute values 
 

|| v
vu i

i =
 

Normtype = 2    
(default). All non-zero vectors are length = 1 
 

|| maxv
vu i

i =
 

Normtype = 3.  
All vector’s components are scaled to the maximum of the absolute 
values 

 
 
Example - Normalize the following 3x3 matrix 
 

 
 
 
 

Function MNormalizeC(Mat, [NormType], [Cformat], [Tiny]) 
Returns the normalized vectors of a complex (n x m) matrix. 
This function supports 3 different complex formats: 1 = split, 2 = interlaced, 3 = string 
The optional parameter Cformat sets the complex input/output format (default = 1) 
 
Example - Normalize the following complex vector 
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Function MNorm(v, [NORM]) 
Returns the norm of a matrix or vector 
Parameter v can be a vector or a matrix; optional parameter Norm sets the specific norm to compute 
(default 2 for vectors, and 0 for matrices) 
 
The norm returned can be: 
 
For vectors 
 

Norm = 1 Absolute sum ∑=
i

ivv ||
1

 

Norm = 2 Euclidean norm ∑=
i

ivv 2
2

 

Norm = 3  ( also infinite) Maximum absolute  ( )||max
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For matrices 
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Note: norm 2 for vectors and norm 0 for matrices give the same values of the function MAbs  
 
Example: Find norm 0, 1, 2, 3 for the given 4x3 matrix 
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Function MMultC(M1, M2, [Cformat]) 
Performs a complex matrix multiplication. 
If the dimension of the matrix M1 is (n x m) and M2 is (m x p) , then the product is a matrix (n x p) 
This function now supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
Optional parameter Cformat sets the complex input/output format (default = 1) 

M1 = A + j B  M2 = C + j D 
where A, B, C, D are real matrices 
Examples: 
 

 

Matrix multiplication of two 3x3 complex 
matrices 

 

 

Imaginary part must always be 
provided even if it is entirely null . 
We see that we have added to the 
original real matrix A2:C4 the "0" 
range D2:F4 
In this example the 3x3 matrix is 
complex and the 3x1 vector is 
complex 

 

 

One can avoid to insert directly the 
imaginary part if is zero by the 
function MCplx(re, im) 
In this example the 3x3 matrix is 
real and the 3x1 vector is complex 

 

 

In this example the 3x3 matrix is 
complex and the 3x1 vector is real 

 

 

Of course, this function can be 
used for multiplying a matrix and a 
vector 
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Function MInvC(A, [Cformat]) 
Complex matrix inversion 
The complex matrix A must be square  
This function supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
Optional parameter Cformat sets the complex input/output format (default = 1) 
Complex split or interlaced matrix must have always an even number of columns 
 

 
 
 

 
 
 

Function ProdScalC(v1, v2, ) 
Returns the scalar product of two complex vectors 

( ) ( )kimre
k

kimre ibbiaaba −⋅+=• ∑
rr

 
 

 
 
Note that the imaginary parts of vectors must always be inserted even if they are all 0 (real matrices). 
In string format we can write complex numbers as string  “a+ib” and need not insert zero real or imaginary 
components. 
Look at the same example. Note the third optional parameter cformat = 3 
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Function SysLinC(A, b, [Cformat]) 
This function solves a complex linear system by the Gauss-Jordan algorithm. 
Returns the vector solution of the given system 
This function now supports 3 different formats: 1 = split, 2 = interlaced, 3 = string 
Optional parameter Cformat sets the complex input/output format (default = 1) 
Remember that for a linear system: 

bAx =  
A  is the system complex square matrix (n x n)  
x  is the unknown complex vector (n x 1) 
b  is the constant complex vector (n x 1) 

As known, the above linear equation has only one solution if - and only if -, Det(A) <> 0 
 
Example - solve the following complex 3x3 linear system 
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We can also use directly the complex string format “a+bj”, Simply set the parameter cformat = 3 
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Function Simplex(Funct, Constraint, [Opt]) 
This function performs the linear optimization with the Simplex method 
Funct is the array (1 x n) containing the coefficients of the linear function to optimize  
Constraint is the array (m x n+2) containing the coefficients of m linear constraints and the type of 
constraints (“<” , “>”, “=”) 
Opt sets the optimization type: 1 (default) for maximization, 0 for minimization. 
 
A typical linear programming problem, also called linear optimization, is the following. 
Maximize the function z 

nn xaxaxaz ...2211 ++=  
With the following constraints: 

0≥ix  
and for  j=1 to m 

12211 ... cxbxbxb njnjj ≤++
 

 
This function accepts the constraint symbols:  “<”  , “>”, and “=”  
 
This function returns: 
If an optimal solution exists – that is: all constraints are satisfied and the function is maximized – then it 
returns the solution vector and, in the last cell, the corresponding function value  
If the constraints region is unbounded – that is, if the region is not closed - a finite solution cannot exist 
and the function return “inf”. Typically this happens when the constraints are insufficient 
If the constraints region is bounded, but the solution doesn’t exist, the function returns “?”. Typically this 
happens when you add too many constraints 
 
Note: The columns of Constraint must be n+2, where n is the number of columns of the function 
coefficients. If this condition is not true, the function returns “??”. Typically it happens when you select a 
region with wrong dimensions. 
 
Now lets see how it works.  
Example: find the maximum of the function: 
 
F(x,y)= 1.2 x + 1.4 y 
 
With the following constraints: 

40 x +25 y =< 1000 
35 x + 25 y =< 980 
25 x + 35 y =< 875 
 

 
 
Note that it is indifferent whether you write “<” or “<=” for the constraint symbols 
The solution is about: 

x = 16.935 , y = 12.903  , f(x, y) = 38.387 
 
This function accept also mixed constraint symbols  
 
Let’s see this example  
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Maximize z = x1 + x2 + 3 x3 – 0.5 x4 
 
with all the x variables non-negative and also with: 

x1 + 2 x3  <=  10                 
2 x2 - 7 x4  <=  0                 
x2 – x3 + 2 x4  >=  10                 
x1 + x2 + x3 +x4  =  9                 
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Function MPerm(Permutations) 
Returns the permutations matrix. It consists of a sequence of n integer unitary vectors. 
The parameter is a vector indicating the sequence. 
Any permutations matrix can be indicated by a sequence vector, such as: 
 
            



















==

0010
0001
1000
0100

)  ,  ,  , ()2 ,1 ,4 ,3( 2143 uuuuP

 
 

 
 
 

Function MHessenberg(Mat) 
Returns the Hessenberg form of a square matrix 
As known a matrix is in Hessenberg form if all values under the lower sub-diagonal are zero. 
 


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
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Function MAdm(Branch) 
Returns the Admittance Matrix of a Linear Passive Network Graph. 
 
Branch is a list of 3 columns giving the basic information 
of  each branch: 
 node+, node-, admittance . 
The number of rows must be equal to the number of 
branches of the graph  
 

n-n+ y = a + bj

I  

A complex admittance has a real part (conductance) and an imaginary part (susceptance). In this case 
you have to provide a 4 columns list. 
 
Nodal Analysis gives the following equation to solve the 
linear passive network, where V is the vector of nodal 
voltage, I is the vector of nodal current and [Y] is the 
admittance matrix. 
If N+1 is the number of nodes, then the matrix 
dimension will be (N x N).  
(usually the references nodes is set at V = 0 ) 
V, I, and [Y] are in general complex 
 

 [ ] IVY =⋅  
 










−=

=
=

∑
≠
=

ijij

N

ik
k

ikii

Yy

Yy
Y 0][

 
 

The function returns an (N x 2*N) array. The first N columns contain the real part and the last N columns 
contain the imaginary part. If all branch-admittances are real, the matrix will also be real, and the function 
returns a square (N x N) array. 
 
Linear Electric Network 
Nodal Analysis is widely used for Electric Networks. A passive linear network is composed of four basic 
components: Resistors, Inductors, Capacitors, and Current Sources. In sinusoidal state, with constant 
frequency, the admittance branch can be derived by the following formulas 
 

Resistor  Value R (ohm) Admittance y = 1/R 

Capacitor  Value C (farad) Admittance y = j ω C 

Inductor  Value L (henry) Admittance y = −j 1/(ω L) 

Current source  
 Value I (ampere) I = Ire + j Iim 

 
Where : ω = 2 π f    (rad / s) 
 
Example. Compute the admittance matrix of the following linear passive electric network and find the 
nodal voltage 
 

0.1 j 0.2 j 0.1 j
 

−0.2 j0.1 0.25

 0.1

0.1

1.21

V1 V2 V3 V4
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The network has 8 branches, mixed real and complex, and 4 nodes (the ground is the reference node 
and is set to 0). So the network list has 8 rows and 4 columns. The independent current generators are 
indicated in another list. The linear complex system can be solved by SysLinC.  
 
 
Thermal Network 
There are also other networks than electrical ones, that can be solved with the same method. The same 
principles can be applied, for example to study one-dimensional heat transfer.  
 
One-Dimensional Conductive Heat Transfer.  
 
The rate of conductive heat transfer through a material, 
having a thermal conductivity “k”, is proportional to the 
temperature gradient across the material 
 

             
( ) ( )LHLH TTgTT

d
kQ −−=−⋅−=

     
 

TH

TL

d

Q

 
Thus, the network equations are the same as for the electric network after replacing: 
 

I  (ampere) electric current ⇔ Q (cal/s) rate of conduction heat 
V (volt)  Voltage ⇔ T (° Kelvin) temperature 
g  (siemens) electric conductance ⇔ g (cal/m s °K) thermal conductance 

 
Example: Find the temperature profile through a sandwich material of 3 layers  
 

TH TL

T1 T2

d1
d1 d2 d3

QH QL

 

Layer d (cm) K (cal /cm s °C) 
1 0.1 0.04 
2 0.4 0.12 
3 0.2 0.08 

 
Where: 

 TH = 400 ° C  

 TL = 20 ° C 

 QH = TH ⋅k1/d1 = 160 cal/s 

 QL = TL ⋅k3/d3  = 8 cal/s 

Internal temperature T1 and T2 are unknowns 
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The thermal network equivalents to the above sandwich are shown in the following figures: the right one 
is obtained after substituting the temperature sources with their equivalent heat sources 
 

T1 T2 TLTH

g1 g12 g3

 

 

 
Where thermal conductance are: 

g1 = k1/d1,     g12 = k2/d2,      g3 =k3/d3 
 
A spreadsheet calculus can be arranged as the following 
 

 
 
With the internal temperatures T1 and T2 we can easily draw the thermal profile across the material 
 

 
 

If [A] is the admittance 
matrix, the vector of 
temperature can be 
solved with the 
following formula 
 
T = [A]−1 Q 

T1 T2

QH = TH·g1

g1

g12

g3
QL = TL·g3
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Function MLeontInv(ExTab, Tot) 
Returns the inverse of Leontief matrix of Input-Output Analysis Theory. 
Parameter ExTab is the interindustry exchange table (or IO-table). This table lists the value of the goods 
produced by each economic sector, and how much of that output is used by each sector. 
Parameter Tot is the total production vector 
 
Input Output Analysis 
Recall theory definition. Input Output Analysis is an important branch of economics that uses linear 
algebra to model the interdependence of industries. Assuming EX the Exchange table 

[ ]ijxEX =
 

 
The Technology matrix (or Consumption matrix) is 












=

j

ij

X
x

A
 

where Xj is the total production of the j-th sector 
Leontief matrix is . 

)( AIL −=  
 
If d is the Final Demand vector, the production x is given by the following formula. 

dLdAIx 11)( −− =−=  
 
Example. Giving the following Exchange table of Goods and Services in the U.S. for 1947 (in billions of 
1947 dollars), find the Leontief matrix and calculate the production for a final demand of: agricolture = 45, 
manufactory = 74, services = 130. 
 
Supply   Purchasing 

sectors 
  total 

sectors Agriculture Manufact. Services output 
Agriculture 34.69 4.92 5.62 85 
Manufact. 5.28 61.82 22.99 163 
Services 10.45 25.95 42.03 219 

 

 

As we can see, in order to 
satisfy the demand of 
agriculture = 45, 
manufacturing = 74, and 
services = 130, the total 
production should be 
increased by 9.8% for 
agriculture, and by 0.4% for 
manufacturing, while 
decreased by  -5.3% for 
services 
 

 

Sectors demand 
Agriculture 45 
Manufact. 74 
Services 130 
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Matrix Tool 
 
The Matrix toolbar 
This floating toolbar is useful for several tasks: selecting and pasting scraps of matrices; generating 
different kind of matrices and several useful matrix operations. And, of course, it can be used also for 
recalling the Matrix help-on-line. You can display it by clicking on the Matrix icon  
 

    (Matrix.xla v.2.x) 
 

   Topics available are:   
• Selector tool select matrix pieces 
• Generator tool generate random and special matrices 
• Macros starter for macros stuff 
• Help call the on-line manual 

 
 
Selector tool.  
It can be used for selecting several different matrix formats: diagonal, triangular, tridiagonal, adjoint, etc. 
Simply select any cell into the matrix and choose the menu item that you want.  
 

  
 

 
 

 
  

 
 

   
 

Chapter 

3 
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Automatically the “Selector tool” works on the max area bordered by empty cells that usually correspond 
to the full matrix. If you want to restrict the area simply select the sub-matrix that you want before starting 
the Selector macro 
 
For example if you need to select the 
lower sub diagonal; simply select the 
sub-matrix containing the diagonal 
[10,9,5,4,1].  
Then choose the menu item: 
Selector\diagonal 1st 

  
 
If you start the macro without selecting any matrix 
cell, the following pop-up window appears, asking 
you the top-left and the bottom-right corners of the 
range that you want to select. By the combo box 
you can choose the selection format that you like  
The Paste button calls the Paster tool 
 

 
 
 
Scraps Paster tool.  
The selection of matrix parts is obtained by a multi-range selection. Excel cannot copy it. If you try to give 
the usual sequence CTRL+C you will obtain an error message. 
 
For this task, this smart little macro for pasting the 
range or multi-range that you have previous 
selected comes in handy. 
Select Paster from the menu. This window pop-up 
appears. Simply indicate the destination top-left 
corner and chose OK.  
That’s all  
The destination cells will be filled with the values 
of the selected cells. No format will be copied. 
Only plain values. 

 
 
Of course this tool has other interesting options. Let’s see. 
 
Fill unselecting cells with zero: check this if you fill all other cell of the matrix with zero. This is useful to 
build a new matrix with a part of the original one. 
Example: If you want to build a new lower triangular matrix with the elements of another one, you can use 
this simple option, and the result will be similar to the following: 
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Change the target range:  Normally the range is copied as 
is. But sometimes we need to rearrange the geometry of the 
target range. This happens, for example, when we want to 
extract the diagonal elements from a given matrix and to 
convert it in a vertical vector. 
In this case, after you have selected the diagonal, check the 
option vertical 
The diagonal element will be... “verticalized”.  
 

 

Sometimes we need the inverse of this transformation: from a 
vertical vector, we have to build the diagonal matrix having 
the vector elements on its diagonal. 
For that select the vector that contains the elements. Start the 
Scraps Paster  tool and check the zero and diagonal option. 
By giving your OK, you will generate the matrix to the left 
 

 
Or we can extract an adjoint sub-matrix. 
For example, select the a33 element and 
choose the menu Selector\adjoint. Then 
activate the Paster. Indicate the top-left 
corner and select the option “Adjoint”. 
The macro will copy the selected 
elements rebuilding a new 5x5 matrix 
 

 
Flip. We can also invert the order of 
rows or columns of the target matrix 
For example, select the full matrix 
(ctrl+shift+*) and run the “Paster tool”, 
choosing the flip vertical option. 
 

 
 
 
The matrix target can also be the same as the original one. In that case the changing will be done "in 
place" in the same matrix. Of course the transformation makes sense only if the source and target range 
have the same dimensions: that is, for square matrices. For example, assume you want to transpose a 
square matrix on the same site 
 

 

Select the range B2:E5 and 
then run the “Paster tool”, 
choosing B2 as target corner 
and Transpose as option. 
The result will be the 
transposed matrix in the same 
range  
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Matrix Generator 
This smart macro can generate different kind of matrices 
 

Random 
 

Generates random matrices with the following parameter: dimension, 
max e min values, format: full, triangular, tridiagonal, symmetric, 
decimals number. 
 

Rank / Determinant 
 

Generates random matrices with given rank or determinant 
 

Eigenvalues 
 

Generates random matrices having given eigenvalues 

Hilbert 
 

Generates Hilbert’s matrices  

Hilbert inverse 
 

Generates the inverse of Hilbert’s matrices  

Tartaglia 
 

Generates Tartaglia’s matrices  

Toeplitz Generates Toeplitz’s matrices 
 

Sparse 
 

Generates sparse matrices 
 

 
Using this macro is quite simple: select the area that you want to fill with the matrix and then start the 
macro with the Matrix.xla toolbar.  
 
Random matrix with given format 
 

 

Parameters: 
Random numbers x are generated with the 
following constrains: 

Max value: upper limit of x 
Min value: lower limit of x 
Decimals: sets the number of decimals of x 
Int checkbox: x as integers 
 
Sym checkbox: the matrix will be symmetric 
Sparse: index between 0 and 1: the number 0 
(default) means full matrix, 1 very sparse matrix 
 
Starting from: top-left matrix corner 

 
Random matrix with given eigenvalues 
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Random matrix with given determinant or rank 
 

 

Generate a square matrix with given determinant or 
rank 

Dimension: matrix dimension 
Rank: rank of the matrix. For default is set equal to the 
dimension. If it is less than the dimension, the 
determinant is automatically set to 0. 
Starting from: top-left matrix corner 
Determinant: sets the determinant of the random matrix 
Sym: generate a symmetric random matrix 
Int: generate a random matrix with integer values 

 
Tartaglia’s matrix  
Generate the Tartaglia’s matrix with given dimension. See Function MTartaglia() 
 
Hilbert’s matrix  
Generate the Hilbert’s matrix with given dimension. See Function MHilbert()  
 
Sparse matrix  
 

 

Parameters: 
Random sparse matrix [aij] is generated with the 
following constraints: 

Max: value: upper limit of aij 
Min: value: lower limit of aij 
Dim: matrix dimension (n x n) 
Dom: Dominance factor D, with 0 < D < 1 
Fill: Filling factor F, with 0 < F < 1 
Spread: Spreading factor S, with 0 < S < 1 
Sym: check it for symmetric matrix 
Int: check it for integer matrix.  
Starting from: left-top matrix corner 
 
Output format 
Coordinates: generates a (k x 3) matrix in sparse 
coordinates format: [ i, j, aij ] 
Square: generates a square sparse matrix [ aij ] 
 

 
There are several way to arrange a sparse matrix in order to save space, computation efficiency, etc. In 
this add-in we use the (old but simple) Coordinate format  
 
The Coordinate format of sparse matrix consists a 
3 columns array where the 1st and 2nd columns 
contains the indexes "i" and "j", while the 3rd column 
contains the value aij. 
 
Of course, the space saving is valid only for sparse 
matrices with F < 1/3  
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Filling factor 
The filling factor measures how "dense" a matrix is . In this document, it is defined as 
 

Tot

zero

N
NF −=1

 

N zero = number of zero elements  
N tot = total of matrix elements 

 
The factor is between 0 and 1; 1 means dense matrix , 0 empty matrix 
We see that the coordinate format of a square matrix is useful only if F < 1/3 
We note also that for a simple (n x n) diagonal square matrix, F = 1/n  
The following pictures show 2 random sparse matrices having different filling factor  
 

  
(30 x 30) F = 0.3 (30 x 30) F = 0.6 

 
Usually large sparse matrices in applied science have a factor F less then 0.2 (20%) 
 
 
Dominance Factor 
The dominance factor measures how much a matrix is "diagonal dominant" In this document, it is defined 
as 

∑
=
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n

i
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where the single row dominance factor Di , for a not empty row, is defined as 
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The row dominance factor Di is always between 0 and 1; 
 

Case Description 
Di = 0 The diagonal element is zero: aii = 0  
0 < Di< 0.5 The row is dominated: di < Si 
Di = 0.5 The row is indifferent: di = Si 
0.5 < Di < 1 The row is dominant: di > Si 
Di = 1 The row contains only the diagonal element: Si = 0 

 
 



T U T O R I A L  F O R  M A T R I X . X L A  

 101 

 
Spreading Factor 
This factor is used for spreading the elements around the first diagonal. This has no definition and is used 
only in this macro. S = 0 means no spreading at all, that is a band-diagonal matrix; 
S = 1 means large spreading. 
 

   
(30 x 30) S = 0.05 (30 x 30) S = 0.2 (30 x 30) S = 0.5 
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Macro stuff.  
The menu    >macros > Matrix operations contains several macros performing useful tasks.  
 
Macro versus Function 
In this Matrix package there are worksheet functions that perform the same tasks of the macros. The 
reason for also having macros is that macros are more suitable for large matrices and heavy long 
computation.   
On the other hand, functions are suitable for automatic recalculation, but Excel becomes very slow for 
large worksheet full of active functions. You should see when it is convenient to use either macros or 
functions. 

   Available macros are:   
 

Matrix operations Real Matrix operation 
Complex matrix operations Complex Matrix operation 
Sparse matrix operations Sparse linear solving, vector product and other stuff 
Eigen-solving Eigenvalues / Eigenvector for real and complex matric ies 
Gauss-step-by-step Matrix reduction step by step with Gauss-Jordan algorithm 
Shortest Path Shortest paths matrix of a distance matrix 
Draw Graph Flow-Graph drawing of a distance matrix 
Block reduction Matrix block reduction with permutation matrix 
Clean-up Eliminate the tiny values 
Round Round values 

 
Matrix operations 
This macro performs several common matrix operations like: addition, subtraction, multiplication, 
inversion, scalar multiplication, etc.  
 

 

Using this macro is quite 
simple. Select the matrix (or 
select any cell inside the 
matrix) and start the macro 
from its menu. Some tasks 
need only one matrix, and 
some others require two 
matrices. 
Choose the operations that 
you want to perform. If the 
operation needs a second 
parameter - matrix or vector -, 
select it in the B field. Then, 
chose a starting point for 
output. Click "run", wait, and 
check the result. That's all. 
 
 

 

  The smart selector is useful for selecting large matrices. Simply select a cell inside the matrix and 
click on it. The entire matrix will automatically be selected. This tool works if there are only empty cells 
around the matrix. 
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Sparse Matrix operations 
This macro solves sparse linear systems and performs some common matrix operations like: 
transposition, addition, subtraction, vector multiplication, determinant 
Same tasks need only one matrix and some others require two matrices 
 

 
 
Sparse matrices require a special coordinates format (see Random sparse matrix). Matrix dimension 
must be greater than 3.  
The Linear System macros accept both sparse and standard square matrix formats 
 
Task Description 

Transpose Returns the transpose. Input A is in sparse format 
 

Determinant Computes the determinant. Input A is in sparse format 
 

Convert Converts a matrix in sparse coordinates format and vice versa. Input A accepts both 
standard or sparse format 
 

Dimensions Returns the true dimensions (n x m) and the filling factor of a sparse matrix (see 
Random sparse matrix). Input A is in sparse format.  
 

Dominance Returns the row dominance factor of a matrix (see Random sparse matrix). Input A 
accepts both standard or sparse format 
 

A+B Returns the addition of two sparse matrices. Inputs A and B are in sparse format 
 

A-B Returns the subtraction of two sparse matrices. Inputs A and B are in sparse format 
 

A*b  Returns the product of a sparse matrix A for a vector b. Input A is in sparse format 
 

A*b (Trid.) Returns the product of a sparse tridiagonal matrix A for a vector b. Input A is in 
tridiagonal format (see Function MMult3 ) 
 

Linear System  
Ax = b (ADSOR) 

Solves a sparse linear system using the iterative ADSOR algorithm (Adaptive-SOR). 
Input A accepts both standard or sparse format. The Iterative algorithm always 
converges if the matrix is diagonal dominant. It is usually faster than other 
deterministic methods (Gauss. LR, LL). The iterations limit (default 400) can be 
modified by the top-right field  
 

Linear System  Solves a sparse linear system using the iterative Gauss algorithm with partial pivot 
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Ax = b (Gauss) and back-substitution. Input A accepts both standard or sparse format. 
 

LL (Cholesky) Returns the Cholesky factorization of a sparse symmetric matrix 
 

Linear System  
Ax = b (Trid.) 

Solves a tridiagonal linear system using the iterative Gauss algorithm with partial 
pivot and back-substitution. Input A is in tridiagonal format (see Function MMult3 ) 
.. 

Dominance 
improving 

Tries to improve the dominance of a sparse matrix by rows exchanging. Input A 
accepts both standard or sparse format. Useful for sparse linear solving Ax = b.  
In that case, the macro also accepts the vector b 
 

 
 
Complex Matrix operations 
This macro performs several common matrix operations like: addition, subtraction, multiplication, 
inversion, scalar multiplication, etc. in complex arithmetic. 
 

 
 
 
The macros accept matrices in 3 different formats: 1) split, 2) interlaced, 3) string. 
(see About complex matrix format ) 
 
Choose the adapt format that you want simply by clicking repeatedly on the little button at the right 
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Macro Gauss-step-by-step 
 
This macro performs, step by step, the reduction of the given matrix into a triangular or diagonal form by 
the Gauss and Gauss-Jordan algorithms. 
It works like the Function GJstep  except that it traces all multiplication coefficients as well all the swap 
actions. 
 

 

Multiply the 1st row for 2  
Multiply the 2nd row for -3  
Add the two rows and substitute the result to the 
2nd row 
 

 

 

Exchange the 2nd row with the 3rd row 

 
Using this macro is very easy. Select the matrix that you want to reduce and start the macro at the menu:    
>macros > Gauss step by step 
The reduction steps are traced below the original matrix.  
For example, if you want to invert the following (3 x 3) matrix, add the (3 x 3) identity matrix to its right 
 

 
 
Then select the 3x6 range and start the macro 
 

 
 

 
 

 
 
 
 
The reduction type options make the 
reduction to diagonal form (Gauss-Jordan) or 
triangular (Gauss) 
 
The pivoting options force the algorithm to 
search always for the max pivot along the 
column (partial pivoting) or, on the contrary, 
only when the diagonal element is zero. 
 
The integer check box sets the reduction 
method in integer exact mode (only for 
integer matrices). 
 
Errmax sets the round-off error 
 
Last step check box writes only the last step. 
Useful for large matrices 
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Macro Shortest-Path 
 
This macro generates the shortest-path matrix from a given distance-matrix. It works like the function 
PathFloyd  except that it accepts larger matrices (up to 255 x 255)  
Using this macro is very easy. Select the matrix that you want to reduce and start the macro from the 
menu:    >macros > Shortest path 
 
In the example below we see a 20 x 20 distance matrix  
 

 
 
For default, the output matrix begins at cell D25, just below the input matrix. 
 
 
 
Macro Draw Graph 
 
This useful stuff draws a simple graph from its adjacent matrix. (There is now an equivalent function for 
this macro). Using this macro is very easy. Select the matrix and start the macro from the menu: 

   >macros > Graph > Draw  
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Macro Block reduction 
 
This macro transforms a square sparse matrix into a block-partitioned form using the score-algorithm. 
This macro works like the functions MBlock  and MBlockPerm  except that it is better adapted for large 
matrices. 
Using this macro is very easy. Select the matrix and start the macro at the menu: 

   >macros > Block reduction 
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