YAMAHA'LSI

FM + Wavetable Synthesizer LSI

OVERVIEW

YMF721 (OPL4-ML2) is a high quality and low cost Wavetable synthesizer LSI. YMF721 (OPL4-ML2) integrates an OPL3 (FM synthesizer), General MIDI processor and 1 Mbyte Wavetable sample ROM into one chip, and complies with General MIDI (GM) system level 1. Thus, it is best suited to multimedia applications, sound cards, MIDI synthesis modules and other sound applications.

Since this LSI outputs stereophonic 16 bit digital signal (fs = 44.1 kHz), it can be connected directly with YMF701B, 711 or 715 (OPL3-SA, SA2 or SA3) or with YAC516(DAC16-L).

Operating voltage, 3.3 V, allows this LSI to be controlled with notebook personal computers.

Power management functions (power down and suspend/resume functions) of OPL4-ML2 contribute to low power consumption of personal computers into which this product is built-in.

FEATURES

- The Wavetable synthesizer of this LSI is able to generate up to 24 types of sounds simultaneously.
- Has an interface that makes this LSI compatible with MPU-401 UART mode.
- Has an OPL3 (FM synthesizer) for AdLib/SoundBlaster applications.
- Has a 1 Mbyte built-in Wavetable sample ROM.
- Complies with GM system Level 1. (Thus, it is compatible with DOS applications that support MPU-401.)
- MIDI signal can be transmitted either through serial input or parallel input.
- FM synthesizer and Wavetable synthesizer of this LSI can generate their sound at the same time.
- FM synthesizer is register-compatible with OPL3.
- All registers are readable.
- Power management functions included power down and suspend/resume can be supported.
- Frequency of master clock signal is 33.8688 MHz.
- Pin compatible with YMF704C-S (100 pin SQPF)
- Voltage of power supply can be 5.0 V or 3.3 V.
- Silicone gate CMOS process
- 100-pin SQFP (YMF721-S).

YAMAHA CORPORATION

May 20, 1997

100 pin SQFP Top View

CONFIDENTIAL PIN DESCRIPTION

YMF721

ISA bus interface : 19 pins					
Pin name	pins	I/O	Туре	Size	Function
ADB7-0	8	I/O	TTL	2mA	Data bus
A2-0	3	I	TTL	-	Address bus
/MPUCS	1	I	TTL	-	MPU401 chip select
/OPLCS	1	I	TTL	-	FM/Wavetable/Command/Control chip select
/IOW	1	Ι	TTL	-	Write enable
/IOR	1	Ι	TTL	-	Read enable
RST	1	Ι	TTL	-	Initial clear input
AIRQ	1	0	TTL	2mA	Interrupt signal ("H" : Interrupt)
ABDIR	1	0	TTL	2mA	Selection of data transfer direction
					("L" : YMF721→Host)
ARDY	1	OD	TTL	12mA	I/O channel ready/busy selection ("L" : Busy)

MIDI interface : 2 p	oins				
Pin name	pins	I/O	Туре	Size	Function
RXD	1	I	TTL	-	MIDI serial data input
FSP	1	I	TTL	-	Selection of MIDI serial/parallel transmission
					("H" : Parallel, "L" : Serial)

Serial audio interface : 8 pins					
Pin name	pins	I/O	Туре	Size	Function
CLKO	1	0	CMOS	8mA	Clock output (384fs = 16.9344MHz)
ВСО	1	0	CMOS	2mA	Bit clock output (48fs = 2.1168MHz)
LRO	1	0	CMOS	2mA	L/R clock output (fs = 44.1kHz)
WCO	1	0	CMOS	2mA	Word clock output (2fs = 88.2kHz)
DO3	1	0	CMOS	2mA	Effect send output
DO2	1	0	CMOS	2mA	MIX (FM + Wavetable) output
DO1	1	0	CMOS	2mA	Wavetable output
DO0	1	0	CMOS	2mA	FM output

Others : 39 pins					
Pin name	pins	I/O	Туре	Size	Function
5V/3V	1	I	CMOS	-	Selection of power supply
/RESETSEL	1	I+	TTL	-	RST signal polarity control pin (When this pin is at "L", RST is active at "L".)
/PDOUT	1	0	CMOS	2mA	Power down control output
XI	1	Ι	CMOS	2mA	Crystal oscillator connection or master clock input (33.8688 MHz)
ХО	1	0	CMOS	2mA	Crystal oscillator connection pin
N.C.	34	-	-	-	To be open at normal use.

LSI test pins : 21 pins					
Pin name	pins	I/O	Туре	Size	Function
/TESTA	1	I+	TTL	-	To be open at normal use.
/TESTB	1	I+	TTL	-	To be open at normal use.
/TEST	1	I+	TTL	-	To be open at normal use.
/TEST2	1	I+	TTL	-	To be open at normal use.
/TEST3	1	I+	TTL	-	To be open at normal use.
T7-0	8	0	CMOS	2mA	To be open at normal use.
TD7-0	8	I/O	CMOS	2mA	To be open at normal use.

Power supply, grou	nd:11 pin:	S			
Pin name	pins	I/O	Туре	Size	Function
VDD	4	-	-	-	Power supply (put on +5.0 V or +3.3V)
VSS	7	-	-	-	Ground

Total : 100 pins

Note : I+ : Input pin with built-in pull-up resistor, OD : Open drain output pin

FUNCTIONS

1. 1. Example of system configuration

1-1. System with MPU401 UART

This section describes two examples of systems that have an MPU401 UART in them. In these examples, YMF701B, 711 or 715 (OPL3-SA, SA2 or SA3) has a built-in MPU401 UART.

(1) ISA BUS Connect System

Note :

YMF721 (OPL4-ML2) has MPU401 UART in it. Thus, for the above case, TXD of YMF7xx (OPL3-SAx) is connected with RXD of YMF721 (OPL4-ML2) and MPU401 port (/MPUCS) of YMF721 (OPL4-ML2) is disabled so that YMF7xx(OPL3-SAx) sends MIDI data directly to YMF721 (OPL4-ML2).

For the above case, FM synthesizer of YMF7xx (OPL3-SAx) is disabled and the one in YMF721 (OPL4-ML2) is made active. (This control is made through /EXTEN pin of YMF7xx.) For the above system, the data bus that connects with YMF721(OPL4-ML2) gains access to FM-synthesizer/Command/Control port of YMF721(OPL4-ML2). (Chip select signal is outputted from /SYNCS pin of YMF7xx.)

For the source of master clock to be inputted to XI pin of YMF721 (OPL4-ML2), it is recommended to use CLKO pin of YMF7xx (OPL3-SAx). For other methods, a crystal oscillator can be used by attaching it to XI and XO pins of YMF721 (OPL4-ML), or a clock of 33.8688 MHz supplied from the system can be used. When serial data outputs of YMF721 (OPL4-ML2), BCO, LRO and DO2 pins, are connected with external serial data interface (BCLK_ML, LRCK_ML, SIN_ML) of YMF7xx (OPL3-SAx), the serial data is converted to analog signal in YMF7xx (OPL3-SAx) and outputted as analog signal.

(2) No ISA BUS Connect System

FIDENTIAL

Note :

YMF

YMF721 (OPL4-ML2) has MPU401 UART in it. Thus, for the above case, TXD of YMF7xx (OPL3-SAx) is connected with RXD of YMF721 (OPL4-ML2) and MPU401 port (/MPUCS) of YMF721 (OPL4-ML2) is disabled so that YMF7xx(OPL3-SAx) sends MIDI data directly to YMF721 (OPL4-ML2).

The above system does not connect YMF721 (OPL4-ML2) and ISA bus, which is an example of Wavetable upgrade solution represented by the Wavetable daughter card. Input pins of the ISA bus interface should be pulled up externally. At this time, FM synthesizer/Command/Control ports are disabled, but the power down function is enabled by receiving System Exclusive Message on the MIDI data, except that Suspend/Resume function is disabled.

As a source of master clock for YMF721 (OPL4-ML2), use a crystal oscillator by connecting it to XI and XO pins, or use the clock of 33.8688 MHz from the system. Connect BCO, LRO, DO2, /PDOUT and CLKO directly to YAC516 (DAC16-L) as shown to convert serial data output to analog signal. Then, it is recommended to input the converted analog signal to AUX2L and AUX2R of YMF7xx (OPL3-SAx) after amplifying the volume of source of YMF721 through the gain of +12 dB as shown for the purpose of equalizing the volumes of multiple sources.

YAMAHA

1-2. System without MPU401 UART

UNFIDENTIAL

This section describes an example of a system that does not have MPU401 UART in it.

In this example, MPU401 UART of YMF721 (OPL4-ML2) is used.

FM synthesizer of this LSI is compatible with applications that support AdLib/Sound Blaster, and Wavetable synthesizer is compatible with applications that support MPU401.

Note :

YMF

For the above case, MPU401 port of YMF721 (OPL4-ML2) must be made active because the system does not have MPU401 UART in it. Addresses of standard ports through which reading or writing of registers of YMF721 (OPL4-ML2) is made are as follows.

1)/OPLCS	: 388 - 38Fh (8byte)
2) /MPUCS	: 330 - 331h (2byte)

As a source of master clock for YMF721 (OPL4-ML2), use a crystal oscillator by connecting it to XI and XO pins, or use the clock of 33.8688 MHz from the system. Connect BCO, LRO, DO2, /PDOUT and CLKO directly to YAC516 (DAC16-L) as shown to convert serial data output to analog signal. Then, it is recommended to amplify the volume of source of YMF721 through the suitable gain as shown for the purpose of equalizing the volumes of multiple sources.

CONFIDENTIAL

2. ISA bus interface

YMF72

8 bit parallel I/O of YMF721 (OPL4-ML2) can be connected with ISA bus. The ISA bus interface allows transfer of commands between the each block of YMF721 (OPL4-ML2) and host.

Data	Bus	&	Address	Bus

ADB7-0	: ISA data bus
A2-0	: ISA address bus
/MPUCS	: MPU401 chip select
/OPLCS	: FM/Wavetable/Command/Control chip select
/IOW	: ISA write enable
/IOR	: ISA read enable
ABDIR	: Data bus direction switching ("L" : YMF721 \rightarrow ISA)
ARDY	: I/O channel ready ("L" : busy)

Control of the data bus is made with /MPUCS, /OPLCS, /IOW and /IOR signals. The mode of control of the data bus varies as follows according to the combination of states of the signals. The direction of data transfer on the data bus is determined by ABDIR. In normal operation, the internal data bus of YMF721 (OPL4-ML2) connects the built-in processor and FM/Wavetable synthesizer blocks. Every time the ISA bus accesses the register for FM/Wavetable, an internal arbitration circuit causes the internal bus to connect ISA bus and FM/Wavetable synthesizer blocks. YMF721 (OPL4-ML2) uses I/O channel ready (ARDY pin) as the internal arbitration circuit. ARDY becomes "L" (busy) every time data bus accesses the register for FM/Wavetable.

/MPUCS	/OPLCS	/IOW	/IOR	A2	A1	A0	MODE
L	H	Н	L	$ $ \times	L	L	MPU401 Acknowledge (FEh)
L	Н	L	Н	\times	L	L	MPU401 MIDI Data write
L	Н	Н	L	$ \times$	L	Н	MPU401 Status read
L	Н	L	Н	\times	L	Н	MPU401 Command write
Н	L	Н	L	L	L	L	FM-synth. Status read
Н	L	L	Н	L	H/L	L	FM-synth. Address write
Н	L	L	Н	L	\times	Н	FM-synth. Data write
Н	L	Н	L	L	\times	H	FM-synth. Data read
Н	L	Н	L	Н	L	L	Wavetable-synth. Status read
Н	L	L	Н	Н	L	L	Wavetable-synth. Address write
Н	L	L	Н	Н	L	Н	Wavetable-synth. Data write
Н	L	Н	L	Н	L	H	Wavetable-synth. Data read
Н	L	Н	L	Н	Н	L	Command response read
Н	L	L	Н	Н	Н	L	Command write
Н	L	L	Н	Н	Н	Н	Control write
Н	L	Н	L	Н	Н	Н	Status read
Н	L	Н	Н	\times	\times	\times	No-active or UART mode
Н	Н	\times	\times	\times	\times	\times	No-active or UART mode

Notes:

 \times : Don't care

When address has been written into FM block, the time required to wait until writing of address or data into Wavetable block is started is 0 (zero) nsec. When address has been written into Wavetable block, the time required to wait until writing of address or data into FM block is started is also 0 (zero) nsec. When FM block has been accessed, it is necessary to wait 860 nsec or more before the FM block can be accessed again.

Interrupt

AIRQ : Interrupt signal ("H" : Interrupt)

YMF721 (OPL4-ML2) is able to provide one interrupt signal. There are two types of sources of this interrupt signal as follows.

1) Two timer flags that are used for tempo counter of FM synthesizer

2) The flag that occurs when internal processor writes data into the Command response register The flags described in 2) is disabled as a default.

3. Serial audio interface

YMF721 (OPL4-ML2) can be connected directly with an external DAC such as YAC516 through BCO, LRO, WCO and DO3-0 pins.

ВСО	Outputs bit clock. The frequency of this clock is 48 fs. (fs is the sampling					
	frequency that is equal to the frequency of clock outputted from LRO.) Typical					
	duty factor of this signal is 50 %.					
LRO	Specifies a channel for serial audio data. When LRO is "H", data is outputted					
	from left channel, or when "L", from right channel. Frequency of this clock is					
	44.1 kHz. Typical duty factor of this signal is 50 %.					
WCO	Frequency of this clock is 88.2 kHz. Typical duty factor of this signal is 50 %.					
DO3-0	These pins output serial audio data as follows.					
	DO3 Outputs data of Wavetable whose effect send level has been adjusted.					
	DO2 Outputs data that is the mixture of those of FM and Wavetable.					
	DO1 Outputs Wavetable data.					

DO0... Outputs FM data.

Format of the serial audio interface is as follows.

Format of YMF721 (OPL4-ML2) serial audio interface

4. MIDI Interface

MIDI serial data can be inputted from RXD pin. It is necessary to input MIDI data complied with MIDI 1.0 detailed specification to RXD pin.

The serial data is the rate of 31.25kbit/sec (+/-1%) and the unit of 10 bits. The first bit is a start bit, the next 8 bits are data (LSB to MSB), and the 10th bit is a stop bit.

5. Power management functions

YMF721 (OPL4-ML2) has two types of power management functions as follows.

(1) Global power down mode

(2) Suspend/Resume mode

5-1. Global power down mode

Generation of clock signal is disabled (stopped). Total power consumption of YMF721 (OPL4-ML2) is approximately 20uA (typ.). Writing "FDh" into command register or receiving System Exclusive MIDI Message makes in this mode. YMF721 (OPL4-ML2) outputs "L" from /PDOUT pin in this mode, which can be used as power down control signal for peripheral equipment. Set KON bit (FM synthesizer register) to "0" for all channels before going into this mode. Check that play back of MIDI data is stopped.

/RESETSEL pin has a built-in pull up resistor. When this pin is at "L" in this mode, the power consumption is higher by approximately 30uA than the one when this pin is open or at "H".

5-1-1. ISA BUS Connect System

When "FDh" has been written into command register, the internal processor goes into the global power down mode after performing the following internal processes.

1) Disabling synthesizer's internal clock

2) Setting GBUSY bit of status register to "0".

YMF721 (OPL4-ML2) requires over 30 msec to complete the above processes before going into the power down mode.

Since generation of the clock has been disabled, recovery from the power down mode can not be made by using command. Thus, it is necessary to use PDY and PDX bits of control register for the recovery. To resume normal operation through the recovery sequence, waiting time of 50 to 100 msec is required before the oscillation of crystal stabilizes when internal oscillation is used, or 3 msec or more before the recovery of clock generated in the synthesizer.

For the details of power down command, refer to 6-3. After the power down command, FDh, has been written, do not write any command before sending a recovery command to the control register to return to the normal mode.

Power down sequence when connected with ISA bus

5-1-2. No ISA BUS Connect System

When YMF721 (OPL4-ML2) is not connected with ISA bus, power down operation can be controlled by sending Yamaha's original System Exclusive Message as the MIDI data. The System Exclusive Message includes the following three byte ID.

43h, 79h, 04h : Yamaha YMF721(OPL4-ML2) ID

The System Exclusive Message is as follows.

F0h, <Yamaha YMF721(OPL4-ML2) ID>, <Command>, <Data>, F7h YMF721 (OPL4-ML2) supports the following commands and data.

Command	Data	Function
0Eh	6Dh	Power Down Command
0Fh	6Bh	Internal Micro-processor Reset Command

<Power Down Sequence>

(1) Power Down in

When YMF721 (OPL4-ML2) has received the System Exclusive Message shown above, it goes into the global power down mode after performing the processes as described in "5-1-1. ISA BUS Connect System".

(2) Power Down out

Since the clock generation has been disabled, YMF721 (OPL4-ML2) is not able to recover from the global power down mode by using the System Exclusive Message. Thus, the LSI needs to receive the "3byte MIDI data" as shown below to recover from the global power down mode. To resume normal operation through the recovery sequence, waiting time of 50 to 100 msec is required before the oscillation of crystal stabilizes when internal oscillation is used, or 3 msec or more before the recovery of clock generated in the synthesizer.

Power down sequence without ISA bus

<Micro-processor Reset>

The internal microprocessor is reset by receiving the above System Exchange Message.

5-2. Suspend/Resume mode

The state of internal processor is suspended by writing "E0h" into the command register before turning off the power. When the power has been turned on, it can be resumed by resetting it, writing "E1h" into the command register and then writing data that has been read before suspended.

On FM synthesizer block, check setting KON bit to "0" for all channels before reading out all register and turning off the power. Write register that has been read after turning on and resetting at the recovery sequence.

For the details of suspend/resume, refer to 6-3.

Note :

The system that includes YMF721 not connected with ISA bus can not support the suspend/resume function.

6. Registers

6-1. MPU401 compatible register

MPU401 is a generally used interface for controlling MIDI devices on the personal computer. I/O addresses that are compatible with MPU401 are as follows.

MPU_Base+ 0	(W/R)	MIDI Data transmit/acknowledge port
MPU_Base + 1	(R)	Status Register port
MPU_Base + 1	(W)	Command Register port

MIDI Data Write Port (WO):

Γ	port	D7	D6	D5	D4	D3	D2	D1	D0
Ν	/IPU_Base + 0				MIDI	Data			

MIDI Dat	a	Port for writing MIDI data (transmitting). Transmission of the							
		data must be carried out while the transmitter of MIDI data is							
		watching the state of DRR bit of the status register. An interrupt							
		occurs in the internal processor when MIDI data has been							
		written into the register. Since YMF721 (OPL4-ML2) has no							
		output signal for transmitting MIDI data, the MIDI data written							
		into this register is used to operate internal Wavetable							
		synthesizer.							

MPU Acknowledge Port (RO):

 I O ACKIOWI	cago i c							
port	D7	D6	D5	D4	D3	D2	D1	D0
MPU_Base + 0	"1"	"1"	"1"	"1"	"1"	"1"	"1"	"0"

Sends acknowledge for the operation of MPU401.

When operation of the MPU401 is normal, "FEh" is read from this port.

Status Register Port (RO):

port	D7	D6	D5	D4	D3	D2	D1	DO		
MPU_Base + 1	DSR	DRR	"1"	"1"	"1"	"1"	"1"	"1"		
DSR	This bit is "1" when reading the acknowledge from MPU401.									
	This bit is "0" when writing commands.									
DRR		Th	is bit is "1	" while M	IDI data is	s being wri	itten into N	/IPU Data		
		W	rite port (1	MPU Base	+0). This	bit is "0" v	when the N	∕IIDI data		
	can be written into the MPU Data Write port. Do not write									
	MIDI data when this bit is "1".									

Default : BFh

Command Register Port (WO):

port	D7	D6	D5	D4	D3	D2	D1	D0	
MPU_Base + 1		COMMAND Data							
COMMAN	ND Data	Th	e data wri	tten into t	his register	r is ignore	d. DSR bi	t is set to	

The data written into this register is ignored. DSR bit is set to "O" when data is written into this register.

6-2. Command/Response register

NUTT

I/O port for power down and suspend/resume register is described here.

Command/Response Port (R/W):

-	011111101101/110								
	port	D7	D6	D5	D4	D3	D2	D1	D0
	OPL_Base + 6	Command Write							
	OPL_Base + 6		Response Read						

Command Write... Response Read... An interrupt occurs when data has been written into this register. Response to a command is read from this register.

Note :

For the details of Command/Response, refer to 6-3.

6-3. Details of command register

Some of commands supported in the command register are as follows.

Command	Sub Command	Command Length	Response Length	Function
E0h		1 byte	variable	Reading suspend information
E1h	00h	variable	-	Resume
FDh	-	1 byte	-	Moving into power down mode
FEh	-	1 byte	-	Checking operating conditions
FFh	-	1 byte	-	Discontinuing command execution

6-3-1. Suspend information

Command and response have the following formats.

Checksum is determined so that lower eight bits of the sum of values from length L to checksum becomes "0".

The state of internal processor immediately before execution of this command can be resumed by writing the data that is read into the internal processor by using resume command described below.

6-3-2. Resume

YMF

Command and Response have the following formats.

FIDENTIAL

Command		Response
E1h	Command byte	None
0x00	Sub Command	
data_0	data	
data_n	last data	
checksum	checksum	

For Resume, data following the sub command are transmitted as seven bit data. Thus, it is necessary to send the data obtained with suspend command to the internal processor after encoding it. Checksum is determined so that the result of logical product (AND) of 7Fh and the sum of sub command byte, encoded data and checksum becomes "0". The internal processor returns to the state immediately before execution of Command E0h when it confirms that the data has been received normally.

6-3-3. Others

YMF721(OPL4-ML2) can use the following special commands that do not send response.

1) Command FDh : Power down mode

Refer to 5-1.

When the power down command FDh has been written into the command register, do not write any command before the return command to the control register has been executed.

2) Command FEh : Checking operating state of internal processor

This command is used to check if the internal processor is operating normally.

The internal processor is deemed operating normally if GBUSY bit of Status register is "0".

3) Command FFh : Discontinuing command execution

This command is used to discontinue the execution of a command. This command can be used only when another command is being executed.

6-4. Control/Status register

I/O port for Control/Status register is described here.

Control/Status Port (R/W):

port	D7	D6	D5	D4	D3	D2	D1	D0
OPL_Base + 7(W)	PDY	PDX	-	-	-	MPR	"0"	"1"
OPL_Base + 7(R)	PDY	PDX	-	BSEL	-	RESP	GBUSY	GDRQ
PDY, PDX		YN	/IF721 re	covers fro	om power	down m	node by 1	using the
		fol	lowing sec	luence.				
]	PDY="1",	PDX="0"			
				↓ wait	time (in ca	ase of using	g crystal os	scillation)
]	PDY="0",	PDX="0"			
		D7	and D6	bits of St	atus regist	er become	e "1" duri	ng power
		dov	wn mode.	In this stat	te, oscillati	ion of cloc	ck can be c	confirmed
		by	monitorin	g the state	us bit duri	ing power	down mo	de in/out
		seq	uence.					
MPR		Set	ting this	bit to "0"	' initialize	s internal	processor	. Default
		val	ue of this l	bit is ''1''.				
BSEL		Th	is bit shov	vs connect	tion of int	ernal bus	of YMF72	21(OPL4-
		MI	.2). Defau	lt value of	this bit is '	'1''.		
			•	'1" : Conn	ecting synt	hesizer an	d internal p	processor
			4	'0'' : Conn	ecting synt	hesizer an	d ISA bus	
RESP		Ind	icates that	a response	e to a comi	nand has b	een receiv	ed.
GBUSY		Fla	g bit that i	ndicates if	data can b	e written i	nto Comm	and write
		reg	ister.					
			4	'1" : BUSY	č			
			6	'0'' : Data (can be writ	ten		
GDRQ		Fla	g bit that	indicates	if data	can be re	ad from	Response
		reg	ister.					
			6	'1" : REAI	ΟY			
			61	0": Readi	ng is inhib	ited		
Default : (0	00x1 x00	0) _{b0}						

6-5. FM synthesizer registers

6-5-1. Status register

Status Register (RO):

port	D7	D6	D5	D4	D3	D2	D1	D0
OPL_Base + 0	IRQ	FT1	FT2	-	-	-	LD	BUSY0

Note :

Since NEW2 (index 05h of Register array1) = 1 in default state, both LD and BUSY0 bits are valid. (LD and BUSY0 bits are invalid when NEW2=0.) BUSY0 is a BUSY flag for both FM and Wavetable registers.

6-5-2. Data register

Data Register Array 0 (R/W):

u keyisit												
Index	D7	D6	D5	D4	D3	D2	D1	D0				
00 - 01h				LSI -	FEST							
02h				TIM	ER 1							
03h				MIT	ER 2							
04h	RST	MT1	MT2	-	-	-	ST2	ST1				
08h	-	NTS	-	-	-	-	-	-				
20 - 35h	AM	VIB	EGT	KSR	MULT							
40 - 55h	KSL TL											
60 - 75h		A	R		DR							
80 - 95h		S	;L			R	R					
A0 - A8h				F-NU	M (L)							
B0 - B8h	-	-	KON		BLOCK		F-NU	M (H)				
BDh	DAM	DVB	RHY	BD	SD	ТОМ	ТС	НН				
C0 - C8h	CHD	СНС	СНВ	СНА	FB CNT							
E0 - F5h	-	-	-	-	-		WS					

Data Register Array 1 (R/W)

IC	i kegiste	er Array	I(R/W)								
	Index	D7	D6	D5	D4	D3	D2	D1	D0		
	00 - 01h				LSI	rest					
	04h	-	-			CONNEC	TION SEL				
Ì	05h	-	-	-	-	-	NEW3	NEW2	NEW		
	20 - 35h	AM	VIB	EGT	KSR		ML	JLT			
	40 - 55h	K	SL	TL							
ſ	60 - 75h		A	R			D	R			
	80 - 95h		S	L			R	R			
ſ	A0 - A8h				F-NU	M (L)					
	B0 - B8h	-		KON		BLOCK F-N			M (H)		
	C0 - C8h	CHD	CHC	СНВ	СНА		FB		CNT		
	E0 - F5h	-	-	-	-	-		WS			

Default :

YMF7

After initial clear, all the bits of Register Array 1 are cleared to "0" except NEW2 and NEW3 bits of index 05h, and CHA and CHB bits of index C0-C8h.

For the details of these registers, refer to data sheet for YMF289B(OPL3-L).

Note :

Since NEW2 and 3 (at index 05h of Register array1) = 1 in default state, both LD and BUSY0 bits are valid. (LD and BUSY0 bits are invalid when NEW2=0.) BUSY0 is a BUSY flag for both FM and Wavetable registers.

6-6. Wavetable synthesizer register

6-6-1. Status register

Status Register (RO):

	(
port	D7	D6	D5	D4	D3	D2	D1	D0
OPL_Base + 4	-	-	-	-	-	-	LD	BUSY1

6-6-2. Data register

Date	a Registe	er (R/W):								
	Index	D7	D6	D5	D4	D3	D2	D1	D0	
	00 - 01h				LSI -	TEST				
	02h	DEVIC	E ID ("0" '	'1" "0")	тс	ONE HEAD	ER	R MTYPE MODE		
	03h				Me	mory Addre	ess (MA21-	-16)		
	04h			Me	mory Add	ress (MA15	-8)			
	05h			М	emory Add	dress(MA7-	0)			
	06h				Memory D	ata(MD7-0)				
	08-1Fh		TONE NUMBER (L)							
	20-37h	F-NUMBER (L)						TNUM (H)		
	38-4Fh		BLOCK F				F-	NUMBER (H)	
	50-67h			TC	DTAL LEV	EL LDIR				
	68-7Fh	KEYON	DAMP	LFORST	СН	PAN POT				
	80-97h	CHORU	S SEND		LFO			VIB		
	98-AFh		A	R			D	IR		
	B0-C7h		D				D2	2R		
	C8-DFh	R	ATE INTEI	RPOLATIO	Ν		R	R		
	E0-F7h	RE	VERB SEI	ND	-	-		AM		
	F8h	-	-	MIX C	ONTROL (FM-R)	MIX C	ONTROL (FM-L)	
	F9h	-	-	MIX CO	NTROL (V	Vave-R) MIX CONTROL (NTROL (V	Vave-L)	
	FAh			-	-	-	ATC			
	FBh	-	-	-	-	-	-	-	-	

Default :

After initial clear, index 02h becomes 40h (Device ID) and index F8h becomes 2Dh (-15dB), and all the other registers are cleared to "0". For the details of these registers, refer to data sheet for YMF295(OPL4-D).

Note :

BUSY1 is a BUSY flag for Wavetable registers. Wavetable status/Data register is normally accessed by the internal processor.

7. Hardware

7-1. ISA bus interface

(1) Data Bus Connect System

Data BUS

Since driving current of data bus, ADB7-0 pins, of YMF721(OPL4-ML2) is about 2 mA (at VDD = 5.0 V), it is recommended to use bus buffer such as LS245 as necessary. At this time, connect ABDIR pin which outputs bus direction signal of YMF721(OPL4-ML2) with DIR (direction) pin of the bus buffer such as LS245.

RESET

Reset (RST) pin of YMF721(OPL4-ML2) can be made "H" active or "L" active. When using "H" active reset, /RESETSEL pin should be open or set to "H", or to "L" when using "L" active reset. /RESETSEL pin has a built-in pull-up resistor. When this pin is set to "L", the power consumption increases approximately by 30uA from the one obtained when the pin is open or set to "H".

I/O Channel Ready

In normal operation, the internal data bus of YMF721 (OPL4-ML2) connects the built-in processor and FM/Wavetable synthesizer blocks. Every time the ISA bus accesses the register for FM/Wavetable, an internal arbitration circuit causes the internal bus to connect ISA bus and FM/Wavetable synthesizer blocks. YMF721 (OPL4-ML2) uses I/O channel ready (ARDY pin) as the internal arbitration circuit. Connect ARDY pin of YMF721 (OPL4-ML2) and IOCHRDY pin of ISA bus. Although ARDY pin is an open drain output, it is not necessary to attach pull up resistor because it is usually pulled up at the ISA bus.

(2) No Data Bus Connect System

The input pins ADB7-0, A2-0, /MPUCS, /OPLCS, /IOW and /IOR must be pulled up externally. Output pins AIRQ, ABDIR and ARDY pins must be open.

7-2. MIDI interface

When using MPU port of YMF721 (OPL4-ML2), RXD and FSP pins must be pulled up. When using MPU port of the system and receiving MIDI data through RXD pin, FSP pin must be made "L".

7-3. Serial audio interface

YMF721 (OPL4-ML2) outputs clock signals of CLKO (384 fs = 16.9344 MHz), BCO (48 fs = 2.1168 MHz), LRO (fs = 44.1 kHz) and WCO (2 fs = 88.2 kHz) as the serial audio interface. It also outputs four types of data including DO0 (FM external out), DO1 (Wavetable external out), DO2 (MIX out) and DO3 (effect-send out). Normally, it uses the output of DO2. When YMF721 (OPL4-ML2) is in power down mode, /PDOUT pin outputs "L" which can be used as the power down control signal for peripheral systems.

YAMAHA

7-4. Others

Power Supply

It is recommended to install a line noise filter in the YMF721 (OPL4-ML2). Be sure to install 0.1uF ceramic capacitor between each of VDD pins and VSS pins as close to the pins as possible, especially the pin No. 63 (VDD).

<u>5V/3V</u>

YMF

When operating YMF721 (OPL4-ML2) with 5 V, 5V/3V pin must be pulled up. When operating it with 3.3 V, set the pin to "L".

<u>XI, XO</u>

YMF721 (OPL4-ML2) requires the clock frequency of 33.8688 MHz. This signal can be supplied from the system or from the self-oscillation circuit connected with crystal oscillator

Yamaha recommends either of the following two types of parallel resonance type oscillator made by Daishinku Co., Ltd.

(i) 3rd Overtone Type

AT-49, SMD-49 : R=5.6K, c₁=c₂=10pF

VFIDENTIA

(ii) Fundamental Type

AT-49, SMD-49 : R=1M, c₁=c₂=5pF

Use of the Crystal oscillator with frequency deviation within 100 ppm is recommended. Length of wiring lead from XI and XO pin to each component (crystal, resistor and capacitor) should be 0.5 inch or less respectively and the circuit pattern should be shielded on its periphery to minimize effect on the peripheral devices.

Since YMF721 (OPL4-ML2) is able to use power down mode, the power consumption can be minimized when generation of the clock signal is discontinued during this mode.

7. Hardware

7-1. ISA bus interface

(1) Data Bus Connect System

Data BUS

Since driving current of data bus, ADB7-0 pins, of YMF721(OPL4-ML2) is about 2 mA (at VDD = 5.0 V), it is recommended to use bus buffer such as LS245 as necessary. At this time, connect ABDIR pin which outputs bus direction signal of YMF721(OPL4-ML2) with DIR (direction) pin of the bus buffer such as LS245.

RESET

Reset (RST) pin of YMF721(OPL4-ML2) can be made "H" active or "L" active. When using "H" active reset, /RESETSEL pin should be open or set to "H", or to "L" when using "L" active reset. /RESETSEL pin has a built-in pull-up resistor. When this pin is set to "L", the power consumption increases approximately by 30uA from the one obtained when the pin is open or set to "H".

I/O Channel Ready

In normal operation, the internal data bus of YMF721 (OPL4-ML2) connects the built-in processor and FM/Wavetable synthesizer blocks. Every time the ISA bus accesses the register for FM/Wavetable, an internal arbitration circuit causes the internal bus to connect ISA bus and FM/Wavetable synthesizer blocks. YMF721 (OPL4-ML2) uses I/O channel ready (ARDY pin) as the internal arbitration circuit. Connect ARDY pin of YMF721 (OPL4-ML2) and IOCHRDY pin of ISA bus. Although ARDY pin is an open drain output, it is not necessary to attach pull up resistor because it is usually pulled up at the ISA bus.

(2) No Data Bus Connect System

The input pins ADB7-0, A2-0, /MPUCS, /OPLCS, /IOW and /IOR must be pulled up externally. Output pins AIRQ, ABDIR and ARDY pins must be open.

7-2. MIDI interface

When using MPU port of YMF721 (OPL4-ML2), RXD and FSP pins must be pulled up. When using MPU port of the system and receiving MIDI data through RXD pin, FSP pin must be made "L".

7-3. Serial audio interface

YMF721 (OPL4-ML2) outputs clock signals of CLKO (384 fs = 16.9344 MHz), BCO (48 fs = 2.1168 MHz), LRO (fs = 44.1 kHz) and WCO (2 fs = 88.2 kHz) as the serial audio interface. It also outputs four types of data including DO0 (FM external out), DO1 (Wavetable external out), DO2 (MIX out) and DO3 (effect-send out). Normally, it uses the output of DO2. When YMF721 (OPL4-ML2) is in power down mode, /PDOUT pin outputs "L" which can be used as the power down control signal for peripheral systems.

YAMAHA

7-4. Others

Power Supply

It is recommended to install a line noise filter in the YMF721 (OPL4-ML2). Be sure to install 0.1uF ceramic capacitor between each of VDD pins and VSS pins as close to the pins as possible, especially the pin No. 63 (VDD).

<u>5V/3V</u>

YMF

When operating YMF721 (OPL4-ML2) with 5 V, 5V/3V pin must be pulled up. When operating it with 3.3 V, set the pin to "L".

<u>XI, XO</u>

YMF721 (OPL4-ML2) requires the clock frequency of 33.8688 MHz. This signal can be supplied from the system or from the self-oscillation circuit connected with crystal oscillator

Yamaha recommends either of the following two types of parallel resonance type oscillator made by Daishinku Co., Ltd.

(i) 3rd Overtone Type

AT-49, SMD-49 : R=5.6K, c₁=c₂=10pF

VFIDENTIA

(ii) Fundamental Type

AT-49, SMD-49 : R=1M, c₁=c₂=5pF

Use of the Crystal oscillator with frequency deviation within 100 ppm is recommended. Length of wiring lead from XI and XO pin to each component (crystal, resistor and capacitor) should be 0.5 inch or less respectively and the circuit pattern should be shielded on its periphery to minimize effect on the peripheral devices.

Since YMF721 (OPL4-ML2) is able to use power down mode, the power consumption can be minimized when generation of the clock signal is discontinued during this mode.

YAMAHA

CONFIDENTIAL

Electrical Characteristics

YMF

Absolute Maximum Ratings

Item	Symbol	Minimum	Maximum	Unit
Power Supply Voltage (Analog/Digital)	V _{DD}	V _{ss} -0.5	V _{SS} +7.0	V
Input Voltage	V _{IN}	V _{SS} -0.5	V _{DD} +0.5	V
Output Voltage	V _{OUT}	V _{SS} -0.3	V _{DD} +0.3	V
Input Current	I _{IN}	-20	20	mA
Storage Temperature	T _{STG}	-50	125	C

Notes : $V_{DD}=DV_{DD}=AV_{DD}$, $V_{SS}=DV_{SS}=AV_{SS}=0[V]$

Recommended Operating Conditions

Item	Symbol	Min.	Тур.	Max.	Unit
Operating voltage 1 (5.0V Spec. 5V/3V="H")	V _{DD1}	4.75	5.00	5.25	V
Operating voltage 2 (3.3V Spec. 5V/3V="L")	V _{DD2}	3.00	3.30	3.60	V
Operating Ambient Temperature	T _{OP}	0	25	70	C

Notes : $DV_{SS} = AV_{SS} = 0[V]$

DC Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
TTL-Input Pins					1	
High Level Input Voltage 1	V _{IH1}	Except XI and 5V/3V pins	2.0		r 	V
Low Level Input Voltage 1	VILI				0.8	V
CMOS-Input Pins						
High Level Input Voltage 1	V _{IH2}	Applicable to XI and 5V/3V	$0.7 V_{DD}$		1	V
Low Level Input Voltage 1	V _{IL2}		1		$0.2V_{DD}$	V
Input Leakage Current	IL	$V_{IN} = V_{SS}, V_{DD}$	-10		10	μΑ
Input Capacitance	Cı				10	pF
Pull up Register	R _{UI}	/TEST, /TEST2 /TEST3, /TESTA /TESTB, /RESETSEL	50		400	kΩ
High Level Output Voltage 1 Low Level Output Voltage 1 High Level Output Voltage 2	V _{ohi} V _{oli} V _{oh2}	$I_{OH1} = -80 \ \mu \ A (5V/3V=``L'')$ $I_{OL1} = 2mA (*1)$ $I_{OH2} = -80 \ \mu \ A (5V/3V=``H'')$	2.4 I V _{DD} -1.0 I		0.4	V V V
Low Level Output Voltage 2	V _{OL2}	$I_{OL2} = 2mA (*1)^{-1}$		1	V _{SS} +0.4	v
Low Level Output Voltage 3	V _{OL}	$I_{OL1} = 4mA (5V/3V="L")$ (*2)			0.4	V
Low Level Output Voltage 4	V _{OL}	$I_{OL1} = 12mA (5V/3V="H")$ (*2)	1	1	0.4	V
Output Capacitance	Co			l	10	pF

Notes : $V_{SS}=0[V]$, $T_{OP}=0 \sim 70^{\circ}$ C, $V_{DD}=5.0\pm0.25[V]$

*1) Applicable to output pins except XO and /ARDY.

*2) Applicable to /ARDY pin.

YMF721

CONFIDENTIAI

AC Characteristics

1. CPU interface (Refer to Fig. 1, 2, 3)

Item	Symbol	Min.	і Тур.	Max.	Unit
Address set up to /IOW, /IOR active	t _{AS}	30	1	1	ns
Address hold to /IOW, /IOR inactive	t _{AH}	10	1	1	ns
/IOW Write Pulse Width	t _{ww}	50	1	1	ns
Write Data set up to /IOW active	t _{wDS}	10	1	1	ns
Write Data hold to /IOW inactive	t _{WDH}	10	1	1	ns
/IOR Read Pulse Width	t _{RW}	80		1	ns
Read Data access time	t _{ACC}			60	ns
Read Data hold from /IOR inactive	t _{RDH}	10			ns
Chip select setup time	t _{CS}	5			ns
Chip select hold time	t _{CH}	10			ns
RESET Pulse Width	t _{RST}	100			ms

Notes : $V_{SS}=0[V]$, $T_{OP}=0 \sim 70^{\circ}$ C, $V_{DD}=5.0\pm0.25[V]$

2. Serial audio interface (Refer to Fig. 4.)

Item	Symbol	Condition	Min.	і і Тур.	Max.	Unit
CLKO frequency	f _{CLK016}		-	16.9344	-	MHz
CLKO duty	D _{CLK016}		40	50	60	%
BCO frequency	f _{BCK}		-	2.1168	-	MHz
BCO duty	D _{BCLK}		40	50	60	%
Serial data setup time	t _{DS}	BCO † /DO3-0	-	1118	-	ns
Serial data hold tim	t _{DH}	BCO↓/DO3-0	-	1118	-	ns
LRO setup time	t _{LRS}	BCO†/LRO	-	1118	-	ns
LRO hold time	t _{LRH}	BCO↓/LRO	-	118	-	ns
WCO setup time	t _{wcs}	BCO†/WCO	-	118	-	ns
WCO hold time	t _{wCH}	BCO↓/WCO	-	1 118 1	-	ns

Notes : $V_{SS}=0[V]$, $T_{OP}=0 \sim 70$ °C, $V_{DD}=5.0 \pm 0.25[V]$

Sampling frequency (fs) is 44.1 kHz. Duty factor is measured at 1/2 V_{DD}

3. Others

Item	Symbol	Condition	Min.	і I Тур.	Max.	Unit
Master Clock Frequency	f ₃₃	V _{DD} =5.0±0.25[V]		33.8688	ł	MHz
(X'tal 33) Duty	D _{f33}	$V_{DD}=3.3\pm0.3[V]$	40	50	60	%
Power Consumption	I _{OP1}	V _{DD} =5.25[V]		40	50	mA
(during normal operation)	I _{OP2}	V _{DD} =3.60[V]		1 25	30	mA
Power Consumption	I _{OP3}	V _{DD} =5.25[V]		25	50	μ Α
(during power down mode)	I _{OP4}	V _{DD} =3.60[V]		1 15 1	30	μΑ

Notes : $V_{SS}=0[V]$, $T_{OP}=0 \sim 70 ^{\circ}C$

/RESETSEL = "H". Duty factor is measured at 1/2 V_{DD}

YMF723 NFIDENTIAL

I/O write cycle

I/O read cycle

Fig.3

Serial audio interface

Fig.4

YMF723_{NFIDENTIAL}

I/O write cycle

I/O read cycle

rig.

Serial audio interface

Fig.4

Supplementary Information (about commands)

The following commands are used to check existence and identification of YMF704C/721(OPL4-ML/ML2) by using device driver.

Command	Sub Command	Command Length	Response Length	Function
80h	00h	3byte	11byte	Get Processor Device ID
80h	01h	3byte	5byte	Get Processor Software Version
80h	02h	3byte	6byte	Get Processor Software Capacity
81h	00h	3byte	8byte	Get OPL4-MLx Information
82h	00h	3byte	31byte	Get wave ROM Copyright Data
82h	01h	3byte	5byte	Get wave ROM Version

Command 80h

This command is used mainly to obtain version information of the internal processor. The device driver is able to know capability of the internal processor before it controls the hardware.

Sub Command 00h : Get Processor Device ID

The character string "GMP_OPL4" is read from ID strings. Existence of YMF721 (OPL4-ML2) can be confirmed with this character string.

Sub Command 01h : Get Processor Software Version

Command		Response	
80h	Command byte	84h	Response 1st byte
01h	Sub Command	02h	Integer part of version i
7Fh	Check sum	00h	1st decimal place of ve
		00h	2nd decimal place of ve
		7Eh	Check sum

number ersion number version number Check sum

Version number of firmware stored in the internal processor is read out as shown below.

YMF704 (OPL4-ML): Version 1.22

JUNFIDENTIAL

YMF

YMF704B(OPL4-ML): Version 1.23

YMF704C(OPL4-ML): Version 1.24

YMF721 (OPL4-ML2): Version 2.00

Sub Command 02h : Get Processor Software Capacity

Command	_	Response	1
80h	Command byte	85h	Response 1st byte
02h	Sub Command	00h	No use
7Eh	Check sum	00h	No use
		00h	No use
		07h	Capacity code
		79h	Check sum

The capacity of internal processor can be known through the capacity code.

bit0 = 1: The synthesizer is able to add effects such as reverb or chorus send level 1.

bit1 = 1 : Suspend/Resume is supported.

bit2 = 1 :Power down is supported.

YMF704 (OPL4-ML): Capacity Code=01h YMF704B(OPL4-ML): Capacity Code=03h YMF704C(OPL4-ML) : Capacity Code=03h YMF721 (OPL4-ML2): Capacity Code=07h

Command 81h

Sub Command 00h : Get OPL4-MLx Information

Since the synthesizer of YMF721(OPL4-ML2) is the same as YMF295(OPL4-D), the character string of "OPL4D" is obtained as described below.

Command 82h

These commands are used to know information about the internal Wavetable sample ROM.

Sub Command 00h : Get Wave ROM Copyright Data

This command is used to know capacity of internal processor. As the strings, character strings of "copyright yamaha corporation" (28bytes) are returned.

Sub Command 01h : Get Wave ROM Version

Command		Response	
82h	Command byte	84h	Response 1st byte
01h	Sub Command	01h	Integer part of version number
7Fh	Check sum	00h	First decimal place of version number
		03h	Second decimal place of version number
		7Ch	Check sum

This command is used to know version number of internal Wavetable sample ROM.

YMF704C(OPL4-ML) : Version 1.02

YMF721 (OPL4-ML2): Version 1.03

The shape of the molded corner may slightly different from the shape in this diagram.

The figure in the parenthesis () should be used as a reference. Plastic body dimensions do not include burr of resin. UNIT: mm

Note : LSIs to be installed on the surface of the printed circuit board require special care in storage and soldering. Consult your dealer for the details.

IMPORTANT NOTICE

1. Yamaha reserves the right to make changes to its Products and to this document without notice. The information contained in this document has been carefully checked and is believed to be reliable. However, Yamaha assumes no responsibilities for inaccuracies and makes no commitment to update or to keep current the information contained in this document.

2. These Yamaha Products are designed only for commercial and normal industrial applications, and are not suitable for other uses, such as medical life support equipment, nuclear facilities, critical care equipment or any other application the failure of which could lead to death, personal injury or environmental or property damage. Use of the Products in any such application is at the customer's sole risk and expense.

3. YAMAHA ASSUMES NO LIABILITY FOR INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES OR INJURY THAT MAY RESULT FROM MISAPPLICATION OR IMPROPER USE OR OPERATION OF THE PRODUCTS.

4. YAMAHA MAKES NO WARRANTY OR REPRESENTATION THAT THE PRODUCTS ARE SUBJECT TO INTELLECTUAL PROPERTY LICENSE FROM YAMAHA OR ANYTHIRD PARTY, AND YAMAHA MAKES NO WARRANTY OR REPRESENTATION OF NON-INFRINGEMENT WITH RESPECT TO THE PRODUCTS. YAMAHA SPECIFICALLY EXCLUDES ANY LIABILITY TO THE CUSTOMER OR ANY THIRD PARTY ARISING FROM OR RELATED TO THE PRODUCTS' INFRINGEMENT OF ANY THIRD PARTY'S INTELLECTUAL PROPERTY RIGHTS, INCLUDING THE PATENT, COPYRIGHT, TRADEMARK OR TRADE SECRET RIGHTS OF ANY THIRD PARTY.

5. EXAMPLES OF USE DESCRIBED HEREIN ARE MERELY TO INDICATE THE CHARACTERISTICS AND PERFORMANCE OF YAMAHA PRODUCTS. YAMAHA ASSUMES NO RESPONSIBILITY FOR ANY INTELLECTUAL PROPERTY CLAIMS OR OTHER PROBLEMS THAT MAY RESULT FROM APPLICATIONS BASED ON THE EXAMPLES DESCRIBED HEREIN. YAMAHA MAKES NO WARRANTY WITH RESPECT TO THE PRODUCTS, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR USE AND TITLE.

AGENCY] — YAM.	AHA CORPORATION ——
	Address inquires to	•
	Semi-conductor Sales Department	
	📕 Head Office	203, MatsunokiJima, Toyooka-mura.
		Iwata-gun, Shizuoka-ken, 438-01
		Tel. 0539-62-4918 Fax. 0539-62-5054
	Tokyo Office	2-17-11, Takanawa, Minato-ku, Tokyo, 108
		Tel. 03-5488-5431 Fax. 03-5488-5088
	Osaka Office	3-12-9, Minami Senba, Chuo-ku, Osaka City,
		Osaka, 542 Shinsaibashi Plaza Bldg. 4F
		Tel. 06-252-7980 Fax. 06-252-5615
	U.S.A. Office	YAMAHA System Technology.
		100 Century Center Court, San Jose, CA 95112
		Tel. 408-467-2300 Fax. 408-437-8791

Note) The specifications of this product are subject to improvement change without prior notice.