
NativeJ
Win32 Native Launcher Generator for Java

Version 1.0.5

Table of Contents
 1 Introduction..1

1.1 Overview..1
1.2 Features...1
1.3 System Requirements..1

 2 Using NativeJ..2
2.1 Installation...2
2.2 Generating a Console Launcher...2
2.3 Generating a Graphical Launcher..4
2.4 Generating a Service Launcher..7
2.5 Generating a Launcher for Tomcat..11

 3 Advanced Topics...16
3.1 Bundling a Particular Java Runtime..16
3.2 Passing Arguments to the Java Runtime..18
3.3 An Alternative Approach to Classpath...20
3.4 Avoiding System.Exit()...21
3.5 Implementing a Generic Start/Stop Mechanism..24

 1 INTRODUCTION

1.1 OVERVIEW

NativeJ is a new product by CTech Software (http://ctech-software.hypermart.net) that
generates Win32 native launchers for your Java applications. No more ugly batch files! The
launchers generated by NativeJ look and behave exactly like native Win32 programs. They
possess their own custom icons when viewed in Explorer, and they do not appear as another
“java.exe” or “javaw.exe” in the process list. You can generate launchers that behave like
console programs, or graphical programs, or even Win32 services.

Besides looking and feeling like native apps, these launchers also have another advantage:
speed. Executing a batch file requires first loading up the command processor, which steps
through each line of the batch file before it encounters the line which calls the Java frontend
java.exe or javaw.exe. This frontend imposes further overhead as it parses the command-line
arguments before loading the JVM with the proper parameters. The native launchers generated
by NativeJ eliminates all these overhead and load the JVM directly, resulting in snappier
program loading.

NativeJ is extremely easy to use. Simply specify the launcher type, the program icon, the JVM
parameters, the Java application parameters etc. and NativeJ will generate a custom .EXE file
for you that will launch your Java application. There is no need to write custom C code, or
wrestle with a C compiler. Just click-and-go! It's that easy!

Despite its simplicity and ease-of-use, NativeJ is also extremely flexible. There are many
parameters you can tweak and tune. You can choose to use the JRE installed on the target
machine, or you can choose to bundle a specific JVM with your application. You can specify
the baseline version of the JVM you need to work with. You can pass both the JVM and the
Java application custom parameters. In short, you will find NativeJ an extremely capable
assistant for your needs.

1.2 FEATURES

Some features of NativeJ are:

Generates console and graphical launchers, as well as Win32 services.

Simple click-and-go interface with no need to write custom code.

Powerful and flexible, with many parameters to tweak and tune.

1.3 SYSTEM REQUIREMENTS

Windows NT/2000/XP is required for running NativeJ. However, launchers generated by
NativeJ will run on Windows 9x/ME as well.

Supports Sun JRE 1.2/1.3/1.4, as well as IBM JRE 1.2/1.3.

1

 2 USING NATIVEJ
2.1 INSTALLATION

Double-click on the SETUP.EXE file provided in the distribution media and follow the
instructions on-screen to install NativeJ to a directory of your choice.

2.2 GENERATING A CONSOLE LAUNCHER

Note: The following example assumes you have the Java Runtime Environment (1.2 and
above) installed on your machine.

In this example, we are going to learn how to generate a console launcher i.e. a Win32
executable that behaves just like another command-line program.

The Java program that we are going to create a launcher for is a simple “Hello, World”
program. This program is called Console.java, and can be found in the examples/ subdirectory.

File: Console.java

1: package examples;
2:
3: public class Console
4: {
5: public static void main(String[] args) throws Exception
6: {
7: if (args.length == 0)
8: System.out.println("Hello World!");
9: else
10: System.out.println("Hello " + args[0] + "!");
11: }
12: }

This simple program prints out “Hello, World!” when run without any parameters.

C:\Program Files\NativeJ> java examples.Console
Hello, World!

However, when supplied with a name as a parameter, it will print out “Hello, <name>!”.

C:\Program Files\NativeJ> java examples.Console John
Hello, John!

Let's see how we can create a launcher called console.exe, which will run the
examples.Console program.

The Console.java file has been compiled and packaged in launchers/examples.jar, along with
the other examples. In this subdirectory, you will also find console.prj, along with other .prj
files.

Run NativeJ. Then, click on “File... Open...”, and open “launchers\console.prj”. This is the
project file for examples.Console, and it has the following parameters:

2

Name Value Remarks

Main

Application type Console The launcher generated will run as a console program.

Allow as service <unchecked> The launcher generated will not run as a Win32 service.

Application icon console.ico The application icon.

Target executable console.exe The filename of the generated launcher.

Java Runtime

Required version
1.2

The minimum required runtime version is 1.2. This
argument only applies if the JVM DLL is left blank.

JVM DLL <blank> When left blank, the launcher will look for a suitable JRE
on the target system. If you are bundling a JRE with your
application, you can specify the path of your JVM DLL eg.
jre\bin\hotspot\jvm.dll.

JVM arguments <blank> The arguments to be passed to the JVM. You should only
pass the -X arguments to the JVM eg. -Xms64m
-Xmx128m.

Classpath examples.jar This contains required class files i.e. examples.Console.

Console

Application class examples.Console The name of the Java class we wish to run. This class
should have a main() method.

Application arguments <blank> The default arguments we want to pass to main().

Now, click on “File... Generate...” to generate the launcher. If everything goes well, you will
have receive a notification that “console.exe” has been generated.

3

Run console.exe without any parameters:

C:\Program Files\NativeJ\launchers> console
Hello, World!

Now, run console.exe with a name:

C:\Program Files\NativeJ\launchers> console John
Hello, John!

You can also supply some default arguments to examples.Console. Enter “John” in
“Application arguments”, then generate the launcher again. Now, run console.exe without any
parameters:

C:\Program Files\NativeJ\launchers> console
Hello, John!

Run console.exe with another name besides John:

C:\Program Files\NativeJ\launchers> console Mary
Hello, Mary!

As you can see, the launcher will use the default arguments if none are available. If the user
supplies the arguments, then these are used instead of the default.

In this example, the JVM DLL parameter is left blank so that when console.exe is run, it will
automatically detect and load a suitable JVM (in this case, any JVM version >= 1.2) on the
target system. You can also bundle a specific JVM with your application and force the
launcher to use that JVM. To find out how, please refer to 3.1 Bundling a Particular Java
Runtime.

2.3 GENERATING A GRAPHICAL LAUNCHER

In this example, we are going to learn how to generate a graphical launcher i.e. a native
executable that behaves like a Win32 GUI program.

The Java program that we are going to create a launcher for is a simple “Hello, World” type
AWT program. This program is called Gui.java, and can be found in the examples/
subdirectory.

File: Gui.java

1: package examples;
2:
3: import java.awt.*;
4: import java.awt.event.*;
5:
6: public class Gui
7: {
8: public static void main(String[] args)
9: {
10: // Create the main window and components used by this app
11: Frame frame = new Frame("Gui");
12: String msg = "Hello World!";
13: if (args.length > 0) msg = "Hello " + args[0] + "!";
14: Label label = new Label(msg, Label.CENTER);

4

15:
16: // Handle the exit event for the main window
17: frame.addWindowListener(new WindowAdapter()
18: {
19: public void windowClosing(WindowEvent e)
20: {
21: System.exit(0);
22: }
23: });
24:
25: // Position the components within the main window
26: frame.setLayout(new BorderLayout());
27: frame.add(label, BorderLayout.CENTER);
28:
29: // Resize and show main window
30: frame.pack();
31: frame.setSize(320, 240);
32: frame.show();
33: }
34: }

When run without any parameters, this program displays a “Hello, World!” message. When
run with a name as the parameter eg. java examples.Gui John, it will display “Hello,
<name>!” instead.

Let's see how we can create a launcher called gui.exe, which will run the examples.Gui
program.

The Gui.java file has been compiled and packaged in launchers/examples.jar, along with the
other examples. In this subdirectory, you will also find gui.prj, along with other .prj files.

Run NativeJ and open the gui.prj project. Confirm that it defines the following parameters:

5

Name Value Remarks

Main

Application type Graphical The launcher generated will run as a GUI program.

Allow as service <unchecked> The launcher generated will not run as a Win32 service.

Application icon gui.ico The application icon.

Target executable gui.exe The filename of the generated launcher.

Java Runtime

Required version
1.2

The minimum required runtime version is 1.2. This
argument only applies if the JVM DLL is left blank.

JVM DLL <blank> When left blank, the launcher will look for a suitable JRE
on the target system. If you are bundling a JRE with your
application, you can specify the path of your JVM DLL eg.
jre\bin\hotspot\jvm.dll.

JVM arguments <blank> The arguments to be passed to the JVM. You should only
pass the -X arguments to the JVM eg. -Xms64m
-Xmx128m.

Classpath examples.jar This contains required class files i.e. examples.Gui.

Graphical

Application class examples.Gui The name of the Java class we wish to run. This class
should have a main() method.

Application arguments <blank> The default arguments we want to pass to main().

Allow multiple instances <checked> Whether to allow multiple instances of the launcher. In the
default case, yes.

6

Now, click on “File... Generate...” to generate the launcher. If everything goes well, you will
have receive a notification that “gui.exe” has been generated.

Run gui.exe without any parameters, and with the name “John”. You should observe the same
output as when running the program using java.

Now, run gui.exe twice without quitting. You should see two instances of the program.
Uncheck the Allow multiple instances option, and generate gui.exe again. This time, you
should get the following error if you try to run gui.exe twice.

Notice that in line 21 of Gui.java, the program executes System.exit(0) to terminate the
program. This practice is typical of AWT or Swing programs, and widely used in Sun's own
sample codes. However, this has the effect of terminating the launcher prematurely as well,
which might not be desirable in certain cases (for example, when your program is doubling as a
Win32 service). For more details on why this happens and how to workaround this behaviour,
please refer to 3.4 Avoiding System.Exit().

2.4 GENERATING A SERVICE LAUNCHER

In this example, we are going to learn how to generate a service launcher i.e. an executable that
could be installed as a service and started/stopped using the Services control panel applet.
Noted that services are only available on Windows NT/2K/XP, and not on the Win9x
platforms.

The Java program that we are going to use is a simple console program that continually logs
the date/time to a file called service.log at 5 seconds interval. The main() method takes a -start
argument to start the logging activity, and a -stop argument to stop the logging.

File: Service.java

1: package examples;
2:
3: import java.io.*;
4: import java.util.*;
5:
6: public class Service
7: {
8: static boolean stop = false;
9: public static void main(String[] args) throws Exception
10: {
11: // Start the service
12: if (args[0].equals("-start"))
13: {
14: while(true)
15: {
16: // Append current date/time to log file
17: log("Current date/time is " + new Date());
18:

7

19: // Sleep for 5 secs
20: Thread.currentThread().sleep(5000);
21:
22: // Check for termination
23: if (stop)
24: {
25: log("Service stopped.");
26: break;
27: }
28: }
29: }
30: else
31: // Stop the service
32: if (args[0].equals("-stop"))
33: {
34: // Set the termination flag
35: stop = true;
36: }
37: }
38:
39: /**
40: * Log given string to file "service.log".
41: */
42: static void log(String msg) throws IOException
43: {
44: PrintWriter pw = new PrintWriter(
45: new FileWriter("service.log", true));
46: pw.println(msg);
47: pw.close();
48: }
49: }

Let's generate a launcher called service.exe, which will run our examples.Service program.

The Service.java file has been compiled and packaged in launchers/examples.jar, along with
the other examples. In this subdirectory, you will also find service.prj, along with other .prj
files.

Run NativeJ and open the service.prj project. The project defines the following parameters:

8

Name Value Remarks

Main

Application type Console The launcher generated will run in the console mode.

Allow as service <checked> The launcher generated will run as a Win32 service.

Application icon service.ico The application icon.

Target executable service.exe The filename of the generated launcher.

Java Runtime

Required version
1.2

The minimum required runtime version is 1.2. This
argument only applies if the JVM DLL is left blank.

JVM DLL <blank> When left blank, the launcher will look for a suitable JRE
on the target system. If you are bundling a JRE with your
application, you can specify the path of your JVM DLL eg.
jre\bin\hotspot\jvm.dll.

JVM arguments <blank> The arguments to be passed to the JVM. You should only
pass the -X arguments to the JVM eg. -Xms64m
-Xmx128m.

Classpath examples.jar This contains required class files i.e. examples.Service.

Console

Application class examples.Service The name of the Java class we wish to run. This class
should have a main() method.

Application arguments <blank> The default arguments we want to pass to main().

Service

Service Name Test Service The service name which will appear in Services when
installed.

Start arguments -start The argument(s) to be passed to the main() method to
start the program.

Stop arguments -stop The argument(s) to be passed to the main() method to
stop the program.

9

Now, click on “File... Generate...” to generate the launcher. If everything goes well, you will
have receive a notification that “service.exe” has been generated.

Now use “service -install” to install the service. You should see the following message:

C:\Program Files\NativeJ\launchers>service -install
Service installed: Test Service

Check the services list using the Services control panel applet. You should also see a new entry
called Test Service.

10

Now start Test Service using Services. You should find a file called service.log written to the
same directory where services.exe resides. The file contains the date/time logged approximately
every 5 seconds.

Current date/time is Sat Jun 01 22:20:04 GMT+08:00 2002
Current date/time is Sat Jun 01 22:20:09 GMT+08:00 2002
Current date/time is Sat Jun 01 22:20:14 GMT+08:00 2002
Current date/time is Sat Jun 01 22:20:19 GMT+08:00 2002
Current date/time is Sat Jun 01 22:20:24 GMT+08:00 2002

Now, stop the service. The last line of service.log should contain the words “Service stopped.”,
logged by line 25 of Service.java.

If you encounter any errors while starting or stopping the service, launch Event Viewer and
look under Application Log for messages attributed to Test Service.

Use “service -uninstall” to uninstall Test Service.

If you run examples.Service directly using “java examples.Service -start”, you won't be able to
stop it using “java examples.Service -stop”. That's because they will be running under two
different JVM instances, which means the stop flags set to true in line 35 of Service.java will
not be reflected in the first JVM instance. The NativeJ-generated launcher has no problems
with this approach because it actually calls main() with the -stop argument through a thread
within the same JVM instance, but you won't be able to do so when running using java or
javaw.

If you wish to implement a start/stop mechanism that is generic and works under java/javaw
(in fact, across all Java-enabled platforms), please refer to 3.5 Implementing a Generic
Start/Stop Mechanism.

2.5 GENERATING A LAUNCHER FOR TOMCAT

In this example, we are going to generate a launcher for Tomcat. Tomcat is a open-source
reference servlet container developed by the Apache Group. It is widely used and is chosen as
an example to show how easy it is to generate a launcher for a non-trivial Java application.

Since Tomcat is rather large and is constantly being improved, we chose not to bundle it with
NativeJ. Instead, you can download the latest source/binary builds from the following URL:
http://jakarta.apache.org/tomcat/index.html. This example applies to Tomcat 4.0.x, though it
can be easily adopted for other version of Tomcat..

The downloaded binary distribution should be in the form jakarta-tomcat-4.0.x.zip. Unzip it
into the launchers/ subdirectory. The base directory is jakarta-tomcat-4.0.3/. For simplicity,
rename it to tomcat/. When you are done, the directory structure should look like this:

C:\Program Files\NativeJ\
 launchers\
 tomcat\

Now let's test if Tomcat is working properly.

> cd C:\Program Files\NativeJ\launchers\tomcat
> set JAVA_HOME=C:JDK

11

> set CATALINA_HOME=C:\Program Files\NativeJ\launchers\tomcat
> bin\startup.bat

If all goes well, a separate command window will pop up:

You should now be able to access the Tomcat homepage at http://localhost:8080/.

Use bin/shutdown.bat to stop Tomcat.

Now, launch NativeJ, and populate the new project with the following parameters:

Name Value Remarks

Main

Application type Console The launcher generated will run
as a console program.

Allow as service <checked> The launcher generated will run
as a Win32 service as well.

Application icon tomcat.ico The application icon.

Target executable tomcat\tomcat.exe The filename of the generated
launcher.

Java Runtime

12

Name Value Remarks

Required version 1.2 The minimum required runtime
version is 1.2. This argument
only applies if the JVM DLL is
left blank.

JVM DLL <blank> When left blank, the launcher
will look for a suitable JRE on
the target system. If you are
bundling a JRE with your
application, you can specify the
path of your JVM DLL eg.
jre\bin\hotspot\jvm.dll.

JVM arguments <blank> The arguments to be passed to
the JVM. You should only pass
the -X arguments to the JVM
eg. -Xms64m -Xmx128m.

Classpath bin\bootstrap.jar;
server\lib\catalina.jar;
server\lib\jakarta-regexp-1.2.jar;
server\lib\servlets-common.jar;
server\lib\servlets-default.jar;
server\lib\servlets-invoker.jar;
server\lib\servlets-manager.jar;
server\lib\servlets-snoop.jar;
server\lib\servlets-webdav.jar;
server\lib\tomcat-ajp.jar;
server\lib\tomcat-util.jar;
server\lib\warp.jar;
common\lib\activation.jar;
common\lib\jdbc2_0-stdext.jar;
common\lib\jndi.jar;
common\lib\jta-spec1_0_1.jar;
common\lib\mail.jar;
common\lib\naming-common.jar;
common\lib\naming-resources.jar;
common\lib\servlet.jar;
common\lib\tyrex-0.9.7.0.jar;
common\lib\xerces.jar

The required .jar files.

Console

Application class org.apache.catalina.startup.Bootstrap The name of the Java class we
wish to run. This class should
have a main() method.

Application arguments start The default arguments we want
to pass to main().

Service

Service name Tomcat The service name which will
appear in Services when
installed.

Start arguments start The argument(s) to be passed
to the main() method to start
the program.

Stop arguments stop The argument(s) to be passed
to the main() method to stop
the program.

13

Now, click on “File... Generate...” to generate the launcher. If everything goes well, you will
have receive a notification that “tomcat.exe” has been generated.

The Tomcat launcher can function both as a console program, as well as a Win32 service.

To start Tomcat from the command line, type:

C:\Program Files\NativeJ\launchers\tomcat> start tomcat

To stop Tomcat from the command line, type:

C:\Program Files\NativeJ\launchers\tomcat> tomcat stop

14

To install Tomcat as a service, type:

C:\Program Files\NativeJ\launchers> tomcat -install
Service installed: Tomcat

To uninstall the Tomcat service, type:

C:\Program Files\NativeJ\launchers> tomcat -uninstall
Service uninstalled: Tomcat

Note that to execute JSP scripts when running Tomcat in this way, make sure you copy the
\jdk\lib\tools.jar file to \jdk\jre\lib\ext. That's because by default the JRE does not contain the
compiler class com.sun.tools.javac.Main (contained in \jdk\lib\tools.jar). But executing JSP
scripts require the Java compiler class to be present, so you will need to copy this .jar file to
the JRE subdirectory ext\, which is reserved for extension libraries.

15

 3 ADVANCED TOPICS

3.1 BUNDLING A PARTICULAR JAVA RUNTIME

All the examples given in 2 Using NativeJ generate launchers that detects and use the default
JRE installed on the target machine. This is done by leaving the JVM DLL blank. The
generated launcher will find and use the first JRE installed on the target machine which meets
the JVM version requirement.

It is also possible for you to bundle a particular JRE with your application, and generate a
launcher that uses the bundled JRE regardless of other JREs are installed on the target
machine.

There are a few advantages to bundling a specific JRE with your application.

Since one can never be certain of which make and version of JRE is installed on the target
machine (if indeed one is installed at all), the safest bet is to bundle your own JRE so that
you can be sure the application will work flawlessly, since you have ultimate control of
which make or version of JRE to bundle with your application.

If the user does not already have a JRE installed on the target machine, bundling a JRE
spares him the inconvenience of downloading a JRE himself. This is especially true if the
user might not have broadband access to the Internet.

You can also choose to include the JRE installer with your distribution. However, this
requires the user to run another installer, which might pose an inconvenience to the user.
You can of course choose to run the JRE installer automatically with your application
installer by detecting if a JRE is already present on the target machine. However this makes
the application much more complexinstaller. The installer needs to detect whether a JRE is
already available on the target system, whether the make and version is up to the mark, and
whether it is alright to overwrite the current JRE etc.

You might also be forced to bundle a JRE with your application if your application depends
on an older JRE (or a particular make/version of a JRE) to work. Since there is always the
possibility that the user already has the latest JRE installed on his machine, it will be
unacceptable to expect him to replace his JRE with an older version just so that he can run
your application.

The primary concern with bundling your own JRE is the footprint of your application.
Bundling your own JRE potentially increases your distribution and installation footprint by
tens of megabytes. If the application needs to be delivered via the Internet, or the target system
has diskspace constraints, then bundling your own JRE might not be acceptable.

The decision of whether to bundle or not to bundle your own JRE depends on the few factors
mentioned above. However, if you do choose to bundle your own JRE, it is very simple to do
so with NativeJ.

Let's say we decide to bundle a particular JRE for our first example program,
examples.Console. Originally, the application directory contains only the launcher .exe file and

16

examples.jar.

approot\
 console.exe
 examples.jar

Let's copy the JRE from an existing JDK installed on your machine. The directory structure of
the JDK should look like this:

jdk\
 bin\
 help\
 include\
 jre\
 lib\

The JRE is found in the jre/ subdirectory. Copy the jre\ subdirectory to your application
directory. The directory structure of your application directory should now look like:

approot\
 jre\
 bin\
 classic\
 jvm.dll
 hotspot\
 jvm.dll
 server\
 jvm.dll
 lib\
 console.exe
 examples.jar

The jvm.dll under jre\bin\classic\, jre\bin\hotspot\ and jre\bin\server\) represents the different
JVMs which you can use. The classic JVM refers to the non-JIT, interpreted JVM. The
hotspot JVM uses Sun's HotSpot JIT technology, and is optimized for client applications. The
server JVM is also a HotSpot-JIT JVM, but is optimized for server applications.

Note that the structure above varies according to the make and version of the JRE. For
example, in Sun's JDK 1.2, the classic JVM refers to a JIT JVM licensed from Symantec. The
Hotspot JVMs were only introduced in in JDK 1.3. Similarly, the structure for IBM's JDK, or
JDK from other vendors could be different.

Once you have copied the jre/ subdirectory from the JDK installation directory to your
application directory, you can generate a launcher that will make use of that particular JRE.
Just specify the relative path to the desired JVM DLL file in NativeJ, and generate the
launcher. For example, if you specify jre\bin\hotspot\jvm.dll in the JVM DLL parameter box, it
means you want to use the client-optmized HotSpot JVM for your application.

17

3.2 PASSING ARGUMENTS TO THE JAVA RUNTIME

For certain situations, you may need to pass some arguments to the JVM. For example, to
increase the maximum amount of memory available to the JVM, we typically use:

java -ms64m -mx128m examples.Console

This means the initial memory available to the JVM is 64MB, while the maximum amount of
memory available to the JVM is 128MB. This is frequently necessary when running complex
server applications.

The typical options available in java.exe are as follows:

C:\java -h
Usage: java [-options] class [args...]
 (to execute a class)
 or java -jar [-options] jarfile [args...]
 (to execute a jar file)

where options include:
 -client to select the "client" VM
 -server to select the "server" VM
 -hotspot is a synonym for the "client" VM [deprecated]
 The default VM is client.

 -cp -classpath <directories and zip/jar files separated by ;>
 set search path for application classes and resources
 -D<name>=<value>

18

 set a system property
 -verbose[:class|gc|jni]
 enable verbose output
 -version print product version and exit
 -showversion print product version and continue
 -? -help print this help message
 -X print help on non-standard options
 -ea[:<packagename>...|:<classname>]
 -enableassertions[:<packagename>...|:<classname>]
 enable assertions
 -da[:<packagename>...|:<classname>]
 -disableassertions[:<packagename>...|:<classname>]
 disable assertions
 -esa | -enablesystemassertions
 enable system assertions
 -dsa | -disablesystemassertions
 disable system assertions

However, because NativeJ's launcher operate as a lower level than java.exe, you cannot use the
standard options such as -ms, -mx, -cp etc. Instead, you will need to use non-standard options
prefix by -X.

C:\java -X
 -Xmixed mixed mode execution (default)
 -Xint interpreted mode execution only
 -Xbootclasspath:<directories and zip/jar files separated by ;>
 set search path for bootstrap classes and resources
 -Xbootclasspath/a:<directories and zip/jar files separated by ;>
 append to end of bootstrap class path
 -Xbootclasspath/p:<directories and zip/jar files separated by ;>
 prepend in front of bootstrap class path
 -Xnoclassgc disable class garbage collection
 -Xincgc enable incremental garbage collection
 -Xloggc:<file> log GC status to a file with time stamps
 -Xbatch disable background compilation
 -Xms<size> set initial Java heap size
 -Xmx<size> set maximum Java heap size
 -Xss<size> set java thread stack size
 -Xprof output cpu profiling data
 -Xrunhprof[:help]|[:<option>=<value>, ...]
 perform JVMPI heap, cpu, or monitor profiling
 -Xdebug enable remote debugging
 -Xfuture enable strictest checks, anticipating future default
 -Xrs reduce use of OS signals by Java/VM
 -Xcheck:jni perform additional checks for JNI functions

The -X options are non-standard and subject to change without notice.

Hence, to increase the maximum amount of memory available to an application under NativeJ,
you need to specify -Xms64m -Xmx128m under the JVM arguments parameter box.

19

Since the -X arguments are non-standard arguments and vary across different makes and
versions of JVMs, this approach works best if you are bundling a particular JRE so that you
can be sure that the -X arguments that you supply will work with the bundled JVM.

3.3 AN ALTERNATIVE APPROACH TO CLASSPATH

If you are bundling a particular JRE with your application, it may not be necessary for you to
specify the .jar files your application uses in the Classpath parameter box.The JRE provides a
repositoty in jre\lib\ext where these files can reside so that they can be automatically
recognized and loaded by the runtime.

In the directory structure below, examples.jar has been moved to jre\lib\ext. Hence there is no
longer any need to specify it in the Classpath parameter box.

approot\
 jre\
 bin\
 classic\
 jvm.dll
 hotspot\
 jvm.dll
 server\
 jvm.dll
 lib\
 ext\
 examples.jar
 console.exe

20

3.4 AVOIDING SYSTEM.EXIT()

In a typical Java graphical app where the AWT (Abstract Windowing Toolkit) is involved, the
program almost always calls System.exit() to terminate the program. This applies also to Swing
apps, since Swing is based on the AWT. Why is this so?

Java programs are based heavily on threads. Some threads are user-created, while other threads
are system-created. Regardless of who creates these threads, they can be divided into two broad
categories: daemon and non-daemon. The JVM will terminate when all non-deamon threads in
the virtual machine has terminated i.e. even if there are threads still running, as long as these
threads are all daemon threads, and all non-daemon threads have died, the JVM will terminate.

Let's look at a simple console app such as examples.Console.

File: Console.java

1: package examples;
2:
3: /**
4: * This is a sample Java program that runs in console mode.
5: */
6: public class Console
7: {
8: public static void main(String[] args) throws Exception
9: {
10: if (args.length == 0)
11: System.out.println("Hello World!");
12: else
13: System.out.println("Hello " + args[0] + "!");
14: }
15: }

There is only one non-daemon thread in this program, which is the one running the main()
method. When the main() method terminates, that non-daemon thread dies, which means the
JVM terminates thereafter, even though there is no explicit System.exit() statement.

Let us now examine our sample graphical app: examples.Gui.

File: Gui.java

1: package examples;
2:
3: import java.awt.*;
4: import java.awt.event.*;
5:
6: public class Gui
7: {
8: public static void main(String[] args)
9: {
10: // Create the main window and components used by this app
11: Frame frame = new Frame("Gui");
12: String msg = "Hello World!";
13: if (args.length > 0) msg = "Hello " + args[0] + "!";
14: Label label = new Label(msg, Label.CENTER);
15:
16: // Handle the exit event for the main window
17: frame.addWindowListener(new WindowAdapter()
18: {
19: public void windowClosing(WindowEvent e)
20: {
21: System.exit(0);

21

22: }
23: });
24:
25: // Position the components within the main window
26: frame.setLayout(new BorderLayout());
27: frame.add(label, BorderLayout.CENTER);
28:
29: // Resize and show main window
30: frame.pack();
31: frame.setSize(320, 240);
32: frame.show();
33: }
34: }

Notice that the main() method exits at line 34, which means the non-daemon thread running
main() also terminates. Why is it that the program is still running and keeping the main
window alive until the user hits on the [x] button to close the window?

The reason is because the JVM creates an AWT thread for event procesisng whenever AWT
components are created in a method. There is only one instance of the AWT thread, so it is
instantiated at the first creation of an AWT component. It does not matter if the component is
ultimately displayed on-screen or not. As long as an AWT component is created, the AWT
thread comes alive if it does not already exist.

The thing to note is that whether the AWT thread is daemon or non-daemon depends on the
original thread running the method that creates the AWT component. In the example above,
this happens in the main() method, which is run by a non-daemon thread. Hence the AWT
thread also becomes non-daemon. When the main() method terminates, the AWT thread is still
alive, and since it is non-daemon, the JVM does not terminate.

What is the problem with using System.exit()? Calling this function terminates the program
immediately, with no ifs or buts. However, this also terminates the NativeJ-generated launcher
there and then, and all the housekeeping logic in the launcher for program termination does not
get executed.

If your Java GUI program is running as a standalone application, this is mostly alright. The
housekeeping logic will simple unload the JVM DLL and release any allocated memory.
Terminating the launcher program achieves the same purpose under modern Win32 OSes.

However, if your Java GUI program is doubling as a Win32 service, this will pose a problem,
since the housekeeping logic that interacts with the Service Manager will not get run. As a
result, the status of the service is not accurately reflected when the service is stopped.

It is rather easy to modify Gui.java to avoid calling System.exit(). The trick is to make the
AWT thread a daemon thread, and to prevent the main() method from terminating until the the
exit event is received. These changes are shown in Gui2.java.

File: Gui2.java

1: package examples;
2:
3: import java.awt.*;
4: import java.awt.event.*;
5:
6: public class Gui2 extends Thread
7: {
8: /**

22

9: * The main() method delegates the configuration and display of
10: * main window to the "setup" thread. It waits for the "setup"
11: * thread to terminate by doing a join().
12: */
13: public static void main(String[] args)
14: {
15: Gui2 setup = new Gui2(args);
16: setup.start();
17: try { setup.join(); } catch(InterruptedException e) {}
18: }
19:
20: /**
21: * This is our only chance to set this thread to daemon mode
22: * i.e. before the thread is started.
23: */
24: String msg;
25: public Gui2(String[] args)
26: {
27: setDaemon(true);
28: msg = "Hello World!";
29: if (args.length > 0) msg = "Hello " + args[0] + "!";
30: }
31:
32: /**
33: * When the thread is started, configure and display the
34: * main window. Then it calls join() and waits to be
35: * interrupted when the exit event for the main window is
36: * triggeered.
37: */
38: Frame frame = null;
39: public void run()
40: {
41: // Create the main window and components used by this app
42: frame = new Frame("Gui2");
43: Label label = new Label(msg, Label.CENTER);
44:
45: // Handle the exit event for the main window
46: frame.addWindowListener(new WindowAdapter()
47: {
48: public void windowClosing(WindowEvent e)
49: {
50: frame.dispose();
51: Gui2.this.interrupt();
52: }
53: });
54:
55: // Position the components within the main window
56: frame.setLayout(new BorderLayout());
57: frame.add(label, BorderLayout.CENTER);
58:
59: // Resize and show main window
60: frame.pack();
61: frame.setSize(320, 240);
62: frame.show();
63:
64: // Wait for thread to be interrupted
65: try { join(); } catch(InterruptedException e) {}
66: }
67: }

Notice how the Gui2 class is now a thread, and all the AWT setup logic is moved to the
Gui2.run() method (line 39). The first thing that happens in the Gui2 constructor is to set the
thread to daemon mode (line 27). Once a thread starts running, it is no longer possible to
change its daemon status.

So main() instantiates a Gui2 thread (line 15), and calls start() to run the thread. (line 16).

23

Then it issues a join() on the thread (line 17) to wait for the thread to terminate.

The run() method Gui2 does all the AWT setup and causes the main window to appear in line
62. Since Gui2 is a daemon thread, the AWT thread also becomes a daemon thread. Once this
is done, the Gui2 thread calls join() to suspend itself (line 65) and wait for an
InterruptedException, which is raised when the interrupt() method is called on the thread.

There are now three threads in the system:

The main() thread (non-daemon)

The Gui2 thread (daemon)

The AWT thread (daemon)

The main() thread is the only thread preventing the JVM from terminating, and it is waiting for
Gui2 to terminate. On the other hand, Gui2 is waiting for an InterruptedException, which will
only be issued in line 51 when the exit event for the main window is triggered.

Now, when the user clicks on the [x] button in the main window to terminate the program, the
main frame will be disposed, causing it to disappear from view (line 50). Then an interrupted()
is issued (line 51), which causes the Gui2 thread to come out of its join() in line 65 and
terminate. When this happens, the main() thread exits from its join() at line 17 and terminates
too.

This leaves the AWT thread as the only surviving thread in the JVM. Since it is a daemon
thread, and all the non-daemon threads have terminated, the JVM will terminate. No
System.exit() calls!

3.5 IMPLEMENTING A GENERIC START/STOP MECHANISM

In Service.java, the main() method accepts two arguments -start and -stop. The -start
argument activates a loop which continually logs the current date/time to a log file called
service.log. On the other hand, the -stop argument simply sets a stop flag to true at line 35.
When the main program loop “sees” the stop flag, it will terminate (line 23–27).

File: Service.java

1: package examples;
2:
3: import java.io.*;
4: import java.util.*;
5:
6: public class Service
7: {
8: static boolean stop = false;
9: public static void main(String[] args) throws Exception
10: {
11: // Start the service
12: if (args[0].equals("-start"))
13: {
14: while(true)
15: {
16: // Append current date/time to log file
17: log("Current date/time is " + new Date());

24

18:
19: // Sleep for 5 secs
20: Thread.currentThread().sleep(5000);
21:
22: // Check for termination
23: if (stop)
24: {
25: log("Service stopped.");
26: break;
27: }
28: }
29: }
30: else
31: // Stop the service
32: if (args[0].equals("-stop"))
33: {
34: // Set the termination flag
35: stop = true;
36: }
37: }
38:
39: /**
40: * Log given string to file "service.log".
41: */
42: static void log(String msg) throws IOException
43: {
44: PrintWriter pw = new PrintWriter(
45: new FileWriter("service.log", true));
46: pw.println(msg);
47: pw.close();
48: }
49: }

This approach works with NativeJ-generated launchers, but it will not work when moved to
another platform such as Solaris, where shell scripts are the norm. This is because the -start
and -stop arguments will be passed to different JVM instances, which means they will be
executing in different address space.

A more platform-independent way of terminating a Java program that is meant to run
continuously as a service (Win32) or daemon (Unix) is to implement some form of IPC (inter-
process communication). An example is given in Service2.java, which uses IP datagrams to
communicate the intent for program termination.

File: Service2.java

1: package examples;
2:
3: import java.io.*;
4: import java.net.*;
5: import java.util.*;
6:
7: public class Service2
8: {
9: /**
10: * This is the port over which the termination signal is sent.
11: */
12: private final static int port = 5678;
13:
14: /**
15: * This is the message to be sent to signal termination.
16: */
17: private final static String terminator = "QUIT";
18:
19:
20: /**

25

21: * The main() function accepts one single parameter:
22: * "start" or "stop".
23: * The first parameter starts the date/time logging service,
24: * while the second parameter stops the service.
25: */
26: public static void main(String[] args) throws Exception
27: {
28: // Start the service
29: if (args[0].equals("start"))
30: {
31: try
32: {
33: // Run the termination listener thread
34: TerminationListener t = new TerminationListener(
35: port, terminator, Thread.currentThread());
36: t.start();
37:
38: // Start the logging service
39: while(true)
40: {
41: // Append current date/time to log file
42: log("Current date/time is " + new Date());
43:
44: // Sleep for 5 secs
45: Thread.currentThread().sleep(5000);
46: }
47: }
48: catch(InterruptedException e)
49: {
50: // Exit when thread is interrupted.
51: log("Service stopped.");
52: }
53: }
54: else
55: // Stop the service
56: if (args[0].equals("stop"))
57: {
58: try
59: {
60: // Send the termination message
61: DatagramSocket socket = new DatagramSocket();
62: DatagramPacket packet = new DatagramPacket(
63: terminator.getBytes(), terminator.length(),
64: InetAddress.getLocalHost(), port);
65: socket.send(packet);
66: }
67: catch(Exception e)
68: {
69: e.printStackTrace();
70: }
71: }
72: }
73:
74: /**
75: * Log given string to file "service.log".
76: */
77: static void log(String msg) throws IOException
78: {
79: PrintWriter pw = new PrintWriter(
80: new FileWriter("service.log", true));
81: pw.println(msg);
82: pw.close();
83: }
84: }
85:
86: /**
87: * This is a thread that will listen for the termination message
88: * over the designated port, then interrupt the parent thread.
89: */

26

90: class TerminationListener extends Thread
91: {
92: Thread parent;
93: int port;
94: String terminator;
95:
96: /**
97: * Set this thread to daemon mode so that if for some reason
98: * the main thread exists, this thread will not prevent the
99: * JVM from terminating.
100: */
101: public TerminationListener(
102: int port, String terminator, Thread parent)
103: {
104: setDaemon(true);
105: this.port = port;
106: this.terminator = terminator;
107: this.parent = parent;
108: }
109:
110: /**
111: * Listen for the termination signal over the designated port.
112: */
113: public void run()
114: {
115: try
116: {
117: // Setup datagram socket
118: DatagramSocket socket = new DatagramSocket(port);
119: DatagramPacket packet = new DatagramPacket(
120: new byte[terminator.length()], terminator.length());
121:
122: // Stop only when we have received the termination message
123: while(true)
124: {
125: // Wait for a message
126: socket.receive(packet);
127: String msg = new String(packet.getData());
128:
129: // Make sure the message is coming from the same
130: // machine. This is included for additional security
131: // so that the program cannot be terminated from an
132: // external machine).
133: if (!packet.getAddress().equals(
134: InetAddress.getLocalHost()))
135: continue;
136:
137: // Make sure the message is the termination message
138: if (!msg.equals(terminator)) continue;
139:
140: // Interrupt parent thread
141: parent.interrupt();
142:
143: // Terminate this thread
144: break;
145: }
146: }
147: catch(Exception e)
148: {
149: }
150: }
151: }

A TerminationListener class is defined in line 90, that runs in the background and waits for an
IP datagram from a predefined port (default: 5678) on the local machine. This is instantiated
and started in lines 34-36 when the -start argument is used. Let's say this runs in JVM instance
#1.

27

When the -stop argument is issued, this runs in JVM instance #2. The instructions in lines 61-
65 will send out an IP datagram containing the message “QUIT”. This will be routed over to
the TerminationListener in JVM instance #1, logging activities will stop, and JVM instance #1
will teminate. Similarly, once JVM instance #2 has sent out the “QUIT” message, it will also
terminate.

This approach to graceful termination of a server app will work under NativeJ, as well as all
Java-enabled platforms with TCP/IP capability. Hence, you will have one set of source codes
that can work with both NativeJ-generated Win32 launchers, as well as on other platforms
using more traditional batch files, shell scripts, or just plain “java <class>”.

28

