DISLIN 9.0
A Data Plotting
Library
by

Helmut Michels

(© Helmut Michels, Max-Planck-Institut fuer Sonnensystemforschung, Katlenburg-Lindau 1986 - 2005
All rights reserved.

Contents

1 Introduction 1
2 Basic Concepts and Conventions 3
21 PageFormat. 3
2.2 FileFormat. e 3
2.3 Level Structure of DISLIN. 5
2.4 Conventions e 5
25 EMOrMessagest v i i 5
2.6 ProgramminginC e 6
2.7 Programmingin Fortran90. e 6
2.8 Linking Programs e e e e 7
2.9 Utility Programs 7
2.10 WWW HOomMepAage o o e e e e 9
2.11 Reporting Bugs. e e e e 9
2.12 License Information 9

3 Introductory Routines 11
3.1 Initialization and Termination. o 11
3.2 Plottingof Textand Numbers. 11
3.3 Plotting Symbols. e 12
3.4 Plotting a Page Border, Background and Header. 13
3.5 SendingaMetafiletoaDevice. e 13
3.6 Including Meta- and Bitmap files into a Graphics. 14

4 Plotting Axis Systems and Titles 15
4.1 Plotting AXIS SYStEMS o e 15
4.2 Termination of AXISSystems e 16
4.3 Plotting Titles. e e 16
4.4 Plotting GridLines. 17
4.5 Plotting Additional Labels. 18
4.6 Secondary AXES i e e e e 18

5 Plotting Curves 21
5.1 Plotting Curves. e 21
5.2 PlottingLegends. e e 22
5.3 Plotting Shaded Areas between Curves. i i 24
5.4 Plotting ErrorBars. e e e 24
5.5 PlottingVector Fields 25

6 Parameter Setting Routines 27
6.1 BasicRoutines. e 27
6.1.1 Resetting Parameters. 27

6.1.2 ChangingthePlotUnits 27

6.1.3 Modifyingthe Origin. e 28

6.1.4 FileFormatContral 28

6.1.5 PageControl. e 32

6.1.6 ErrorHandling. 35
6.1.7 ViewportControl. e e e 36
6.2 AXIS SYStEMS. e e e 39
6.2.1 Modifyingthe Type e 39
6.2.2 Modifying the Positionand Size. 39
6.2.3 AxisScaling e e 40
6.2.4 ModifyingTicks e e 41
6.2.5 ModifyingLabels 43
6.2.6 Modifying AxisTitles 47
6.2.7 Suppressing AxisParts. 48
6.2.8 Modifying Clipping e 49
6.2.9 Framing AXISSystems 50
6.2.10 Setting Colours e 50
6.2.11 AxisSystemTitles. 51
6.3 Colours e e 52
6.3.1 Changingthe Foreground Colour 52
6.3.2 ModifyingColourTables 53
6.3.3 Utitily RoutinesforColours. 54
6.4 Textand Numbers. e 55
6.5 FoONnts e e e 58
6.6 Indicesand Exponents 71
6.7 Instruction Alphabet. 72
6.8 TeX Instructions for Mathematical Formulas 76
6.8.1 Introduction e 76
6.8.2 Enabling TeX Mode and TeXOptions. 76
6.8.3 ExponentsandiIndices. 77
6.8.4 Fractions. e 77
6.85 ROOIS. e 77
6.8.6 Sumsandintegrals. 78
6.8.7 GreeklLetters e 78
6.8.8 Mathematical Symbols o 78
6.8.9 Alternate Alphabets. 79
6.8.10 Function Names. 79
6.8.11 ACCENIS. e e 79
6.8.12 Linesabove and below Formulas. 79
6.8.13 Horizontal Spacing e 79
6.8.14 Selecting Character SizeinTeXMode 79
6.8.15 ColoursinTeXMode e 79
6.8.16 Example e 80
6.9 Curve Attributes L e 82
6.10 Line Attributes L 85
6.11 Shading. e e e e 87
6.12 Attribute Cycles e 88
6.13 Base Transformations. 89
6.14 Shielded Regions e e 90
Parameter Requesting Routines 93
Elementary Plot Routines 101
8.1 LineS e 101
8.2 MeCtors 102
8.3 FilledTriangles. e 103
8.4 WindSpeedSymbols e 103
8.5 Geometric Figures. 103

9 Utility Routines 107
9.1 Transforming Coordinates 107
9.2 String Arithmetic. e 109
9.3 Number Arithmetic. 109
9.4 Date ROULINES e 112
9.5 BitManipulation 113
9.6 Byte Swapping. 114
9.7 Binary lIO. e 115
9.8 Window Terminals. 116

9.8.1 ClearingtheScreen. e 116
9.8.2 Clearingthe QutputBuffer. 116
9.8.3 Multiple Windows e 117
9.8.4 CursorRoutines. 118
9.9 Elementarylmage Routines 120
9.10 Plottingthe MPS LOQO. e e e 125

10 Business Graphics 127
10.1 BarGraphs. e e e 127
10.2 PieCharts. e 132
10.3 Examples. 136

11 3-D Colour Graphics 141
11.1 Introduction. e e 141
11.2 Plotting Coloured AXiS SysStems 141
11.3 Secondary ColourBars. e 141
11.4 PlottingDataPoints. e 142
11.5 Parameter Setting Routines 143
11.6 Elementary Plot Routines. e 145
11.7 Conversionof Coordinates e 147
11.8 Example. e 148

12 3-D Graphics 151
12.1 Introduction. e 151
12.2 Defining View Properties 152
12.3 Plotting AXiIS SYStEMS e e e e e e e 153
12.4 Plotting a Border aroundthe3-DBox. 154
12.5 Plotting Grids. o 154
12.6 Plotting CUIVES. e e e e e e e e e 154
12.7 Plotting a Surface Grid froma Function. 155
12.8 Plotting a Surface Grid fromaMatrix 155
12.9 Plotting a Shaded Surface fromaMatrix 156
12.10Plotting a Shaded Surface from a Parametric Function 157
12.11Plotting a Shaded Surface from TriangulatedData. 157
12.12Plotting Isosurfaces e 158
12.13Plotting 3-D Bars. e e e e e e 158
12.14Additional Parameter Setting Routines 159
12.25LIghting e 162
12.16Surfaces from Randomly Distributed Points 164
12.17Projection of 2-D-Graphicsinto3-DSpace. 167
12.18Usingthe Z-Buffer. e 167
12.19Elementary Plot Routines. 168
12.20Transformation of Coordinates. 169
12.21Examples. e e e e e e 171

13 Geographical Projections and Plotting Maps 177
13.1 Axis Systems and Secondary AXES oo e e e e e e e 177

14

15

16

D

13.2 Defining the Projection
13.3 Plotting Maps. o e e
13.4 PlottingDataPoints
13.5 Parameter Setting Routines
13.6 Conversionof Coordinates
13.7 User-defined Projections
13.8 Examples.

Contouring

14.1 Plotting Contours. e e e e e
14.2 Plotting Filled Contours e
14.3 Generating Contours v v v et e
14.4 Parameter Setting Routines
145 Examples. e e e e e

Widget Routines

15.1 WidgetRoutines. e
15.2 Parameter Setting Routines e
15.3 Requesting Routines e e e e e
15.4 Utility Routines. e e e e e e e
15.5 Dialog Routines
15.6 Examples.

Quickplots

16.1 Plotting CUIVES. e
16.2 ScatterPlots e e e e e
16.3 BarGraphs. e
16.4 PieCharts. e e
16.5 3-DColourPlots. e e
16.6 Surface Plots. e
16.7 Contour Plots. e e e e
16.8 Setting Parameters for Quickplots. L.

Using DISLIN from Interpreting Languages

A.1 TheDISLIN Interpreter DISGCL it
A.2 Using DISLINfromPerl e
A.3 Using DISLINfromPython

A.4 Using DISLINfromJava. e e e e e e e e e
Short Description of Routines

Examples

C.1 Demonstration of CURVE. e
C.2 PolarPlots
C.3 Symbols. e
C.4 LogarithmicScaling
C.5 Interpolation Methods
C.6 LineStyles e e
C.7 Legends. e e
C.8 Shading Patterns (AREAF) e
C.O9 VECIOIS e
C.10 Shading Patterns (PIEGRF)
C.11 3-DBarGraph/3-DPieChart.
C.12 Surface Plot (SURFUN). e e e e
C.A3 MapPlot e

Index

241

255
256
258
260
262
264
266
268
270
272
274
276
278
280

283

Preface to Version 9.0

This manual describes the data plotting library DISLIN written in the programming languages Fortran
and C. The name DISLIN is an abbreviation for Device-Independent Software LINdau since applications
were designed to run on different computer systems without any changes. The library contains subrou-
tines and functions for displaying data graphically as curves, bar graphs, pie charts, 3-D colour plots,
surfaces, contours and maps.

DISLIN is intended to be a powerful and easy to use software package for programmers and scientists that
does not require knowledge of hardware features of output devices. The routines in the graphics library
are the result of my own work on many projects with different computers and many plotting packages.
There are only a few graphics routines with a short parameter list needed to display the desired graphical
output. A large variety of parameter setting routines can then be called to create individually customized
graphics.

Since the first version of DISLIN was released in Dec. 1986, many changes and corrections have been
made and new features and standards have been added to the software. Some of the new features are el-
ementary image routines, a graphical user interface, filled contour lines, flat and smooth shaded surfaces
and a C interface for reading binary data from Fortran programs. DISLIN supports now several hardware
platforms, operating systems and compilers. A real Fortran 90 library is available for most Fortran 90
compilers.

Although nearly all the routines and utilities of the software package are written by myself, DISLIN
would not have been possible without the help of many people. | would like to thank several people at
the Max-Planck-Institut in Lindau. First, Dr. W. Degenhardt, Dr. H. J. Mueller and Dr. |. Pardowitz who
gave their friendly assistance. To all the users of DISLIN, | am grateful for your helpful suggestions and
comments. | would especially like to thank the members of the computer center, Friederich Both, Terry
Ho, Godehard Monecke and Michael Bruns for their co-operation. Finally, | am grateful to Linda See
and Erika Eschebach who corrected the English and German manuals with great carefulness. To all of
them, my sincere thanks.

H. Michels Lindau, 15.11.2005

vi

Chapter 1

Introduction

DISLIN is a library of subroutines and functions that display data graphically. The routines can be used
with any display device capable of drawing straight lines with the exception of routines that generate 3-D
colour graphics which require special devices. Fortran 77, Fortran 90 and C versions of the library are
available.

DISLIN can display graphic information directly on graphic terminals or store them in metafiles. The
supported display types are VGA, X Windows, Windows API and Tektronix. The supported file formats
are GKSLIN, CGM, HPGL, PostScript, PDF, WMF, PNG, PPM, BMP, GIF and TIFF. DISLIN metafiles
can be printed on various devices using the DISLIN driver program DISDRV.

Chapter 2 describes the file and page formats and the overall structure of DISLIN programs.
Chapter 3 describes routines for the initialization, termination and plotting of text, numbers and symbols.

Chapter 4 presents the format of two-dimensional axis systems. Axes can be linearly or logarithmically
scaled and labeled with linear, logarithmic, date, time, map and user-defined formats.

Chapter 5 describes the routines for plotting curves. Several curves can appear in one axis system and
can be differentiated by colour, line style and pattern.

Chapter 6 summarizes parameter setting routines that overwrite default plotting parameters such as fonts,
character size and angle, colours, line styles and patterns.

Chapter 7 presents routines to request the values of plot parameters.
Chapter 8 describes the routines for plotting lines, circles, ellipses, vectors and shaded regions.

Chapter 9 describes the utilities available to transform coordinates, sort data and calculate the lengths of
numbers and character strings. Elementary image routines and some special routines that are only useful
for terminal output are also described in this chapter.

Chapter 10 introduces business graphic routines to create bar graphs and pie charts.
Chapter 11 presents 3-D colour graphics where points can be plotted with coloured or shaded rectangles.

Chapter 12 describes routines for 3-D coordinate systems. Axis systems, curves and surfaces can be
drawn from various angular perspectives. All 2-D plotting routines can be used in a 3-D axis system.

Chapter 13 presents 14 different methods to project geographical coordinates onto a plane surface. Sev-
eral base maps are stored in the library for map plotting.

Chapter 14 describes routines for contouring three-dimensional functions of the form Z = F(X,Y). Con-
tours can be filled with solid lines.

Chapter 15 offers routines for creating graphical user interfaces in Fortran and C programs.

Chapter 16 presents some quickplots that are collections of DISLIN routines for displaying data with one
statement.

Chapter 2

Basic Concepts and Conventions

2.1 Page Format

In DISLIN, the graphics are limited to a rectangular area called the page. All lines outside of or crossing
page borders will be suppressed.

The size of the page is determined by the routines SETPAG and PAGE. SETPAG corresponds to a
predefined page while PAGE defines a global page setting. In default mode, there are 100 points per
centimeter and the point (0, 0) is located in the upper left corner (Figure 2.1):

(0,0)

DIN A4 Landscape

(2969, 2099)

Figure 2.1: Default Page (DA4L)

2.2 File Format

DISLIN can create several types of plotfiles. Device-independent plotfiles or metafiles can be coded in
ASCII or binary format. Device-dependent plotfiles are available for several printers and plotters.

The file formats are:

a) a CGM metafile according to the ANSI standard
Plot vectors are coded in binary format as non negative integers with 200 points per cm. Be-
cause of binary coding, CGM metafiles are smaller than other plotfiles.

b) a GKSLIN metafile
Plot vectors are stored as floating-point numbers between 0 and 1 in ASCII format. These files
are easily transferable from one computer to another.

3

c)

d)

9)

h)

K)

a PostScript file

PostScript is an international standard language that has been developed for laserprinters in the
last few years. Some of the PostScript features such as hardware fonts and shading can be used
within DISLIN.

an EPS file
the Encapsulated PostScript file format is simular to the PostScript format. It is useful for
importing PostScript files into other appications.

a PDF file

The Portable Document Format is the de facto standard for the electronic exchange of docu-
ments. Compressed and non compressed PDF files can be created by DISLIN. PostScript fonts
can be used for PDF files in the same way as for PostScript files.

a HPGL file
Plot vectors and colours are coded in a language recognized by Hewlett-Packard plotters.

a WMF file
The Windows metafile format is also supported by DISLIN. Plot vectors are converted to
1/1440 inch. WMF files can contain hardware fonts defined with the DISLIN routine WINFNT.

a SVG file

Scalable Vector Graphics (SVG) is a language for describing graphics in XML. SVG files can
be displayed directly by some browsers if a corresponding plug-in is installed. The most of the
standard PostScript fonts are supported by the DISLIN SVG files.

a GIF file
The Graphics Interchange Format (c) is the Copyright property of Compuserve Incorporated.

a TIFF file
The raster format TIFF can be used for storing graphical output. DISLIN can create 8 bit
palette and truecolour TIFF files.

a PNG file

The Portable Network Graphics format is a compressed and therefore very small raster format
for storing graphical output. PNG files can be displayed directly by several Internet browsers.
The compression of PNG files is done in DISLIN with the zlib compression routines written
by Jean-loup Gailly and Mark Adler. DISLIN supports 8 bit palette and truecolour PNG files.

a PPM file

The portable pixmap format is a well-known colour image file format in the UNIX world.
There are many tools for converting PPM files into other image formats. The pixel values are
stored in DISLIN PPM files in plain bytes as RGB values.

a BMP file
The Windows Bitmap format can be used for storing graphical output. DISLIN can create
uncompressed 8 and 24 bit BMP files.

an IMAGE file
This easy raster format is used by DISLIN to store images. The files contain an ASCII header
of 80 bytes and the following image data.

a Tektronix, X Window and VGA emulation
Data can be displayed on graphic terminals such as X Window, VGA and Tektronix 4010/4014.

File formats can be set with the routine METAFL. The filename consists of the keyword 'DISLIN’ and
an extension that depends on the file format. An alternate filename can be chosen by calling the routine
SETFIL. Both subroutines must be called before the initialization routine DISINI.

4

2.3 Level Structure of DISLIN

Most routines in DISLIN can be called anywhere during program execution. Certain routines, however,
use parameters from other routines and must be called in a fixed order. DISLIN uses a level structure to
control the order in which routines are called. The levels are:

0 before initialization or after termination

1 after initialization or a call to ENDGRF

2 after a call to GRAF or POLAR

3 after a call to GRAF3 or GRAF3D.

Generally, programs should have the following structure:

1) setting of page format, file format and filename
(2) initialization

3) setting of plot parameters

(4) plotting of the axis system

(5) plotting the title

(6) plotting data points
@) termination.

2.4 Conventions
The following conventions appear throughout this manual for the description of routine calls:

- INTEGER variables begin with the character N or |
- CHARACTER variables begin with the character C
- othervariables are REAL

- arrays end with the keyword 'RAY".

Additional notes:

- CHARACTER keywords may be specified in upper or lower case and may be shortened to
four characters.

- DISLIN stores parameters in common blocks whose names begin with the character 'C'.
Common block names in user programs should not begin with the character 'C’ to avoid
possible name equalities.

- The Fortran logical units 15, 16 and 17 are reserved by DISLIN for plot and parameter files.

- Two types of coordinates are continually referred to throughout the manual: plot coordinates
which correspond to the page and have by default 100 points per cm, and user coordinates
which correspond to the scaling of the axis system.

2.5 Error Messages

When a DISLIN subroutine or function is called with an illegal parameter or not according to the level
structure, DISLIN writes a warning to the screen. The call of the routine will be ignored and program
execution resumed. Points lying outside of the axis system will also be listed on the screen. Error
messages can be suppressed or written to a file with the routines ERRMOD and ERRDEV.

5

2.6 Programmingin C

There are different DISLIN libraries for the programming languages Fortran 77, Fortran 90 and C. The
DISLIN C library is written in the programming language C and useful for C programmers.

Though it is possible to call C routines in Fortran programs and Fortran subroutines in C programs, it
is easier to use the corresponding library. Especially, the passing of strings can be complicate in mixed
language programming.

The number and meaning of parameters passed to DISLIN routines are identical for all libraries. The
Fortran versions use INTEGER, REAL and CHARACTER variables while the C library uses int, float
and char variables. A detailed description of the syntax of C routines is given by the utility program
DISHLP or can be found in the header file ‘dislin.h’ which must be included in all C programs.

Here is a short example for a DISLIN C programm:

#include<stdio.h>

#include "dislin.h”

main()

{
disini ();
messag ("This is a test”, 100, 100);
disfin ();

}

An example for a DISLIN C++ programm is:

#include<iostean

namespace dislif

#include "dislin.h”

}

main()

{
dislin::disini ();
dislin::messag ("This is a test”, 100, 100);
dislin::disfin ();

}

2.7 Programming in Fortran 90

Several DISLIN distributions contain native libraries for the programming language Fortran 90 where
the source code of DISLIN is written in Fortran 90. Since the passing of parameters to subroutines and
functions can be different in Fortran 90 and Fortran 77, you should not link Fortran 77 programs with
Fortran 90 libraries and vice versa.

Important: All program units in Fortran 90 programs that contain calls to DISLIN routines must
include the statement 'USE DISLIN’. The module 'DISLIN’ contains interfaces for all
DISLIN routines and enables the compiler the correct passing and checking of parame-
ters passed to DISLIN routines.

For example:

PROGRAM TEST
USE DISLIN
CALL DISINI ()
CALL MESSAG ('This is a test’, 100, 100)

6

CALL DISFIN ()
END PROGRAM TEST

2.8 Linking Programs

The linking of programs with the graphics library depends upon the operating system of the computer.
Therefore, DISLIN offers a system-independent link procedure that can be used on all computers in the
same way.

Command: DLINK [option] main
option is an optional parameter containing a minus sign and a character. The follow-
ing options can be used on all computers:
-C for compiling programs before linking.
-cpp for compiling a C++ program before linking.
-r for running programs after linking.
-a for compiling, linking and running programs.
-8 for using the double precision libraries of DISLIN.
main is the name of the main program.
Additional notes: - If DLINK is called without parameters, the description of the program will be

printed on the screen. There may be other local features available depending
upon the operating system used.

- Linking of C programs should be done with the procedure CLINK.
- Linking of Fortran 90 programs should be done with the procedure FOOLINK.

- The most DISLIN distributions contain libraries for single precision (32 bit)
and double precision (64 bit) floatingpoint parameters. The double precision
libraries can be identified by the termd’ in the library filename.

2.9 Utility Programs

The following programs are useful for working with DISLIN. They send plotfiles to devices, check the
use of DISLIN routines in Fortran programs and print the description of routines on the screen.
DISHLP

DISHLP prints the description of a DISLIN routine on the screen.

Command: DISHLP routine [options]
routine is the name of a DISLIN routine or a question mark. For a question mark, all
routine names will be listed. An empty input terminates the program.
options is an optional field of keywords (see DISHLP).
DISMAN

DISMAN prints an ASCII version of the DISLIN manual on the screen.
Command: DISMAN [options]

options is an optional field of keywords (see DISMAN).

7

DISDRV

DISDRYV sends a plotfile to a device. CGM and GKSLIN files can be used for all devices while device-
dependent plotfiles can only be sent to corresponding devices.

Command: DISDRV filename[.MET] [device] [options]
filename is the name of a plotfile.
device is the name of a device where CONS refers to the graphics screen and XWIN
to a smaller graphics window.
options is an optional field of keywords (see DISDRYV).
DISIMG

DISIMG displays an image file on the screen, or converts it to PostScript and TIFF.

Command: DISIMG filename[.IMG] [device] [options]
filename is the name of the image file. The file must be created with the routine RIM-
AGE.
device is the device name.
options is an optional field of keywords (see DISIMG).
DISMOV

DISMOV displays a sequence of image files.

Command: DISMOV filename[.MQOV] [device] [options]
filename is the name of a data file where the filenames of the images are stored (1 line
for each filename). The images must be created with the routine RIMAGE.
device is the device name.
options is an optional field of keywords (see DISMQOV).
DISTIF

DISTIF displays a TIFF file created by DISLIN on the screen, or converts it to PostScript and an image
format.

Command: DISTIF filename[.TIF] [device] [options]
filename is the name of the TIFF file. The file must be created with DISLIN.
device is the device name.
options is an optional field of keywords (see DISTIF).
DISGIF

DISGIF displays a GIF file, or converts it to another format.

Command: DISGIF filename[.GIF] [device] [options]
filename is the name of the GIF file.
device is the device name.

options is an optional field of keywords (see DISGIF).

DISAPS
DISAPS converts an ASCII file to a PostScript file. Several page layouts can be defined.
Command: DISAPS filename [output] [options]
filename is the name of the ASCII file.
output is the name of the output file. By default, the name of the input file and the
extension ps will be used.
options is an optional field of keywords (see DISAPS).
Additional note: If a utility program is called without parameters, a description of possible pa-

rameters will be printed on the screen. DISDRYV, for example, lists the local
output devices available.

DISGCL

DISGCL is an interpreter for DISLIN. All DISLIN statements can be written to a script file and then be
executed with DISGCL, or can be entered in an interactive mode. High-level language elements such
variables, operators, expressions, array operations, loops and user-defined functions van be used within
DISGCL.

Command: DISGCL [filename[.gcl]] [args] [options]

filename is the name of a DISGCL script file. The extension '.gcl’ is optional.

args are optional arguments that can be passed to DISGCL scripts (see DISGCL).
options is an optional field of keywords separated by blanks (see DISGCL).

2.10 WWW Homepage
DISLIN is available from the Web sites

http://www.dislin.de http://www.mps.mpg.de/dislin

2.11 Reporting Bugs

DISLIN is well tested by many users and should be very bug free. However, no software is perfect and
every change can cause new bugs. If you have any problems with DISLIN, contact the author:

Helmut Michels

Max-Planck-Institut fuer Sonnensystemforschung
D-37191 Katlenburg-Lindau, Max-Planck-Str. 2, Germany
E-Mail: michels@mps.mpg.de

Tel.: +49 5556 979 334

Fax: +49 5556 979 240

2.12 License Information

DISLIN is free for non-commercial use. Licenses for commercial use are available from the site
http://mww.dislin.de. Commercial use means selling of programs linked with DISLIN or using DIS-
LIN in an environment related to business.

This manual of the data plotting software DISLIN can be copied and distributed freely.

9

10

Chapter 3

Introductory Routines

3.1 Initialization and Termination

DISINI initializes DISLIN by setting default parameters and creating a plotfile. The level is set to 1.
DISINI must be called before any other DISLIN routine except for those noted throughout the manual.

The call is: CALL DISINI level O
or: void disini ();

DISFIN terminates DISLIN and prints a message on the screen. The level is set back to 0.

The call is: CALL DISFIN level 1, 2, 3
or: void disfin ();
Additional note: The printing of the protocol in DISFIN can be suppressed with the routine
ERRMOD.

3.2 Plotting of Text and Numbers

MESSAG
MESSAG plots text.
The call is: CALL MESSAG (CSTR, NX, NY) level 1,2, 3
or: void messag (char *cstr, int nx, int ny);
CSTR is a character string{ 256 characters).
NX, NY are the plot coordinates of the upper left corner.
NUMBER

NUMBER plots a floating-point number or integer.

The call is: CALL NUMBER (X, NDIG, NX, NY) level 1, 2, 3
or: void number (float X, int ndig, int nx, int ny);

X is a floating-point number.

NDIG is the number of digits plotted after the decimal point. If NDIG = -1, X will be

plotted as an integer. The last digit of X will be rounded up.

11

NX, NY are the coordinates of the upper left corner.

RLMESS and RLNUMB are corresponding routines for user coordinates. They can be used for plotting
text and numbers in an axis system after a call to GRAF.

The calls are: CALL RLMESS (CSTR, XP, YP) level 2, 3
CALL RLNUMB (X, NDIG, XP, YP) level 2, 3
or: void rimess (char *cstr, float xp, float yp);

void rinumb (float x, int ndig, float xp, float yp);

Additional notes: - To continue character strings and numbers on the same line, the coordinates
(999, 999) should be sent to MESSAG and NUMBER. The text or numbers
will be plotted after the last plotted text character or number.

The angle and height of the characters can be changed with the routines AN-
GLE and HEIGHT.

The format of numbers can be modified with the routines NUMFMT and NU-
MODE.

Text and numbers can be plotted in a box if the routine FRMESS is used.

The starting point of text and numbers can be interpreted as upper left, upper
center and upper right point if the routine TXTJUS is used.

3.3 Plotting Symbols

SYMBOL
The routine SYMBOL plots symbols.
The call is: CALL SYMBOL (NSYM, NX, NY) level 1,2, 3
or: void symbol (int nsym, int nx, int ny);
NSYM is a symbol number between 0 and 23. Available symbols are given in the
Appendix B.
NX, NY is the centre of the symbol in plot coordinates.
Additional notes: - The size of symbols can be set with HSYMBL.

- SYMROT (ANGLE) defines a rotation angle for symbols (in degrees). The
symbol is rotated in a counter-clockwise direction.

- An user-defined symbol can be specified with the routine MYSYMB.

RLSYMB

RLSYMB plots a symbol where the centre is specified by user coordinates.

The call is: CALL RLSYMB (NSYM, XP, YP) level 2, 3

or: void rlsymb (int nsym, float xp, float yp);

12

3.4 Plotting a Page Border, Background and Header

PAGERA

PAGERA plots a border around the page.

The call is;

or:

The routine PAGFLL fills the page with a colour.

The call is:
or:

NCLR

CALL PAGERA level 1, 2, 3
void pagera ();

PAGFLL
CALL PAGFLL (NCLR) level 1,2, 3

void padfll (int nclr);

is a colour value.

PAGHDR

PAGHDR plots a page header at a corner of the page. The header line contains date, time and user-defined

information.

The call is:

or:

CSTR1
CSTR2
IOPT

IDIR

Additional note:

CALL PAGHDR (CSTR1, CSTR2, IOPT, IDIR) level 1, 2, 3

void paghdr (char *cstrl, char *cstr2, int iopt, int idir);

is a character string preceding the header line.
is a character string following the header line.

is the page corner where the header is plotted:
is the lower left corner.

is the lower right corner.

is the upper right corner.

is the upper left corner.

is the direction of the header line:
is horizontal.
is vertical.

The character size of the header line is 0.6 * NH where NH is the parameter
used in HEIGHT.

3.5 Sending a Metafile to a Device

A metafile can be converted with a driver program and sent from the operating system to several devices.
From within a user program, the SYMFIL routine is used for this purpose.

SYMFIL

SYMFIL sends a metafile to a device. It must be called after DISFIN.

The call is:

or:

CALL SYMFIL (CDEV, CSTAT) level O

void symfil (char *cdev, char *cstat);

13

CDEV is the name of the device. '"CONS’ refers to the graphics screen, 'XWIN’ to
a X Window terminal, 'PSCi’ to a PostScript printer, 'KYOi’' to a Kyocera
laserprinter with Prescribe and 'HPLi’ to a HP-plotter. The keyword 'NONE’
can be used to delete a metafile with no device plotting.

CSTAT is a status parameter and can have the values 'DELETE’ and 'KEEP".

Additional note: SYMFIL calls the DISLIN driver utility DISDRV. The parameter 'REVERS’
can be passed to DISDRV from SYMFIL if the routine SCRMOD is called
before with the parameter 'REVERS'.

3.6 Including Meta- and Bitmap files into a Graphics

GKSLIN and CGM metafiles created by DISLIN and general BMP files can be included into a graphics
with the routine INCFIL.

INCFIL

The routine INCFIL includes a GKSLIN or CGM metafile created by DISLIN, or general BMP and GIF
files into a graphics.

The call is: CALL INCFIL (CFIL) level 1, 2, 3
or: void incfil (char *cfil);
CFIL is a character string that contains the filename.
Additional notes: - Forincluding BMP or GIF files, the output format must be a raster, PostScript

or PDF format.

- The routine FILBOX (NX, NY, NW, NH) defines a rectangular area on the
page where the file will be included. (NX, NY) are the plot coordinates of
the upper left corner, (NW, NH) are the width and length of the box in plot
coordinates. By default, the entire page will be used. If the file is a bitmap and
the output format a raster format, the file will be included at the point (NX,
NY) while NW and NH will be ignored. If the output format is PostScript or
PDF, the BMP/GIF file will be scaled into the box defined by the parameters
NX, NY, NW and NH. Therefore, NW and NH should have the same ratio as
the width and height of the BMP/GIF file.

- INCFIL draws by default a frame around the included file that can be modified
with the routine FRAME.

- With the statement CALL FILCLR ('NONE’), colour values in GKSLIN and
CGM metafiles will be ignored and the current colour is used. The default is
FILCLR (ALL).

14

Chapter 4

Plotting Axis Systems and Titles

4.1 Plotting Axis Systems

An axis system defines an area on the page for plotting data. Various axis systems can be plotted to
accommodate different applications. For two-dimensional graphics, a maximum of two parallel X- and
Y-axes can be drawn. The axis system is scaled to fit the range of data points and can be labeled with
values, names and ticks. Two-dimensional axis systems are plotted with a call to the routines GRAF or
POLAR.

GRAF

GRAF plots a two-dimensional axis system.

The call is: CALL GRAF (XA, XE, XOR, XSTEP, YA, YE, YOR, YSTEP) level 1

or: void graf (float xa, float xe, float xor, float xstep,
float ya, float ye, float yor, float ystep);

XA, XE are the lower and upper limits of the X-axis.
XOR, XSTEP are the first X-axis label and the step between labels.
YA, YE are the lower and upper limits of the Y-axis.
YOR, YSTEP are the first Y-axis label and the step between labels.

Additional notes:

GRAF must be called in level 1 and automatically sets the level to 2. When
plotting more than 1 axis system on a page, ENDGRF must be called in be-
tween each new set of axes in order to set the level back to 1.

- The position of the lower left corner and the size of an axis system can be
changed with the routines AXSPOS and AXSLEN.

- The axis scaling is linear by default and can be changed with AXSSCL. For
logarithmic scaling, the corresponding parameters in GRAF must be exponents
of base 10.

- One of several label types can be chosen with the routine LABELS or user-
defined with MYLAB. Single labels can be suppressed by calling AXENDS.

- The routine NAME defines axis titles.

- The number of ticks between axis labels can be changed with the routine
TICKS.

- SETGRF can be used to remove a piece of or complete axis from an axis
system.

15

- Ifthe numerical value of the lower limit of an axis is larger than the upper limit
and the label step is negative, axis scaling will be in descending order.

- The routine FRAME defines the thickness of a frame plotted around an axis
system. A frame can also be plotted outside of GRAF with the statement
CALL BOX2D.

- A crossed axis system can be defined with CALL AXSTYP (CROSS’).

The following routine POLAR can be used to plot a polar axis system and set up a scale for polar axes.

POLAR

The routine POLAR plots a two-dimensional polar axis system.

The call is: CALL POLAR (XE, XOR, XSTEP, YOR, YSTEP) level 1
or: void polar (float xe, float xor, float xstep, float yor, float ystep);

XE is upper limit of the X-axis (radius coordinate).

XOR, XSTEP are the first X-axis label and the step between labels.

YOR, YSTEP are the first Y-axis label and the step between labels specified in degrees. The
Y-axis is scaled from 0 to 360 degrees.

Additional note: The direction and position of the angle labels can be modified with the routine
POLMOD.

4.2 Termination of Axis Systems

ENDGRF

The routine ENDGRF terminates an axis system and sets the level back to 1.

The call is: CALL ENDGRF level 2, 3
or: void endgrf ();

4.3 Plotting Titles

TITLE

This routine plots a title over an axis system. The title may contain up to four lines of text designated
with TITLIN.

The call is: CALL TITLE level 2, 3
or: void title ();
Additional note: All lines are centred by default but can be left- or right-justified using TITJUS.

16

4.4 Plotting Grid Lines

GRID

The routine GRID overlays a grid on an axis system.

The call is: CALL GRID (IXGRID, IYGRID)
or: void grid (int ixgrid, int iygrid);
IXGRID, IYGRID are the numbers of grid lines between labels.
Additional note: GRID uses automatically GRDPOL for a polar axis system.
GRDPOL

The routine GRDPOL plots a polar grid.

The call is: CALL GRDPOL (IXGRID, IYGRID)
or: void grdpol (int ixgrid, int iygrid);
IXGRID is the numbers of circles between labels.
IYGRID is the numbers of sector lines between 360 degrees.
Example:

The statements

CALL AXSLEN (1400,1400)
CALL GRAF (-3, 3.,-3.,1.,-3.,3.,-3., 1.
CALL GRDPOL (3, 16)

produce the following figure:

3.0 1 | 1 | L L | 1 | 1

2.0 -

1.0 + -

0.0

-1.0 1 L

-2.0 1 L

'30 T T T T T T T T T T
-30 -20 -1.0 0.0 1.0 2.0 3.0

Figure 4.1: GRDPOL

AXGIT
The routine AXGIT plots vertical and horizontal lines through X=0and Y = 0.

The call is: CALL AXGIT

17

level 2, 3

level 2, 3

level 2, 3

or: void axgit ();

Additional note: The statement CALL XAXGIT plots only the line Y = 0 while CALL YAXGIT
plots only X = 0.
CROSS
The routine CROSS plots vertical and horizontal lines with additional ticks through X=0and Y = 0.
The call is: CALL CROSS level 2, 3
or: void cross ();
Additional note: The statement CALL XCROSS plots only the line Y = 0 while CALL

YCROSS plots only X = 0.

4.5 Plotting Additional Labels
ADDLAB

Additional single labels can be plotted on an axis system with the routine ADDLAB.

The call is: CALL ADDLAB (CSTR, V, ITIC, CAX) level 2, 3

or: void addlab (char *cstr, float v, int itic, char *cax);

CSTR is a character string containing a label.

\% is an user coordinate that defines the axis position of the label.

ITIC is an integer option that defines if a tick mark is plotted. ITIC = 0 means that
no tick is plotted, ITIC = 1 defines a minor tick and ITICK = 2 defines a major
tick.

CAX is a character string that defines the axis. CAX can have the values "X, 'Y,

'Z’,"XTOP’ and 'YRIGHT".

4.6 Secondary Axes

The following routines plot single X- and Y-axes; they are called secondary axes because they do not
define or change any of the axis scaling parameters. Secondary axes can be used to add additional labels
to the axis systems.

The plotting routines for secondary axes are:

XAXIS plots a linear X-axis. level 1, 2, 3
YAXIS plots a linear Y-axis. level 1, 2, 3
XAXLG plots a logarithmic X-axis. level 1, 2, 3
YAXLG plots a logarithmic Y-axis. level 1, 2, 3
The call is: CALL XAXIS (A, B, OR, STEP, NL, CSTR, IT, NX, NY)
or: void xaxis (float a, float b, float or, float step, int nl, char *cstr, int it,
int nx, int ny);

18

A B

OR, STEP
NL

CSTR

IT

NX, NY

Analog:

Additional notes:

are the lower and upper limits of the axis.

are the first label and the step between labels.
is the length of the axis in plot coordinates.

is a character string containing the axis name.

indicates how ticks, labels and the axis name are plotted.
If IT =0, they are plotted in a clockwise direction. If IT = 1, they are plotted
in an counter-clockwise direction.

are the plot coordinates of the axis start point. The X-axis will be plotted from
left to right and the Y-axis from bottom to top.
YAXIS, XAXLG, YAXLG

Secondary axes can be called from level 1, 2 or 3. Note again that secondary
axes do not change the scaling of an axis system defined by GRAF. Similarly,
curves cannot be plotted with only secondary axes, they require a call to GRAF.

- Asin GRAF, the parameters of logarithmic axes must be exponents of base 10.

User-defined labels may also be plotted on secondary axes with MYLAB and
the argument 'USER’ in the routine LABELS. The number of ticks can be
changed by calling TICKS.

19

20

Chapter 5

Plotting Curves

This chapter describes how to plot curves with lines and symbols. Several curves can be plotted in one
axis system and can be differentiated by colour, line style and pattern. Curve attributes can be plotted in
a legend.

5.1 Plotting Curves

CURVE

CURVE connects data points with lines or plots them with symbols.

The call is: CALL CURVE (XRAY, YRAY, N) level 2, 3
or. void curve (float *xray, float *yray, int n);
XRAY, YRAY are arrays that contain X- and Y-coordinates. For a polar scaling, XRAY must

hold the radial values and YRAY the angular values expressed in radians.

N is the number of data points.

CURVE must be called after GRAF or POLAR from level 2 or 3.

- By default, data points that lie outside of an axis system are listed on the screen.
The listing can be suppressed with the routine NOCHEK.

Additional notes:

- For alogarithmic scaling of an axis, CURVE suppresses the plotting of curves
and prints a warning if some corresponding data coordinates have non positive
values. After the statement CALL NEGLOG (EPS), where EPS is a small
positiv floating-point number, CURVE will use the value EPS for non positive
values.

- CURVE suppresses lines outside the borders of an axis system. Suppressing
can be disabled with NOCLIP or the margins of suppression can be changed
with GRACE.

- INCMRK determines if CURVE plots lines or symbols.

- When plotting several curves, attributes such as colour and line style can be
changed automatically by DISLIN or directly by the user. The routine CHN-
CRYV defines which attributes are changed automatically. The routines COLOR
or SETCLR are used to define colours, SOLID, DOT, DASH, CHNDOT,
CHNDSH, DOTL, DASHM and DASHL to define line styles and MARKER
to define symbols plotted with the routine CURVE.

- Different data interpolation methods can be chosen with POLCRV.

21

5.2 Plotting Legends

To differentiate multiple curves in an axis system, legends with text can be plotted. DISLIN can store up
to 30 curve attributes such as symbols, thicknesses, line styles and colours and these can be incorporated

in alegend.

Legends are created with the following steps:

(1)
()
®3)
(4)

define a character variable used to store the lines of text in the legend
initialize the legend

define the lines of text

plot the legend.

The corresponding routines are:

LEGINI

LEGINI initializes a legend.

The call is:
or:

CBUF

NLIN
NMAXLN

CALL LEGINI (CBUF, NLIN, NMAXLN) level 1, 2, 3

void legini (char *cbuf, int nlin, int nmaxIn);

is a character variable used to store the lines of text in the legend. The variable
must be defined by the user to have at least NLIN * NMAXLN characters.

is the number of text lines in the legend.

is the number of characters in the longest line of text.

LEGLIN

LEGLIN stores lines of text for the legend.

The call is:
or:

CBUF

CSTR

ILIN

CALL LEGLIN (CBUF, CSTR, ILIN) level 1, 2, 3
void leglin (char *cbuf, char *cstr, int ilin);

see LEGINI.
is a character string that contains a line of text for the legend.
is the number of the legend line between 1 and NLIN.

LEGEND

LEGEND plots legends.

The call is:
or:
CBUF
NCOR
=1
=5
=8

CALL LEGEND (CBUF, NCOR) level 2, 3
void legend (char *cbuf, int ncor);

see LEGINI.

indicates the position of the legend:

is the lower left corner of the page.

is the lower right corner of the page.

is the upper right corner of the page.

is the upper left corner of the page.

is the lower left corner of the axis system.
is the lower right corner of the axis system.
is the upper right corner of the axis system.
is the upper left corner of the axis system.

22

Additional notes: The following routines change the position and appearance of a legend. They
must be called after LEGINI except for the routines FRAME and LINESP.

- LEGTIT (CTIT) sets the title of the legend.
Default: CTIT =’Legende’.

- LEGPOS (NX, NY) defines a global position for the legend where NX
and NY are the plot coordinates of the upper left corner. After a call to
LEGPOS, the second parameter in LEGEND will be ignored.

- NLX = NXLEGN (CBUF) and NYL = NYLEGN (CBUF) return the
length and the height of a legend in plot coordinates.

- FRAME (NFRA) defines the thickness of a frame plotted around a legend.
- LINESP (XF) changes the spacing of lines in a legend.
- LEGCLR retains the same colour for curves and lines of text in the legend.

- The statement CALL MIXLEG enables multiple text lines in legends. By
default, the character '/’ is used as a newline character but can be changed
with the routine SETMIX.

LEGPAT

The routine LEGPAT stores curve attributes plotted in legends. Normally, this is done automatically by
routines such as CURVE and BARS.

The call is: CALL LEGPAT (ITYP, ITHK, ISYM, ICLR, IPAT, ILIN) level 1, 2, 3
or: void legpat (int ityp, int ithk, int isym, int iclr, long ipat, int ilin);

ITYP is the line style between -1 and 7 (see LINTYP). IF ITYP = -1, no line will be
plotted in the legend line.

ITHK defines the thickness of lines (0).

ISYM is the symbol number between -1 and 21. If ISYM = -1, no symbol will be
plotted in the legend line.

ICLR is the colour value. If ICLR = -1, the current colour will be used.

IPAT is the shading pattern (see SHDPAT). If IPAT = -1, no pattern will be plotted
in the legend line.

ILIN is the legend line between 1 and NLIN.

Additional notes: - The routine LEGPAT is useful to create legends without calls to CURVE.

- LEGPAT must be called after LEGINI.

LEGOPT

The routine LEGOPT modifies the appearance of legends.

The call is: CALL LEGOPT (XF1, XF2, XF3) level 1,2, 3
or void legopt (float xf1, float xf2, float xf3);
XF1 is a multiplier for the length of the pattern field. The length is XF1 * NH,
where NH is the current character height. If XF1 = 0., the pattern field will be
suppressed.

23

XF2

XF3

is a multiplier for the distance between legend frames and text. The distance
is XF2 * NH * XSPC, where XSPC is the spacing between legend lines (see
LINESP).

is a multiplier for the spacing between multiple text lines. The space is XF3 *
NH * XLINSP.
Default: (4.0, 0.5, 1.0).

5.3 Plotting Shaded Areas between Curves

SHDCRYV

SHDCRYV plots a shaded area between two curves.

The call is:

or:

X1RAY, Y1RAY

N1
X2RAY, Y2RAY

N2

Additional notes:

CALL SHDCRV (X1RAY, Y1RAY, N1, X2RAY, Y2RAY, N2)

void shdcrv (float *x1ray, float *y1ray, int n1, float *x2ray, float *y2ray,
int n2);

level 2, 3

are arrays with the X- and Y-coordinates of the first curve. Values are not
changed by SHDCRV.

is the number of points in the first curve.

are arrays with the X- and Y-coordinates of the second curve. Values are not
changed by SHDCRV.

is the number of points in the second curve.
- The maximum number of data points cannot be greater than 25000 in Fortran
77 programs. There is no restriction for Fortran 90 and C.

- Different shading patterns can be selected with SHDPAT. The pattern number
will automatically be incremented by 1 after a call to SHDCRV.

- Legends may be plotted for shaded curves.

- The routine NOARLN will suppress border lines around shaded areas.

5.4 Plotting Error Bars

ERRBAR

The routine ERRBAR plots error bars.

The call is:

or:

XRAY, YRAY
E1RAY, E2RAY

N

Additional notes:

CALL ERRBAR (XRAY, YRAY, E1RAY, E2RAY, N)

void errbar (float *xray, float *yray, float *elray, float *e2ray, int n);

level 2, 3

are arrays that contain the X- and Y-coordinates.

are arrays that contain the errors. Lines will be drawn from YRAY - ELIRAY
to YRAY + E2RAY.

is the number of data points.

- Horizontal bars will be drawn after CALL BARTYP ("HORI’).
- A symbol can be selected with MARKER and the symbol size with HSYMBL.

24

5.5 Plotting Vector Fields

FIELD

The routine FIELD plots a vector field.

The call is:
or:

X1RAY, Y1RAY
X2RAY, Y2RAY
N

IVEC

CALL FIELD (X1RAY, Y1RAY, X2RAY, Y2RAY, N, IVEC) level 2, 3
void field (float *x1ray, float *y1ray, float *x2ray, float *y2ray, int n, int ivec);

are arrays that contain the X- and Y-coordinates of the start points.
are arrays that contain the X- and Y-coordinates of the end points.
is the number of vectors.

is a four digit number that specifies the vector (see VECTOR).

25

26

Chapter 6

Parameter Setting Routines

All parameters in DISLIN have default values set by the initialization routine DISINI. This chapter
summarizes subroutines that allow the user to alter default values. The following routines can be called
from level 1, 2 or 3 except for those noted throughout the chapter. Subroutines that can only be called
from level 0 must appear before DISINI. In general, parameter setting routines should be called between
DISINI and the plotting routines they affect.

6.1 Basic Routines

6.1.1 Resetting Parameters

RESET

RESET sets parameters back to their default values.

The call is: CALL RESET (CNAME) level 1, 2, 3
or: void reset (char *cname);
CNAME is a character string containing the name of the routine whose parameters will
be set back to default values. If CNAME ='ALL’, all parameters in DISLIN
will be reset.

6.1.2 Changing the Plot Units

UNITS
The routine UNITS defines the plot units.
The call is: CALL UNITS (COPT) level O
or: void units (char *copt);
COPT is a character string that can have the values 'CM’, 'INCH’, 'POINTS’ and

"TWIPS'. 'CM’ means 100 points per centimeter, 'INCH’ means 100 points
per inch, 'POINTS’ means 720 points per inch and 'TWIPS’ means 1440
points per inch.

Default: COPT ='CM".

27

6.1.3 Modifying the Origin

PAGORG

The routine PAGORG sets the origin of the page. By default, the page origin is located in the upper left
corner of the page.

The call is: CALL PAGORG (COPT) level 1, 2, 3
or: void pagorg (char *copt);
COPT is a character string that can have the values 'TOP’ and 'BOTTOM'. The key-

word 'TOP’ sets the page origin to the upper left corner, ' BOTTOM’ to the
lower left corner.
Default: COPT ='TOP".

ORIGIN

In DISLIN, all lines are plotted relative to a point on the page which is by default identical with the page
origin. Modifying this point by ORIGIN produces a shifting of plot vectors on the page.

The call is: CALL ORIGIN (NXO0, NYO0) level 1
or: void origin (int nx0, int ny0);
NXO0, NYO are the coordinates of the origin. Default: (0, 0).

6.1.4 File Format Control

METAFL
METAFL defines the metafile format.
The call is: CALL METAFL (CFMT) level O
or: void metafl (char *cfmt);
CFMT is a character string that defines the file format.
='GKSL defines a GKSLIN metafile.
='CGM’ defines a CGM metafile.
=P defines a coloured PostScript file.
='EPS’ defines an Encapsulated PostScript file. The format is nearly the same as for
'PS'.
='PDF defines a PDF file.
='HPGL defines a HPGL file.
='SVG’ defines a Scalable Vector Graphics file.
="JAVA defines a Java applet file.
="WMF’ defines a Windows metafile.
='GIF defines a GIF file.
="TIFF defines a TIFF file.
='PNG’ defines a PNG file.
='PPVM’ defines a portable pixmap format.
='IMAG’ defines a DISLIN image format.

28

='BMP’ defines a Windows Bitmap format.

='VIRT’ defines a virtual file. The metafile is hold in a raster format in computer mem-
ory.
='CONS’ defines a graphics output on the screen. If the screen is a windows display, a

graphical window is used that has nearly the size of the screen.

= "XWIN’ defines a window for graphical output. By default, the size of the window is
nearly 2/3 of the size of the screen.
Default: CFMT ="GKSL..

Notes: - The default size of TIFF, GIF, PNG, PPM, BMP, IMAGE, SVG and virtual
files is set to 853 x 603 points but can be modified with the routine WINSIZ.
The size of graphical windows can also be changed with WINSIZ.

- The default background colour for graphical windows and image formats such
as TIFF, GIF and PNG is black but can be changed to white with the routine
SCRMOD.

- The format of VIRT, TIFF, PNG, BMP and IMAGE is by default a 8 bit palette
format, but can be changed to a truecolour format with the parameter 'RGB’ in
the routine IMGFMT. GIF files created by DISLIN have always a 8 bit palette
format.

SETFIL

By default, the plotfile name consists of the keyword 'dislin” and an extension that depends on the file
format. An alternate filename can be set with SETFIL.

The call is: CALL SETFIL (CFIL) level O
or: void setfil (char *cfil);
CFIL is a character string that contains the filename.
FILMOD

The routine FILMOD determines if a new plotfile name is created for existing files.

The call is: CALL FILMOD (CMOD) level0,1,2,3
or: void filmod (char *cmod);
CMOD is a character string containing the mode.
='COUNT’ means that a new file version will be created.
='DELETFE’ means that the existing file will be overwritten.
= 'BREAK’ means that the program will be terminated by DISINI.

Default: CMOD ='COUNT".

SCRMOD

Normally, the background of screens and image formats such as TIFF, GIF, BMP and PNG is set to
'BLACK’. With the routine SCRMOD, the back and foreground colours can be swapped.

The call is: CALL SCRMOD (CMOD) level O
or: void scrmod (char *cmod);
CMOD ="AUTO’ uses a 'BLACK’ background colour for screen output and image files.

29

CMOD =’"REVERS’ means that the background colour is set to 'WHITE’ and the foreground colour
to 'BLACK'.

CMOD ="NOREV’ means that the background colour is set to 'BLACK’ and the foreground colour
to 'WHITE'.
Default: CMOD ="AUTO'.

CGMBGD
The routine CGMBGD sets the background colour for CGM files.

The call is: CALL CGMBGD (XR, XG, XB) level 0, 1, 2,3
or: void cgmbgd (float xr, floar xg, float xb);
XR, XG, XB are the RGB coordinates of the background colour in the range 0 to 1.

Default: (1., 1., 1.).

CGMPIC

The routine CGMPIC modifies the picture ID in CGM files. The picture ID may be referenced by some
browsers.

The call is: CALL CGMPIC (CSTR) level 0, 1, 2,3
or: void cgmpic (char *cstr);
CSTR is a character string containing the picture H 256 characters). By default,

the ID "Picture n’ is used where n is the picture number beginning with 1.

TIFMOD
The routine TIFMOD modifies the physical resolution of TIFF files.

The call is: CALL TIFMOD (N, CVAL, COPT) level 0
or: void tifmod (int n, char *cval, char *copt);
N is an integer value containing the number of pixels per resolution unit.
CVAL is a character string containing the resolution unit. CVAL can have the values
'INCH’ and 'CM".
COPT is a character string that can have the value 'RESOLUTION’.

Default: (100, 'INCH’, 'RESOLUTION").

WMFMOD
The routine WMFMOD modifies the appearance of WMF files.

The call is: CALL WMFMOD (CMOD, CKEY) level O
or: void wmfmaod (char *cmod, char *ckey);
CMOD is a character string containing the values 'STANDARD’ or 'PLACEABLE".

If CMOD = 'PLACEABLE’, an additional leading header of 22 byte is added
to the WMF file. The format is also known as Aldus Placeable Metafile.

CKEY is a character string that can have the value 'FORMAT".
Default: CMOD ='STANDARD'.

30

PDFMOD

The routine PDFMOD selects between compressed and non compressed PDF files, and can enable PDF
buffer output instead of file output.

The call is: CALL PDFMOD (CMOD, CKEY) level O
or: void pdfmod (char *cmod, char *ckey);
CMOD is a character string that can have the values 'ON’ and 'OFF'.
CKEY is a character string that can have the values 'COMPRESSION' and

'BUFFER’. For CKEY ='BUFFER’ and CMOD ="'ON’, the PDF file is hold
in memory and can be copied to an user buffer with the routine PDFBUF after
DISFIN.
Default: (ON’, 'COMPRESSION),
Default: (OFF’, 'BUFFER’).

PDFMRK

The routine PDFMRK writes bookmarks to PDF files. This makes it possible to navigate through PDF
files that contain multiple pages.

The call is: CALL PDFMRK (CSTR, COPT) level 1,2 ,3
or: void pdfmrk (char *cstr, char *copt);

CSTR is a character string that contains the text of the bookmark.

COPT is a character string that can have the values 'CHAPTER’, 'SECTION’, 'SUB-

SECTION’, 'PARAGRAPH’ and 'SUBPARAGRAPH'. This option defines
the level of a bookmark in the hierarchy of bookmarks. A bookmark with the
option 'SECTION’ can only be defined if a bookmark with the option 'CHAP-
TER' is defined before, and so on.

GIFMOD
The routine GIFMOD enables transparency for GIF files.

The call is: CALL GIFMOD (CMOD, CKEY) level O
or: void gifmod (char *cmod, char *ckey);

CMOD is a character string that can have the values 'ON’ and 'OFF'.

CKEY is a character string that can have the value ' TRANSPARENCY".

Default: COFF’, TRANSPARENCY").

PNGMOD
The routine PNGMOD enables transparency for PNG files.

The call is: CALL PNGMOD (CMOD, CKEY) level O
or void pngmod (char *cmod, char *ckey);

CMOD is a character string that can have the values 'ON’ and 'OFF'.

CKEY is a character string that can have the value ' TRANSPARENCY".

Default: COFF’, TRANSPARENCY"’).

31

Additional note: For indexed PNG files, the colour table entry 0 is used for transparency. For
RGB files, the colour White is used for transparency.

IMGFMT

The routine IMGFMT defines palette or truecolour mode for DISLIN image formats such as TIFF, PNG,
BMP and IMAGE.

The call is: CALL IMGFMT (CMOD) level O
or: void imgfmt (char *cmod);
CMOD is a character string that can have the values 'INDEX’ and 'RGB'.

Default: CMOD ="INDEX'.

6.1.5 Page Control

PAGE
PAGE determines the size of the page.
The call is: CALL PAGE (NXP, NYP) level O
or: void page (int nxp, int nyp);
NXP, NYP are the length and height of the page in plot coordinates. The lower right corner

of the page is the point (NXP-1, NYP-1).
Default: (2970, 2100).

SETPAG
SETPAG selects a predefined page format.

The call is: CALL SETPAG (CPAGE) level O
or: void setpag (char *cpage);

CPAGE is a character string that defines the page format.
='DA4L DIN A4, landscape, 2970 * 2100 points.
='DA4P’ DIN A4, portrait, 2100 * 2970 points.
='DA3L DIN A3, landscape, 4200 * 2970 points.
='DA3P’ DIN A3, portrait, 2970 * 4200 points.
='DA2Ll’ DIN A2, landscape, 5940 * 4200 points.
='DA2P’ DIN A2, portrait, 4200 * 5940 points.
='DA1L DIN A1, landscape, 8410 * 5940 points.
='DA1P’ DIN A1, portrait, 5940 * 8410 points.
='DAOL’ DIN AO, landscape, 11890 * 8410 points.
='DAOP’ DIN A0, portrait, 8410 * 11890 points.
='USAL US paper size A, landscape, 2790 * 2160 points.
="'USAP’ US paper size A, portrait, 2160 * 2790 points.
='USBL US paper size B, landscape, 4320 * 2790 points.
='USBP’ US paper size B, portrait, 2790 * 4320 points.
='USCL US paper size C, landscape, 5590 * 4320 points.
='USCP’ US paper size C, portrait, 4320 * 5590 points.
='UsSbL US paper size D, landscape, 8640 * 5590 points.
='USDP’ US paper size D, portrait, 5590 * 8640 points.
='USEL US paper size E, landscape, 11180 * 8640 points.
='USEP’ US paper size E, portrait, 8640 * 11180 points.

32

'PS4L PostScript A4, landscape, 2800 * 1950 points.

='PS4P’ PostScript A4, portrait, 1950 * 2800 points.
="'HP4L HP-plotter A4, landscape, 2718 * 1900 points.
='HP4P’ HP-plotter A4, portrait, 1900 * 2718 points.
='HP3L HP-plotter A3, landscape, 3992 * 2718 poaints.
='HP3P’ HP-plotter A3, portrait, 2718 * 3992 points.
='HP2Ll HP-plotter A2, landscape, 5340 * 3360 points.
="'HP2P’ HP-plotter A2, portrait, 3360 * 5340 points.
='HP1L HP-plotter A1, landscape, 7570 * 5340 points.
='HP1P’ HP-plotter A1, portrait, 5340 * 7570 points.

Default: CPAGE = 'DA4L".
SCLFAC

SCLFAC sets the scaling factor for an entire plot.

The call is: CALL SCLFAC (XFAC) level O
or: void sclfac (float xfac);
XFAC is the scaling factor by which the entire plot is scaled up or down.

Default: XFAC = 1.

SCLMOD

The method by which graphics are scaled to the hardware pages of devices such as a graphics terminal
can be selected with the routine SCLMOD.

The call is: CALL SCLMOD (CMOD) level O
or: void sclmod (char *cmod);
CMOD ='DOWN’ means that graphics will be scaled down if the hardware page of a device is

smaller than the plotting page.

= 'FULL means that the graphics will be scaled up or down depending upon the size of
the hardware page.
Default: CMOD ="DOWN".

Additional notes: - The size of a graphics screen will be interpreted as DIN A4 landscape. This
means that by default graphics which are smaller than DIN A4 will not fill the
entire screen.

- SCLFAC and SCLMOD can affect each other.

PAGMOD

GKSLIN and CGM files can be rotated by 90 degrees to use the full hardware page of a device. In
general, this is done automatically by the driver program.

The call is: CALL PAGMOD (CMOD) level O
or: void pagmod (char *cmod);
CMOD ='"LAND’ means that the metafile is not rotated.
='PORT’ means that the metafile is rotated by 90 degrees.
='NONE’ can be used to disable automatic plotfile rotation in the driver program (i.e. for

PostScript files).
Default: CMOD ='LAND’.

33

Figure 6.1 shows the effect of PAGMOD:

Portrait X
% Landscape
X Y
Figure 6.1: PAGMOD
NEWPAG
NEWPAG creates a new page.
The call is: CALL NEWPAG level 1
or: void newpag ();
Additional notes: - PostScript, PDF and CGM files can store multiple pages. For other output

formats, NEWPAG is not useful.

- On X Window terminals, NEWPAG is waiting for a mouse button 2 event
before displaying the next page. This mode can be changed with the routine
WINMOD. On other terminals, NEWPAG has the same effect as ERASE.

HWPAGE
The routine HWPAGE defines the size of the PostScript hardware page.

The call is: CALL HWPAGE (NW, NH) level O
or: void hwpage (int nw, int nh);
NW, NH are the width and height of the PostScript hardware page in plot coordinates.

Default: (1950, 2800).

HWORIG

The routine HWORIG defines the hardware origin of the PostScript hardware page.

The call is: CALL HWORIG (NX, NY) level O
or: void hworig (int nx, int ny);
NX, NY are the plot coordinates of the hardware origin.

Default; (75, 100).

34

6.1.6 Error Handling

ERRMOD

The printing of warnings and the output of the protocol in DISFIN can be disabled with the routine
ERRMOD.

The call is: CALL ERRMOD (CKEY, CMOD) level 1, 2, 3
or: void errmod (char *ckey, char *cmod);
CKEY is a character string that can have the values 'WARNINGS’, 'CHECK’, 'PRO-

TOCOL' and 'ALL. 'WARNINGS’ means the error messages about bad pa-
rameters passed to DISLIN routines, 'CHECK'’ the out of range check of co-
ordinates passed to plotting routines such as CURVE and 'PROTOCOL' the
output of the protocol in DISFIN.

CMOD is a character string that can have the values 'ON’ and 'OFF’.
Default: CALL’, 'ON’)
ERRDEYV

The routine ERRDEV defines the output device for DISLIN warnings. By default, warnings are written
to the screen.

The call is: CALL ERRDEV (COPT) level O
or: void errdev (char *copt);
COPT is a character string that can have the values 'CONS’ and 'FILE".

Default: COPT ='CONS'.

ERRFIL
By default, the name of the error file is 'dislin.err’. An alternate filename can be set with ERRFIL.
The call is: CALL ERRFIL (CFIL) level O
or. void errfil (char *cfil);
CFIL is a character string that contains the filename.
UNIT

UNIT defines the logical unit used for printing error messages and listing data points that lie outside of
the axis scaling.

The call is: CALL UNIT (NU) level 1, 2, 3
or: void unit (FILE *nu);
NU is the logical unit. If NU = 0, all messages will be suppressed.
Default: NU =6
Additional note: UNIT is an old DISLIN routine for suppressing error messages. It should be

replaced by the newer routines ERRMOD, ERRDEV and ERRFIL.

WINAPP

The routine WINAPP defines if a DISLIN program should look like a Windows console, or more like a
Windows program. If Windows mode is selected, all warnings are written to an error file and the protocol
in disfin is displayed in a widget.

35

The call is: CALL WINAPP (COPT) level O
or: void winapp (char *copt);
COPT is a character string that can have the values 'CONSOLE’ and 'WINDOWS'.
Default: COPT ='"CONSOLE".

6.1.7 Viewport Control

WINDOW

This routine defines, for X Window terminals, a region on the screen where the graphics will be dis-
played. By default, the window size is set to 2/3 of the screen size and located in the lower right corner
of the screen.

The call is: CALL WINDOW (NX, NY, NW, NH) level O, 1, 2,3
or: void window (int nx, int ny, int nw, int nh);
NX, NY are the screen coordinates of the upper left corner.
NW, NH are the width and height of the window in screen coordinates.
Additional note: In general, the screen size is 1280 * 1024 pixels.
WINSIZ

This routine defines the size of windows and the resolution of DISLIN image formats such as TIFF, PNG,
BMP, PPM and IMAGE. By default, the window size is set to 2/3 of the screen size, and the resolution
of image formats is 853 x 603 pixels.

The call is: CALL WINSIZ (NW, NH) level 0,1, 2,3
or: void winsiz (int nw, int nh);
NW, NH are the width and height of the window in pixels.
CLRMOD

The routine CLRMOD defines the colour mode used for output on window terminals.

The call is: CALL CLRMOD (CMOD) level O
or: void clrmod (char *cmod);
CMOD is a character string defining the mode.
='NONFE’ means that a colour table with 256 colours will be reduced to 129 colours

to conserve current screen and window colours. The colour values will be
reduced by the formula (8> 0, i = (iclr + 1) / 2, iclr = 1, ... 255).

='FULL means that all 256 colours will be displayed.
='CONT’ means that a colour table with less than 129 entries will be used.
Default: CMOD ='NONE".
X11MOD

The routine X11MOD enables or disables backing store for graphic windows.

The call is: CALL X11MOD (CMOQOD) level O

36

or:

CMOD
'NOSTORE’
'STORE’

'AUTO’

'PIXMAP’

void x11mod (char *cmod);

is a character string containing the mode.
means that graphical output is sent directly to the graphics window.

means that graphical output is sent to a pixmap that will be copied to the graph-
ics window.

means that 'NOSTORE’ will be used on X11 and 'STORE’ on Windows ter-
minals.

means that only a pixmap is used. The graphics window will be invisible.
Default: CMOD ="AUTO".

WINMOD

The routine WINMOD affects the handling of windows in the termination routine DISFIN.

The call is;

or:

CMOD
'FULL

'NOHOLD’

'NOERASFE’

'NONE’
'DELAY’

CALL WINMOD (CMOD) level 1, 2, 3

void winmod (char *cmod);

is a character string containing the mode.

means that DISFIN is waiting for a mouse button 2 event. After program
continuation, all windows are deleted.

means that DISFIN is not waiting for a mouse button 2 event. After a call to
DISFIN, all windows are deleted.

means that the program is still blocked in DISFIN but windows will not be
deleted after program continuation.

means that the program is not blocked in DISFIN and windows are not deleted.

means that the program is blocked for a short time in DISFIN before it is
continued. The delay time can be defined with the routine WINOPT.
Default: CMOD ="FULL.

WINOPT

The routine WINOPT sets the delay time for the keyword 'DELAY’ in WINMOD.

The call is:
or:

IOPT

CKEY

CALL WINOPT (IOPT, CKEY) level 1, 2, 3
void winopt (int iopt, char *ckey);

is the delay time in seconds.

is a character string that can have the value 'DELAY".
Default: (10, 'DELAY").

WINKEY

The routine WINKEY enables a an additional key that can be used for program continuation is DISFIN.
Normally, the mouse button 2 can be used for closing the graphics window.

The call is;

or:

CALL WINKEY (CKEY) level 1,2, 3
void winkey (char *ckey);

37

CKEY is a character string that can have the values 'NONE’, '/RETURN’ and 'ES-
CAPE'.
Default: CKEY ='NONE’.

SETXID

The routine SETXID defines an external graphics window for X11 and Windows displays. All graphical
output is sent to the external window. For X11 displays, an external pixmap can also be defined.

The call is: CALL SETXID (ID, CTYPE) level O, 1, 2,3

or: void setxid (int id, char *ctype);

ID is the window or pixmap ID.

CTYPE is a character string that can have the values 'NONE’, 'WINDOW', 'PIXMAP’
and 'WIDGET’. For the keyword 'WIDGET’, the ID of a DISLIN draw widget
can be used.

Default: (0, 'NONE).

Additional notes: - If an external pixmap is used, backing store must also be enabled with the
routine X11MOD.

- Anexternal window is not erased by DISINI. This can be done with the routine
ERASE.

- External windows are not blocked in DISFIN (see WINMOD).

- External windows can also be used for multiple DISLIN windows that are
defined with the routine OPNWIN.

38

6.2 AXxis Systems

This section describes subroutines that allow the user to modify axis systems. The position of an axis
system, the size, the scaling, ticks, labels and axis titles can be altered in any way. Some of the routines
defining axis attributes can also be used with secondary axes. Routines that set axis attributes can be
used for one or for any combination of axes. The axes are identified by a character string that can contain
the characters "X’, 'Y’ and 'Z’ in any combination.

6.2.1 Modifying the Type

AXSTYP

The routine AXSTYP defines the type of an axis system. Axis systems can be plotted as rectangles or in
a crossed form. For crossed axis systems, the scaling must be linear and the axis limits must contain the
origin.

The call is: CALL AXSTYP (COPT) level 1
or: void axstyp (char *copt);
COPT is a character string defining the type.
='RECT defines a rectangular axis system.
='CROSS’ defines a crossed axis system.

Default: COPT ="RECT".

The following figure shows a rectangular and a crossed axis system:

50 1 | 1 | 1 | 1 50 _
3.0 | I % 3.0 |
a I g7
0 1.0+ - > 1.0
é - B I T T T T T T 1
> -1.0 - -4.0 -20 -1.0 - 2.0 4.0
] i 4 X-axis
-3.0 - -3.0
-5.0 . , . , . , : -5.0 -
-4.0 -2.0 0.0 2.0 4.0
X-axis
Figure 6.2: Rectangular and Crossed Axis Systems
6.2.2 Modifying the Position and Size
AXSPOS
AXSPOS determines the position of an axis system.
The call is: CALL AXSPOS (NXA, NYA) level 1
or: void axspos (int nxa, int nya);
NXA, NYA are plot coordinates that define the lower left corner of an axis system. By

default, axis systems are centred in the X-direction while NYA is set to the
value (page height - 300).

39

AXSORG

AXSORG is an alternate routine for defining the position of a crossed axis system.

The call is: CALL AXSORG (NX, NY) level 1
or: void axsorg (int nx, int ny);
NX, NY are plot coordinates that define the position of the origin of a crossed axis
system.
AXSLEN

AXSLEN defines the size of an axis system.

The call is: CALL AXSLEN (NXL, NYL) level 1
or: void axslen (int nxl, int nyl);
NXL, NYL are the length and height of an axis system in plot coordinates. The default

values are set to 2/3 of the page length and height.

CENTER

A call to the routine CENTER will centre the axis system on the page. All elements of an axis system,
including titles, axis labels and names, will be taken into consideration. The centralisation is done by
GRAF through changing the position of the origin. Therefore, all plotting routines called after GRAF
will work with the new origin.

The call is: CALL CENTER level 1, 2, 3
or: void center ();
Additional notes: - If there are several axis systems on the page, the origin will be changed only

by the first call to GRAF.

- The character height of titles should be defined with HTITLE if it is different
from the current character height in GRAF.

6.2.3 Axis Scaling

AXSSCL

This routine sets the axis scaling to logarithmic or linear.

The call is: CALL AXSSCL (CSCL, CAX) level 1, 2, 3
or: void axsscl (char *cscl, char *cax);
CSCL ='LIN’ denotes linear scaling.
='LOG’ denotes logarithmic scaling.
CAX is a character string that defines the axes.

Default: CLIN’, 'XYZ)).

Additional notes: - For logarithmic scaling, the corresponding parameters in GRAF must be ex-
ponents of base 10.

40

The routine AXSSCL replaces the DISLIN routine SCALE because SCALE
is also a Fortran 90 intrinsic function.

SETSCL

The parameters in GRAF will be calculated automatically by DISLIN if the routine SETSCL is used. In
this case, GRAF must have dummy parameters in which DISLIN returns the calculated values.

The call is:
or:

XRAY

N

CAX

Additional notes:

CALL SETSCL (XRAY, N, CAX)
void setscl (float *xray, int n, char *cax);

level 1

is a vector that contains user coordinates. SETSCL calculates the minimum
and maximum values of the data and stores them in a common block.

is the number of points in XRAY.

is a character string that defines the axes. CAX can have the additional val-
ues 'XRESET’, 'YRESET’, 'ZRESET’ and 'RESET for disabling automatic
scaling. The parameter 'RESET’ resets automatic scaling for all axes.
SETSCL can be used with linear and logarithmic scaling and with all label
types.

The calculation of scaling and label values is done by GRAF. The minimum
and maximum of the data are always used for the lower and upper limits of an
axis while even values are calculated for the labels.

The number of digits after the decimal point will be set automatically.

If the scaling of an axis is logarithmic, labels will be plotted with the format
'LOG'.

6.2.4 Modifying Ticks

TICKS

This routine is used to define the number of ticks between axis labels.

The call is:
or:

NTIC

CAX

CALL TICKS (NTIC, CAX)
void ticks (int ntic, char *cax);

level 1, 2, 3

is the number of ticks*¥ 0).

is a character string that defines the axes.
Default: (2, 'XYZ)).

TICPOS

This routine defines the position of ticks.

The call is:
or:

CPOS
='LABELS’
='REVERS’
='CENTER’

CAX

CALL TICPOS (CPOS, CAX)
void ticpos (char *cpos, char *cax);

level 1, 2, 3

is a character string defining the position.

means that ticks will be plotted on the same side as labels.
means that ticks will be plotted inside of an axis system.
means that ticks will be centred on the axis line.

is a character string that defines the axes.
Default: (LABELS’, 'XYZ").

41

TICLEN

TICLEN sets the lengths of major and minor ticks.

The call is: CALL TICLEN (NMAJ, NMIN) level 1, 2, 3
or: void ticlen (int nmaj, int nmin);

NMAJ is the length of major ticks in plot coordinates 0).

NMIN is the length of minor ticks in plot coordinates Q).

Default: (24, 16).

TICMOD

The routine TICMOD modifies the plotting of minor tick marks on calendar axes. By default, a major
tick is plotted at each date label and no minor ticks are plotted.

The call is: CALL TICMOD (COPT, CAX) level 1, 2, 3
or: void ticmod (char *copt, char *cax);
COPT is a character string defining the tick marks.
='NONE’ means that no minor ticks will be plotted.
='DAYS’ means that ticks will be plotted for every day.
='MONTH’ means that ticks will be plotted for every month.
='DMONTH’ means that ticks will be plotted for every second month.
='QUARTER’ means that ticks will be plotted on the first of January, April, July and October.
='HALF’ means that ticks will be plotted on the first of January and July.
='YEAR’ means that ticks will be plotted for every year.
CAX is a character string that defines the axes.

Default: (NONE’, ’XYZ)).

LOGTIC

The appearance of minor ticks on logarithmic axes differs slightly from linear axes. By default, loga-

rithmic minor ticks are generated automatically if the label step is 1 or -1 and if the number of ticks in

TICKS is greater than 1. If the step has another value, minor ticks are plotted as specified in TICKS.
This algorithm can be modified with LOGTIC.

The call is: CALL LOGTIC (CMOD) level 1, 2, 3
or: void logtic (char *cmod);
CMOD is a character string defining the appearance of logarithmic ticks.
='AUTO’ defines default ticks.
='FULL means that logarithmic minor ticks will be generated for every cycle even if

the label step is not 1 but some other integer.
Default: CMOD ="AUTO'.

42

6.2.5 Modifying Labels

LABELS

LABELS determines which label types will be plotted on an axis.

The call is:
or:

CLAB
='NONFE’

'FLOAT’

'EXP’

'FEXP’
'LOG’
'CLOG’

'ELOG’
'TIME’
'HOURS’
'SECONDS’
'DATE’
'MAP’

'LMAP’
'DMAP’
'MYLAB’

CAX

Additional notes:

CALL LABELS (CLAB, CAX) level 1, 2, 3
void labels (char *clab, char *cax);

is a character string that defines the labels.
will suppress all axis labels.
will plot labels in floating-point format.

will plot floating-point labels in exponential format where fractions range be-
tween 1 and 10.

will plot labels in the format fEn where f ranges between 1 and 10.
will plot logarithmic labels with base 10 and the corresponding exponents.

is similar to 'LOG’ except that the entire label is centred below the tick mark;
with 'LOG’, only the base '10’ is centred.

will plot only the logarithmic values of labels.
will plot time labels in the format 'nhmm’.
will plot time labels in the format 'hh’.

will plot time labels in the format 'hhmmss’.
defines date labels.

defines geographical labels which are plotted as non negative floating-point
numbers with the following characters 'W’, 'E’, 'N’ and 'S’.

is simular to 'MAP’ except that lowercase characters are used.
selects labels that are plotted as floating-point numbers with degree symbols.
selects labels that are defined with the routine MYLAB.
is a character string that defines the axes.
Default: (FLOAT’, 'XYZ").

The values 'LOG’, 'CLOG’ and 'ELOG’ can be only used with logarithmic
scaling. If these label types are used with linear scaling, DISLIN will change
them to 'FLOAT".

For the values 'TIME’, 'HOURS’ and 'SECONDS’, the corresponding param-
eters in GRAF must be in seconds since midnight.

For the value 'DATE’, the corresponding parameters in GRAF must be in days
since a base date. The base date can be defined with the routine BASDAT
while the number of days since the base date can be calculated with the routine
INCDAT. Date labels can be modified with the routine LABMOD.

MYLAB

MYLAB defines user labels.

The call is:
or:

CALL MYLAB (CSTR, ITICK, CAX) level 1, 2, 3
void mylab (char *cstr, int itick, char *cax);

43

CSTR
ITICK

CAX

is a character string containing a labsl 82 characters).

is the tick number where the label will be plotted @0). Tick numbering
starts with 1.

is a character string that defines the axes.

LABTYP

LABTYP defines horizontal or vertical labels.

The call is:
or:

CTYPE
="HORYI’
='VERT’

CAX

CALL LABTYP (CTYPE, CAX) level 1, 2, 3
void labtyp (char *ctype, char *cax);

is a character string defining the direction.
defines horizontal labels.
defines vertical labels.

is a character string that defines the axes.
Default: (HORI’, 'XYZ").

LABPOS

LABPOS defines the position of labels.

The call is:
or:

CPOS
='TICKS’
='CENTER’
='SHIFT’

CAX

CALL LABPOS (CPOS, CAX) level 1,2, 3
void labpos (char *cpos, char *cax);

is a character string defining the position.

means that labels will be plotted at major ticks.

means that labels will be centred between major ticks.
means that the starting and end labels will be shifted.

is a character string that defines the axes.
Default: (TICKS’, 'XYZ).

LABJUS

LABJUS defines the alignment of axis labels.

The call is:
or:

CJUS
="AUTO’
'LEFT’
'RIGHT’
'ouTW’

INWA

CAX

CALL LABJUS (CJUS, CAX) level 1, 2, 3
void labjus (char *cjus, char *cax);

is a character string defining the alignment of labels.
means that labels are automatically justified.

means that labels are left-justified.

means that labels are right-justified.

means that labels are left-justified on the left and lower axes of an axis system.
On the right and upper axes, labels are right-justified.

means that labels are right-justified on the left and lower axes of an axis system.
On the right and upper axes, labels are left-justified.

is a character string that defines the axes.
Default: CAUTO’, 'XYZ).

44

LABDIG

This routine sets the number of digits after the decimal point displayed in labels.

The call is: CALL LABDIG (NDIG, CAX) level 1,2, 3
or: void labdig (int ndig, char *cax);

NDIG =-1 defines integer labels.
=0 defines integer labels followed by a decimal point.

=n defines the number of digits after the decimal point. The last digit will be
rounded up.
CAX is a character string that defines the axes.
Default: (1, 'XYZ’).

Additional note: The routine LABDIG replaces the DISLIN routine DIGITS because DIGITS
is also a Fortran 90 intrinsic function.

INTAX
With the routine INTAX, all axes will be labeled with integers.
The call is: CALL INTAX level 1, 2, 3
or: void intax ();
LABDIS
This routine sets the distance between labels and ticks.
The call is: CALL LABDIS (NDIS, CAX) level 1, 2, 3
or: void labdis (int ndis, char *cax);
NDIS is the distance in plot coordinates.
CAX is a character string that defines the axes.

Default: (24, 'XYZ).

LABMOD

The routine LABMOD modifies the appearance of date labels enabled with the keyword 'DATE’ in the
routine LABELS. Normally, date labels will be plotted in the form dd-mmm-yyyy.

The call is: CALL LABMOD (CKEY, CVAL, CAX) level 1, 2, 3
or: void labmod (char *ckey, char *cval, char *cax);
CKEY is a character string containing one of the following keywords:
='YEAR’ means that the century field will be modified in date labels. For CKEY =

'YEAR’, CVAL can have the values 'NONE’, 'SHORT’ and 'FULL’. 'NONE’
suppresses the year field while 'SHORT’ suppresses the century in the year
field. The default value is 'FULL'.

='DAYS’ means that the day field will be modified. CVAL can have the values 'NONE’,
'SHORT’, 'LONG’, 'NAME’ and 'FULL'". For CVAL =’NONE’, the day field
will be suppressed, for CVAL ='SHORT’, the day will be plotted as a number
without a leading zero. CVAL = 'LONG’ means that the day will be plotted
as a number with two digits, CVAL = 'NAME’ means that abbreviations of
the weekday names will be plotted and CVAL = 'FULL means that the full
weekday names will be displayed. The default value is CVAL = 'LONG’.

45

='MONTH’ means that the month field will be modified. CVAL can have the values
'NONE’, 'SHORT’, '"LONG’, 'NAME’, 'TINY’ and 'FULL". For CVAL =
'NONE’, the month field will be suppressed, for CVAL =’SHORT’, the month
will be plotted as a number without a leading zero. CVAL = 'LONG’ means
that the month will be plotted as a number with two digits, CVAL = 'NAME’
means that abbreviations of the month names will be plotted, CVAL = "TINY’
means that only the first character of month names will be plotted and CVAL =
'FULL means that the full month names will be displayed. The default value
is CVAL ='NAME".

='LANG’ defines the language used for weekdays and month names in date labels. CVAL
can have the values 'ENGLISH’ and 'GERMAN'. The default value for CVAL
is 'ENGLISH'.

='FORM’ defines the order of the date fields. CVAL can have the values ' DMY’, ' DYM’,
'YDM', 'YMD’, 'DYM’ and 'MDY’. The default is CVAL ='DMY".

='SEPA defines a separator character used in date labels. CVAL is a character string

containing the separator character. The defaultis CVAL ="-".

='CASE’ defines if weekdays and month names are plotted in uppercase characters or in
lowercase characters with a leading uppercase character. CVAL can have the
values 'UPPER’ and 'NONE'. The default value is 'NONE’.

='STEP’ defines a step between labels. CVAL can have the values 'DAYS’, 'MONTH’,
'DMONTH’, 'QUARTER’, '"HALF' and "YEAR'. For CVAL = 'DAYS’, the
label step specified in the routine GRAF will be used. The default value is

CVAL ="DAYS".
CAX is a character string that defines the axes.
POLMOD
The routine POLMOD modifies the appearance of angle labels plotted with the routine POLAR.
The call is: CALL POLMOD (CPOS, CDIR) level 1, 2, 3
or: void polmod (char *cpos, char *cdir);
CPOS is a character string that defines the position of the first label. CPOS can have
the values 'RIGHT’, 'TOP’, 'LEFT’ and 'BOTTOM'.
CDIR defines the direction of the labels. CDIR can have the values 'CLOCKWISE’

and 'ANTICLOCK'.
Default: CRIGHT’, ’ANTICLOCK).

TIMOPT
With TIMOPT time labels can be plotted in the format 'hh:mm’. The default is 'Thhmm’.
The call is: CALL TIMOPT level 1, 2, 3
or: void timopt ();
RGTLAB
The routine RGTLAB right-justifies user labels. By default, user labels are left-justified.

The call is: CALL RGTLAB level 1, 2, 3
or: void rgtlab ();

46

6.2.6 Modifying Axis Titles

NAME
NAME defines axis titles.
The call is: CALL NAME (CSTR, CAX) level 1, 2, 3
or: void name (char *cstr, char *cax);
CSTR is a character string containing the axis titte 132 characters).
CAX is a character string that defines the axes.
Default: (7, 'XYZ).
HNAME

HNAME defines the character height for axis names.

The call is: CALL HNAME (NHNAME) level 1, 2, 3
or: void hname (int nhname);
NHNAME is the character height in plot coordinates.

Default: NHNAME = 36

NAMDIS
NAMDIS sets the distance between axis names and labels.
The call is: CALL NAMDIS (NDIS, CAX) level 1, 2, 3
or: void namdis (int ndis, char *cax);
NDIS is the distance in plot coordinates.
CAX is a character string that defines the axes.

Default: (30, 'XYZ").

NAMJUS
The routine NAMJUS defines the alignment of axis titles.
The call is: CALL NAMJUS (CJUS, CAX) level 1, 2, 3
or: void namjus (char *cjus, char *cax);
CJUsS is a character string that can have the values 'CENT’, 'LEFT" and 'RIGHT".
CAX is a character string that defines the axes.

Default: CCENT’, 'XYZ)).

RVYNAM

The routine RVYNAM is used to plot names on right Y-axes and colour bars at an angle of 90 degrees.
By default, they are plotted at an angle of 270 degrees.

The call is: CALL RVYNAM level 1, 2, 3
or: void rvynam ();

a7

6.2.7 Suppressing Axis Parts

NOLINE

After a call to NOLINE the plotting of axis lines will be suppressed.

The call is: CALL NOLINE (CAX) level 1, 2, 3
or: void noline (char *cax);
CAX is a character string that defines the axes.
AXENDS

With a call to AXENDS certain labels can be suppressed.

The call is: CALL AXENDS (COPT, CAX) level 1, 2, 3
or: void axends (char *copt, char *cax);
COPT is a character string that defines which labels will be suppressed.
='NONE’ means that all labels will be displayed.
='FIRST’ means that only the starting label will be plotted.
='NOFIRST’ means that the starting label will not be plotted.
='LAST means that only the ending label will be plotted.
='NOLAST means that the ending label will not be plotted.
='ENDS’ means that only the start and end labels will be plotted.
='NOENDS’ means that start and end labels will be suppressed.
CAX is a character string that defines the axes.

Default: (NONE’, ’XYZ)).

NOGRAF

The routine NOGRAF suppresses the plotting of an axis system.

The call is: CALL NOGRAF level 1

or: void nograf ();

AX2GRF
The routine AX2GRF suppresses the plotting of the upper X- and left Y-axis.
The call is: CALL AX2GRF level 1, 2, 3

or: void ax2grf ();

SETGRF

SETGRF removes a part of an axis or a complete axis from an axis system.

The call is: CALL SETGRF (C1,C2,C3,C4) level 1, 2, 3

or: void setgrf (char *c1, char *c2, char *c3, char *c4);

48

Ci are character strings corresponding to the four axes of an axis system. C1
corresponds to the lower X-axis, C2 to the left Y-axis, C3 to the upper X-
axis and C4 to the right Y-axis. The parameters can have the values 'NONE’,
'LINE’, 'TICKS’, 'LABELS’ and 'NAME’. With 'NONE’, complete axes will
be suppressed, with 'LINE’, only axis lines will be plotted, with 'TICKS’, axis
lines and ticks will be plotted, with 'LABELS’ axis lines, ticks and labels will
be plotted and with 'NAME’, all axis elements will be displayed.

Default: (NAME’, 'NAME’, 'TICKS’, 'TICKS)).

Additional notes: - By default, GRAF plots a frame of thickness 1 around axis systems. There-
fore, in addition to the parameter 'NONE’, FRAME should be called with the
parameter O for suppressing complete axes.

- SETGRF does not reset the effect of NOGRAF and NOLINE. This must be
done using RESET.

6.2.8 Maodifying Clipping

CLPWIN
The routine CLPWIN defines a rectangular clipping area on the page.
The call is: CALL CLPWIN (NX, NY, NW, NH) level 1, 2, 3
or: void clpwin (int nx, int ny, int nw, int nh);
NX, NY are the plot coordinates of the upper left corner.
NW, NH are the width and height of the rectangle in plot coordinates.
CLPBOR

The routine CLPBOR sets the clipping area to the entire page or to the axis system.

The call is: CALL CLPBOR (COPT) level 1, 2, 3
or: void clpbor (char *copt);
COPT is a character string that can have the values 'PAGE’ and 'AXIS’.

Default: COPT ="'PAGE’.

NOCLIP

The suppressing of lines outside of the borders of an axis system can be disabled with NOCLIP.
The call is: CALL NOCLIP level 1, 2, 3

or: void noclip ();

GRACE

GRACE defines a margin around axis systems where lines will be clipped.

The call is: CALL GRACE (NGRA) level 1, 2, 3
or: void grace (int ngra);
NGRA is the width of the margin in plot coordinates. If NGRA is negative, lines will

be clipped inside the axis system.
Default: NGRA =-1

49

6.2.9 Framing Axis Systems

FRAME
FRAME defines the thickness of frames plotted by routines such as GRAF and LEGEND.

The call is: CALL FRAME (NFRM) level 1, 2, 3
or: void frame (int nfrm);
NFRM is the thickness of the frame in plot coordinates. If NFRM is negative, the

frame will be thickened from the inside. If positive, the frame will be thickened
towards the outside.
Default: NFRM =1
FRMCLR

The colour of frames can be defined with the routine FRMCLR.

The call is: CALL FRMCLR (NCLR) level 1, 2,3
or: void frmclr (int nclr);
NCLR is a colour value. If NCLR = -1, the current colour is used.

Default: NCLR =-1

6.2.10 Setting Colours

AXSBGD

The routine AXSBGD defines a background colour for axis systems.

The call is: CALL AXSBGD (NCLR) level 1, 2, 3
or: void axsbgd (int nclr);
NCLR is a colour value. If NCLR = -1, the background of an axis system is not filled
in GRAF.

Default: NCLR =-1

AXCLRS

AXCLRS selects colours for single parts of axes.

The call is: CALL AXCLRS (NCLR, COPT, CAX) level 1, 2, 3
or: void axclrs (int nclr, char *copt, char *cax);
NCLR is a colour value. If NCLR = -1, the actual colour is used.
COPT is a character string that can have the values 'LINE’, 'TICKS’, 'LABELS’,
'NAME’ and "ALL.
CAX is a character string that defines the axes.

Default: (-1, 'ALL, 'XYZ)).

Additional note: By default, a frame of thickness 1 is plotted around axis systems. This may
overplot the colour of axis lines (see FRAME, FRMCLR).

50

6.2.11 Axis System Titles

TITLIN

This subroutine defines up to four lines of text used for axis system titles. The text can be plotted with
TITLE after a call to GRAF.

The call is; CALL TITLIN (CSTR, N) level 1, 2, 3
or: void titlin (char *cstr, int n);
CSTR is a character string{ 132 characters).
N is an integer that contains a value between 1 and 4 or -1 and -4. If N is negative,

the line will be underscored.
Default: All lines are filled with blanks.

TITIJUS

The routine TITJUS defines the alignment of title lines.

The call is: CALL TITJUS (CJUS) level 1,2, 3
or: void titjus (char *cjus);
CJUS is a character string that can have the values 'CENT’, 'LEFT" and 'RIGHT".

Default: CJUS = 'CENT".

LETTIT

Title lines are centred above axis systems by default but can be left-justified with a call to LFTTIT. This
routine has the same meaning as TITJUS (LEFT").

The call is: CALL LFTTIT level 1, 2, 3

or: void [fttit ();

TITPOS

The routine TITPOS defines the position of title lines which can be plotted above or below axis systems.

The call is: CALL TITPOS (CPOS) level 1, 2, 3
or: void titpos (char *cpos);
CPOS is a character string that can have the values 'ABOVE’ and 'BELOW'.

Default: CPOS ='ABOVE".

LINESP
LINESP defines the spacing between title and legend lines.

The call is: CALL LINESP (XFAC) level 1, 2, 3
or: void linesp (float xfac);
XFAC The space between lines is set to XFAC * character height.

Default: XFAC = 1.5

51

HTITLE

HTITLE defines the character height for titles. The character height defined by HEIGHT will be used if
HTITLE is not called.

The call is: CALL HTITLE (NHCHAR) level 1,2, 3
or: void htitle (int nhchar);
NHCHAR is the character height in plot coordinates.
VKYTIT

The space between titles and axis systems can be enlarged or reduced with VKYTIT. By default, the
space is 2 * character height.

The call is: CALL VKYTIT (NV) level 1,2, 3
or: void vkytit (int nv);
NV is an integer that determines the spacing between axis systems and titles. If

NV is negative, the space will be reduced by NV plot coordinates. If NV is
positive, the space will be enlarged by NV plot coordinates.
Default: NV =0

6.3 Colours

This paragraph describes routines that modify colours. A colour value in DISLIN may be an entry of the
current colour table, or an explicit RGB value. When specifying an explicit RGB value, the colour value
must have the following hexadecimal form: 01bbggrr. The low-order byte contains the intensity of red,
the second byte the intensity of green and the third byte the intensity of blue. The high-order byte must
have the value 1. The function INTRGB creates an explicit RGB value from RGB coordinates. If the
output device can only display 256 colours and an explicit RGB value is given, the nearest entry in the
current colour table that matches the RGB coordinates will be used. Some routines define colours also
by name such as COLOR, or by RGB coordinates such as SETRGB.

6.3.1 Changing the Foreground Colour

COLOR

COLOR defines the colours used for plotting text and lines.

The call is: CALL COLOR (CNAME) level 1, 2, 3
or: void color (char *chame);
CNAME is a character string that can have the values 'BLACK’, 'RED’, 'GREEN’,

'BLUE’, 'CYAN’, 'YELLOW’, 'ORANGE’, 'MAGENTA, 'WHITE’, 'FO-
RE’ and 'BACK’. The keyword 'FORE’ resets the color to the default value,
while the keyword 'BACK’ sets the colour to the background colour.

Additional note: The values 'BLACK’ and '"WHITE’ define not absolute colours. If the output
format is in reverse mode, 'BLACK' is interpreted as 'WHITE' and 'WHITE’
is interpreted as 'BLACK'. If you want to use true black and true white, you
can use the routine SETRGB (0., 0., 0.) and SETRGB (1., .1., 1.).

52

SETCLR

The routine SETCLR sets the foreground colour where the colour can be specified as a colour table entry
or as an explicit RGB colour.

The call is: CALL SETCLR (NCOL) level 1,2, 3
or: void setclr (int ncol);
NCOL is a colour value.

Default: NCOL = 255 (White).

SETRGB

The routine SETRGB defines the foreground colour specified in RGB coordinates.

The call is: CALL SETRGB (XR, XG, XB) level 1,2, 3
or void setrgb (float xr, float xg, float xb);
XR, XG, XB are the RGB coordinates of a colour in the range 0 to 1. If the output device

cannot display true colours, SETRGB sets the nearest entry in the colour table
that matches the RGB coordinates.

6.3.2 Modifying Colour Tables

SETVLT
SETVLT selects a colour table.
The call is; CALL SETVLT (CVLT) level 1, 2, 3
or: void setvlt (char *cvlt);
CVLT is a character string that defines the colour table.
= 'SMALL defines a small colour table with the 8 colours:

1=BLACK, 2=RED, 3=GREEN, 4 =BLUE, 5=YELLOW, 6 = ORANGE,
7 = CYAN and 8 = MAGENTA.

='VGA defines the 16 standard colours of a VGA graphics card.

='RAIN’ defines 256 colours arranged in a rainbow where 0 means black and 255 means
white.

='SPEC’ defines 256 colours arranged in a rainbow where 0 means black and 255 means
white. This colour table uses more violet colours than 'RAIN'.

='GREY’ defines 256 grey scale colours where 0 means black and 255 is white.

='RRAIN’ is the reverse colour table of 'RAIN'.

='RSPEC’ is the reverse colour table of 'SPEC’.

='RGREY’ is the reverse colour table of 'GREY".

="TEMP’ defines a temperature colour table. The default colour table is 'RAIN’.

MYVLT

The routine MYVLT changes the current colour table.

53

The call is: CALL MYVLT (XR, XG, XB, N) level 1, 2, 3

or: void myvilt (float *xr, float *xg, float *xb, int n);
XR, XG, XB are arrays containing RGB coordinates in the range 0 to 1.
N is the number of colour entries.
SETIND

The routine SETIND allows the user to change the current colour table.

The call is: CALL SETIND (INDEX, XR, XG, XB) level 1, 2, 3
or: void setind (int index, float xr, float xg, float xb);
INDEX is an index between 0 and 255.
XR, XG, XB are the RGB coordinates of a colour in the range 0 to 1.
VLTFIL

The routine VLTFIL saves the current colour table to a file, or loads a colour table from a file.

The call is: CALL VLTFIL (CFIL, COPT) level 1, 2, 3
or: void Vltfil (char *cfil, char *copt);
CFIL is a character string containing a filename. Colour entries are stored in the file
as RGB coordinates in the range 0 to 1.
COPT is a character string that can have the values 'SAVE’ and 'LOAD’'.

6.3.3 Utitily Routines for Colours

INTRGB

The function INTRGB creates an explicit colour value from RGB coordinates.

The call is: NCLR = INTRGB (XR, XG, XB) level 1, 2, 3
or: int intrgb (float xr, float xg, float xb);
XR, XG, XB are the RGB coordinates of a colour in the range 0 to 1.
NCLR is the returned colour value.
INDRGB

The function INDRGB returns the nearest entry in the current colour table that matches given RGB
coordinates.

The call is: N = INDRGB (XR, XG, XB) level 1, 2, 3
or: int indrgb (float xr, float xg, float xb);

XR, XG, XB are the RGB coordinates of a colour in the range 0 to 1.

N is the returned colour index.

54

Sometimes, it is easier to specify colours as HSV coordinates where H is the hue, S the saturation and V
the value of a colour. The following routines convert coordinates from the HSV to the RGB model and
vice versa.

HSVRGB
The routine HSVRGB converts HSV coordinates to RGB coordinates.
The call is: CALL HSVRGB (XH, XS, XV, XR, XG, XB) level 1, 2, 3
or: void hsvrgb (float xh, float xs, float xv, float *xr, float *xg, float *xb);
XH, XS, XV are the hue, saturation and value of a colour. XH must be in the range 0 to 360

degrees while XS and XV can have values between 0 and 1. In the HSV model,
colours lie in a spectral order on a six-sided pyramid where red corresponds to
the angle 0, green to 120 and blue to 240 degrees.

XR, XG, XB are the RGB coordinates in the range 0 to 1 calculated by HSVRGB.
RGBHSYV
The routine RGBHSV converts RGB coordinates to HSV coordinates.
The call is: CALL RGBHSV (XR, XG, XB, XH, XS, XV) level 1, 2, 3
or: void rgbhsv (float xr, float xg, float xb, float *xh, float *xs, float *xv);

6.4 Text and Numbers

HEIGHT
HEIGHT defines the character height.
The call is: CALL HEIGHT (NHCHAR) level 1, 2, 3
or: void height (int nhchar);
NHCHAR is the character height in plot coordinates.
Default: NHCHAR = 36
ANGLE

This routine modifies the direction of text plotted with the routines MESSAG, NUMBER, RLMESS and
RLNUMB.

The call is: CALL ANGLE (NDEG) level 1, 2, 3
or: void angle (int ndeg);
NDEG is an angle measured in degrees and a counter-clockwise direction.

Default: NDEG =0

TXTJIJUS
The routine TXTJUS defines the alignment of text plotted with the routines MESSAG and NUMBER.
The call is: CALL TXTJUS (CJUS) level 1, 2, 3
or: void txtjus (char *cjus);

55

CJUS

is a character string that can have the values 'LEFT’, 'RIGHT’ and 'CENT".
The starting point of text and numbers will be interpreted as upper left, upper
right and upper centre point.

Default: CJUS ="LEFT".

FRMESS

FRMESS defines the thickness of frames around text plotted by MESSAG.

The call is:

or:

NFRM

CALL FRMESS (NFRM) level 1, 2, 3

void frmess (int nfrm);
is the thickness of frames in plot coordinates. If NFRM is negative, frames
will be thickened from the inside. If positive, frames will be thickened towards

the outside.
Default: NFRM =0

NUMFMT

NUMFMT modifies the format of numbers plotted by NUMBER and RLNUMB.

The call is:

or:

COPT
'FLOAT’
'EXP’

'FEXP’
='LOG’

Additional note:

CALL NUMFMT (COPT) level 1, 2, 3

void numfmt (char *copt);

is a character string defining the format.
will plot numbers in floating-point format.

will plot numbers in exponential format where fractions range between 1 and
10.

will plot numbers in the format fEn where f ranges between 1 and 10.

will plot numbers logarithmically with base 10 and the corresponding expo-
nents. The exponents must be passed to NUMBER and RLNUMB.
Default: COPT ="FLOAT".

SETEXP and SETBAS alter the position and size of exponents.

NUMODE

NUMODE alters the appearance of numbers plotted by NUMBER and RLNUMB.

The call is:
or:

CDEC
="POINT’
='COMMA

CGRP

'NONE’

'SPACE’

'POINT’
='COMMA

CPOS

CALL NUMODE (CDEC, CGRP, CPOS, CFIX) level 1, 2, 3

void numode (char *cdec, char *cgrp, char *cpos, char *cfix);

is a character string that defines the decimal notation.

defines a point.

defines a comma.

is a character string that defines the grouping of 3 digits.

means no grouping.

defines a space as separator.

defines a point as separator.

defines a comma as separator.

is a character string that defines the sign preceding positive numbers.

56

='NONFE’ means no preceding sign.

='SPACE’ defines a space as a preceding sign.
='PLUS’ defines a plus as a preceding sign.
CFIX is a character string specifying character spacing.
='NOEQUAL is used for proportional spacing.
='EQUAL is used for non-proportional spacing.

Default: (POINTNONE’NONE'’NOEQUAL).

CHASPC
CHASPC affects intercharacter spacing.
The call is; CALL CHASPC (XSPO) level 1, 2, 3
or: void chaspc (float xspc);
XSPC is a real number that contains a multiplier. If XSRCO, the intercharacter

spacing will be reduced by XSPC * NH plot coordinates where NH is the
current character height. If XSPE& 0, the spacing will be enlarged by XSPC
* NH plot coordinates.

Default: XSPC =0.

CHAWTH
CHAWTH affects the width of characters.
The call is: CALL CHAWTH (XWTH) level 1, 2, 3
or: void chawth (float xwth);
XWTH is a real number between 0 and 2. If XWTH1, the character width will be

reduced. If XWTH> 1, the character width will be enlarged.
Default: XWTH = 1.

CHAANG
CHAANG defines an inclination angle for characters.
The call is: CALL CHAANG (ANGLE) level 1, 2, 3
or: void chaang (float angle);
ANGLE is the inclination angle between characters and the vertical direction in degrees

(-60. < ANGLE <60).
Default: ANGLE = 0.

FIXSPC

All fonts in DISLIN except for the default font are proportional. After a call to FIXSPC the characters
of a proportional font will also be plotted with a constant character width.

The call is: CALL FIXSPC (XFAC) level 1,2, 3
or: void fixspc (float xfac);
XFAC is a real number containing a scaling factor. Characters will be centred in a

box of width XFAC * XMAX where XMAX is the largest character width of
the current font.

57

6.5 Fonts

The following routines define character sets of varying style and plot velocity. All fonts except for the
default font DISALF are proportional. Each font provides 6 alphabets.

The calls are: CALL DISALF - default font, single stroke, low resolution
CALL SIMPLX - single stroke font
CALL COMPLX - complex font
CALL DUPLX - double stroke font
CALL TRIPLX - triple stroke font
CALL GOTHIC - gothic font
CALL SERIF - complex shaded font
CALL HELVE - shaded font

CALL HELVES - shaded font with small characters

Additional note: If one of the shaded fonts SERIF, HELVE or HELVES is used, only the outlines

of characters are plotted to minimize plotting time. With the statement CALL
SHDCHA characters will be shaded.

PSFONT
PSFONT defines a PostScript font.

The call is: CALL PSFONT (CFONT) level 1, 2, 3
or: void psfont (char *cfont);

CFONT is a character string containing the font. Standard font names in PostScript are:
Times-Roman Courier
Times-Bold Courier-Bold
Times-Italic Courier-Oblique
Times-Boldltalic Courier-BoldOblique
Helvetica AvantGarde-Book

Helvetica-Bold
Helvetica-Oblique
Helvetica-BoldOblique
Helvetica-Narrow
Helvetica-Narrow-Bold

AvantGarde-Demi
AvantGarde-BookOblique
AvantGarde-DemiOblique
Bookman-Light
Bookman-Lightltalic

Additional notes:

Helvetica-Narrow-Oblique

Helvetica-Narrow-BoldOblique

NewCenturySchlbk-Roman
NewCenturySchlbk-Italic
NewCenturySchlbk-Bold

Bookman-Demi
Bookman-Demiltalic
Palatino-Roman
Palatino-Italic
Palatino-Bold

NewCenturySchlbk-Boldltalic
ZapfChancery-Mediumltalic
ZapfDingbats

Palatino-Boldltalic
Symbol

- The file format must be set to 'PS’, 'EPS’, 'PDF’ or 'SVG’ with the routine
METAFL. For SVG files, the Times, Helvetica and Courier fonts can be used.

58

- Font names cannot be shortened. Some printers provide additional non-
standard fonts. These fonts should be specified exactly in upper and lower
characters as they are described in the printer manuals. PostScript suppresses
any graphics if there is a syntax error in the font name. Standard font names
are not case-sensitive.

- A call to a DISLIN font resets PostScript fonts.

WINFENT
WINFNT defines a TrueType font for WMF files and screen output on Windows displays.

The call is: CALL WINFNT (CFONT) level 1, 2, 3
or: void winfnt (char *cfont);
CFONT is a character string containing the font. The following fonts can normally be

used on the Windows 9x/NT/2000 operating system:

Courier New Times New Roman ltalic
Courier New Bold Times New Roman Bold Italic
Courier New ltalic Arial
Courier New Bold Italic Arial Bold
Times New Roman Arial Italic
Times New Roman Bold Arial Bold Italic

X11FNT

X11FNT defines an X11 font for screen output on X11 displays.

The call is: CALL X11FNT (CFONT, COPT) level 1, 2, 3
or. void x11fnt (char *cfont, char *copt);
CFONT is a character string containing the first part of an X11 font.
COPT is a character string containing the last part of an X11 font. IF COPT ='STAN-
DARD’, the value '-*-*-*-*-i508859-1’ is used for the last part of an X11 font.
Additional note: - CFONT must begin and end with the separator - and must contain the first

five fields of an X11 font. DISLIN adds then the point size and a transfor-
mation matrix to the font. IF COPT has not the value 'STANDARD’, it must
begin with the character -’ and contain the last 6 fields of an X11 font.

Here are some examples for the contents of CFONT:

-Adobe-Times-Medium-R-Normal-
-Adobe-Times-Bold-R-Normal-
-Adobe-Times-Bold-I-Normal-
-Adobe-Helvetica-Bold-R-Normal-
-Adobe-Courier-Medium-R-Normal-

BMPENT

DISLIN contains some bitmap fonts that can be set with the routine BMPFNT. Bitmap fonts are allowed
for screen output and for a bitmap file format. They can be used to increase the quality of directly created
raster formats such as PNG and TIFF.

The call is: CALL BMPENT (CFONT) level 1, 2, 3

59

or: void bmpfnt (char *cfont);

CFONT is a character string that can have the values 'COMPLEX’, 'SIMPLEX’ and
'HELVE'.

HWFONT

The routine HWFONT sets a standard hardware font if hardware fonts are supported by the current file
format. For example, if the file format is PostScript, the font 'Times-Roman’ is used, if the file format is
'CONS’ or ’XWIN’, 'Times New Roman’ is used for Windows 95/NT and '-*-Times-Bold-R-Normal-’

is used for X11. If no hardware fonts are supported, COMPLX is used.

The call is: CALL HWFONT level 1, 2, 3
or: void hwfont ();
CHACOD
The routine CHACOD defines the coding of characters.
The call is: CALL CHACOD (COPT) level 1, 2, 3
or: void chacod (char *copt);
COPT is a character string that can have the values 'STANDARD’,'ISO1’ and 'ISO2'.

If COPT ="'ISO1’, characters in strings will be interpreted as ISO-Latin-1
coded, and if COPT ='I1SO2’, characters will be interpreted as 1SO-Latin-2
coded. The DISLIN vector font ’'COMPLX’ and fonts defined by BMPENT
contain ISO-Latin-2 characters.

Default: 'STANDARD'.

BASALF
BASALF defines the base alphabet.
The call is: CALL BASALF (CALPH) level 1,2, 3
or: void basalf (char *calph);
CALPH is a character string that can have the values 'STANDARD’, 'ITALIC’,

'"GREEK’, 'SCRIPT’, 'RUSSIAN’ and '"MATHEMATIC'. These alphabets
can be used with all fonts.
Default: 'STANDARD'.
SMXALF

SMXALF defines shift characters to shift between the base and an alternate alphabet.

The call is: CALL SMXALF (CALPH, C1, C2, N) level 1, 2, 3
or: void smxalf (char *calph, char *c1, char *c2, int n);
CALPH is a character string containing an alphabet. In addition to the names in
BASALF, CALPH can have the value INSTRUCTION’.
C1 is a character that shifts to the alternate alphabet.
Cc2 is a character that shifts back to the base alphabet. C1 and C2 may be identical.

After the last plotted character of a character string, DISLIN automatically
shifts back to the base alphabet.

60

N is an integer between 1 and 6. Up to 6 alternate alphabets can be defined.

PSMODE

The routine PSMODE enables Greek and lItalic PostScript characters in Postscript fonts. By default,
DISLIN vector characters are used for Greek and Italic characters in PostScript fonts

The call is; CALL PSMODE (COPT) level 1, 2, 3
or: void psmode (char *copt);
COPT is a character string that can have the values 'NONE’, 'GREEK’, "ITALIC’
and 'BOTH'.

Default: 'NONE'.

EUSHFT

European characters can be plotted by using their character codes in text strings where different character
codings are available (see CHACOD), or by defining a shift character that converts the following char-
acter into a European character. The routine EUSHFT defines shift characters for European characters.

The call is: CALL EUSHFT (COPT, CSHIFT) level 1, 2, 3
or: void eushft (char *copt, char *cshift);
COPT is a character string that can have the values 'GERMAN’, 'FRENCH’, 'SPAN-
ISH’, 'DANISH’, 'ACUTE’, 'GRAVE’ and 'CIRCUM'.
CSHIFT is a shift character. The character placed directly after CSHIFT will be plotted

as the corresponding European character. Figure 6.3 shows a table of the
possible European characters.

Additional notes: - Shift characters can be defined multiple where the characters must be different.
- European characters are supported by PostScript fonts and by COMPLX.
- If the shift characters should be plotted in a text string, they must be doubled.

The following table shows all possible European characters. The characters on the left side of a column
are shifted to the characters on the right side of that column:

GERMAN | DANISH | SPANISH | FRENCH | ACUTE | GRAVE | CIRCUM

- St 2

N
n
!

?

oo mMmQO >
B e wRQ >
— o —Mmo O

¢
¢
E
|
e
|

wncowCOX»
oo CQO

co—ooCO—m>»
SOy — O O C O\ - [Th >\
co—oCO—MmM>»
c o — o v C O, — [TV >,
co—ooCO—m>»
oo -omw OO —IT >

Figure 6.3: EUSHFT Character Set
Example:

61

PROGRAM EUSHFT

CALL
CALL
CALL
CALL

CALL
CALL
CALL
END

METAFL ('CONS’)
DISINI

PAGERA
HWFONT

EUSHFT (GERMAN’, 'I")
MESSAG (A, 10, U, la, lo, lu, Is’, 100, 100)
DISFIN

The next figures show several software and PostScript fonts that can be used in DISLIN. The full set
of special European characters (ASCII cade 26) is available in the software font COMPLX and in
PostScript, X11 and TrueType fonts. The coding of the characters in figure 6.10 is the default char-
acter coding in DISLIN. An ISO-Latin-1 coding of characters can be defined with the DISLIN routine

CHACOD.

62

W WO XS 202 JTA0ED LY D0 3% I Woar— 2 (o (o (oo (o (oo (o (o

VO MO O HX VO ECO0QATLOHP IS XX YN~ — QD005

VD0 DL OoOMHX DO ECOQUC WL S>3 X IINw—~RICIOD:0:0:00

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

63

DISALF

STAN.|ITAL. GREEK| ASCII |STAN.|ITAL.GREEK

Figure 6.4: DISALF Character Set

M- <WWWS X THMRNY <> Z20EO0QLNBEHEsRHECE >N — - —(- S Q ©
NMOAQAUL O~ USZ00L O NEDIIIXNN~——~< |- TQ 0
MOOMLOTHOYY 1>2Z00L00xmdBEEIDOD>XX>>DN— 7~ —(L | - OO0 O
P85 BBRENNRYLRErERREIIBIBLIERIIR533388583
<C
i
% —o= H AN - —— X + =] TN O AONMTINONOO) e eV | AT
(O]
m — s BONY- —~ X+ oal AN OQO-OAMTFHOND® = =V | AT
=
m —= A II- —— X + =~ e N O —\NMTWNONOO) e asnV | AN O
Y RIS BIIIFIILRILLERYIIANRIBELRIIISIBIS
<

SIMPLX

W W AXE2 ¥ INOKED QDO EDC Fmmmdurr—arn) 00 O 0 O O
VO DO - ~X=~E T 0 QT U O+ I>IX AN TOD D00
T O+ OC— X — E C O QUL N+ T3> X AN—~n L <CODIo:0. 5
O d N M T IO O 0O OO A AN M STECLL OO O A ANMSTESLWL O~ 0O OO JdANN M
O O 0O 0O 0O 00000 ddd ddd d d - NN ANNNANANNANANOOOOMOM
I 4 A A4 A A d A

4

L

L

o

(O]

—

<

=

z

<

&

3

<

i

WNL JWEeXT -0 XIZZO0DOA4O WE2>CCHI>N— ™ (|7 T
(O]
IMOQAULOT=SXUSZ0LOENFEIDSIXEN——"¢ |© 0Q O
z

< MOOWLOIT—2X IZZ000XNFD>ZTX>N— "™ (|+ 000
N
BIECB8BRENNRIRERRRBITIBIZBIEBSE35838858383
<

i

i — I #HHENJF- —x + - | NO T AOAMTONONOD -+ -~V || ANB <
(O]

Il T RBERY- emnx t a] NOTAMTNOND® sV AN T
z

m — I HFENF- — ¥+ | N O AOAMTNONO® -~V || ACO <
BIEBIBEIEBFITIIIIIFIIRSONOIBELBB308338
<

Figure 6.5: SIMPLX Character Set

64

O WOXESLRXKIANOKD AL D JwRhor~v—rn 0 0 O O O

VORIL O R~ E L0 RQUENH I 23 8§JAN—2TODF:0:3X

defghijklmnoPQrstuVWXYZ§|§NAOU66UB

COMPLX

4

L

Ll

x

(O]

i

<

E

Z

<

7
032883885388 0N899 NYINIILEENZLIIANS
Mxm1111111111111111111111111111111111
o
%BFAE@XHI?KAMNOH@PZT@?QEYZ[\]A_\aﬁY
(O]
TRMOUAMEOTE~SNMISZOALIRNEDERX>NN~—(¢ | 30 0
Z

< MOARERUID—»MASZOAORENEHDEEX N ™ ([+ ©Q 0
%))

R8BI RRNRIRLRRERERRIIIBIIBLIRSISISITIEESZ S
<

o

] — I HFELNNFZ- ——* + -] N O NFOO~0D - -~V || AO <
(O]

m -3 HFHRIOYS x+ -] N OO FOONDD - -V IAQ <
Z

m — 2 #HBHBYOF- ——x + -] NO—=TANNFODO~OD - -~V || AO <
H2345678901234567890123456789012345
mw3333333344444444445555555555666666
<

Figure 6.6: COMPLX Character Set
65

COMPLX

> 1T 1Lt PPQO>8 o>

> <LIE DOC 53l 2 0 O O O O O

HESREEDPRE SO

OEH A0 MENX >0 0:0 FEM 000 0 O

SCRI. [RUSS.MATH.

¥ OB v oy~ £ o

@ €. 2% A% 33 38 XNAWVT-IIROI B 3Q

H012345678gmﬂw__oloMﬁmﬂmm01234567890123

31SS9888838S8 3953953935898 993999888089¢7

T

ZIl~X T HHEMKAAACDODUN<>UN=MRUYMNA— T |+ 1T |

=

BlnogNe BN R SNoEHAoE2mEX>0EETR I+ g0 o

ERPFOHAIRAEANRNIIOASRNHIDIRAIN "¢ I© 8% 0

Ww67009O1_2345678901234567890123456789
O © © O MMM MNDMNMNDMNDNMNIDMNMIDDNSNOO 0O 0 0 0 0 W W W W o O O oo OO OO O

<

T

” - HFHBLF- ——%x+ - | NO—ANNFOOO-0® - -~V || A O~

=

m - #A [0 ——x + | " NO—=NMNTFION~0O® -~ 3 a0 <

m -3 HFHEIEIS %+] N OO TFOONDOD -V ACDR

WW234567890123M567890123456789012345
M O MO OO OmO OO~ I T < S S S S S R o R o T o N o B o R W B W B W T W T o IR (e (e U e (e (e e}

<

Figure 6.7: COMPLX Character Set

66

GOIEHTE

mbeclg,hji.l,f,lmnob.qf.rltubmrch./352|2$~uu“©“u“auouu..8
m_h?f T m e — B 2 0 OOt O 3 D 3 XK DA~ nn) OO O O O O O
mxu?f MO — B 80 00 W 835 3 K I Moav—nann) 0o o O O O O O
5888838858888 5338 N8I 8888]8889
<
FHYARYPDIRREAREQASAEVNSQERDPO— "7 |+ oo
4
QOO UODUHPDMEOECOQAOEODID>PEHRDO— " —(|+ B85«
z
mmmmﬁﬂﬁﬁﬂammmN@ﬁ@RQGMﬁMXEZ[\]A_\ahr
H670090123456700901234567890123456789
@W6666777777777788888888889999999999
<

— HENZ- ——%x F+ | N O—~umgnEi~emm eV ADS

(A

Figure 6.8: GOTHIC Character Set

67

H#HBNF- ——* + - | NO—~umFinwi-mm -~V I AOT

- HHENNF ——% + | NO~—~UMmFnB-"m VIl AO K

ASCIl |STAN.|ITAL.|SCRI.

34
43

S 0D OO0 OO O dN M SLW O 00 O o NN M
D NS SRS S S B V0 I 0 I V0 Y0 I T I o I o I o N Ko I Vo (e (e e (e}

32
33
35
36
37
38
39
40
41
42

HELVE

O wAXXT=2<L3INO

O C= @ C= C= €= C=

T O K

ey,

~ksE &0

QTN ®IT DS XROSNSS~

TOD WO S Q

Y O DL -

== 0

QLT =M= 3 >3 XSINw—m

L O0OD ©®©:SaA

4

Ll

[T}

o

(O]

L

<

E

z

<

&

2183983885335 9933995333983 88K8R28598
A1111111111111111111111111111111111
i

WML <AES X O—0MISZO00ANESCCRIHN—=—t |« TQ &
(O]

B0 QAULOT=SISZTOALTEXLOEISIREN~—=" |* 8Q O
z

< DMOAWLOE=9ISZ0L0CEDEISEXR>N—=——t |- #3020
n
FIBEBBREFNRIRRRERRBZTLBIBIIISIFIGIIEES &
<

i

W =8 #ARNF> ==~ + °] " SO"NATHLOMO® = =V I A~O<
(O]

I = mBRG =t] NOTNBRTOONDO® = VI ASOT
z

m =8 TBBABRNGr >~ + o] NOTNDTLOMNGO® > =V | A=@K
FIEBIIIEIIFIIIIIILIETIITIBLOBIBBLBRIBIEB8IS
<

Figure 6.9: HELVE Character Set

68

Times-Roman

CHAR

\O S/ — QD @D — O S« U— QD (@ @ ¢— O S WCD WO D= >N:> -— =)

156
157
158
159
160
161
162
163
164
165
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

CHAR | ASCII

~ | < O:D @

125
126
127
128
129
130
131

S5 Qe Q em & Biz i O Oillli— O = W— O D T O —

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

CHAR | ASCII

94
95
96
97
98
99
100
101
102
103

© O

104

—_— =X - ECO0QU-0N+3>=2X>No—

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

CHAR | ASCII

63

B<cmOAWL OT—

PY 1SZ000XENEFD>ZX>N———

84
85
86
87
88
89
90
91
92
93

74
75
76
77
78
79
80
81
82
83

CHAR | ASCII

ASCII

32

~— —~ ¥

~ O -1 NMTJTLOLON~NOO - -~V Il A

44

< 0 ©
o0 n w

58
59
60
61
62

I~ 00 O O o N ™M [
< ST S 0 0 wn W Lo

43
45
46

Figure 6.10: Times-Roman Character Set

69

PostScript Fonts

Thisis Times-Roman

Thisis Times-Bold

Thisis Times-Italic

Thisis Times-Boldltalic

This is Helvetica

This is Helvetica-Bold

This is Helvetica-Oblique

This is Helvetica-BoldOblique

This is Helvetica-Narrow

This is Helvetica-Narrow-Bold

This is Helvetica-Narrow-Oblique

This is Helvetica-Narrow-BoldObligue
This is NewCenturySchlbk-Roman
This is NewCenturySchlbk-Italic
This is NewCenturySchlbk-Bold
This is NewCenturySchlbk-Boldltalic
This is ZapfChancery-Mediumltalic

This is Courier

This is Courier-Bold

This is Courier-0Oblique
This is Courier-BoldOblique
This is AvantGarde-Book

This is AvantGarde-Demi

This is AvantGarde-BookODblique
This is AvantGarde-DemiOblique
This is Bookman-Light

This is Bookman-Lightltalic
This is Bookman-Demi

This 1s Bookman-Demiltalic
This is Palatino-Roman

This is Palatino-Italic

This is Palatino-Bold

This is Palatino-Boldltalic

Tnio 1o Zyufoi

Figure 6.11: PostScript Fonts

70

6.6 Indices and Exponents

Indices and exponents can be plotted by using control characters in characters strings, or by using the
TeX syntax described in paragraph 6.7. There are 3 predefined control characters in DISLIN which can
be altered with the routines NEWMIX and SETMIX. The predefined character

[is used for exponents. The character height is reduced by the scaling factor FEXP and the
pen is moved up FBAS * NH plot coordinates where NH is the current character height.

] is used for indices. The pen is moved down FBAS * NH plot coordinates and the character
height is reduced by the scaling factor FEXP.

$ is used to move the pen back to the base-line. This will automatically be done at the end of
a character string.

FBAS and FEXP have the default values 0.6 and 0.8, respectively, these values can be changed with the
routines SETBAS and SETEXP.

MIXALF

This routine instructs DISLIN to search for control characters in character strings.
The call is: CALL MIXALF level 1, 2, 3

or: void mixalf ();

SETBAS

SETBAS defines the position of indices and exponents. This routine also affects logarithmic axis labels.

The call is: CALL SETBAS (FBAS) level 1, 2, 3
or: void setbas (float fbas);
FBAS is a real number used as a scaling factor. The pen will be moved up or down by

FBAS * NH plot coordinates to plot exponents or indices. NH is the current
character height.
Default: FBAS = 0.6.

SETEXP
SETEXP sets the character height of indices and exponents.
The call is: CALL SETEXP (FEXP) level 1, 2, 3
or: void setexp (float fexp);
FEXP is a real number used as a scaling factor. The character height of indices and

exponents is set to FEXP * NH where NH is the current character height.
Default: FEXP = 0.8

NEWMIX

NEWMIX defines an alternate set of control characters for plotting indices and exponents. The default
characters '[', ']’ and '$’ are replaced by’,’ ”’ and '%’'.

The call is: CALL NEWMIX level 1, 2, 3

71

or: void newmix ();

SETMIX

SETMIX defines global control characters for plotting indices and exponents.

The call is: CALL SETMIX (C, CMIX) level 1, 2, 3
or: void setmix (char *c, char *cmix);
C is a new control character.
CMIX is a character string that defines the function of the control character. CMIX

can have the values 'EXP’, 'IND’, 'RES’, 'LEG’ and 'TEX' for exponents,
indices, resetting the base-line, for multiple text lines in legends and for TeX
instructions, respectively.

Additional note: The routines NEWMIX and SETMIX only modify the control characters. A
call to MIXALF is always necessary to plot indices and exponents.

6.7 Instruction Alphabet

The instruction alphabet contains commands that control pen movements and character sizes during
the plotting of character strings. It is provided for the representation of complicated formulas. An
alternate method for plotting of complicated formulas is described in paragraph 6.7, “TeX Instructions
for Mathematical Formulas”.

The instruction alphabet can be used in the same way as other alphabets in DISLIN. Shift characters
must be defined with the routine SMXALF to switch between the base and the instruction alphabet.

The commands of the instruction alphabet consist of a single character and an optional parameter. If the
parameter is omitted, DISLIN will use default values. A parameter can be a real number, an integer or
the character "X’ which resets the parameter back to the entry value at the beginning of the character
string.

Commands of the instruction alphabet can only change plot parameters temporarily within a character
string. At the end of a character string, all parameters are reset to their entry values.

The following table summarizes all instruction commands. The character r means a real parameter and
i an integer. The base-line of character strings is placed directly below them. Commands can be given
in uppercase or lowercase letters. Real parameters can be specified without decimal points while integer
parameters cannot have decimal points. Several commands can follow one another. Blanks between
commands will be ignored.

72

Instruction-Alphabet

Command

Parameter

Default

Description

A

real

integer

real

integer

integer

real

integer

real

integer

integer

0.6

0.8

moves the pen horizontally by r * NH plot coordi-

nates where NH is the current character height.
< 0, the pen will be moved backwards.

moves the pen horizontally by i character spaces.

i <0, the pen will be moved backwards.

Ifr

moves the pen down from the base-line by r * NH

plot coordinates. If t> 0, NH is the entry characte

height. If r< 0, NH is the current character height.

moves the pen up by 0.75 * character height and
duces the character height by the scaling factor
(for exponents).

moves the pen horizontally by i spaces. Ifiis ne
tive, the pen is moved backwards.

ga-

moves the pen horizontally to the tab position with

the index i, where K i < 20.

sets the character height to r * NH. t5r0, NH is
the entry character height. Ikt 0, NH is the current
character height.

moves the pen down by 0.35 * character height and

multiplies the character height by 0.6 (for indices).

underscores twice from the tab position i to the
rent pen position.

cur-

is used to plot characters with constant widths.
Characters will be centred in a box with the width

r* W where W is the largest character length in t
current font. The global routine is FIXSPC.

underscores from the tab position i to the current
position.

defines the base alphabet.
(1 = STAND., 2 = GREEK, 3 = MATH.,
4 = ITAL., 5 = SCRIPT, 6 = RUSSIAN).

73

he

pen

Command Parameter Default Description

N integer 1 sets a colour i, whereQi < 255). The global rou-
tine is SETCLR.

O real 0. moves the base-line vertically by r * charagter
height. If r< 0 the base-line is moved down.

P integer 1 defines a horizontal tab position with the index|i at
the current pen position, where<li < 20.

All tab positions are initialized to the beginning of
the string.

R resets the character height and the base-line to their
entry values.

integer 0 plots a symbol with the number i, where 0< 21.
integer 0 moves the pen horizontally from the beginning of
the string by i plot coordinates.

U real 1. moves the pen up from the base-line by r * NH plot
coordinates. If r> 0, NH is the entry character
height. If r< 0, NH is the current character height.

V integer 1 plots a horizontal line from the tab position i to the
current pen position. The line is moved up from the
base-line by 0.5 * character height plot coordinatgs.

W real 1. affects the width of characters. The global routing is
CHAWTH.

Y real 0. affects the character spacing. The global routine is
CHASPC.

Z real 0. defines an inclination angle for characters, where -

60 < r < 60. The global routine is CHAANG.

For the following examples, the charactefsénd '}’ are defined with

CALL SMXALF (CINST’,” {,"}', 1)

to switch between the instruction and the base alphabet.

74

oo «— X

o = (= + 1) wrp

x 1
o = fIXIHZ TN X SHSOUOHAYS T $HNJS + 1) WD T TADE WX OHAH W]

1P, 12) = (%)

BEASNT TN0§T—AT OHADIPIBT—X{M M1 —sdiei P 3 atdet = (X)§F 30

SJI0100A 90TM1] SUutIooSIopu)

SABV S sa0100a {pteotmiigs STiSutaoosaspun

UJI1PIM POXT] 0lel Zo/72Z\\DW\ 1Wed J910elel))

UIPIM POXITJ M} OTred §GOMZE uolyeuioeZitoul 30e—7ZY31ystey {G'oHiIe0eIey)

19qeyd[y UOI10NJIISU]

(v

(e

(‘2

(T

Instruction Alphabet

Figure 6.12:

75

6.8 TeX Instructions for Mathematical Formulas

6.8.1 Introduction

This paragraph presents an alternate method to the DISLIN instruction alphabet for plotting mathemat-
ical formulas. The text formatting language TeX has a very easy method for describing mathematical
formulas. Since this method is well-known by many scientists, an emulation mode for TeX instructions

is added to DISLIN with version 7.4.

TeX instructions can be enabled in DISLIN with the statement CALL TEXMOD ('ON’). If TeX mode
is enabled, mixed alphabets defined with SMXALF and the control characters for indices and exponents
described in paragraph 6.5 will be ignored.

Mathematical formulas in TeX mode are produced in DISLIN by some special descriptive text. This
means that DISLIN must be informed that the following text is to be interpreted as a mathematical
formula. The character $ in a text switches from text to math mode, and from math to text mode.
Therefore, mathematical formulas must be enclosed in a pair of dollar signs.

Numbers that appear within formulas are called constants, whereas simple variables are represented by
single letters. The universal practice in mathematical typesetting is to put constants in Roman typeface
and variables in italics. DISLIN uses this rule by default in math mode. The rule can be modified with
the routine TEXOPT. Blanks are totally ignored in math mode and spaces are included automatically by
DISLIN between constants, variables and operators.

The characters §,, } and\ have a special meaning in TeX mode and therefore cannot act as printable
characters. To include them in normal text, the commaid§{, \} and\\ must be used. Additional,
the characters and” have a special meaning in math mode and can be handled in the same way.

Note: Some Fortran compilers treat the charactgras a special control character, so that an
additional flag has to be used for compiling (i.e. -fno-backslash for g77), or the TeX control
character\’ can be replaced by another character with the routine SETMIX.

6.8.2 Enabling TeX Mode and TeX Options

TEXMOD

The routine TEXMOD can be used to enable TeX mode in DISLIN. In TeX mode, all character strings
passed to DISLIN routines can contain TeX instructions for plotting mathematical formulas.

The call is: CALL TEXMOD (CMODE) level 1,2, 3
or: void texmod (char *cmode);
CMODE is a character string that can have the values 'ON’ and 'OFF’. CMODE ="'ON’

enables TeX mode and CMODE ="'OFF’ disables TeX mode.
Default: CMODE = "'OFF'.

TEXOPT
The routine TEXOPT sets some TeX options.

The call is: CALL TEXOPT (COPT, CTYPE) level 1, 2, 3
or: void texopt (char *copt, char *ctype);
COPT is a character string that can have the values 'ON’ and 'OFF’.

76

CTYPE is a character string that can contain the keywords 'LIMITS’ and "ITALIC’.
'LIMITS’ means that the limits for sums and integrals will be placed above
and below the sum and integral signs instead of following them. ’ITALIC
means that for math mode variables will be put in italics.

Default: CON’, 'LIMITS’),
(ON’,’ITALIC).

6.8.3 Exponents and Indices

Exponents and indices are characters that are either raised or lowered relative to the base line of the text.
The character sets the next character as an exponent, while the charadets it as an index:

x2 X 2 an an 't X_i'n

2

When exponents and indices occur together, their order is unimportant. If the exponent or index contains
more than one character, the group of characters must be inclosed in praces

¥ x*{2n} Toy X {2y} A2 ALl k) {n+2}
Multiple raisings and lowerings are generated by applyimgd _ to the exponents and indices:
@ x{y2}

Additional note: The commands and _ are only allowed in math mode.

6.8.4 Fractions

The instruction\frac{numeratof{denominatof can be used in TeX math mode for plotting fractions.
The numerator is plotted on top of the denominator with a horizontal fraction line between them.

1
p—— \frac{1} {x+y}
CL2 o b2
Ty T b \frac{a’2 - b"2}{at+b} =a-b
a

_a b
W \frac{\frac{a} {x-y} + \frac{b} {x+y}
+ ot {1 +\frac{a-b} {a+h}}
6.8.5 Roots

Roots can be plotted with the syntagqrt[n{arg} where the optional part [n] can be omitted.

Examples:
V8 =2 \sqrt[3}{8} =2
V2 + 2 2y =x+y \SOri{x"2 +y"2 + 2xy} = x +y
Roots may be nested inside one another to a depth of 8:
—q+ VP +p? \sarf{-q +\sqr{q"2 + p°2}}

77

6.8.6 Sums and Integrals

Summation and integral signs can be plotted with the two instructims and\int. Sums and integrals

can posses upper and lower limits that can be plotted with the exponent and index instruatidnsBy

default, the limits are placed below and above the summation and integral signs. This can be modfified
with the routine TEXMOD or with the instructioxnolimits following the summation and integral signs.

Examples:
2 f: a; \sum{i=1}"n a.
1=0
J2 filx)gi(x)d \int\nolimits_a’b f.i(x)g_i(x)dx

6.8.7 Greek Letters

The following Greek letters are available in text and in math mode. If they are used in text mode, the first

blank character after the letter will be interpreted as a seperator and will be ignored.

« \alpha 0 \theta 0 o X \chi
Ié] \beta L \iota T \pi Y \psi
0l \gamma K \kappa P \rho w \omega
) \delta A \lambda o \sigma
€ \epsilon i \mu T \tau
¢ \zeta v \nu v \upsilon
N \eta £\« p \phi
r \Gamma A \Lambda ¥ \Sigma U \Psi
A \Delta = \Xi T \Upsilon 2 \Omega
© \Theta II \Pi d \Phi
6.8.8 Mathematical Symbols
The following mathematical symbols are available in text and in math mode.
+ \pm \cdot U \cup ® \odot
F \mp * \ast \Y% \vee @& \oplus
X \times * \star A \wedge © \ominus
+~ \div N \cap \ \setminus
< \le \leg > \ge \geq # \neq ~ \sim
C \Subset D \supset = \cong | \mid
C \subseteq O \supseteq = \equiv ¢ \notin
€ \in > \ni I \parallel # \not=
— \leftarrow — \rightarrow & \Leftrightarrow | \downarrow
< \Leftarrow = \Rightarrow 1 \uparrow
0 \emptyset v \surd v \forall \ \backslash
V \nabla 0 \partial 3 \exists oo \infty
1L \perp

78

6.8.9 Alternate Alphabets

The DISLIN alphabets 'STANDARD’, 'ITALIC’, 'GREEK’, 'SCRIPT’ and 'RUSSIAN’ can be used in
TeX mode with the instructiongrm, \it, \gr, \cal and\ru.

6.8.10 Function Names

The standard for mathematical formulas is to set variable names in italics but the names of functions in
Roman. The following function names will be recognized by DISLIN and plotted in Roman.

\arccos \arcsin \arctan \arg \cos \cosh \cot
\coth \csc \dec \dim \exp \hom \In
\log \sec \sin \sinh \tan \tanh

6.8.11 Accents

Accents are available in TeX mode in the same way as in normal DISLIN mode (see EUSHFT).

6.8.12 Lines above and below Formulas

The command§overline{arg} and\underlindarg} can be used to draw lines over and under a formula.
The command vec{arg} draws a vector over a formula. All commands can be used in TeX text and
math mode.

6.8.13 Horizontal Spacing

Small amounts of horizontal spacing can be added in TeX mode with the following commands:

\, small space = 3/18 of the current character size
\: medium space = 4/18 of the current character size
\; large space = 5/18 of the current character size
\! negative space = -3/18 of the current character size
Larger amounts of horizontal spacing can be added with the commands:
\quad extra space = 1/1 of the current character size
\gquad extra space = 2/1 of the current character size

6.8.14 Selecting Character Size in TeX Mode

The commandstiny, \scriptsize,\footnotesize,)\ small,\normalsize,\large,\Large,\LARGE, \huge
and\Huge can be used in TeX mode for modifying the character size. The comymandhalsize is
corresponding to the current character size before the call of the text plotting routine. The character size
is decreased or increased by a factor of 1.2 for neighbouring character size commands.

6.8.15 Coloursin TeX Mode

The commandsblack, \red,\green,\blue,\cyan,\yellow, \ orange,\magenta)white, \ fore and\back
set the corresponding colours in TeX mode.

79

6.8.16 Example

PROGRAM EX6_2
CHARACTER CSTR*80

CALL
CALL
CALL
CALL
CALL

SETPAG('DA4P’)
DISINI

PAGERA
COMPLX
HEIGHT(40)

CSTR="TeX Instructions for Mathematical Formulas’
NL=NLMESS(CSTR)

CALL
CALL
CALL
CALL

CALL
CALL

*

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL
END

MESSAG(CSTR, (2100 - nl)/2, 100)

TEXMOD('ON’)
MESSAG('$\frac{1{x+y}$’, 150, 400)
MESSAG('$\frac{a™2 - b"2H{a+b} = a - b$’, 1200, 400)

MESSAG($r = \sqrt{x’2 + y"2¥, 150, 700)
MESSAG('$\cos \phi = \frac{x}{\sqrt{x"2 + y"2}}%’,

1200, 700)

MESSAG('$\Gamma(x) = \int_0"\infty e™{-t{t"{x-1}dt$’,
150, 1000)

MESSAG($\lim_{x \to \infty} (1 + \frac{1{x})'x = e$’,
1200, 1000)

MESSAG('$\mu = \sum_{i=1}'n x_i p_i$’, 150, 1300)

MESSAG($\mu = \int_{-\infty}” \infty x f(x) dx$’,
1200, 1300)

MESSAG('$\overline{x} = \frac{1}{n} \sum_{i=1}'n x_i$,
150, 1600)

MESSAG('$s™2 = \frac{1{n-1} \sum_{i=1}"n’ //
'(x_i - \overline{x})"2$’, 1200, 1600)

MESSAG('$\sqrt[n]{\Mfrac{x’'n - y'n{1 + u™{2n}}$,
150, 1900)
MESSAG('$\sqrt[3[{-g + \sqrt{q"2 + p"3}}$’, 1200, 1900)

MESSAG($\int \frac{dx{1+x™2} = \arctan x + C$’,
150, 2200)

MESSAG('$\int \frac{dx}\sqrt{1+x"2}} = " //
" {\rm arsinh} x + C$', 1200, 2200)

MESSAG('$\overline{P_1P_2} = \sqrt{(x_2-x_1)"2 + ’//
'(y_2-y_1)"2}$’, 150,2500)

MESSAG('$x = \frac{x_1 + \lambda x_2H1 + \lambda}$’,
1200, 2500)

DISFIN

80

TeX Instructions for Mathematical Formulas

r+y at+b

r=+z*+y* cCosp= ——2%
v xR+ y?

T(z)= [e tt*"1dt lim (1 + %)x=e
0 x-00
M= _le’i,.’p'i, ,u,=_fxf(:c)da:
—_ 1 n 2 1 L =2
= ’)’Li;lxi S = n_lizl(xi x)

oy N

1+ u?r
fﬂzarctanxﬁLC fizarsinhaH—C
1+x2 .‘/1_|_x2
x,+Ax
P1P2=\/(x2—x1)2+(y2—y1)2 lelT)\z

Figure 6.13: TeX Instructions for Mathematical Formulas

81

6.9 Curve Attributes

CHNCRYV

CHNCRYV defines attributes that will be automatically changed by CURVE after a certain number of calls
to the routine CURVE.

The call is: CALL CHNCRYV (CATT) level 1, 2, 3
or: void chncrv (char *catt);

CATT = 'NONFE’ means that CURVE changes no attributes.

='COLOR’ means that colours will be changed.

='LINE’ means that line styles will be changed.

='BOTH’ means that colours and line styles will be changed.

Default: CATT ='NONE’.

Additional note: The sequence of colours is WHITE/BLACK, RED, GREEN, YELLOW,

BLUE, ORANGE, CYAN and MAGENTA.

The sequence of line styles is SOLID, DOT, DASH, CHNDSH, CHNDOT,
DASHM, DOTL and DASHL.

The symbol number is always changed. It will be incremented by 1 starting
with the current symbol defined by MARKER.

The following three routines are useful when automatic attribute setting is selected and the routine
CURVE is called several times to plot a single curve.

INCCRYV

INCCRYV defines the number of calls after which CURVE will automatically change attributes.

The call is: CALL INCCRV (NCRV) level 1, 2, 3
or: void inccrv (int ncrv);
NCRV is the number of curves that will be plotted with identical attributes.

Default: NCRV = 1

CHNATT

CHNATT is an alternative routine to INCCRYV. It is useful when the number of curves plotted with
identical attributes varies. CHNATT defines new attributes that will be used by CURVE during the next
call.

The call is: CALL CHNATT level 1,2, 3
or: void chnatt ();
Additional notes: - CHNATT changes only attributes specified with CHNCRV.

- Attributes cannot be skipped by calling CHNATT several times; the order of
the attribute cycles must be changed.

RESATT

In general, curve attributes will be repeated after 8 changes. With the routine RESATT, the attributes can
be reset earlier.

82

The call is: CALL RESATT level 1, 2, 3
or: void resatt ();

INCMRK
INCMRK selects line or symbol mode for CURVE.

The call is: CALL INCMRK (NMRK) level 1, 2, 3
or. void incmrk (int nmrk);
NMRK =-n means that CURVE plots only symbols. Every n-th point will be marked by a
symbol.
=0 means that CURVE connects points with lines.
=n means that CURVE plots lines and marks every n-th point with a symbol.

Default: NMRK =0

MARKER

The symbols used to plot points can be selected with the routine MARKER. The symbol number will be
incremented by 1 after a certain number of calls to CURVE defined by INCCRV.

The call is: CALL MARKER (NSYM) level 1, 2, 3
or: void marker (int nsym);
NSYM is the symbol number between 0 and 21. The symbols are shown in appendix
B.

Default: NSYM =0

HSYMBL
HSYMBL defines the size of symbols.
The call is: CALL HSYMBL (NHSYM) level 1, 2, 3
or: void hsymbl (int nhsym);
NHSYM is the size of symbols in plot coordinates.
Default: NHSYM = 35
MYSYMB
MYSYMB sets an user-defined symbol.
The call is: CALL MYSYMB (XRAY, YRAY, N, ISYM, IFLAG) level 1, 2, 3
or: void mysymb (float *xray, float *yray, int n, int isym, int iflag);
XRAY, YRAY are the X- and Y-coordinates of the symbol in the range -1 and 1.
N is the number of coordinates in XRAY and YRAY.
ISYM is a non negative number that will be used as symbol number.
IFLAG is an Integer that can have the values 0 and 1. If IFLAG = 1, the symbol will
be filled.
Additional note: The number of points in MYSYMB is limited to 100 for Fortran 77. There is

no limitation for the C and Fortran 90 versions of DISLIN.

83

THKCRYV
THKCRYV defines the thickness of curves.

The call is: CALL THKCRV (NTHK) level 1, 2, 3
or: void thkcrv (int nthk);
NTHK is the thickness of curves in plot coordinates.

Default: NTHK =1

GAPCRYV

GAPCRYV defines a data gap used in the routine CURVE. If the distance between two neightbouring X
coordinates is greater than the gap value, CURVE will not connect these data points.

The call is: CALL GAPCRV (XGAP) level 1, 2, 3
or: void gapcrv (float xgap);
XGAP is the gap value.
POLCRYV
POLCRYV defines an interpolation method used by CURVE to connect points.
The call is: CALL POLCRV (CPOL) level 1, 2, 3
or: void polcrv (char *cpol);
CPOL is a character string containing the interpolation method.
='LINEAR’ defines linear interpolation.
='STEP’ defines step interpolation.
='STAIRS’ defines step interpolation.
='BARS’ defines bar interpolation.
='FBARS’ defines filled bar interpolation.
='STEM’ defines stem interpolation.
='SPLINE’ defines spline interpolation.
='PSPLINE’ defines parametric spline interpolation.

Default: CPOL ="LINEAR'.
The width of bars can be set with BARWTH.

- For spline interpolation, the X-coordinates must have different values and be
in ascending order. There is no restriction for a parametric spline. The order
of spline polynomials and the number of interpolated points can be modified
with SPLMOD.

- The interpolation medthods 'LINEAR’, 'BARS’, 'FBARS’ and 'STEM’ can
also be used for polar scaling.

Additional notes:

SPLMOD

SPLMOD defines the order of polynomials and the humber of interpolated points used for the interpola-
tion methods 'SPLINE’ and 'PSPLINE’.

The call is: CALL SPLMOD (NGRAD, NPTS) level 1, 2, 3

84

or: void splmod (int ngrad, int npts);

NGRAD is the order of the spline polynomials (2 - 10). It affects the number of points
accepted by CURVE which is determined by the formula (2 * NGRAD + 1) *
N < 1000. For example, with a cubic spline, up to 142 points can be passed to
CURVE.

NPTS is the number of points that will be interpolated in the range XRAY(1) to
XRAY(N).
Default: (3, 200).

BARWTH
BARWTH sets the width of bars plotted by CURVE.

The call is: CALL BARWTH (XWTH) level 1, 2, 3
or: void barwth (float xwth);
XWTH defines the bar width. If positive, the absolute value of XWTH * (XRAY(2)-

XRAY(1)) is used. If negative, the absolute value of XWTH is used where
XWTH is specified in plot coordinates.
Default: XWTH =0.75

Additional note: If XWTH is positive and polar scaling is enabled, the absolute value of XWTH
* (YRAY(2) - YRAY(1)) defines the width of bars. If XWTH is negative for
polar scaling, the absolute value of XWTH is used where XWTH must be
specified in degrees.

NOCHEK

The routine NOCHEK can be used to suppress the listing of points that lie outside of the axis scaling.

The call is; CALL NOCHEK level 1, 2, 3
or: void nochek ();

6.10 Line Attributes

LINE STYLES

The routines SOLID, DOT, DASH, CHNDSH, CHNDOT, DASHM, DOTL and DASHL define different

line styles. They are called without parameters. The routine LINTYP (NTYP) can also be used to set
line styles where NTYP is an integer between 0 and 7 and corresponds to the line styles above. The
routine MYLINE sets user-defined line styles.

MYLINE
MYLINE defines a global line style.
The call is: CALL MYLINE (NRAY, N) level 1, 2, 3
or: void myline (int *nray, int n);
NRAY is an array of positive integers characterizing the line style. Beginning with

pen-down, a pen-down and pen-up will be done alternately according to the
specified lengths in NRAY. The lengths must be given in plot coordinates.

85

N is the number of elements in NRAY.

Examples: The values of NRAY for the predefined line styles are given below:
SOLID : NRAY = {1}
DOT: NRAY = {1, 10}
DASH : NRAY = {10, 10
CHNDSH: NRAY ={30, 15, 10, 1%
CHNDOT: NRAY =1{1, 15, 15, 1%
DASHM : NRAY = {20, 15
DOTL : NRAY = {1, 20}
DASHL : NRAY = {30, 20
LINWID

The routine LINWID sets the line width.

The call is: CALL LINWID (NWIDTH) level 1, 2, 3
or: void linwid (int nwidth);
NWIDTH is the line width in plot coordinates. Default: NWIDTH =1
Additional note: To define smaller line widhts than 1 (i.e. for PostScript files), the routine
PENWID (XWIDTH) can be used where XWIDTH has the same meaning
as NWIDTH.
LNCAP

The routine LNCAP sets the current line cap parameter.

The call is: CALL LNCAP (CAP) level 1, 2, 3
or: void Incap (char *cap);
CAP is a character string defining the line cap.
='ROUND’ defines rounded caps.
='CUT defines square caps.
='LONG’ defines square caps where stroke ends will be continued equal to half the line
width.

Default: CAP ='LONG".

LNJOIN

The routine LNJOIN sets the current line join parameter.

The call is: CALL LNJOIN (CJOIN) level 1,2, 3
or: void Injoin (char *cjoin);
CJOIN is a character string containing the the line join.
='SHARP’ defines sharp corners between path segments.
="TRUNC’ defines truncated corners between path segments.

Default: CJOIN = "TRUNC'.

86

LNMLT

The routine LNMLT sets the current miter limit parameter. This routine can be useful if the line join is
set to 'SHARP'.

The call is: CALL LNMLT (XFC) level 1, 2, 3
or. void Inmlt (float xfc);
XFC is a floatingpoint number where XFC * line width will be used as the miter

limit. The miter length is the distance between the inner and outside edge of a
path corner.
Default: XFC = 2.

6.11 Shading
SHDPAT
SHDPAT selects shading patterns used by routines such as SHDCRV and AREAF.
The call is: CALL SHDPAT (IPAT) level 1, 2, 3
or: void shdpat (long ipat);
IPAT is an integer between 0 and 17. The predefined patterns are shown in appendix
B.
MYPAT
MYPAT defines a global shading pattern.
The call is: CALL MYPAT (IANGLE, ITYPE, IDENS, ICROSS) level 1, 2, 3
or: void mypat (int iangle, int itype, int idens, int icross);
IANGLE is the angle of shading lines (0 - 179).
ITYPE defines the type of shading lines:
=0 no shading lines.
=1 equidistant lines.
=2 double shading lines.
=3 triple shading lines.
=4 thick shading lines.
=5 dotted lines.
=6 dashed lines.
=7 dashed-dotted lines.
IDENS defines the distance between shading lines (0: small distance, 9: big distance).
ICROSS indicates whether shading lines are hatched (0: not hatched, 1: hatched).
Examples: The following calls to MYPAT show the predefined shading patterns used by
SHDPAT:
IPAT =0: CALL MYPAT (0,0,0,0)
IPAT = 1: CALL MYPAT (45,1,5,0)
IPAT = 2: CALL MYPAT (150, 4,5, 0)
IPAT = 3: CALL MYPAT (135,1,5,0)

87

IPAT = 4: CALL MYPAT (45, 4,5, 0)

IPAT =5: CALL MYPAT (45,1,5,1)

IPAT = 6: CALL MYPAT (135, 2,1, 0)

IPAT =7: CALL MYPAT (45,4,5,1)

IPAT = 8: CALL MYPAT (30,1, 4,0)

IPAT =9: CALL MYPAT (45,2,1,1)

IPAT = 10: CALL MYPAT (0,1,5,1)

IPAT = 11: CALL MYPAT (45, 3,1,0)

IPAT = 12: CALL MYPAT (70, 4,7,0)

IPAT = 13: CALL MYPAT (45,3,1,1)

IPAT = 14: CALL MYPAT (0,4,5,1)

IPAT = 15: CALL MYPAT (45,2,1,0)

IPAT = 16: CALL MYPAT (0,1, 0,0)

IPAT = 17: CALL MYPAT (0,5,5,0)

NOARLN
With the routine NOARLN the outlines of shaded regions can be suppressed.
The call is: CALL NOARLN level 1,2, 3
or: void noarln ();

6.12 Attribute Cycles

The attributes line style, colour and shading pattern can be changed automatically by routines such as
CURVE, SHDCRYV, BARS and PIEGRF according to a predefined cycle.

The cycles are:

Line styles: SOLID, DOT, DASH, CHNDSH, CHNDOT, DASHM, DOTL and DASHL.
Colours: WHITE/BLACK, RED, GREEN, YELLOW, BLUE, ORANGE, CYAN and MAGENTA.
Shading: Pattern numbers from 0 to 17.

The following subroutines allow the redefining of cycles.

LINCYC
LINCYC changes the line style cycle.
The call is: CALL LINCYC (INDEX, ITYP) level 1, 2, 3
or: void lincyc (int index, int ityp);
INDEX is an index between 1 and 30.
ITYP is an integer between 0 and 7 containing the line style (0 = SOLID, 1 = DOT, 2

=DASH, 3=CHNDSH, 4 = CHNDOT, 5 =DASHM, 6 = DOTL, 7 = DASHL).

CLRCYC
CLRCYC changes the colour cycle.
The call is: CALL CLRCYC (INDEX, ICLR) level 1,2, 3
or: void clrcyc (int index, inticlr);

88

INDEX is an index between 1 and 30.

ICLR is a colour value (see SETCLR).
PATCYC
PATCYC changes the shading pattern cycle.
The call is: CALL PATCYC (INDEX, IPAT) level 1, 2, 3
or: void patcyc (int index, long ipat);
INDEX is an index between 1 and 30.
IPAT is a pattern number between 0 and 17 or is determined by the formula IANGLE
*1000 + ITYPE * 100 + IDENS * 10 + ICROSS with the parameters described
in MYPAT.

6.13 Base Transformations

The following subroutines create a transformation matrix that affects plot vectors contained within page
borders. Vectors may be scaled, shifted and rotated and the transformations can be combined in any
order.

TRFSHF
TRFSHF affects the shifting of plot vectors.
The call is: CALL TRFSHF (NXSHFT, NYSHFT) level 1, 2,3
or: void trfshf (int nxshft, int nyshft);
NXSHFT, NYSHFT are plot coordinates that define the magnitude of shifting in the X- and Y-
direction.
TRFSCL
TRFSCL affects the scaling of plot vectors.
The call is: CALL TRFSCL (XSCL, YSCL) level 1, 2, 3
or: void trfscl (float xscl, float yscl);
XSCL, YSCL are scaling factors for the X- and Y-direction.
TRFROT
TRFROT affects the rotation of plot vectors around a point.
The call is: CALL TRFROT (XANG, NX, NY) level 1, 2, 3
or: void trfrot (float xang, int nx, int ny);
XANG is the rotation angle measured in degrees in a counter-clockwise direction.
NX, NY are the plot coordinates of the rotation point.
TRFRES
TRFRES resets base transformations.
The call is: CALL TRFRES level 1, 2,3

or. void trfres ();

89

6.14 Shielded Regions

This section describes how to protect regions from being overwritten. Shielded regions can be defined
automatically by DISLIN or explicitly by the user. Shielded regions are stored in a buffer which can then
be manipulated by the user.

SHIELD
SHIELD selects shielded regions which are set automatically by DISLIN.

The call is: CALL SHIELD (CAREA, CMODE) level 1, 2,3
or: void shield (char *carea, char *cmode);
CAREA is a character string defining the regions:
='MESSAG’ is used for text and numbers plotted by MESSAG and NUMBER.
='SYMBOL will shield symbols.
='BARS’ will shield bars plotted by BARS.
='PIE’ will shield pie segments plotted by PIEGRF.

=’'LEGEND’ will protect legends. All legend attributes should be set before calling CURVE
because the shielded region of a legend is defined by CURVE. If there is no
legend position defined with LEGPOS, CURVE assumes that the legend lies
in the upper right corner of the axis system.

CMODE is a character string defining a status:
='ON’ means that the regions defined above will be written to the shielding buffer and
are protected.
='OFF means that regions will not be written to the shielding buffer. Regions that are
still stored in the buffer will be shielded.
='DELETE’ removes regions from the shielding buffer.
='RESET’ is a combination of 'OFF and 'DELETE’. Regions are removed from and will

not be written to the shielding buffer. To save computing time, this command
should always be used when shielding is no longer needed.

'NOVIS’ The shielding of regions held in the shielding buffer is disabled. This is not
valid for regions newly written to the buffer.

VIS’ Disabled regions will be protected. This is the default value for regions newly
written to the buffer.

The following routines set user-defined regions:

The calls are: CALL SHLREC (NX, NY, NW, NH) for rectangles
CALL SHLRCT (NX, NY, NW, NH, THETA) for rotated rectangles
CALL SHLCIR (NX, NY, NR) for circles
CALL SHLELL (NX, NY, NA, NB, THETA) for rotated ellipses
CALL SHLPIE (NX, NY, NR, ALPHA, BETA) for pie segments
CALL SHLPOL (NXRAY, NYRAY, N) for polygons.

NX, NY are plot coordinates of the upper left corner or the centre point.

NW, NH are the width and height of rectangles.

NR, NA, NB are radii in plot coordinates.

90

THETA is a rotation angle measured in degrees in a counter-clockwise direction.

ALPHA, BETA are starting and ending angles for pie segments measured in degrees in a
counter-clockwise direction.
NXRAY, NYRAY are arrays of the dimension N containing the corner points of a polygon.
SHLIND

The index of shielded regions in the buffer can be requested with SHLIND. It returns the index of the
region last written to the buffer.

The call is: CALL SHLIND (ID) level 1, 2, 3
or int shlind ();
ID is the returned index.
SHLDEL

SHLDEL removes entries from the shielding buffer.

The call is: CALL SHLDEL (ID) level 1, 2, 3
or: void shldel (int id);
ID is the index of a shielded region. If ID is 0, all regions defined by the user will
be deleted.
SHLRES

SHLRES deletes regions last written to the shielding buffer.

The call is: CALL SHLRES (N) level 1, 2, 3
or: void shlres (int n);
N is the number of regions to delete.
SHLVIS

SHLVIS disables or enables shielded regions. Disabled regions are no longer protected but are still held
in the shielding buffer.

The call is: CALL SHLVIS (ID, CMODE) level 1, 2, 3
or: void shlvis (intid, char *cmode);
ID is the index of a shielded region. If ID is 0, all entries are disabled or enabled.
CMODE ="ON’ enables shielded regions. This is the default value for regions newly written to
the buffer.
='OFF disables shielded regions.
Additional notes: - A frame is plotted around regions defined by the user. The thickness of frames

can be set with FRAME. Regions defined automatically by DISLIN are not
enclosed by a frame but frames plotted by MESSAG after using FRMESS and
shielded regions defined by MESSAG are identical.

- Shielded regions can overlap each other.

91

The statement CALL RESET ('SHIELD’) resets shielding. All regions defined
by DISLIN and the user are removed from the shielding buffer and no new
regions will be written to the buffer.

The number of shielded regions is limited to the size of the shielding buffer
which is set to 1000 words. The number of words used by regions are:
SHLREC = 6, SHLRCT =7, SHLCIR =5, SHLELL =7, SHLPIE =7 and
SHLPOL = 2*N+3.

Shielding of regions is computer intensive. Therefore, shielding should be used
very carefully and shielded regions should be deleted from the buffer when no
longer needed.

Base transformations do not affect the position of shielded regions.

SHLPOL can be used between the routines GRFINI and GRFFIN. The
shielded region will be projected into 3-D space. This is not valid for other
shielded regions.

92

Chapter 7

Parameter Requesting Routines

This chapter describes subroutines that return the current values of plot parameters. All routines corre-
spond to parameter setting routines described in the last chapter or handled in chapter 11, "3-D Colour
Graphics”. For a complete description of parameters, the user is referred to these chapters. If a character
string is returned, it will appear in uppercase letters and be shortened to four characters.

GETPAG
This routine returns the page size (see SETPAG, PAGE).

The call is: CALL GETPAG (NXPAG, NYPAG) level 1, 2, 3
or: void getpag (int *nxpag, int *nypag);
GETFIL
The routine GETFIL returns the current plotfile name (see SETFIL).
The call is: CALL GETFIL (CFIL) level 1, 2, 3
or: char *getfil ();
CFIL is a character variable containing the filename.
GETMFL

GETMFL returns the file format (see METAFL).

The call is: CALL GETMFL (CDEV) level 1, 2, 3
or: char *getmfl ();
CDEV is a character variable containing the file format.
GETOR

GETOR returns the coordinates of the origin (see ORIGIN).

The call is; CALL GETOR (NXO0, NY0) level 1, 2, 3
or: void getor (int *nx0, int *ny0);
GETPOS

This routine returns the position of the lower left corner of an axis system in plot coordinates (see AXS-
POS).

The call is: CALL GETPOS (NXA, NYA) level 1, 2, 3

93

or: void getpos (int *nxa, int *nya);

GETLEN
GETLEN returns the length of the X-, Y- and Z-axes (see AXSLEN, AX3LEN).
The call is: CALL GETLEN (NXL, NYL, NZL) level 1, 2, 3
or: void getlen (int *nxl, int *nyl, int *nzl);
GETHGT
GETHGT returns the character height (see HEIGHT).
The call is: CALL GETHGT (NHCHAR) level 1, 2, 3
or: int gethgt ();
GETHNM
GETHNM returns the character height of axis titles (see HNAME).
The call is: CALL GETHNM (NHNAME) level 1, 2, 3
or: int gethnm ();
GETANG
GETANG returns the current character angle used for text and numbers (see ANGLE).
The call is: CALL GETANG (NANG) level 1, 2, 3
or: int getang ();
GETALF
GETALF returns the base alphabet (see BASALF).
The call is: CALL GETALF (CALF) level 1, 2, 3
or: char *getalf ();
CALF is a character variable containing the returned base alphabet.
GETMIX
GETMIX returns control characters used for plotting indices and exponents (see SETMIX, NEWMIX).
The call is: CALL GETMIX (CHAR, CMIX) level 1, 2, 3
or: char *getmix (char *cmix);
CHAR is a character string containing the control character.
CMIX is a character string that defines the function of the control character. CMIX

can have the values 'EXP’, 'IND’, 'RES’ and 'LEG’ for exponents, indices,
resetting the base-line, and for multiple text lines in legends.

GETSHF
GETSHEF returns shift characters used for plotting special European characters (see EUSHFT).
The call is: CALL GETSHF (CNAT, CHAR) level 1, 2, 3
or: int *getshf (char *cnat);

94

CNAT is a character string that can have the values 'GERMAN’, 'FRENCH’, 'SPAN-
ISH’, 'DANISH’, '"ACUTE’, 'GRAVE' and 'CIRCUM".

CHAR is a character string containing the returned shift character.

GMXALF

GMXALF returns shift characters used for shifting between the base and an alternate alphabet (see
SMXALF).

The call is: CALL GMXALF (CALPH, C1,C2,N) level 1, 2, 3
or: int gmxalf (char *calph, char *c1, char *c2);
CALPH is a character string containing an alphabet. In addition to the names in
BASALF, CALPH can have the value INSTRUCTION'.
Cl,C2 are characters strings that contain the returned shift characters.
N is the returned index of the alphabet between 0 and 6. If N = 0, no shift

characters are defined for the alphabet CALPH.

GETDIG
This routine returns the number of decimal places that are displayed in axis labels (see LABDIG).

The call is: CALL GETDIG (NXDIG, NYDIG, NZDIG) level 1, 2, 3
or: void getdig (int *nxdig, int *nydig, int *nzdig);
GETGRF
The routine GETGREF returns the current scaling of an axis system.
The call is: CALL GETGRF (XA, XE, XOR, XSTP, CAX) level 2, 3
or: void getgrf (float *xa, float *xe, float *xor, float *xstp, char *cax);
XA, XE are the lower and upper limits of the axis.
XOR, XSTP are the first axis label and the step between labels.
CAX select the axis and can have the values 'X’, 'Y’ and 'Z’.
GETTIC
GETTIC returns the number of ticks that are plotted between axis labels (see TICKS).
The call is: CALL GETTIC (NXTIC, NYTIC, NZTIC) level 1, 2, 3
or: void gettic (int *nxtic, int *nytic, int *nztic);
GETTCL
GETTCL returns tick lengths (see TICLEN).
The call is: CALL GETTCL (NMAJ, NMIN) level 1, 2, 3
or: void gettcl (int *nmaj, int *nmin);
GETSP1

GETSP1 returns the distance between axis ticks and labels (see LABDIS).

The call is: CALL GETSP1 (NXDIS, NYDIS, NZDIS) level 1, 2, 3

95

or: void getspl (int *nxdis, int *nydis, int *nzdis);

GETSP2
GETSP2 returns the distance between axis labels and names (see NAMDIS).
The call is: CALL GETSP2 (NXDIS, NYDIS, NZDIS) level 1, 2, 3
or: void getsp2 (int *nxdis, int *nydis, int *nzdis);
GETSCL

This routine returns the type of axis scaling used. For linear scaling, the value 0 is returned and for
logarithmic scaling, the value 1 is returned (see AXSSCL).

The call is: CALL GETSCL (NXLOG, NYLOG, NZLOG) level 1, 2, 3
or: void getscl (int *nxlog, int *nylog, int *nzlog);
GETLAB
GETLAB returns the label types used for axis numbering (see LABELS).
The call is: CALL GETLAB (CXLAB, CYLAB, CZLAB) level 1, 2, 3
or: void getlab (char *cxlab, char *cylab, char *czlab);
GETCLR
GETCLR returns the current colour as an index from the colour table (see SETCLR).
The call is: CALL GETCLR (NCOL) level 1, 2, 3
or: int getclr ();
GETUNI
GETUNI returns the logical unit used for error messages.
The call is: CALL GETUNI (NU) level 1, 2, 3
or: FILE *getuni ();
GETVER
GETVER returns the version number of the currently used DISLIN library.
The call is: CALL GETVER (XVER) level 1, 2, 3
or: float getver ();
GETPLYV
GETPLV returns the patch level of the currently used DISLIN library.
The call is: CALL GETPLV (IPLV) level 1, 2,3
or: int getplv ();
GETLEYV

GETLEV returns the level.

The call is: CALL GETLEV (NLEV) level 1, 2, 3

96

or: int getlev ();

GETSYM
GETSYM returns the current symbol number and height of symbols.

The call is: CALL GETSYM (NSYM, NHSYMB) level 1, 2, 3
or: void getsym (int *nsym, int *nhsymb);
GETTYP
GETTYP returns the current line style (see LINTYP).
The call is: CALL GETTYP (NTYP) level 1, 2, 3
or: int gettyp ();
GETLIN
The routine GETLIN returns the current line width (see LINWID).
The call is: CALL GETLIN (NWIDTH) level 1, 2, 3
or: int getlin ();
GETPAT
The routine GETPAT returns the current shading pattern (see SHDPAT).
The call is: CALL GETPAT (NPAT) level 1, 2, 3
or: long getpat ();
GETRES

GETRES returns the width and height of rectangles plotted in 3-D colour graphics (see SETRES,
AUTRES).

The call is: CALL GETRES (NPB, NPH) level 1, 2, 3
or. void getres (int *npb, int *nph);
GETVLT

GETVLT returns the current colour table (see SETVLT).

The call is: CALL GETVLT (CVLT) level 1, 2, 3
or. char *getvlt ();

GETIND

For a colour index, the routine GETIND returns the corresponding RGB coordinates stored in the current
colour table (see SETIND). If an explicit RGB value is specified, GETIND returns the RGB coordinates
of the RGB value.

The call is: CALL GETIND (I, XR, XG, XB) level 1, 2, 3
or: void getind (int i, float *xr, float *xg, float *xb);
GETRGB

GETRGB returns the RGB coordinates of the current colour.

97

The call is: CALL GETRGB (XR, XG, XB) level 1, 2, 3

or: void getrgb (float *xr, float *xg, float *xb);
GETSCR
GETSCR returns the width and height of the screen in pixels.
The call is: CALL GETSCR (NWPIX, NHPIX) level 0, 1, 2,3
or: void getscr (int *nwpix, int *nhpix);
GETBPP

GETBPP returns the number of bits per pixel used by graphics card.

The call is: CALL GETBPP (NBPP) level 0, 1, 2,3
or: int getbpp ();

GETDSP
The routine GETDSP returns the terminal type.

The call is: CALL GETDSP (CDSP) level O, 1, 2,3
or: char *getdsp ();
CDSP is a returned character string that can have the values "XWIN’ for X Window

terminals, 'WIND’ for Windows terminals and 'NONE’ for none of them.

GETRAN
GETRAN returns the colour range of colour bars (see COLRAN).
The call is: CALL GETRAN (NCA, NCE) level 1, 2, 3
or: void getran (int *nca, int *nce);
GETWID

GETWID returns the width of the colour bar plotted in 3-D colour graphics (see BARWTH).

The call is: CALL GETWID (NZB) level 1,2, 3
or: int getwid ();

GETVK

This routine returns the lengths used for shifting titles and colour bars (see VKYTIT, VKXBAR, VKY-
BAR).

The call is: CALL GETVK (NYTIT, NXBAR, NYBAR) level 1, 2, 3
or: void getvk (int *nytit, int *nxbar, int *nybar);
GETWIN
This routine returns the upper left corner and the size of the graphics window (see WINDOW, WINSIZ).
The call is: CALL GETWIN (NX, NY, NW, NH) level 1, 2, 3
or: void getwin (int *nx, int *ny, int *nw, int *nh);

98

GETCLP

The routine GETCLP returns the upper left corner and the size of the current clipping window (see
CLPWIN).

The call is: CALL GETCLP (NX, NY, NW, NH) level 1, 2, 3

or: void getclp (int *nx, int *ny, int *nw, int *nh);
GETXID

The routine GETXID returns the ID of the current X graphics window or pixmap.

The call is: CALL GETXID (ID, CTYPE) level 1, 2, 3
or: int getxid (char *ctype);

ID is the returned window ID.

CTYPE is a character string that can have the values 'WINDOW’ and 'PIXMAP"’.

99

100

Chapter 8

Elementary Plot Routines

This chapter describes elementary subroutines that plot lines, vectors, circles, ellipses, pie segments and
polygons. There are versions for plot and user coordinates; the routines for user coordinates begin with
the keyword 'RL'. These routines can only be called from level 2 or 3 after an axis system has been
defined.

8.1 Lines

XMOVE and XDRAW are simple subroutines for plotting lines. They require absolute page coordinates
and are, therefore, not affected by a call to ORIGIN. Different line styles cannot be used. The routine
XMOVE moves the pen to a point while XDRAW draws a line to a point.

The calls are: CALL XMOVE (X,Y) level 1, 2, 3
CALL XDRAW (X,Y) level 1, 2, 3
or: void xmove(float x, float y);

void xdraw (float x, float y);

X, Y are absolute page coordinates.

The subroutines STRTPT and CONNPT require plot coordinates as real numbers and allow different line
styles to be used.

The calls are: CALL STRTPT (X,Y) level 1, 2, 3
CALL CONNPT (X,Y) level 1, 2, 3
or: void strtpt (float x, float y);

void connpt (float x, float y);

X, Y are real numbers containing the plot coordinates.

The corresponding routines for user coordinates are:

The calls are: CALL RLSTRT (X,Y) level 2, 3
CALL RLCONN (X,Y) level 2, 3
or: void rlistrt (float x, float y);

void rlconn (float x, float y);

101

Additional note: Lines plotted with RLSTRT and RLCONN will not be cut off at the borders of
an axis system. This can be enabled with the routine CLPBOR. Points lying
outside of the axis scaling will not be listed by RLSTRT and RLCONN.

LINE

LINE joins two points with a line. Different line styles can be used.

The call is: CALL LINE (NX1,NY1, NX2, NY2) level 1, 2, 3
or: void line (int nx1, int ny1, int nx2, int ny2);

NX1, NY1 are the plot coordinates of the first point.

NX2, NY2 are the plot coordinates of the second point.

RLINE

RLINE is the corresponding routine for user coordinates.

The call is: CALL RLINE (X1,Y1, X2,Y2) level 2, 3
or: void rline (float x1, float y1, float x2, float y2);

X1,Y1 are the user coordinates of the first point.

X2,Y2 are the user coordinates of the second point.

Additional note: RLINE draws only that part of the line lying inside the axis system. If

NOCHEK is not used, points lying outside the axis scaling will be listed.

8.2 \ectors
VECTOR
VECTOR plots vectors with none, one or two arrow heads.
The call is: CALL VECTOR (IX1,1Y1,1X2,1Y2, IVEC) level 1, 2, 3
or: void vector (intix1, intiyl, intix2, intiy2, int ivec);
IX1, Y1 are the plot coordinates of the start point.
IX2,1Y2 are the plot coordinates of the end point.
IVEC is a four digit number 'wxyz’ specifying the arrow heads where the digits have
the following meaning: (see appendix B for examples)
W determines the ratio of width and length (O - 9).
X: determines the size (0 - 9).
y: determines the form:
=0 filled
= not filled
= opened
=3 closed.
Z: determines the position:
=0 no arrow heads are plotted
= at end points
= at start and end points
=3 at start and end points and in the same direction.

102

RLVEC

RLVEC is the corresponding routine for user coordinates.

The call is: CALL RLVEC (X1, Y1, X2,Y2,IVEC) level 2, 3
or: void rlvec (float x1, float y1, float x2, float y2, int ivec);

8.3 Filled Triangles

TRIFLL
The routine TRIFLL plots solid filled triangles.
The call is: CALL TRIFLL (XRAY, YRAY) level 1, 2, 3
or: void trifll (float *xray, float *yray;
XRAY, YRAY are floatingpoint arrays containing the three corners of a triangle.

8.4 Wind Speed Symbols

WINDBR
The routine WINDBR plots wind speed symbols.
The call is: CALL WINDBR (X, NXP, NYP, NW, A) level 1,2, 3
or. void windbr (float x, int nxp, int nyp, int nw, float a);
X is the wind speed in knots.
NXP, NYP are the plot coordinates of the lower left corner of the wind speed symbol.
NW is the length of the symbol in plot coordinates.
A is the wind direction in degrees.
RLWIND

RLWIND is the corresponding routine to WINDBR for user coordinates.

The call is: CALL RLWIND (X, XP, YP, NW, A) level 2, 3
or: void rlwind (float x, float yp, float xp, int nw, float a);

8.5 Geometric Figures

The following subroutines plot geometric figures such as rectangles, circles, ellipses, pie segments and
polygons. These routines can be used to plot only the outlines of figures or the figures can be filled in
with shaded patterns.

RECTAN
RECTAN plots rectangles.
The call is: CALL RECTAN (NX, NY, NW, NH) level 1, 2, 3
or: void rectan (int nx, int ny, int nw, int nh);

103

NX, NY
NW, NH

are the plot coordinates of the upper left corner.
are the width and height in plot coordinates.

RNDREC

RECTAN plots an rectangle where the corners will be rounded.

The call is:
or:

NX, NY
NW, NH
IOPT

CIRCLE plots circles.

The call is:
or:

NX, NY
NR

ELLIPS plots ellipses.

The call is:
or:

NX, NY
NA, NB

PIE plots pie segments.

The call is:
or:

NX, NY
NR
ALPHA, BETA

CALL RNDREC (NX, NY, NW, NH, IOPT) level 1, 2, 3

void rndrec (int nx, int ny, int nw, int nh, int iopt);

are the plot coordinates of the upper left corner.
are the width and height in plot coordinates.

defines the rounding of corners fOIOPT < 9). For IOPT = 0, rounding is
disabled.

CIRCLE

CALL CIRCLE (NX, NY, NR) level 1, 2, 3

void circle (int nx, int ny, int nr);

are the plot coordinates of the centre point.
is the radius in plot coordinates.

ELLIPS

CALL ELLIPS (NX, NY, NA, NB) level 1, 2, 3

void ellips (int nx, int ny, int na, int nb);

are the plot coordinates of the centre point.
are the radii in plot coordinates.

PIE

CALL PIE (NX, NY, NR, ALPHA, BETA) level 1, 2, 3

void pie (int nx, int ny, int nr, float alpha, float beta);

are the plot coordinates of the centre point.
is the radius in plot coordinates.

are the start and end angles measured in degrees in a counter-clockwise direc-
tion.

ARCELL

ARCELL plots elliptical arcs where the arcs can be rotated.

The call is:

CALL ARCELL (NX, NY, NA, NB, ALPHA, BETA, THETA)
level 1, 2, 3

104

or: void arcell (int nx, int ny, int na, int nb, float alpha, float beta, float theta);

NX, NY are the plot coordinates of the centre point.
NA, NB are the radii in plot coordinates.
ALPHA, BETA are the start and end angles measured in degrees in a counter-clockwise direc-
tion.
THETA is the rotation angle measured in degrees in a counter-clockwise direction.
AREAF

AREAF draws polygons.

The call is: CALL AREAF (NXRAY, NYRAY, N) level 1, 2, 3
or: void areaf (int *nxray, int *nyray, int n);
NXRAY, NYRAY are arrays containing the plot coordinates of the corner points. Start and end

points can be different.
N is the number of points.

The corresponding routines for user coordinates are:

The calls are: CALL RLREC (X,Y, WIDTH, HEIGHT)
CALL RLRND (X, Y, WIDTH, HEIGHT, IOPT)
CALL RLCIRC (XM, YM, R)
CALL RLELL (XM, YM, A, B)
CALL RLPIE (XM, YM, R, ALPHA, BETA)
CALL RLARC (XM, YM, A, B, ALPHA, BETA, THETA)
CALL RLAREA (XRAY, YRAY, N)

or: void rlrec (float x, float y, float width, float height);
void rlrnd (float x, float y, float width, float height, int iopt);
void rlcirc (float xm, float ym, float r);
void rlell (float xm, float ym, float a, float b);
void rplpie (float xm, float ym, float r, float alpha, float beta);
void rlarc (float xm, float ym, float a, float b, float alpha,

float beta, float theta);

void rlarea (float *xray, float *yray, int n);

Additional notes: Shading patterns can be defined with SHDPAT and MYPAT. If the pattern num-

ber is zero, the figures will only be outlined. With CALL NOARLN, the out-
line will be suppressed.

- The number of points in AREAF and RLAREA is limited to 25000 for Fortran
77. There is no limitation for the C and Fortran 90 versions of DISLIN.

- For the calculation of the radius in RLCIRC and RLPIE, the X-axis scaling is
used.

- The interpolation of circles and ellipses can be altered with CIRCSP (NSPC)
where NSPC is the arc length in plot coordinates. The default value is 10.

105

106

Chapter 9

Utility Routines

This chapter describes the utilities available to transform coordinates, sort data and calculate the lengths
of numbers and character strings.

9.1 Transforming Coordinates

The following functions convert user coordinates to plot coordinates.

The calls are: IXP = NXPOSN (X) level 2, 3
IYP =NYPOSN (Y) level 2, 3
or: int nxposn (float x);

int nyposn (float y);

Plot coordinates can also be returned as real numbers.

The calls are: XP = XPOSN (X) level 2, 3
YP =YPOSN (Y) level 2, 3
or: float xposn (float x);

float yposn (float y);

The following two functions convert plot coordinates to user coordinates.

The calls are: XW = XINVRS (NXP) level 2, 3
YW = YINVRS (NYP) level 2, 3
or: float xinvrs (int nxp);

float yinvrs (int nyp);

TRFREL
The routine TRFREL converts arrays of user coordinates to plot coordinates.
The call is: CALL TRFREL (XRAY, YRAY, N) level 2, 3
or: void trfrel (float *xray, float *yray, int n);
XRAY, YRAY are arrays containing the user coordinates. After the call, they contain the

calculated plot coordinates.

107

N is the number of points.

Additional note: The functions above can be used for linear and logarithmic scaling. For polar
scaling, TRFREL and POS2PT can be used for getting plot coordinates.
TRFCO1
The routine TRFCO1 converts one-dimensional coordinates.
The call is: CALL TRFCO1 (XRAY, N, CFROM, CTO) level 0, 1, 2,3
or: void trfcol (float *xray, int n, char *cfrom, char *cto);
XRAY is an array containing angles expressed in radians or degrees. After a call to
TRFCO1, XRAY contains the converted coordinates.
N is the number of coordinates.
CFROM, CTO are character strings that can have the values ' DEGREES’ and 'RADIANS'.
TRFCO2
The routine TRFCO2 converts two-dimensional coordinates.
The call is: CALL TRFCO2 (XRAY, YRAY, N, CFROM, CTO) level 0,1, 2,3
or: void trfco2 (float *xray, float *yray, int n, char *cfrom, char *cto);
XRAY, YRAY are arrays containing rectangular or polar coordinates. For polar coordinates,
XRAY contains the angles measured in degrees and YRAY the radii.
N is the number of coordinates.
CFROM, CTO are character strings that can have the values 'RECT’ and 'POLAR’.
TRFCO3
The routine TRFCO3 converts three-dimensional coordinates.
The call is: CALL TRFCO3 (XRAY, YRAY, ZRAY, N, CFROM, CTO)
level0,1,2,3
or: void trfco3 (float *xray, float *yray, float *zray, int n, char *cfrom, char *cto);

XRAY, YRAY, ZRAY are arrays containing rectangular, spherical or cylindrical coordinates. Spher-
ical coordinates must be in the form (longitude, latitude, radius) where 0
longitude< 360 and -90< latitude< 90.
Cylindrical coordinates must be in the form (angle, radius, z).

N is the number of coordinates.
CFROM, CTO are character strings that can have the values 'RECT’/SPHER’ and 'CYLI'.
TRFMAT
The routine TRFMAT converts a matrix to another matrix by bilinear interpolation.
The call is: CALL TRFMAT (ZMAT, NX, NY, ZMAT2, NX2, NY2)
level 0, 1, 2,3
or: void trfmat (float *zmat, int nx, int ny, float *zmat2, int nx2, int ny2);
ZMAT is the input matrix of the dimesion (NX, NY).
NX, NY are the dimensions of the matrix ZMAT.
ZMAT?2 is the output matrix of the dimesion (NX2, NY2).
NX2, NY2 are the dimensions of the matrix ZMAT2.

108

9.2 String Arithmetic

NLMESS

The function NLMESS returns the length of text in plot coordinates.

The call is: NL = NLMESS (CSTR) level 1, 2, 3
or: int nlmess (char *cstr);
CSTR is a character stringq{ 256 characters).
NL is the length in plot coordinates.
TRMLEN

The function TRMLEN returns the number of characters in a character string.

The call is: NL = TRMLEN (CSTR) level 0,1, 2,3
or: int trmlen (char *cstr);
CSTR is a character string.
NL is the number of characters.
UPSTR

UPSTR converts a character string to uppercase letters.

The call is: CALL UPSTR (CSTR) level 0, 1, 2,3
or: void upstr (char *cstr);
CSTR is a character string to be converted.

9.3 Number Arithmetic

NLNUMB

NLNUMB calculates the length of numbers in plot coordinates.

The call is; NL = NLNUMB (X, NDIG) level 1, 2, 3
or: int ninumb (float x, int ndig);
X is a real number.
NDIG is the number of decimal places ¢1).
NL is the returned length in plot coordinates.
INTLEN

INTLEN calculates the number of digits in integers.

The call is: CALL INTLEN (NX, NL) level 0,1, 2,3
or: int intlen (int nx);

NX is an integer.

NL is the returned number of digits.

109

FLEN

FLEN calculates the number of digits in real numbers.

The call is: CALL FLEN (X, NDIG, NL) level 0, 1, 2,3
or: int flen (float x, int ndig);
X is a real number.
NDIG is the number of decimal places ¢1).
NL is the number of digits including the decimal point. For negative numbers, it

includes the minus sign.

INTCHA

INTCHA converts integers to character strings.

The call is: CALL INTCHA (NX, NL, CSTR) level 0, 1, 2,3
or: int intcha (int nx, char *cstr);
NX is the integer to be converted.
NL is the number of digits in NX returned by INTCHA.
CSTR is the character string containing the integer.
FCHA

FCHA converts real numbers to character strings.

The call is: CALL FCHA (X, NDIG, NL, CSTR) level 0, 1, 2,3
or: int fcha (float x, int ndig, char *cstr);
X is the real number to be converted.
NDIG is the number of decimal places to be consideredl). The last digit will be
rounded up.
NL is the number of digits returned by FCHA.
CSTR is the character string containing the real number.
SORTR1

SORTR1 sorts real numbers.

The call is: CALL SORTR1 (XRAY, N, COPT) level O, 1, 2,3
or: void sortrl (float *xray, int n, char *copt);

XRAY is an array containing real numbers.

N is the dimension of XRAY.

COPT defines the sorting direction. IF COPT ="A, the numbers will be sorted in

ascending order; if COPT ='D’, they will be sorted in descending order.

SORTR2

SORTR?2 sorts two-dimensional points in the X-direction.

110

The call is:
or:

XRAY, YRAY
N
COPT

Additional note:

CALL SORTR2 (XRAY, YRAY, N, COPT) level 0, 1, 2,3
void sortr2 (float *xray, float *yray, int n, char *copt);

are arrays containing the coordinates.
is the number of points.

defines the sorting direction. IF COPT ="A, the points will be sorted in as-
cending order; if COPT ='D’, they will be sorted in descending order.

The Shell-algorithm is used for sorting.

SPLINE

SPLINE calculates splined points used in CURVE to plot a spline.

The call is:

or:

XRAY, YRAY

N

XSRAY, YSRAY
NSPL

Additional note:

CALL SPLINE (XRAY, YRAY, N, XSRAY, YSRAY, NSPL) level 1, 2,3
void spline (float *xray, float *yray, float *xsray, float *ysray, int *nspl);

are arrays containing points of the curve.
is the dimension of XRAY and YRAY.
are the splined points returned by SPLINE.

is the number of calculated splined points returned by SPLINE. By default,
NSPL has the value 200.

The number of interpolated points and the order of the polynomials can be
modified with SPLMOD.

BEZIER

The routine BEZIER calculates a Bezier interpolation.

The call is:

or:

XRAY, YRAY

N

XPRAY, YPRAY
NP

CALL BEZIER (XRAY, YRAY, N, XPRAY, YPRAY, NP) level 0,1, 2,3
void bezier (float *xray, float *yray, int n, float *xpray, float *ypray, int np);

are arrays containing points of the curve.

is the dimension of XRAY and YRAY (k N < 21).

are the Bezier points returned by BEZIER.

is the number of calculated points defined by the user.

HISTOG

The routine HISTOG calculates a histogram.

The call is:
or:

XRAY

N

XHRAY, YHRAY

NH

CALL HISTOG (XRAY, N, XHRAY, YHRAY, NH) level 0,1, 2,3
void histog (float *xray, int n, float *xhray, float *yhray, int *nh);

is an array containing floatingpoint numbers.
is the dimension of XRAY.

are arrays containing the calculated histogram. XHRAY contains distinct val-
ues from XRAY sorted in ascending order. YHRAY contains the frequency of
points.

is the number of points in XHRAY und YHRAY returned by HISTOG.

111

TRIANG

The routine TRIANG calculates the Delaunay triangulation of an arbitrary collection of points in the
plane. The Delaunay triangulation can directly be used to display surfaces and contour lines of irregular-
ily distributed data points.

The call is: CALL TRIANG (XRAY, YRAY, N, I1RAY, I2RAY, I3RAY, NMAX, NTRI)
level 0,1, 2,3
or: void triang (float *xray, float *yray, int n, int *ilray, int *i2ray, int *i3ray,

int nmax, int *ntri);

XRAY, YRAY are arrays containing floatingpoint numbers. The dimension of XRAY and
YRAY must be greater or equal N + 3.

N is the number of points in XRAY and YRAY.

ILRAY, I2RAY, I3RAY are the returned vertices for each triangle in anticlockwise order.

NMAX is the dimension of I1RAY, I2RAY and I3RAY. NMAX must be greater of
equal 2*N + 1.

NTRI is the returned number of triangles.

Additional notes: - The Watson algorithm is used for calculating the Delaunay triangulation. The

algorithm increases with the number of points as approximad¢ly).
Reference: S.W. Sloan and G.T. Houlsby, An Implementation of Watson'’s al-
gorithm for computing 2-dimensional Delaunay triangulations, Advanced En-
gineering Software, 1984, \ol. 6, No. 4.

- Surfaces and contours can be directly plotted from the triangulation with the
routines CRVTRI, SURTRI and CONTRI.

CIRC3P

The routine CIRC3P calculates a circle specified by three points.

The call is: CALL CIRC3P (X1,Y1, X2,Y2,X3,Y3, XM, YM, R) level 0, 1, 2,3
or: void circ3p (float x1, float y1, float x2, float y2, float x3, float y3,
float *xm, float *ym, float *r);
X1,Y1l are the X- and Y-coordinates of the first point.
X2,Y3 are the X- and Y-coordinates of the second point.
X3,Y3 are the X- and Y-coordinates of the third point.
XM, YM are the calculated coordinates of the centre point.
R is the calculated radius of the circle.

9.4 Date Routines

BASDAT

The routine BASDAT defines the base date. This routine is necessary for plotting date labels and data
containing date coordinates.

The call is: CALL BASDAT (IDAY, IMONTH, IYEAR) level O, 1, 2,3

112

or:
IDAY
IMONTH
IYEAR

void basbat (int iday, int imonth, int iyear);

is the day number of the date between 1 and 31.

is the month number of the date between 1 and 12.
is the four digit year number of the date.

INCDAT

The function INCDAT returns the number of days between a specified date and the base date. This
calculated days can be passed as parameters to the routine GRAF and as coordinates to data plotting
routines such as CURVE.

The call is:
or:

N

IDAY

IMONTH

IYEAR

N = INCDAT (IDAY, IMONTH, IYEAR) level 0, 1, 2,3
int incdat (int iday, int imonth, int iyear);

is the returned number of calculated days.

is the day number of the date between 1 and 31.

is the month number of the date between 1 and 12.

is the four digit year number of the date.

TRFDAT

The routine TRFDAT calculates for a number of days the corresponding date.

The call is:
or:

N

IDAY

IMONTH

IYEAR

CALL TRFDAT (N, IDAY, IMONTH, IYEAR) level 0,1, 2,3
int trfdat (int n, int *iday, int *imonth, int *iyear);

is the number of days.

is the returned day number.

is the returned month number.

is the returned four digit year number.

NWKDAY

The function NWKDAY returns the weekday for a given date.

The call is:
or:

N

IDAY

IMONTH

IYEAR

N = NWKDAY (IDAY, IMONTH, IYEAR) level 0,1, 2,3
int nwkday (int iday, int imonth, int iyear);

is the returned weekday between 1 and 7 (1 = Monday, 2 = Tuesday, ...).
is the day number of the date between 1 and 31.

is the month number of the date between 1 and 12.

is the four digit year number of the date.

9.5 Bit Manipulation

BITSI2

The routine BITSI2 allows bit manipulation on 16 bit variables.

The call is:

CALL BITSI2 (NBITS, NINP, IINP, NOUT, IOUT, IOPT) level 0, 1, 2,3

113

or:

NBITS
NINP
IINP

NOUT
IOUT
IOPT

short bitsi2 (int nbits, short ninp, int iinp, short nout, int iout);

is the number of bits to be shifted.
is a 16 bit variable from which to extract the bit field.

is the bit position of the leftmost bit of the bit field. The bits are numbered 0 -
15 where 0 is the most significant bit.

is a 16 bit variable into which the bit field is placed.
is the bit position where to put the bit field.

controls whether the bits outside of the field are set to zero or not. If IOPT
equal 0, the bits are set to zero. If IOPT not equal 0, the bits are left as they
are. For this case, NOUT is also used as input parameter. In the C function,
IOPT is missing in the parameter list and internally used with the value 1.

BITSI4

The routine BITSI4 allows bit manipulation on 32 bit variables.

The call is:
or:

NBITS
NINP
IINP

NOUT
IOUT
IOPT

CALL BITSI4 (NBITS, NINP, lINP, NOUT, IOUT, IOPT) level0,1,2,3
int bitsi4 (int nbits, int ninp, int iinp, int nout, int iout);

is the number of bits to be shifted.
is a 32 bit variable from which to extract the bit field.

is the bit position of the leftmost bit of the bit field. The bits are numbered 0 -
31 where 0 is the most significant bit.

is a 32 bit variable into which the bit field is placed.
is the bit position where to put the bit field.

controls whether the bits outside of the field are set to zero or not. If IOPT
equal 0, the bits are set to zero. If IOPT not equal 0, the bits are left as they
are. For this case, NOUT is also used as input parameter. In the C function,
IOPT is missing in the parameter list and internally used with the value 1.

9.6 Byte Swapping

SWAPI2

The routine SWAPI2 swaps the bytes of 16 bit integer variables.

The call is:
or:

IRAY

N

CALL SWAPI2 (IRAY, N) level 0, 1, 2, 3
void swapi2 (short *iray, int n);

is an array containing the 16 bit variables.
is the number of variables.

SWAPI4

The routine SWAPI4 swaps the bytes of 32 bit integer variables.

The call is:
or:

IRAY

N

CALL SWAPI4 (IRAY, N) level 0,1, 2,3
void swapi4 (int *iray, int n);

is an array containing the 32 bit variables.
is the number of variables.

114

9.7 Binaryl/O

Binary 1/0 from Fortran can cause some problems: unformatted IO in Fortran is system-dependent and
direct access I/0 needs a fixed record length. Therefore, DISLIN offers some C routines callable from
Fortran.

OPENFL

The routine OPENFL opens a file for binary 1/O.

The call is: CALL OPENFL (CFILE, NLU, IRW, ISTAT) level0,1,2,3
or: int openfl (char *cfile, int nlu, int irw);
CFILE is a character string containing the file name.
NLU is the logical unit for the I/O (X NLU < 99). The units 15 and 16 are reserved
for DISLIN.
IRW defines the file access mode (0: READ, 1: WRITE, 2: APPEND).
ISTAT is the returned status (0: no errors).
CLOSFL

The routine CLOSFL closes a file.

The call is: CALL CLOSFL (NLU) level 0,1, 2,3
or. int closfl (int nlu);
NLU is the logical unit.
READFL

The routine READFL reads a given number of bytes.

The call is: CALL READFL (NLU, IBUF, NBYT, ISTAT) level 0, 1, 2,3
or: int readfl (int nlu, unsigned char *ibuf, int nbyt);
NLU is the logical unit.
IBUF is an array where to read the bytes.
NBYT is the number of bytes.
ISTAT is the number of bytes read (0 means end of file).
WRITFL

The routine WRITFL writes a number of bytes.

The call is: CALL WRITFL (NLU, IBUF, NBYT, ISTAT) level 0,1, 2,3
or: int writfl (int nlu, unsigned char *ibuf, int nbyt);

NLU is the logical unit.

IBUF is an array containing the bytes.

NBYT is the number of bytes.

ISTAT is the number of bytes written (0 means an error).

115

SKIPFL
The routine SKIPFL skips a number of bytes from the current position.

The call is: CALL SKIPFL (NLU, NBYT, ISTAT) level0,1,2,3
or: int skipfl (int nlu, int nbyt);

NLU is the logical unit.

NBYT is the number of bytes.

ISTAT is the returned status (0: OK).

TELLFL

The routine TELLFL returns the current position in bytes.

The call is: CALL TELLFL (NLU, NBYT) level O, 1, 2,3
or: int tellfl (int nlu);

NLU is the logical unit.

NBYT is the returned position in bytes where byte numbering begins with zero.

NBYT = -1, if an error occurs.

POSIFL
The routine POSIFL skips to a certain position relative to the start.
The call is: CALL POSIFL (NLU, NBYT, ISTAT) level O, 1, 2,3
or: int posifl (int nlu, int nbyt);
NLU is the logical unit.
NBYT defines the position. Byte numbering begins with zero.
ISTAT is the returned status (0: OK).

9.8 Window Terminals

9.8.1 Clearing the Screen

ERASE

The routine ERASE clears the screen, a graphics window or the page of a raster format such as TIFF,
PNG, PPM and BMP. In general, this is done by DISINI at the beginning of a plot.

The call is: CALL ERASE level 1, 2, 3
or: void erase ();

9.8.2 Clearing the Output Buffer

SENDBF

Normally, the graphical output to the screen is buffered. To send the buffer to the screen, the routine
SENDBF can be used.

The call is: CALL SENDBF level 1, 2, 3
or: void sendbf ();

116

9.8.3 Multiple Windows

The following routines allow programs to create up to 8 windows for graphics output on X11 and Win-
dows terminals. Note, that multiple windows can be used with graphic windows but are not compatible
with other file formats in DISLIN.

OPNWIN

The routine OPNWIN creates a new window for graphics output on the screen.

The call is: CALL OPNWIN (ID) level 1, 2, 3
or: void opnwin (int id);
ID is the window number between 1 and 8.
Additional notes: - The file format must be set to X Window emulation in the routine METAFL

(i.e. with the keyword "XWIN’).

- The size and position of windows can be changed with the routines WINDOW
and WINSIZ. Note that some X11 Window Managers ignore the user-defined
position of windows.

- Windows can be closed and selected with the routines CLSWIN and SELWIN.
- Acreated window with OPNWIN is selected automatically for graphics output.

- External windows can also be used with OPNWIN if the routine SETXID is
called before.

- The routine WINMOD affects the handling of windows in the termination rou-
tine DISFIN.

CLSWIN
The routine CLSWIN closes a window created with OPNWIN.

The call is; CALL CLSWIN (ID) level 1, 2, 3
or: void clswin (int id);
ID is the window number between 1 and 8.
SELWIN

The routine SELWIN selects a window on the screen where the following graphics output will be sent
to.

The call is: CALL SELWIN (ID) level 1, 2, 3
or: void selwin (int id);
ID is the window number between 1 and 8.
WINID

The routine WINID returns the ID of the currently selected window.

The call is: CALL WINID (ID) level 1, 2, 3

or: int winid ();

117

ID is the returned window number.

WINTIT

The routine WINTIT changes the window title of the currently selected window.

The call is: CALL WINTIT (CSTR) level 1, 2, 3
or: void wintit (char *cstr);
CSTR is a character string containing the new window title.

9.8.4 Cursor Routines

The following routines allow an user to collect some X- and Y-coordinates in a graphics window with
the mouse. The coordinates can be returned in pixels and in DISLIN plot coordinates. All routines are
also available in DISLIN draw widgets.

CSRPOS

The routine CSRPOS sets the position of the mouse pointer and returns the position if a character key or
a mouse button is pressed. This routine can be used for cursor navigation.

The call is: CALL CSRPOS (NX, NY, IKEY) level 1, 2, 3

or: int csrpts (int *nx, int *ny);

NX, NY are integer coordinates. On entry, the mouse pointer is set to the position (NX,
NY). If a character key is pressed, the position of the mouse is returned in NX
and NY.

IKEY is the returned ASCII code for the pressed key. The cursor keys can also be

used where the following values are returned: 1 for cursor left, 2 for cursor up,
3 for cursor right, 4 for cursor down. The value 5 is returned if the left mouse
button is clicked, and the value 6 for the right mouse button. The value -1 is
returned if an error occured.

Additional note: The behavior of CSRPOS can be modified with the routine CSRMOD.

CSRPT1

The routine CSRPT1 returns the position of the mouse pointer if the mouse button 1 is pressed. The
mouse pointer is changed to a cross hair pointer in the graphics window if CSRPT1 is active.

The call is: CALL CSRPT1 (NX, NY) level 1, 2, 3
or: void csrptl (int *nx, int *ny);
NX, NY are the returned coordinates of the pressed mouse pointer.
CSRPTS

The routine CSRPTS returns an array of mouse positions. The routine is waiting for mouse button 1
clicks and terminates if mouse button 2 is pressed. The mouse pointer is changed to a cross hair pointer
in the graphics window.

The call is: CALL CSRPTS (NXRAY, NYRAY, NMAX, N, IRET) level 1, 2,3
or: void csrpts (int *nxray, int *nyray, int nmax, int *n, int *iret);

118

NXRAY, NYRAY
NMAX

N
IRET

are the returned coordinates of the collected mouse positions.

is the dimension of NXRAY and NYRAY and defines the maximal number of
points that will be stored in NXRAY and NYRAY.

is the number of points that are returned in NXRAY and NYRAY.

is a returned status. IRET not equal 0 means that not all mouse movements
could be stored in NXRAY and NYRAY.

CSRMOV

The routine CSRMOQV returns an array of mouse movements. The routine collects the mouse movements
of mouse button 1 and terminates if mouse button 1 is released. The mouse pointer is changed to a cross
hair pointer in the graphics window.

The call is;

or:
NXRAY, NYRAY
NMAX

N
IRET

CALL CSRMOV (NXRAY, NYRAY, NMAX, N, IRET) level 1, 2, 3

void csrmov (int *nxray, int *nyray, int nmax, int *n, int *iret);

are the returned coordinates of the collected mouse movements.

is the dimension of NXRAY and NYRAY and defines the maximal number of
points that will be stored in NXRAY and NYRAY.

is the number of points that are returned in NXRAY and NYRAY.

is a returned status. IRET not equal 0 means that not all mouse positions could
be stored in NXRAY and NYRAY.

CSRMOD

The routine CSRMOD modifies the behavior of CSRPOS.

The call is:
or:

CMOD

CKEY

CALL CSRMOD (CMOD, CKEY) level 1, 2, 3

void csrmod (char *cmod, char *ckey);

is a character string that can have the values 'STANDARD’, 'SET’, 'GET’
and 'READ’. With the keywords 'SET’ and 'GET’ the cursor position can be
defined or requested without waiting for an user event. The value 'READ’
means that the cursor position is not set at the entry of CSRPOS. The value
'STANDARD’ means the default behavior of CSRPOS.

is a character string that can have the value 'POS’.
Default: (STANDARD’, 'POS’).

CSRUNI

The routine CSRUNI defines if pixels or plot coordinates are returned by the cursor routines.

The call is:
or:

COPT

Additional note:

CALL CSRUNI (COPT) level 1, 2, 3

void csruni (char *copt);

is a character string that can have the values 'PIXEL and 'PLOT".
Default: COPT ='PLOT".

Plot coordinates can be converted to user coordinates with the routines XIN-
VRS and YINVRS.

119

CSRTYP

The routine CSRTYP defines the cursor used by the cursor routine.

The call is: CALL CSRTYP (COPT) level 1, 2, 3
or: void csrtyp (char *copt);
COPT is a character string that can have the values 'NONE’, 'CROSS’, 'ARROW’

and 'VARROW'. '’NONE’ means that the current cursor is not changed.
Default: COPT ='CROSS..

SETCSR
The routine SETCSR defines the cursor that is used by the DISLIN graphics window.
The call is: CALL SETCSR (COPT) level 1, 2,3
or: void setcsr (char *copt);
COPT is a character string that can have the values '’ARROW’, 'CROSS’ and 'VAR-
ROW’. Default: COPT =
'"ARROW’.

9.9 Elementary Image Routines

The following routines allow transfering of image data between windows, files and arrays. The output

format must be an image format such as CONS, TIFF, PNG, BMP and PPM, but the writing of image

data to PostScript and PDF files is also supported. If the output format is PostScript or PDF, the size of
images and the position of an image on the output page can be defined with the routines IMGSIZ and
IMGBOX.

IMGINI

The routine IMGINI initializes transfering of image data with the routines RPIXEL, RPIXLS, RPXROW,
WPIXEL, WPIXLS and WPXROW. If the output format is PostScript or PDF, IMGINI creates a virtual
image where image data can be written to.

The call is: CALL IMGINI level 1, 2, 3
or: void imgini ();

IMGFIN

The routine IMGFIN terminates transfering of image data with the routines RPIXEL, RPIXLS,
RPXROW, WPIXEL, WPIXLS and WPXROW. If the output format is PostScript or PDF, the virtual
image created in IMGINI is copied to the PostScript or PDF file.

The call is: CALL IMGFIN level 1, 2, 3

or: void imgfin ();

RPIXEL

The routine RPIXEL reads one pixel from memory.

The call is: CALL RPIXEL (IX, 1Y, ICLR) level 1, 2, 3
or: void rpixel (int ix, int iy, int *iclr);
IX, 1Y is the position of the pixel in screen coordinates.

120

ICLR is the returned colour value of the pixel. If the parameter 'RGB’ is used in the
routine IMGMOD before, RPIXEL returns an explicit RGB value, otherwise
an entry of the colour table.

WPIXEL

The routine WPIXEL writes one pixel into memory.

The call is: CALL WPIXEL (IX, 1Y, ICLR) level 1, 2, 3
or: void wpixel (int ix, int iy, int iclr);
IX, 1Y is the position of the pixel in screen coordinates.
ICLR is the new colour value of the pixel.
RPIXLS

The routine RPIXLS copies colour values from a rectangle in memory to an array.

The call is: CALL RPIXLS (IRAY, IX, Y, NW, NH) level 1, 2, 3
or: void rpixls (unsigned char *iray, int ix, int iy, int nw, int nh);
IRAY is a byte array containing the returned colour values.
IX, 1Y contain the starting point in screen coordinates.
NW, NH are the width and height of the rectangle in screen coordinates.
WPIXLS

The routine WPIXLS copies colour values from an array to a rectangle in memory.

The call is: CALL WPIXLS (IRAY, IX, 1Y, NW, NH) level 1, 2, 3
or: void wpixls (unsigned char *iray, int ix, int iy, int nw, int nh);
IRAY is a byte array containing the colour values.
X, 1Y contain the starting point in screen coordinates.
NW, NH are the width and height of the rectangle in screen coordinates.
RPXROW

The routine RPXROW copies one line of colour values from memory to an array.

The call is: CALL RPXROW (IRAY, IX, 1Y, N) level 1, 2, 3
or: void rpxrow (unsigned char *iray, int ix, int iy, int n);
IRAY is a byte array containing the returned colour values.
IX, 1Y contain the starting point in screen coordinates.
N is the number of pixels.
WPXROW

The routine WPXROW copies colour values from an array to a line in memory.

The call is: CALL WPXROW (IRAY, IX, 1Y, N) level 1, 2, 3

121

or: void wpxrow (unsigned char *iray, int ix, int iy, int n);

IRAY is a byte array containing the colour values.

IX, 1Y contain the starting point in screen coordinates.

N is the number of pixels.

Additional note: IMGINI and IMGFIN must be used with the routines RPIXEL, WPIXEL,

RPIXLS, WPIXLS, RPXROW and WPXROW.

IMGMOD

The routine IMGMOD defines palette or truecolour mode for the routines RPIXLS, WPIXLS, RPXROW
and WPXROW. For palette mode, the byte arrays in the routines above must contain colour indices
between 0 and 255. For truecolour mode, the byte arrays must contain RGB values (8 bit for each value).

The call is: CALL IMGMOD (CMOD) level 1, 2, 3
or: void imgmod (char *cmod);
CMOD is a character string that can contain the values 'INDEX’ and 'RGB".

Default: CMOD ="INDEX'.

IMGSI1Z

If the output format is PostScript or PDF, the size of images can be defined with the routine IMGSIZ.
The routine must be called before IMGINI.

The call is: CALL IMGSIZ (NW, NH) level 1, 2, 3
or: void imgsiz (int nw, int nh);
NW, NH are the image width and height in pixels.

Default: (853, 603).

IMGBOX

If the output format is PostScript or PDF, a rectangle on the output page can be specified where the image
is copied to. The routine IMGBOX must be called before IMGINI.

The call is: CALL IMGBOX (NX, NY, NW, NH) level 1,2, 3
or: void imgbox (int nx, int ny, int nw, int nh);
NX, NY is the upper left corner of the rectangle on the page in plot coordinates.
NW, NH are the width and height of the rectangle in plot coordinates. NW and NH

should have the same ratio as the image that is copied to the rectangle. The
default rectangle is the full page.

RIMAGE

The routine RIMAGE copies an image from memory to a file.

The call is: CALL RIMAGE (CFIL) level 1, 2, 3
or: void rimage (char *cfil);
CFIL is the name of the output file. A new file version will be created for existing

files (see FILMOD).

122

Additional notes: - Images are stored with an ASCII header of 80 bytes length followed by the
binary image data. The format of the image data depends on the video mode
and is therefore system-dependent.

- A single image file can be displayed with the routine WIMAGE or with the
utility program DISIMG. A sequence of image files can be displayed with the
utility program DISMOV.

WIMAGE

The routine WIMAGE copies an image from a file to memory.

The call is: CALL WIMAGE (CFIL) level 1, 2, 3
or: void wimage (char *cfil);
CFIL is the name of the input file.
RTIFF

The routine RTIFF copies an image from memory to a file. The image is stored in the device-independent
TIFF format.

The call is: CALL RTIFF (CFIL) level 1, 2, 3
or: void rtiff (char *cfil);
CFIL is the name of the output file. A new file version will be created for existing

files (see FILMOD).

Additional notes: - This image format can be used to export images created with DISLIN into
other software packages or to transfer them to other computer systems.

- A TIFF file created by DISLIN can be displayed with the routine WTIFF or
with the utility program DISTIF.

WTIFF
The routine WTIFF copies a TIFF file created by DISLIN from a file to memory.

The call is; CALL WTIFF (CFIL) level 1, 2, 3
or: void witiff (char *cfil);
CFIL is the name of the input file.
Note: The position of the TIFF file and a clipping window can be defined with the

routines TIFORG and TIFWIN.

TIFORG

The routine TIFORG defines the upper left corner of the screen where the TIFF file is copied to.

The call is: CALL TIFORG (NX, NY) level 1, 2, 3
or: void tiforg (int nx, int ny);
NX, NY is the upper left corner in screen coordinates.

123

TIFWIN

The routine TIFWIN defines a clipping window of the TIFF file that can be copied with the routine
WTIFF to the screen.

The call is: CALL TIFWIN (NX, NY, NW, NH) level 1,2, 3
or: void tifwin (int nx, int ny, int nw, int nh);
NX, NY is the upper left corner of the clipping window in pixels.
NW, NH are the width and height of the clipping window in pixels.
RGIF

The routine RGIF copies an image from memory to a GIF file.

The call is: CALL RGIF (CFIL) level 1,2, 3
or: void rgif (char *cfil);
CFIL is the name of the output file. A new file version will be created for existing

files (see FILMOD).

RPNG

The routine RPNG copies an image from memory to a PNG file.

The call is: CALL RPNG (CFIL) level 1, 2, 3
or: void rpng (char *cfil);
CFIL is the name of the output file. A new file version will be created for existing

files (see FILMOD).

RBFPNG

The routine RBFPNG copies an image from memory as a PNG file to a buffer.

The call is: CALL RBFPNG (CBUF, NMAX, N) level 1, 2, 3
or: int rbfpng (char *cbuf, int nmax);
CBUF is a character buffer where the image is copied to in PNG format.
NMAX defines how many bytes can be copied to CBUF. If NMAX = 0, the size of the
PNG file is returned in N without copying the PNG file to CBUF.
N is the returned length of the buffer. 80, if an error occurs.
RPPM

The routine RPPM copies an image from memory to a PPM file.

The call is: CALL RPPM (CFIL) level 1, 2, 3
or: void rppm (char *cfil);
CFIL is the name of the output file. A new file version will be created for existing

files (see FILMOD).

124

RBMP
The routine RBMP copies an image from memory to a BMP file.

The call is: CALL RBMP (CFIL) level 1, 2, 3
or: void rbmp (char *cfil);
CFIL is the name of the output file. A new file version will be created for existing

files (see FILMOD).

IMGCLP

The routine IMGCLP defines a clipping region for the routines RTIFF, RGIF, RPNG, RPPM and RBMP
for copying the graphics window to an output file.

The call is: CALL IMGCLP (NX, NY, NW, NH) level 1, 2, 3
or: void imgclp (int nx, int ny, int nw, int nh);
NX, NY is the upper left corner of the rectangle in pixels.
NW, NH are the width and height of the rectangle in pixels.
PDFBUF

The routine PDFBUF copies a PDF file from memory to an user buffer. The routine must be called after
DISFIN and PDF buffer output must be enabled with the statment CALL PDFMOD ('ON’, 'BUFFER?)
before DISINI.

The call is: CALL PDFBUF (CBUF, NMAX, N) level O
or: int pdfbuf (char *cbuf, int nmax);
CBUF is a character buffer where the PDF format is copied to.
NMAX defines how many bytes can be copied to CBUF. If NMAX = 0, the size of the
PDF file is returned in N without copying the PDF file to CBUF.
N is the returned length of the buffer. &0, if an error occurs.

9.10 Plotting the MPS Logo

Since the Max Planck Institute for Aeronomie was renamed to Max Planck Institute for Solar System
Research in July 2004, DISLIN contains a routine for plotting the new MPS logo.

MPSLOGO
The routine MPSLOGO plots the new MPS logo.

The call is: CALL MPSLOGO (NX, NY, NSIZE, COPT)
or: void mpslogo (int nx, int ny, int nsize, char *copt);
NX, NY defines the position of the MPSLOGO (upper left corner, plot coordinates).
NSIZE defines the size of the MPSLOGO. NSIZE cam have the pixel values 100, 125,
150, 175, 200 and 300.
COPT is a character option that can have the values 'NOTEXT' and 'TEXT".
Additional note: The MPS logo is included as a bitmap file into a DISLIN graphics where the

corresponding bitmap files are not included in a DISLIN distribution. They
must be copied separately to the subdirectory mps in the DISLIN directory.

125

126

Chapter 10

Business Graphics

This chapter presents business graphic routines to create bar graphs and pie charts.

10.1 Bar Graphs

BARS
BARS plots bar graphs.
The call is: CALL BARS (XRAY, Y1RAY, Y2RAY, N) level 2, 3
or: void bars (float *xray, float *ylray, float *y2ray, int n);

XRAY is an array of user coordinates defining the position of the bars on the X-axis.

Y1RAY is an array of user coordinates containing the start points of the bars on the
Y-axis.

Y2RAY is an array of user coordinates containing the end points of the bars on the
Y-axis.

N is the number of bars.

Additional notes: - Shading patterns of bars can be selected with SHDPAT or MYPAT. Shading

numbers will be incremented by 1 after every call to BARS.
- Legends can be plotted for bar graphs.
The following routines modify the appearance of bar graphs.

BARTYP

The routine BARTYP defines vertical or horizontal bars.

The call is: CALL BARTYP (CTYP) level 1, 2, 3
or: void bartyp (char *ctyp);
CTYP is a character string defining the bar type.
='VERT’ means that vertical bars will be plotted.
="'HORYI’ means that horizontal bars will be plotted. If this parameter is used, XRAY

defines the position of the bars on the Y-axis while Y1IRAY and Y2RAY define
the position of the bars on the X-axis.

='3DVERT’ defines vertical 3-D bars.

127

='3DHORY’

defines horizontal 3-D bars.
Default: CTYP = 'VERT".

CHNBAR

CHNBAR modifies colours and shading patterns for single bars.

The call is:

or:

CATT

='NONFE’
'COLOR’
'PATTERN’
'BOTH’

Additional notes:

CALL CHNBAR (CATT) level 1, 2, 3

void chnbar (char *catt);

is a character string defining bar attributes.

means that all bars will be plotted with the current colour and shading pattern.
means that the colour is changed for each bar.

means that the shading pattern is changed for each bar.

means that the colour and shading pattern is changed for each bar.
Default: CATT ='NONE'.

- The sequence of colours is: WHITE/BLACK, RED, GREEN, YELLOW,
BLUE, ORANGE, CYAN, MAGENTA.
The sequence of shading patternsis 0 - 17.
Colour and pattern cycles can be changed with CLRCYC and PATCYC.

- If the routine BARCLR is used, the changing of colours will be ignored.

BARWTH

BARWTH defines the width of the bars.

The call is:

or:

XWTH

CALL BARWTH (XWTH) level 1, 2, 3

void barwth (float xwth);

is a real number defining the width. If XWTH is positive, the bar width is
the absolute value of XWTH * (XRAY(1)-XRAY(2)). If XWTH is negative,
the absolute value of XWTH is used where XWTH must be specified in plot
coordinates.

Default: XWTH =0.75

BARMOD

BARMOD modifies the width of bars.

The call is:

or:

CMOD

COPT

CALL BARMOD (CMOD, COPT)

void barmod (char *cmod, char *copt);

level 1, 2, 3

is a character string that can have the values 'FIXED’ and '"VARIABLE'. If
CMOD ="VARIABLE’, the width of bars plotted by the routine BARS will be
variable. In that case, X\WTH should have a positive value in BARWTH since
the width of bars is calculated in a simular way as described in BARWTH.

is a character string that must contain the value 'WIDTH’. Default:

(CFIXED’, "WIDTH’).

128

BARPOS

The position of the bars is determined by the parameters XRAY, Y1RAY and Y2RAY. The routine BAR-
POS can be used to select predefined positions. The parameters XRAY, Y1RAY and Y2RAY will contain
the calculated positions.

The call is: CALL BARPOS (COPT) level 1, 2, 3
or: void barpos (char *copt);
COPT is a character string that defines the position of the bars.
='NONE’ means that the positions are defined only by the parameters in BARS.
='TICKS’ means that the bars will be centred at major ticks. XRAY must be a dummy
vector.
='AXIS’ means that vertical bars start at the X-axis and horizontal bars at the Y-axis.
Y1RAY must be a dummy vector.
='BOTH’ activates the options 'TICKS' and 'AXIS’. XRAY and Y1RAY must be

dummy arrays.
Default: COPT ='NONE’.

Bars can be plotted on top of one another if the routine BARS is called several times. To plot bars side
by side in groups, the routine BARGRP can be used.

BARGRP

The routine BARGRP puts bars with the same axis position into groups. The number of group elements
should be the same as the number of calls to the routine BARS.

The call is: CALL BARGRP (NGRP, GAP) level 1, 2, 3
or: void bargrp (int ngrp, float gap);
NGRP is the number of bars defining one group.
GAP defines the spacing between group bars. If GAP is positive, the value GAP *

W is used where W is the width of a single bar. If GAP is negative, the positive
value of GAP is used where GAP must be specified in plot coordinates.

BARCLR

The routine BARCLR defines the colours of bars. Different colours can be defined for the sides of 3-D
bars.

The call is: CALL BARCLR (IC1,1C2,1C3) level 1, 2, 3
or: void barclr (inticl, intic2, intic3);
IC1,1C2,IC3 are colour values for the front, side and top planes of 3-D bars. The value -1

means that the corresponding plane is plotted with the current colour.
Default: (-1, -1, -1).

BARBOR

The routine BARBOR defines the colour of borders plotted around the bars. By default, a border in the
current colour is plotted around 2-D bars, and borders in the foreground colour are plotted around 3-D
bars.

129

The call is:

or:

CALL BARBOR (IC) level 1, 2, 3

void barbor (int ic);

is a colour value. If IC = -1, the bar borders will be plotted with the current
colour.
Default: IC =-1

BAROPT

The routine BAROPT modifies the appearance of 3-D bars.

The call is:
or:

XF

ANG

CALL BAROPT (XF, ANG) level 1,2, 3
void baropt (float xf, float ang);
is a floatingpoint number that defines the depth of bars. IF XF = -1., the bar

width is used for the bar depth. IF XF 0., XF is interpreted as the bar depth
specified in plot coordinates.

defines an angle measured in degrees between the front and side planes of 3-D
bars.
Default: (-1., 45.).

LABELS

The routine LABELS defines labels for bar graphs.

The call is:

or:

CLAB

'NONE’
'SECOND’
'FIRST’
'‘DELTA

CALL LABELS (CLAB, 'BARS’) level 1, 2, 3
void labels (char *clab, "BARS");

is a character defining the labels.
means that no labels will be plotted.
means that Y2RAY is used for labels.
means that Y1RAY is used for labels.

means that the difference vector (Y2RAY - Y1RAY) is used for labels.
Default: CLAB = 'NONE'.

LABPOS

The routine LABPOS defines the position of the labels.

The call is:

or:

CPOS

'INSIDE’
'OUTSIDE’
'LEFT’
'RIGHT’
'CENTER’

CALL LABPOS (CPOS, 'BARS)) level 1,2, 3
void labpos (char *cpos, "BARS");

is a character string that defines the position of the labels.
means inside at the end of a bar.

means outside at the end of a bar.

defines the upper left side.

defines the upper right side.

selects the centre of a bar.

130

='AUTO’ means 'INSIDE’ if labels are smaller than the bar width, otherwise 'OUT-
SIDE".
Default: CPOS ="AUTO".

LABDIG

The routine LABDIG defines the number of decimal places in the labels.

The call is: CALL LABDIG (NDIG, 'BARS") level 1,2, 3
or: void labdig (int ndig, "BARS");
NDIG is the number of decimal places ¢1).

Default: NDIG =1

LABCLR

The routine LABCLR defines the colour of labels.

The call is: CALL LABCLR (NCLR, 'BARS) level 1, 2, 3
or: void labclr (int nclr, "/BARS™);
NCLR is a colour value. If NCLR = -1, the bar labels will be plotted with the current
colour.

Default: NCLR =-1

131

10.2 Pie Charts

PIEGRF

PIEGRF plots pie charts.

The call is:
or:
CBUF
NLIN
XRAY
NSEG

Additional notes:

CALL PIEGRF (CBUF, NLIN, XRAY, NSEG) level 1
void piegrf (char *cbuf, int nlin, float *xray, int nseg);
is a character string containing text lines for segment labels. More than one line

can be defined for labels. CBUF must be created with LEGLIN after calling
LEGINLI. If NLIN is O in the parameter list, CBUF can be a dummy variable.

is the number of text lines used for one segment label.

is an array of user coordinates.

is the dimension of XRAY.

The centre and the size of pies is defined by a region that can be changed with
the routines AXSPOS and AXSLEN.

PIEGRF sets the level to 2. Titles and legends can be plotted after PIEGRF is
called.

Segment labels can contain several lines of text and the data values specified
in PIEGRF. Data values can also be converted to percent values.

Segment labels are contained within a box where the thickness of the border
can be changed with FRAME.

The following routines modify the appearance of pie charts.

PIETYP

The routine PIETYP defines 2-D or 3-D pie charts.

The call is:
or:

CTYP
= 2D’
='3D’

CALL PIETYP (CTYP) level 1, 2, 3
void pietyp (char *ctyp);

is a character string defining the pie type.
defines a 2-D pie chart.

defines a 3-D pie chart.
Default: CTYP ='2D".

CHNPIE

CHNPIE defines colours and shading patterns for pie graphs.

The call is:

or:

CATT
='NONFE’

='COLOR’

CALL CHNPIE (CATT) level 1, 2, 3
void chnpie (char *catt);

is a character string defining segment attributes.

means that all pie segments will be plotted with the current colour and shading
pattern.

means that every segment will have a different colour.

132

'PATTERN’
'BOTH’

Additional note:

means that every segment will have a different shading pattern.

means that every segment will have both a different colour and shading pattern.
Default: CATT ='PATTERN".

The sequence of colours is: WHITE/BLACK, RED, GREEN, YELLOW,
BLUE, ORANGE, CYAN, MAGENTA.

The sequence of shading patternsis 0 - 17.

Colour and pattern cycles can be changed with CLRCYC and PATCYC.

LABELS

LABELS selects data or percent values used for segment labels.

The call is;

or:

CLAB

'NONE’
'PERCENT’
'DATA
'BOTH’

CALL LABELS (CLAB, 'PIE") level 1, 2, 3
void labels (char *clab, "PIE");

is a character string that defines the values used for segment labels.
means that data values will not be displayed.

means that values will be plotted as percentages.

means that the data values specified in PIEGRF will be plotted.

means both 'PERCENT’ and 'DATA.
Default: CDOC ='PERCENT'.

LABPOS

LABPOS determines the position of segment labels.

The call is;

or:

CPOS

'INTERNAL

'EXTERNAL
'ALIGNED’

CALL LABPOS (CPOS, 'PIE) level 1, 2, 3
void labpos (char *cpos, "PIE");

is a character string defining the position of labels.

means that labels will be plotted inside pie segments. If labels are too big, they
will be plotted outside.

means that segment labels will be plotted outside pie segments.

means that segment labels will be plotted outside pie segments and aligned.
Default: CPOS ="INTERNAL.

LABTYP

LABTYP defines the position of text lines in segment labels.

The call is:

or:

CTYP

'CENTER’
'LEFT
'RIGHT’
'OUTWARDS’

CALL LABTYP (CTYP, 'PIE’) level 1, 2, 3
void labtyp (char *ctyp, "PIE");

is a character string that defines how text lines are justified.
centres text lines.

left-justifies text lines.

right-justifies text lines.

left-justifies text lines on the left side of pies and right-justifies text lines on
the right side of pies.

133

=’INWARDS’ right-justifies text lines on the left side of pies and left-justifies text lines on
the right side of pies.
Default: CTYP ='CENTER’.

LABDIG

The routine LABDIG defines the number of decimal places used in segment labels.

The call is: CALL LABDIG (NDIG, CDIG) level 1, 2, 3
or: void labdig (int ndig, char *cdig);
NDIG is the number of decimal places ¢1).
CDIG is a character string selecting the data values.
='PIE’ defines the number of decimal places used for percent and data values.
='PERCENT’ defines the number of decimal places used for percent values.
= 'DATA defines the number of decimal places used for data values.

Default: (1, 'PIE’).

LABCLR
The routine LABCLR defines the colour of labels.

The call is: CALL LABCLR (NCLR, 'PIE") level 1, 2, 3
or: void labclr (int nclr, "PIE");
NCLR is a colour value. If NCLR = -1, the pie labels will be plotted with the current
colour.

Default: NCLR =-1

PIECLR

The routine PIECLR defines colours for single pies. Different colours can be defined for the top and front
sides of 3-D pies. PIECLR has no effect if the routine CHNPIE is called with the parameters 'COLOR’
or 'BOTH".

The call is: CALL PIECLR (NC1RAY, NC2RAY, N) level 1, 2, 3
or: void pieclr (int nclray, int nc2ray, int n);
NC1RAY, NC2RAY are integer arrays containing colour values for the top and front sides of pies.
The value -1 means that the current colour is used.
N is the dimension of NC1RAY and NC2RAY.
PIEBOR

The routine PIEBOR defines the colour of borders plotted around the pies. By default, a border in the
current colour is plotted around 2-D pies, and borders in the foreground colour are plotted around 3-D
pies.

The call is: CALL PIEBOR (IC) level 1, 2, 3
or: void piebor (intic);

134

IC is a colour value. If IC = -1, the pie borders will be plotted with the current

colour.
Default: IC =-1
PIEOPT
The routine PIEOPT modifies the appearance of 3-D pies.
The call is: CALL PIEOPT (XF, ANG) level 1, 2, 3
or: void pieopt (float xf, float ang);
XF is a scaling number that defines the thickness of pies. The thickness is set to
XF * radius.
ANG defines an view angle measured in degrees.
Default: (0.2, 45.).
PIELAB

The routine PIELAB defines character strings that can be plotted on the left or right side of data values
within segment labels.

The call is: CALL PIELAB (CLAB, CPOS) level 1, 2, 3
or: void pielab (char *clab, char *cpos);
CLAB is a character string displayed in segment labels.
CPOS is a character string that defines the position of CLAB.
='LEFT means that CLAB will be plotted on the left side of data values.
='RIGHT’ means that CLAB will be plotted on the right side of data values.
Additional note: If percent and data values are plotted in segment labels, PIELAB is only used

for data values.

PIEEXP
Pie segments will be offset by 8% of the radius if PIEEXP is called.
The call is: CALL PIEEXP level 1, 2, 3
or: void pieexp ();
Additional note: Single segments will be offset if the corresponding values in PIEGRF are neg-
ative.
PIEVEC
PIEVEC modifies the arrows plotted between segments and labels that lie outside of segments.
The call is: CALL PIEVEC (IVEC, COPT) level 1, 2, 3
or: void pievec (int ivec, char *copt);
IVEC defines the arrow head (see VECTOR).
COPT is a character string that defines the vector plotted between segments and la-
bels.
='NONFE’ suppresses vectors.
='STRAIGHT’ means that straight vectors will be plotted.
='BROKEN’ means that broken vectors will be plotted.

Default: (2301, 'BROKEN?).

135

USRPIE

USRPIE is a user-defined subroutine that can modify pie charts such as suppressing certain labels. US-
RPIE is called by PIEGRF for each segment.

The call is: CALL USRPIE (ISEG, XDAT, XPER, NRAD, NOFF, ANGLE,
NVY, IDRW, IANN) level 1, 2,3
or: void usrpie(int iseg, float xdat, float xper, int *nrad, int *noff, float *angle,

int *nvy, int *idrw, int *iann);

ISEG is the segment index (starting with 1).

XDAT is the data value of the segment as specified in PIEGRF.

XPER is the percent value of XDAT.

NRAD is the segment radius in plot coordinates.

NOFF is the segment offset in plot coordinates (default: 0).

ANGLE is the offset angle measured in degrees in a counter-clockwise direction. The
default value is the angle which bisects the segment.

NVY shifts the segment label in the Y-direction by NVY plot coordinates.

IDRW defines the plotting of segments. If IDRW = 0, plotting will be suppressed
(default: 1).

IANN defines the plotting of labels. If IANN = 0, labels will be suppressed (default:
1).

Additional note: The first 3 parameters of USRPIE are only given for information and cannot

be changed by the user.

10.3 Examples

PROGRAM EX10 1
DIMENSION X(9),Y(9),Y1(9),Y2(9),Y3(9)
CHARACTER*60 CTIT,CBUF*24

DATA X/1.,2.3.,4.5.,6.,7.,8.,9./ Y/9*0./

* Y1/1.,1.5,2.5,1.3,2.0,1.2,0.7,1.4,1.1/

* Y2/2.,2.7,3.5,2.1,3.2,1.9,2.0,2.3,1.8/

* Y3/4.,3.5,4.5,3.7,4.,2.9,3.0,3.2,2.6/
NYA=2700

CTIT="Bar Graphs (BARS)’

CALL SETPAG('DA4P)
CALL DISINI

CALL PAGERA

CALL COMPLX

CALL TICKS(1,X)

CALL INTAX

CALL AXSLEN(1600,700)
CALL TITLIN(CTIT,3)

136

CALL LEGINI(CBUF,3,8)

CALL LEGLIN(CBUF,FIRST’1)
CALL LEGLIN(CBUF,'SECOND’,2)
CALL LEGLIN(CBUF, ' THIRD',3)
CALL LEGTIT()

CALL SHDPAT(5)

DO 1=1,3
IF(.GT.1) CALL LABELS(NONE’,X))
CALL AXSPOS(300,NYA-(I-1)*800)

CALL GRAF(0.,10.,0.,1.,0.,5.,0.,1.)

IF(LEQ.1) THEN
CALL BARGRP(3,0.15)
CALL BARS(X,Y,Y1,9)
CALL BARS(X,Y,Y2,9)
CALL BARS(X,Y,Y3,9)
CALL RESET(BARGRP))
ELSE IF(L.EQ.2) THEN
CALL HEIGHT(30)
CALL LABELS(DELTA',BARS)
CALL LABPOS(CENTER’,/BARS’)
CALL BARS(X,Y,Y1,9)
CALL BARS(X,Y1,Y2,9)
CALL BARS(X,Y2,Y3,9)
CALL HEIGHT(36)
ELSE IF(I.EQ.3) THEN
CALL LABELS(SECOND’,BARS)
CALL LABPOS(OUTSIDE’,BARS))
CALL BARS(X,Y,Y1,9)
END IF

IF(.LNE.3) CALL LEGEND(CBUF,7)
IF(.LEQ.3) THEN

CALL HEIGHT(50)

CALL TITLE
END IF

CALL ENDGRF
END DO

CALL DISFIN
END

137

Bar Graphs (BARS)

| I | I | I | I | I | I | I I | I | I | I | I m
A a

~ SoR Y= pom| TRLLL

i — 5 — —_ — O
) ShE : e s
4)

Oy AR gy e
77171117

5 INNE S
77777777

: AR S ©
(7777777 TIIT

3 EINNY: S o
(77777777777

gk / m\\ 2NB RSSO
77 IITIIIIIIIL

% \m\ E m : §§§|3
y

w N |
(777777777777

2 \\i\\\ N2 AOSSSSSH ~

T o
™ N — <t ™ Q — <t ™ aV — o

Figure 10.1: Bar Graphs

138

PROGRAM EX10_2
DIMENSION XRAY(5)
CHARACTER*60 CTIT,CBUF*40
DATA XRAY/1.,2.5,2.,2.7,1.8/

CTIT='Pie Charts (PIEGRF)
NYA=2800

CALL SETPAG('DA4P)
CALL DISINI

CALL PAGERA

CALL COMPLX

CALL AXSLEN(1600,1000)
CALL TITLIN(CTIT,2)

CALL LEGINI(CBUF,5,8)

CALL LEGLIN(CBUF,FIRST’1)
CALL LEGLIN(CBUF,'SECOND’,2)
CALL LEGLIN(CBUF, THIRD’,3)
CALL LEGLIN(CBUF,’FOURTH' 4)
CALL LEGLIN(CBUF,FIFTH’,5)

Selecting shading patterns
CALL PATCYC(1,7)
CALL PATCYC(2,4)
CALL PATCYC(3,13)
CALL PATCYC(4,3)
CALL PATCYC(5,5)

DO I=1,2
CALL AXSPOS(250,NYA-(I-1)¥1200)
IF(.LEQ.2) THEN

CALL LABELS(DATA’,PIE’)
CALL LABPOS(EXTERNAL’,PIE’)
END IF

CALL PIEGRF(CBUF,1,XRAY,5)

IF(LEQ.2) THEN
CALL HEIGHT(50)
CALL TITLE

END IF

CALL ENDGRF

END DO
CALL DISFIN
END

139

THIRD

Pie Charts (PIEGRF)

SECOND

¥ L 25

&
2.0 ,o:’ /‘ 9

N\
PSSRSO /888
NN N £.9.0,.0.0.0. 0,04 FIRST
IR <
REXRIICR AN
ICRIRIKIALNN
KRR

PRSREIRLRLRLS
KRRLLLRLRKKY

2.7

FOURTH

SECOND
THIRD 25.0 7%
20.0 %
FIRST
10.0 %
FOURTH
27 0 % FIFTH
' 18.0 %

Figure 10.2: Pie Charts

140

Chapter 11

3-D Colour Graphics

11.1 Introduction

This chapter presents subroutines that plot coloured surfaces in three dimensions. Coloured surfaces are
easy to interpret and show the full range of data points. A data point is plotted as a coloured rectangle
where the X- and Y-coordinates determine the position of the rectangle and the Z-coordinate defines the
colour. Colours are calculated from a scaled colour bar which is, by default, arranged as a rainbow.

11.2 Plotting Coloured Axis Systems

GRAF3

The routine GRAF3 plots a 3-D axis system where the Z-axis is plotted as a colour bar.

The call is: CALL GRAF3 (XA, XE, XOR, XSTEP, YA, YE, YOR, YSTEP,
ZA, ZE, ZOR, ZSTEP) level 1
or: void graf3 (float xa, float xe, float xor, float xstep,

float ya, float ye, float yor, float ystep,
float za, float ze, float zor, float zstep);

XA, XE are the lower and upper limits of the X-axis.

XOR, XSTEP are the first X-axis label and the step between labels.

YA, YE are the lower and upper limits of the Y-axis.

YOR, YSTEP are the first Y-axis label and the step between labels.

ZA, ZE are the lower and upper limits of the Z-axis.

ZOR, ZSTEP are the first Z-axis label and the step between labels.

Additional note: GRAF3 must be called from level 1 and sets the level to 3. For additional

notes, the user is referred to the routine GRAF in chapter 4.

11.3 Secondary Colour Bars

GRAF3 plots a vertical colour bar on the right side of a 3-D axis system which can be shifted with the
routines VKXBAR and VKYBAR or suppressed with the routine NOBAR. To plot horizontal colour bars
at global positions, the routines ZAXIS and ZAXLG can be used. ZAXIS plots a linearly and ZAXLG a
logarithmically scaled colour bar.

141

The call is: CALL ZAXIS (A, B, OR, STEP, NL, CSTR, IT, NDIR, NX, NY)

level 1, 2,3
or: void zaxis (float a, float b, float or, float step, int nl, char *cstr, int nx, int ny);
A B are the lower and upper limits of the colour bar.
OR, STEP are the first label and the step between labels.
NL is the length of the colour bar in plot coordinates.
CSTR is a character string containing the axis name.
IT indicates how ticks, labels and the axis name are plotted. If IT = 0, they

are plotted in a clockwise direction. If IT = 1, they are plotted in a counter-
clockwise direction.

NDIR defines the direction of the colour bar. If NDIR = 0, a vertical colour bar will
be plotted; if NDIR = 1, a horizontal colour bar will be plotted.

NX, NY are the plot coordinates of the lower left corner.

Analog: ZAXLG plots a logarithmically scaled colour bar.

Additional note: The user is referred to the notes on secondary axes in chapter 4.

11.4 Plotting Data Points

The routines CURVE3, CURVX3, CURVY3, CRVMAT and CRVTRI plot three-dimensional data points.
CURVES plots random points from X-, Y- and Z-arrays, CURVY3 plots points as columns, CURVX3
plots data points as rows, CRVMAT plots a coloured surface according to a matrix while CRVTRI plots
the surface of the Delaunay triangulation of the points.

The calls are: CALL CURVES (XRAY, YRAY, ZRAY, N) level 3
CALL CURVX3 (XRAY, Y, ZRAY, N) level 3
CALL CURVY3 (X, YRAY, ZRAY, N) level 3
CALL CRVMAT (ZMAT, IXDIM, IYDIM, IXPTS, IYPTS) level 3
CALL CRVTRI (XRAY, YRAY, ZRAY, N, level 3
I1RAY, I2RAY,I3RAY, NTRI)
or: void curve3 (float *xray, float *yray, float *zray, int n);

void curvx3 (float *xray, float y, float *zray, int n);
void curvy3 (float x, float *yray, float *zray, int n);
void crvmat (float *zmat, int ixdim, int iydim, int ixpts, int iypts);

void crvtri (float *xray, float *yray, float *zray, int n,
int *ilray, int *i2ray, int *i3ray, int ntri);

XRAY is an array containing the X-coordinates of data points.
YRAY is an array containing the Y-coordinates of data points.
ZRAY is an array containing the Z-coordinates of data points.
N is the number of data points.

X is the X-position of a column of data points.

Y is the Y-position of a row of data points.

142

ZMAT is a matrix of the dimension (IXDIM, IYDIM) containing Z-coordinates. The
coordinates correspond to a linear grid that overlays the axis system. If XA,
XE, YA and YE are the axis limits in GRAF3 or values defined with the routine
SURSZE, the relationship between the grid points and the matrix elements can
be described by the formula:
ZMAT(1,J) = F(X,Y) where
X=XA+(I-1)*(XE-XA)/(XDIM-1) 1=1,.IXDIM and
Y=YA+J-1)*(YE-YA)/(IYDIM-1) J=1,.,IYDIM.

IXDIM, IYDIM define the dimension of ZMATX 2).

IXPTS, IYPTS are the number of interpolation steps between grid lied), CRVMAT can
interpolate points linearly.

ILRAY, I2RAY, I3RAY is the Delaunay triangulation of the points (XRAY, YRAY) calculated by the
routine TRIANG.

NTRI is the number of triangles in I1IRAY, I2RAY and I3RAY.

CURVES3, CURVY3 and CRVMAT must be called after GRAF3 from level 3.

- The size of coloured rectangles can be defined with the routine SETRES or
calculated automatically by DISLIN using the routine AUTRES.

Additional notes:

- Z-coordinates that lie outside of the axis scaling will be plotted with the colour
0 if they are smaller than the lower limit, or with the colour 255 if they are
greater than the upper limit. To reduce computing time and the size of plotfiles,
the plotting of points with the colour 0 can be suppressed with the routine
NOBGD.

- The routines CONMAT and SURMAT are analogs to CRVMAT and plot con-
tours and surfaces of space.

- If SHDMOD ('SMOOTH’, 'SURFACE) is called before CRVTRI, the trian-
gles will be plotted with interpolated colours. For that case, a raster format is
needed as output format.

11.5 Parameter Setting Routines

SETRES
SETRES defines the size of rectangles plotted by CURVE3, CURVY3 and CRVMAT.

The call is: CALL SETRES (NPB, NPH) level 1, 2, 3
or: void setres (int npb, int nph);
NPB, NPH are the width and height of rectangles in plot coordinate§).

Default: (1,1).

AUTRES

With a call to AUTRES, the size of coloured rectangles will be automatically calculated by GRAF3 or
CRVMAT.

The call is: CALL AUTRES (IXDIM, IYDIM) level 1

or: void autres (int ixdim, int iydim);

143

IXDIM, IYDIM are the number of data points in the X- and Y-direction.

SHDMOD

Normally, the routines CURVE3, CURVX3, CURVY3 and CRVMAT plot coloured rectangles, but a
symbol mode can be enabled with the routine SHDMOD. The symbols used by the routines above and
the size of the symbols can be set with the routines MARKER and HSYMBL.

The call is: CALL SHDMOD (COPT, 'CURVE’) level 1, 2, 3
or: void shdmod (char *copt, "CURVE");
COPT is a character string that can have the values 'RECT’ and 'SYMB'.

Default: COPT ="RECT".

AX3LEN

The routine AX3LEN defines the axis lengths of a coloured axis system.

The call is: CALL AX3LEN (NXL, NYL, NZL) level 1, 2, 3
or: void ax3len (int nxl, int nyl, int nzl);
NXL, NYL, NZL are the axis lengths in plot coordinates.
WIDBAR

The routine WIDBAR defines the width of a colour bar.

The call is: CALL WIDBAR (NZB) level 1, 2, 3
or: void widbar (int nzb);
NZB is the width in plot coordinates. Default NZB = 85
VKXBAR

The routine VKXBAR defines horizontal shifting of colour bars. The distance between the colour bar
and the axis system is, by default, 85 plot coordinates.

The call is: CALL VKXBAR (NVFX) level 1, 2, 3
or: void vkxbar (int nvfx);
NVFX is an integer that defines the shifting. If NVFX is positive, the colour bar will

be shifted right; if NVFX is negative the colour bar will be shifted left.
Default: NVFX =0

VKYBAR

The routine VKYBAR defines a vertical shifting of colour bars.

The call is: CALL VKYBAR (NVFY) level 1, 2, 3
or: void vkybar (int nvfy);
NVFY is an integer that defines the shifting. If NVFY is positive, the colour bar will

be shifted up; if NVFY is negative, the colour bar will be shifted down.
Default: NVFY =0

144

NOBAR
The routine NOBAR instructs DISLIN to suppress the plotting of colour bars.

The call is; CALL NOBAR level 1, 2, 3
or: void nobar ();

COLRAN

This routine defines the range of colours used for colour bars. By default, the range is 1 to 254.

The call is: CALL COLRAN (NCA, NCE) level 1, 2, 3
or: void colran (int nca, int nce);
NCA, NCE are colour numbers in the range 1 to 254. Default: (1, 254).
NOBGD

With a call to the routine NOBGD, the plotting of points with the colour O will be suppressed. This
reduces plotting time and the size of plotfiles.
The call is: CALL NOBGD level 1, 2, 3

or: void nobgd ();

EXPZLB

The routine EXPZLB expands the numbering of a logarithmically scaled Z-axis to the next order of
magnitude that lies up or down the axis limits. The scaling of the colour bar will not be changed. This
routine is useful if the range of the Z-axis scaling is smaller than 1 order of magnitude.

The call is: CALL EXPZLB (CSTR) level 1, 2, 3
or: void expzlb (char *cstr);
CSTR is a character string defining the expansion of the Z-axis numbering.
='NONE’ means that the numbering will not be expanded.
='FIRST means that the numbering will be expanded downwards.
='BOTH’ means that the numbering will be expanded down- and upwards.

Default: CSTR ='NONE’.

11.6 Elementary Plot Routines

The following routines plot coloured rectangles and pie sectors. They use the hardware features of a
colour graphics system or PostScript printer.

RECFLL

The routine RECFLL plots a coloured rectangle where the position is determined by the upper left corner.

The call is: CALL RECFLL (NX, NY, NW, NH, NCOL) level 1, 2, 3
or: void recfll (int nx, int ny, int nw, int nh, int ncol);
NX, NY are the plot coordinates of the upper left corner.

145

NW, NH are the width and height in plot coordinates.
NCOL is a colour value.

POINT

The routine POINT plots a coloured rectangle where the position is determined by the centre.

The call is: CALL POINT (NX, NY, NW, NH, NCOL) level 1, 2, 3
or: void point (int nx, int ny, int nw, int nh, int ncol);
NX, NY are the plot coordinates of the centre point.
NW, NH are the width and height in plot coordinates.
NCOL is a colour value.
RLPOIN

The routine RLPOIN plots a coloured rectangle where the position is specified in user coordinates.

The call is: CALL RLPOIN (X, Y, NW, NH, NCOL) level 2, 3

or: void rlpoin (float x, float y, int nw, int nh, int ncol);
Additional note: RLPOIN clips rectangles at the borders of an axis system.

SECTOR
The routine SECTOR plots coloured pie sectors.
The call is: CALL SECTOR (NX, NY, NR1, NR2, ALPHA, BETA, NCOL)
level 1, 2, 3

or: void sector (int nx, int ny, int nrl, int nr2, float alpha, float beta, int ncol);
NX, NY are the plot coordinates of the centre point.
NR1 is the interior radius.
NR2 is the exterior radius.
ALPHA, BETA are the start and end angles measured in degrees in a counter-clockwise direc-

tion.

NCOL is a colour value.
Example: CALL SECTOR (100, 100, 0, 50, 0., 360., NCOL) plots a circle around the

centre (100,100) with the radius 50 and the colour NCOL.

RLSEC

The routine RLSEC plots coloured pie sectors where the centre and the radii are specified in user coor-
dinates.

The call is: CALL RLSEC (X, Y, R1, R2, ALPHA, BETA, NCOL)
level 2, 3
or: void risec (float x, float y, float r1, float r2, float alpha, float beta, int ncol);
Additional Notes: - For the conversion of the radii to plot coordinates, the scaling of the X-axis is
used.

- Sectors plotted by RLSEC will not be cut off at the borders of an axis system.

146

11.7 Conversion of Coordinates

The function NZPOSN and the subroutine COLRAY convert user coordinates to colour values.

NZPOSN

The function NZPOSN converts a Z-coordinate to a colour number.

The call is;

or:

Additional note:

ICLR = NZPOSN (2) level 3
int nzposn (float z);

If Z lies outside of the axis limits and Z is smaller than the lower limit, NZ-
POSN returns the value 0 and the routine returns the value 255 if Z is greater
than the upper limit.

COLRAY

The routine COLRAY converts an array of Z-coordinates to colour values.

The call is;
or:

ZRAY

NRAY

N

CALL COLRAY (ZRAY, NRAY, N) level 3

void colray (float *zray, int *nray, int n);

is an array of Z-coordinates.
is an array of colour numbers calculated by COLRAY.
is the number of coordinates.

147

11.8 Example

*

PROGRAM EX11_ 1
PARAMETER (N=100)
DIMENSION ZMAT(N,N)

FP1=3.1415927/180.
STEP=360./(N-1)
DO I=1,N

X=

(I-1.)*STEP

DO J=1,N

Y=(J-1.)*STEP
ZMAT(1,3)=2*SIN(X*FPI)*SIN(Y*FPI)

END DO

END

DO

CALL METAFL(POST)

CALL DISINI

CALL PAGERA

CALL PSFONT('Times-Roman’)

CALL TITLIN(3-D Colour Plot of the Function’,1)
CALL TITLINCF(X,Y) = 2 * SIN(X) * SIN(Y)',3)
CALL NAME('X-axis’,’X’)

CALL NAME(Y-axis',’Y")

CALL NAME('Z-axis’,’Z’)

CALL INTAX

CALL AUTRES(N,N)

CALL AXSPOS(300,1850)
CALL AX3LEN(2200,1400,1400)

CALL GRAF3(0.,360.,0.,90.,0.,360.,0.,90.,

-2.2.-2.1)

CALL CRVMAT(ZMAT,N,N,1,1)
CALL HEIGHT(50)

CALL PSFONT('Palatino-Boldltalic”)
CALL TITLE

CALL DISFIN

END

148

09¢€

SIxe-X
0L¢ 08T 06

(AINIS « (XNIS « 2 = (A'X)4
uoi1oun4 ayl Jo 10|d Inojod a-¢€

06

08T m

0L¢

09€

Figure 11.1: 3-D Colour Plot

149

150

Chapter 12

3-D Graphics

This chapter describes routines for 3-D coordinate systems. Axis systems, curves and surfaces can be
drawn from various angular perspectives. All 2-D plotting routines can be used in a 3-D axis system.

12.1 Introduction

Three-dimensional objects must be plotted in a 3-D box which is projected onto a two-dimensional region
on the page. The 3-D box contains an X-, Y- and Z-axis with the Z-axis lying in the vertical direction.
The units of the axes are called absolute 3-D coordinates. They are abstract and have no relation to any
physical units. An axis system is used to scale the 3-D box with user coordinates and to plot axis ticks,
labels and names.

The position and size of a projected 3-D box depends upon the position and size of the region onto
which the box is projected, and the point from which the box is viewed. The region is determined by the
routines AXSPOS and AXSLEN where the centre of the 3-D box will be projected onto the centre of the
region.

AXIS3D

The routine AXIS3D defines the lengths of the 3-D box. For the lengths, any positive values can be
specified; DISLIN uses only the ratio of the values to calculate the axis lengths.

The call is: CALL AXIS3D (X3AXIS, Y3AXIS, Z3AXIS) level 1, 2, 3
or: void axis3d (float x3axis, float y3axis, float z3axis);

X3AXIS is the length of the X-axis in absolute 3-D coordinated).

Y3AXIS is the length of the Y-axis in absolute 3-D coordinated)).

Z3AXIS is the length of the Z-axis in absolute 3-D coordinate<j.

Default: (2., 2., 2.)

Additional note: The lower left corner of the 3-D box is the point (-X3AXIS/2, -Y3AXIS/2,
-Z3AXIS/2); the upper right corner is the point (X3AXIS/2, Y3AXIS/2,
Z3AXIS/2). The centre pointis (0., 0., 0.).

151

The following figure shows the default 3-D box:

(-1/-1/1)

P—RS

(-1/-1/-1)

(-1/1/1)

(1/1/1)

(-1/1/-1) (1/-1/1)

(1/1/-1)

(1/-1/-1)
Figure 12.1: Default 3-D Box

12.2 Defining View Properties

The following routines define view properties such as viewpoint, target point, view angle and view

orientation.

VIEW3D

The routine VIEW3D defines the viewpoint. The viewpoint is a point in space from which the 3-D box
is observed and determines how objects are projected onto a 2-D plane. Objects will appear small if the
viewpoint is far away. As the viewpoint is moved closer to the 3-D box, the objects will appear larger.

The call is:
or:

XVU, YVU, ZVU

Cvu

Additional note:

CALL VIEW3D (XVU, YVU, ZVU, CVU) level 1, 2, 3

void view3d (float xvu, float yvu, float zvu, char *cvu);

define the position of the viewpoint. If CVU =ABS’, the parameters must
contain absolute 3-D coordinates, if CVU = 'USER’, they must contain user
coordinates and if CVU = 'ANGLE’, the viewpoint must be specified by two
angles and a radius. In the latter case, XVU is a rotation angle, YVU is the
angle between the line from the viewpoint to the centre of the 3-D box and the
horizontal direction and ZVU is the distance of the viewpoint from the centre
of the 3-D box. XVU and YVU must be specified in degrees and ZVU in
absolute 3-D coordinates.

is a character string defining the meaning of XVU, YVU and ZVU.
Default: (2*X3AXIS, -2.5*Y3AXIS, 2*Z3AXIS, 'ABS’).

The viewpoint must be placed outside the 3-D box. If the point lies inside,
DISLIN will print a warning and use the default viewpoint.

152

VFOC3D
The routine VFOC3D defines the focus point. It specifies the location in the 3-D box that the camera
points to.
The call is: CALL VFOC3D (XFOC, YFOC, ZFOC, CVU) level 1, 2,3
or: void vfoc3d (float xfoc, float yfoc, float zfoc, char *cvu);
XFOC, YFOC, ZFOC define the position of the focus point. If CVU ='ABS’, the parameters must

contain absolute 3-D coordinates, if CVU = 'USER’, they must contain user
coordinates.

Cvu is a character string defining the meaning of XFOC, YFOC and ZFOC.
Default: (0., 0., 0., '’ABS’).

VUP3D

The rotation of the camera around the viewing axis is defined by an angle.

The call is: CALL VUP3D (ANG) level 1, 2, 3
or: void vup3d (float ang);
ANG defines the rotation angle in degrees. The camera is rotated in a clockwise
direction.

Default: ANG =0.

VANG3D

VANG3D defines the view angle. It specifies the field of view of the lens.

The call is: CALL VANG3D (ANG) level 1, 2, 3
or: void vang3d (float ang);
ANG defines the view angle in degrees.

Default: ANG = 28.

12.3 Plotting Axis Systems
GRAF3D

The routine GRAF3D plots a three-dimensional axis system. This routine must be called before any
objects can be plotted in the 3-D box.

The call is: CALL GRAF3D (XA, XE, XOR, XSTEP, YA, YE, YOR, YSTEP,
ZA, ZE, ZOR, ZSTEP) level 1
or: void graf3d (float xa, float xe, float xor, float xstep,

float ya, float ye, float yor, float ystep,
float za, float ze, float zor, float zstep);

XA, XE are the lower and upper limits of the X-axis.
XOR, XSTEP are the first X-axis label and the step between labels.
YA, YE are the lower and upper limits of the Y-axis.
YOR, YSTEP are the first Z-axis label and the step between labels.
ZA, ZE are the lower and upper limits of the Z-axis.

153

ZOR, ZSTEP are the first Z-axis label and the step between labels.

Additional notes: - GRAF3D must be called from level 1 and sets the level to 3.

- By default, the labels and axis titles on the 3-D box are also plotted with a
perspective projection. This default mode does not allow the plotting of hard-
ware fonts and switches automatically to the DISLIN vector font COMPLX if
a hardware font is enabled. Other modes for plotting labels and axis titles that
allow using of hardware fonts can be defined with the routine LABL3D.

- In default mode, GRAF3D suppresses the plotting of certain start labels to
avoid overplotting of labels. This option can be disabled with the statement
CALL FLAB3D.

- The user is referred to the notes on GRAF in chapter 4.

12.4 Plotting a Border around the 3-D Box

BOX3D
The routine BOX3D plots a border around the 3-D box.

The call is: CALL BOX3D level 3
or: void box3d ();

12.5 Plotting Grids

GRID3D
The routine GRID3D plots a grid in the 3-D box.

The call is: CALL GRID3D (IGRID, JGRID, COPT) level 3
or: void grid3d (int igrid, int jgrid, char *copt);
IGRID is the number of grid lines between labels in the X-direction (or Y-direction
for the YZ-plane).
JGRID is the number of grid lines between labels in the Z-direction (or Y-direction for
the XY-plane).
COPT is a character string which defines where the grid will be plotted.
="ALL will plot a grid in the XY-, XZ- and YZ-plane.
='BACK’ will plot a grid in the XZ- and YZ-plane.
='BOTTOM’ will plot a grid in the XY-plane.

12.6 Plotting Curves
CURV3D

The routine CURV3D is similar to CURVE and connects data points with lines or marks them with
symbols.

The call is: CALL CURV3D (XRAY, YRAY, ZRAY, N) level 3
or: void curv3d (float *xray, float *yray, float *zray, int n);

154

XRAY is an array containing the X-coordinates of data points.

YRAY is an array containing the Y-coordinates of data points.

ZRAY is an array containing the Z-coordinates of data points.

N is the number of data points.

Additional note: Data points will be interpolated linearly. The user is referred to the notes on

CURVE in chapter 5.

12.7 Plotting a Surface Grid from a Function

SURFUN
The routine SURFUN plots a surface grid of the three-dimensional function Z = F(X,Y).

The call is: CALL SURFUN (ZFUN, IXP, XDEL, IYP, YDEL) level 3

or: void surfun ((float) (*zfun()), int ixp, float xdel, int iyp, float ydel);

ZFUN is the name of a FUNCTION subroutine that returns the function value for a
given X- and Y-coordinate. ZFUN must be declared EXTERNAL in the calling
program.

XDEL, YDEL are the distances between grid lines in user coordinates. XDEL and YDEL

determine the density of the surface plotted by SURFUN.

IXP, IYP are the number of points between grid lines interpolated by SUREUO) (If
IXP =0, surface lines in the X-direction will be suppressed; if IYP =0, surface
lines in the Y-direction will be suppressed.

12.8 Plotting a Surface Grid from a Matrix

The routines SURMAT and SURFCE plot surface grids of the three-dimensional function Z = F(X,Y)
where the function values are given in the form of a matrix. SURMAT assumes that the function values
correspond to a linear grid in the XY-plane while SURFCE can be used with non linear grids.

The calls are: CALL SURMAT (ZMAT, IXDIM, IYDIM, IXPTS, IYPTS) level 3
CALL SURFCE (XRAY, IXDIM, YRAY, IYDIM, ZMAT) level 3
or: void surmat (float *zmat, int ixdim, int iydim, int ixpts, int iypts);

void surfce (float *xray, int ixdim, float *yray, int iydim, float *zmat);

XRAY, YRAY are arrays containing the X- and Y-user coordinates.

ZMAT is a matrix with the dimension (IXDIM, 1YDIM) containing the function val-
ues.

IXDIM, IYDIM are the dimensions of ZMAT, XRAY and YRAYX 2).

IXPTS, IYPTS are the number of points interpolated between grid lines in the X- and Y-

direction. These parameters determine the density of surfaces plotted by SUR-
MAT. For positive values, the surface will be interpolated linearly. For a nega-
tive value, the absolute value will be used as a step for plotted surface lines. If
IXPTS = 0, surface lines in the Y-direction will be suppressed; if IYPTS =0,
surface lines in the X-direction will be suppressed.

Additional notes: - The routines SURMAT and SURFCE suppress automatically hidden lines. The
suppression can be disabled with the statement CALL NOHIDE.

155

- SURMAT and SURFCE use a horizon line algorithm for suppressing hidden
lines. This algorithm is efficient but may fail for some complex data structures.
An alternate method for suppressing hidden lines can be used with the routine
SURSHD if only mesh lines are enabled with the statement CALL SURMSH
(ONLY").

- Surfaces can be protected from overwriting with CALL SHLSUR if the
hidden-line algorithm is not disabled.

- The limits of the base grid are determined by the parameters in GRAF3D or
can be altered with SURSZE (XA, XE, YA, YE). If XA, XE, YA and YE are
the axis limits in GRAF3D or defined with SURSZE, the connection of grid
points and matrix elements can be described by the formula:

ZMAT(1,J) = F(X,Y) where
X=XA+(I-1)*(XE-XA)/(XDIM-1) 1=1,.IXDIM and
Y=YA+@J-1)*(YE-YA)/(IYDIM-1) J=1,..IYDIM.

- SURVIS (CVIS) determines the visible part of a surface where CVIS can have
the values 'TOP’, ' BOTTOM’ and 'BOTH’. The default value is 'BOTH'.

- The statement CALL SURCLR (ICTOP, ICBOT) defines the colours of the
upper and lower side of a surface where ICTOP and ICBOT contain colour
values.

12.9 Plotting a Shaded Surface from a Matrix
SURSHD

The routine SURSHD plots a shaded surface from a matrix where colour values are calculated from the
Z-scaling in the routine GRAF3D or from the parameters of the routine ZSCALE.

The call is: CALL SURSHD (XRAY, IXDIM, YRAY, IYDIM, ZMAT) level 3
or: void surshd (float *xray, int ixdim, float *yray, int iydim, float *zmat);
XRAY, YRAY are arrays containing the X- and Y-user coordinates.
ZMAT is a matrix with the dimension (IXDIM, IYDIM) containing the function val-
ues.
IXDIM, IYDIM are the dimensions of ZMAT, XRAY and YRAYX 2).

The statement CALL ZSCALE (ZMIN, ZMAX) defines an alternate Z-scaling
that will be used to calculate colour values in SURSHD. Normally, the Z-
scaling in GRAF3D is used. For logarithmic scaling of the Z-axis, ZMIN and
ZMAX must be exponents of base 10.

Additional notes:

- Aflat shading or a smooth shading can be selected with the routine SHDMOD.
The default is flat shading and a depth sort is used for hidden-surface elimi-
nation. If smooth shading is selected, a Z-buffer is used for hidden-surface
elimination. For that case, a raster format is needed for the graphics output
format (for example METAFL (XWIN’) or METAFL ('TIFF)).

- Additional grid lines can be enabled with the routine SURMSH. SURSHD can
generate only mesh lines if the keyword 'ONLY’ is used in SURMSH.

- Lighting can be enabled for SURSHD with the routine LIGHT.

156

12.10 Plotting a Shaded Surface from a Parametric Function

SURFCP

A three-dimensional parametric function is a function of the form (x(t,u), y(t,u), z(t,u)) where tmin

<t < tmax and umin< u < umax. The routine SURFCP plots a shaded surface from a parametric
function. The colours of the surface are calculated from the Z-scaling in the routine GRAF3D or from
the parameters of the routine ZSCALE.

The call is: CALL SURFCP (ZFUN, TMIN, TMAX, TSTEP, UMIN, UMAX, USTEP)
level 3
or: void surfcp ((float) (*zfun()), float tmin, float tmax, float tstep, float umin,

float umax, float ustep);

ZFUN is the name of a FUNCTION subroutine with the formal parameters X, Y and
IOPT. If IOPT = 1, ZFUN should return the X-coordinate of the parametric
function, if IOPT = 2, ZFUN should return the Y-coordinate and if IOPT = 3,
ZFUN should return the Z-coordinate.

TMIN, TMAX, TSTEP define the range and step size of the first parameter.

UMIN, UMAX, USTEP define the range and step size of the second parameter.

Additional notes: - SURFCP can plot a flat surface or a smooth surface defined by the routine
SHDMOD. For a flat surface, a depth sort is used for hidden-surface elimina-
tion. For a smooth surface, a Z-buffer is used for hidden-surface elimination.

In the latter case, a raster format is needed for the graphics output format (for
example METAFL (XWIN’) or METAFL ('TIFF)).

- Lighting can be enabled for SURFCP with the routine LIGHT.
- Additional grid lines can be enabled with the routine SURMSH.

12.11 Plotting a Shaded Surface from Triangulated Data

SURTRI

The routine SURTRI plots a shaded surface from triangulated data that can be calculated by the routine
TRIANG from a set of irregularily distributed data points.

The call is: CALL SURTRI (XRAY, YRAY, ZRAY, N, I1RAY, I2RAY, I3RAY, NTRI)
level 3

or. void surtri (float *xray, float *yray, float *zray, int n,
int *ilray, int *i2ray, int *i3ray, int ntri);

XRAY is an array containing the X-coordinates of data points.
YRAY is an array containing the Y-coordinates of data points.
ZRAY is an array containing the Z-coordinates of data points.
N is the number of data points.

I1RAY, I2RAY, I3BRAY s the Delaunay triangulation of the points (XRAY, YRAY) calculated by the
routine TRIANG.

NTRI is the number of triangles in I1RAY, I2RAY and I3RAY.

157

12.12 Plotting Isosurfaces

SURISO

The routine SURISO plots isosurfaces of the form f(x,y,z) = constant.

The call is:

or:

XRAY, YRAY, ZRAY

WMAT
NX, NY, NZ
WLEV

Additional notes:

CALL SURISO (XRAY, NX, YRAY, NY, ZRAY, NZ, WMAT, WLEV)
level 3

void suriso (float *xray, int nx, float *yray, int ny,

float *zray, int nz, float *wmat, float wlev);
are arrays containing the X-, Y- and Z-user coordinates.
is a matrix with the dimension (NX, NY, NZ) containing the function values.
are the dimensions of WMAT, XRAY, YRAY, and ZRAYX 2).
defines the level of the isosurface.

- The algorithm used in SURISO is based on the Marching Cubes method.

Reference: Lorensen, W.E. and Cline, H.E., Marching Cubes: a high resolu-
tion 3D surface reconstruction algorithm, Computer Graphics, Vol. 21, No. 4,
pp 163-169 (Proc. of SIGGRAPH), 1987.

- SURISO can plot flat or smooth surface triangles defined by the routine SHD-

MOD. For smooth triangles, a Z-buffer is used for hidden-surface elimination.
In that case a raster format is needed for the graphics output format.

- Lighting can be enabled for SURSIO with the routine LIGHT.
- Additional grid lines can be enabled with the routine SURMSH.

12.13 Plotting 3-D Bars

BARS3D

BARS3D plots three-dimensional bars.

The call is:

or:

XRAY
YRAY
Z1RAY

Z2RAY

XWRAY
YWRAY
ICRAY

N

Additional note:

CALL BARS3D (XRAY, YRAY, Z1RAY, Z2RAY, XWRAY, YWRAY,
ICRAY, N) level 3

void bars3d (float *xray, float *yray, float *z1ray, float *z2ray, float *xwray,
float *ywray, int *icray, int n);

is an array of user coordinates defining the position of the bars on the X-axis.
is an array of user coordinates defining the position of the bars on the Y-axis.

is an array of user coordinates containing the start points of the bars on the
Z-axis.

is an array of user coordinates containing the end points of the bars on the
Z-axis.

is an array of user coordinates defining the width of the bars in X-dire