Universal Serial Bus
Device Class Definition
for

MIDI Devices

Release 1.0

Nov 1, 1999

USB Device Class Definition for MIDI Devices

Scope of this Revision

Thisdocument is the 1.0 release of this device class definition.

Contribu
Gal Ashour

tors

Billy Brackenridge

Oren Tirosh
Mike Kent

Geert Knapen

Revision History

IBM Corporation

Microsoft Corporation

Altec Lansing

Roland Corporation

E-mail: mikekent@compuserve.com
PhilipsITCL-USA

1000 West Maude Avenue
Sunnyvale, CA 94086-2810

Phone: +1 (408) 617-4677

Fax: +1 (408) 617-7721

E-mail: gknapen@pmc.philips.com

Revision Date Filename Authors Description
0.6 Jun. 1, 97 MIDIO6.doc Mike Kent Initial version
Geert
Knapen
0.7 Sep. 1,97 | MIDIO7.doc Mike Kent Reworked the architecture
Geert
Knapen
0.7a Dec. 1, 97 MIDIO7a.doc Mike Kent Introduced multiple output Elements.
Geert Removed Appliance.
Knapen
0.7b Mar. 1, 98 MIDIO7b.doc Mike Kent Minor changes and clean-ups.
Geert
Knapen
0.7c May. 1, 98 MIDIO7c.doc Mike Kent Introduced the Event Packet structure.
Removed all references to ‘F5’ message.
Geert
Knapen
0.7d Nov. 1, 98 MIDIO7d.doc Mike Kent Small editorial changes. Removed all
references to time stamps.
Geert
Knapen
0.8 Apr. 1, 99 MIDIO8.doc Mike Kent Minor changes. Added Management
Geert Overview. Made provisions for future
eer extensions. Changed bit definitions for the
Knapen
Element.
Release 1.0 Nov 1, 1999 ii

USB Device Class Definition for MIDI Devices

Revision Date Filename Authors Description
0.9 Aug. 1, 99 MIDI09.doc Mike Kent Deleted Synthesizer example. Updated a
number of references. Small editorial
Geert
changes.
Knapen
1.0 Nov. 1, 99 MIDI10.doc Mike Kent No Changes, except changing revision
number from 0.9to 1.0
Geert
Knapen

USB Device Class Definition for Audio Devices
Copyright © 1996, USB Implementers Forum

All rightsreserved.

INTELLECTUAL PROPERTY DISCLAIMER

THISSPECIFICATION ISPROVIDED “ASIS” WITH NO WARRANTIESWHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESSFOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

A LICENSE ISHEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS SPECIFICATION FOR
INTERNAL USE ONLY.NO OTHER LICENSE, EXPRESSOR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY OTHER INTELLECTUAL PROPERTY RIGHTSISGRANTED OR INTENDED

HEREBY.

AUTHORSOF THISSPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION
INTHISSPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO NOT WARRANT OR
REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

All other product names are trademarks, registered trademarks, or service marks of their respective owners.

Please send comments via el ectronic mail to usbhtech@mailbag.intel.com

Release 1.0

Nov 1, 1999

USB Device Class Definition for MIDI Devices

Table of Contents

Iz 101 =20) 0T oL (= o PP iv
IS A0 = 101 =TSP Vi
LIS o) B o 1 1 P vii
O | 1 o o U] £ o Y o PSP 8
O = 7= Tod (o o1 T 8
I U 0T 1T PP 8
G T = L= = (=T I To Lo 1 1= 9
1.4 Terms and ADDreViatioNSovuiieiiii i 9

2 ManNagemMENT OVEIVIEW ..uuiiiiiiie e e e e e e e e e e e e e e e e e aneanen 10
3 FuNnctional CharaCteriStiCS. . i i e e e e 11
3.1 USB-MIDI FUNCLON TOPOIOGY ... eettettinetieeee e e e e e e e e e s e e e e e e e eenreaneaaneeen 11
3.2 USB-MIDI CONVEIET.ttt e e e et e ea e tnenaans 12
3.2.1 MIDI Endpoints and Embedded MIDI JaCKS...........ccccvviiiiiiiiiiiiiicin e 13
3.2.2 Transfer ENAPOINTS.vuiii e e anas 13

3.3 EXEErNal MIDI JACKieniii ettt et e e e e e e 13
3.3 1 PARALLEL OUT ittt ettt e e e et e e e e e e eeanas 13
3.3.2 11 I o T | PR 14

Bid B MmNt oo 14
3.4.1 Element Capabilityc.iieiiiie e 15
3.4.2 Link to the AUdIO FUNCLION.iui e e 15

4 USB-MIDI EVENT PACKEIS .. et e a e aas 16
5 0perational MOl ... 18
5.1 Communication from Host to USB-MIDI FUNCLIONccviiiiiiiiiiieece e 18
5.2 Communication from USB-MIDI Function t0 HOStccoviiiiiiiiiieee e, 18
5.2.1 High Bandwidth Data Transfer Mechanism.............ccoocoiiiiii i 18

L I TS o o) (0 = 20
6.1 MIDIStreaming Interface DEeSCHPLOISiuuiiiiiiee e 20
6.1.1 Standard MS Interface DeSCIIPIOr.ovuuiii e 20
6.1.2 Class-Specific MS Interface DeSCHPLOr.........vuiiiiiec e 21

6.2 MIDIStreaming ENAPOint DESCIIPIOISuvuniieie e e e e eeneanas 25
6.2.1 Standard MS Bulk Data Endpoint DeSCriptor..........oouvuiiiieiieiieieiee e 25
6.2.2 Class-Specific MS Bulk Data Endpoint DesCrptor...........covveevieiineiiieiiieeeenn 26
6.2.3 Standard MS Transfer Bulk Data Endpoint DescCriptorccccvvviviiiiiieinennnnn. 27
6.2.4 Class-Specific MS Transfer Bulk Data Endpoint Descriptor............ccovvvvvenveennee. 27

T REUESTS. it 28
7.1 StANAard REOUESES.ttt e e e e e e e e e a e 28
7.2 Class-SPECIfiC REOQUESTSciuiieiei e et e e e e et e eaneans 28
7.2.1 REQUEST LAYOUL ... et et e e 28
7.2.2 MIDISIreaming REQUESES.vuneiiieiieiee et et e e e e e e e e et e e e aaaeennas 31

Release 1.0 Nov 1, 1999

USB Device Class Definition for MIDI Devices

7.2.3 AddItioNal REQUESTS.uiiiiiiieiee e e e 32

S T €10 =37 1 Y 34
8.1 MIDI: Musical Instrument Digital INterface............ccooveiiiiiiiiiii e 34
8.2 GM: GENEIAI MIDI ... ittt e 34
8.3 ROIANA G ..ot e 34
8.4 YAMANA XG ..ottt 35
Appendix A. Audio Device Class Codes: MIDIStreaming.........ccocevveiiiiiiiineiineiieinannnns 36
A.1 MS Class-Specific Interface Descriptor SUDLYPESccovuviiriiiiiiiiiiec e 36
A.2 MS Class-Specific Endpoint Descriptor SUBLYPESccvvviiiiiiiii e 36
A.3 MS MIDI IN and OUT JACK TYPES ...cvuiirieiiiieiiieee ettt et 36
A.4 Class-Specific REQUESE COUESccuuiieiiiiie i e e a e 36
A5 CoNtrol SEIECIOr COUESttt e e e ees 36
A5.1 ENdpoint Control SEIECIOISuiiii i 36
Appendix B. Example: Simple MIDI Adapter (Informative)..........ccoocovviiiiiiiieineneenns 37
B.1 DEVICE DESCIIPION ...t ittt ettt e e 37
B.2 Configuration DeSCHPION. iii it e e 37
B.3 AudioControl Interface DESCIIPLOISoveuuiiiiiiiiiie it 38
B.3.1 Standard AC Interface DeSCIIPIOrcc.iiuiieiei e 38
B.3.2 Class-specific AC Interface DeSCHPIOr........cccuuiiiiiiiiieiii e 39

B.4 MIDIStreaming Interface DEeSCHPIOIS ...c.u.iveii i e e 39
B.4.1 Standard MS Interface DEeSCIIPLOL.cuuuiiiiiiiiiei e 39
B.4.2 Class-specific MS Interface DeSCIPIOrivuiiiiiii e 40
B.4.3 MIDI IN JACK DESCIIPION. ... ceuuiiitiieitie ettt et 40
B.4.4 MIDI OUT JaCK DESCHPIONvuuiiieii e ee e e e e e e e e e e e aneees 41

B.5 Bulk OUT ENdpoint DESCIPLOISuiivtiiiieiiteeiree ettt 42
B.5.1 Standard Bulk OUT EnNdpoint DeSCHPLOrccuvieeiiieiiei e eee e e e 42
B.5.2 Class-specific MS Bulk OUT Endpoint DeSCIpIOr........cc.vviuiiiiiiiiiiieiineceeen 42

B.6 BUIK IN ENAPOINt DESCHPLOIS .. cuuiieiiieit i et et e e e e e et e e e e e eeans 42
B.6.1 Standard Bulk IN ENdpoint DESCIIPION.cvvuuiiiiiiiineii e 42
B.6.2 Class-specific MS Bulk IN Endpoint DeSCriptorccovvvuviiiiii i 43

Release 1.0 Nov 1, 1999

USB Device Class Definition for MIDI Devices

List of Tables

Table 4-1: Code Index Number ClassifiCatioNS........c.oouuiiiiiiiiiii e 16
Table 4-2: Examples of Parsed MIDI Events in 32-bit USB-MIDI Event Packets............... 17
Table 6-1: Standard MIDIStreaming Interface DeSCriptor........ccovviiiiiiiiiiiiieieeeee, 20
Table 6-2: Class-Specific MS Interface Header DeSCriptor........cocvvviiiiiiiiiiieiiieeeeen, 21
Table 6-3: MIDI IN JACK DeSCIIPIONuu ittt e 22
Table 6-4: MIDI OUT JacCK DeSCIIPLON ...uuiiiiiiei e e an e 22
Table 6-5: MIDI EleMeENnt DESCIIPLON . uuit e e e an e aes 24
Table 6-6: Standard MS Bulk Data Endpoint DeSCriptorc.ccoviiiiiiiiiiiieieeee e 25
Table 6-7: Class-specific MS Bulk Data Endpoint DescCriptor........cccoevvviiiiiiieiieieeeen, 26
Table 6-8: Standard MS Transfer Bulk Data Endpoint Descriptorcccovvveiiiiiiineinennnnn. 27
Table 7-1: Set REQUEST VaAlUEBSuuiiiiiie e e 29
Table 7-2: Get ReQUEST VaAlUBS.. ... e 30
Table 7-3: Set Endpoint Control Request ValUues..........cooiiiiiiiiiiiiii e 31
Table 7-4: Get Endpoint Control Request Values..........cooviiiiiiiiiiice e 31
Table 7-5: Association Control Parameter BIOCKccuviiuiiiiiiiiii e 32
Table 7-6: Set Memory ReqUEST ValUES.......couiiiiiiiiiie e 32
Table 7-7: Get Memory ReqUESt ValUScouiiiiiiiiiie e 33
Table 7-8: Get Status ReqUEST ValUBSiiiiiiiiiie e 33
Table B-1: MIDI Adapter Device DeSCIIPLOr ... 37
Table B-2: MIDI Adapter Configuration DeSCIIPLOr......c.uivuiiiiiiieiei e 37
Table B-3: MIDI Adapter Standard AC Interface DeSsCriptor......cccovvviiiiiiiiiiiiieeeeeee, 38
Table B-4: MIDI Adapter Class-specific AC Interface DescCriptorccccovvvviviiiiieiniinennnnn. 39
Table B-5: MIDI Adapter Standard MS Interface DeSCriptor.......ccooveviiiiiiiiiiiiieceeen, 39
Table B-6: MIDI Adapter Class-specific MS Interface DescCriptor.......cccovvviieiiiiieineinennnnn. 40
Table B-7: MIDI Adapter MIDI IN Jack Descriptor (Embedded)..........cccoevviiiiiiiiiiiniiennnnn. 40
Table B-8: MIDI Adapter MIDI IN Jack Descriptor (External)cooviiiiiiiiiiiiiieen, 40
Table B-9: MIDI Adapter MIDI OUT Jack Descriptor (Embedded).........ccccovvviiiiiiiiiinennnnn. 41
Table B-10: MIDI Adapter MIDI OUT Jack Descriptor (External)........ccccooviiiiiiiiiiiniinennnnn. 41
Table B-11: MIDI Adapter Standard Bulk OUT Endpoint Descriptor.........cccoevveiivieinennnnn. 42
Table B-12: MIDI Adapter Class-specific Bulk OUT Endpoint Descriptorccccevueenn... 42
Table B-13: MIDI Adapter Standard Bulk IN Endpoint DescCriptor.........ccccvvvveiiiieieinennnnn. 42
Table B-14: MIDI Adapter Class-specific Bulk IN Endpoint Descriptor.........cccoovevvinennn.n. 43

Release 1.0

Nov 1, 1999

USB Device Class Definition for MIDI Devices

List of Figures

Figure 1: Simple USB-MIDI INterfaceccuiiiiiiiiiiee e 8
Figure 2: USB-MIDI SYNEN@SIZEN . cuuiuiiii i 8
Figure 3: Complex USB-MIDI DEVICEccuiiiiiiiieiei e e e e e e e e e e 9
Figure 4: USB-MIDI FUNCLION TOPOIOQY tuuivuiiiiiiieie e e e e e e e 12
FIgure 5: PARALLEL OUT ...ttt e et s e e e s e e et s e e e aat s e e eanenaeees 14
Figure 6: MIDI THROUGH.iiiiiiiieiii e e e e e e et s e e e aaaeeeaaaaeaees 14
Figure 7: Synthesizer — Input Terminal Relationshipccccoooiiiiiiiiiii 15
Figure 8: 32-bit USB-MIDI EVENt PaCKeL.........cuiiiiiiiii e 16

Release 1.0 Nov 1, 1999

Vii

USB Device Class Definition for MIDI Devices

1 Introduction

Following isthe USB Audio Device Class Definition for MIDI Devices. It is designed to cover the widest
range of possible MIDI applications and products. This document must be considered an integral part of the
USB Audio Device Class Definition.

1.1 Background

MIDI, introduced in 1983, is a mature standard with many existing products and applications. It is a standard
that defines not only the data protocol for exchange of musical control information but also the hardware
connection, used to physically exchange the data. Therefore, transferring MI1DI data over another hardware
connection like USB is not really conforming to the MIDI specification and will be called USB-MIDI from
here on.

1.2 Purpose

This specification for MIDI exchange over USB is designed to be an elegant method to enable awide range
of MIDI system configurations, from the simplest to the most complex. Furthermore, this specification
expands on MIDI, allowing applications not possible with non-USB MIDI configurations.

Thefirst two figures show simple USB-MIDI systems that form the base of any MIDI related system on USB
and the third example shows a very complex USB-MIDI system combining variations of thefirst two.

Figure 1 shows asimple USB-MIDI interface, which would allow many existing non-USB MIDI devicesto
connect to USB.

USB Function

\
4

External MIDI IN

€MD —<
<«—USB|—p,

USB-MIDI
Converter

—MDI -, External MIDI OUT

|

Figurel: Simple USB-MIDI Interface

Figure 2 shows asimple USB-MIDI synthesizer receiving MIDI datavia USB and supplying its output audio
back to the Host for routing to USB speakers.

USB Function

<4+—USB

A 4

USB-MIDI

—MDI % Synthesizer

Converter

USB

Figure2: USB-MIDI Synthesizer
Figure 3shows avery complex USB-MIDI system including the most challenging configurations.

Release 1.0 Nov 1, 1999 8

USB Device Class Definition for MIDI Devices

<4+—USB

A 4

MIDI Converter

USB

USB Function

4

External MIDI IN

/a0
=)

U]
=

=<
N

External MIDI OUT

/7
A

External MIDI OUT

B MIDI ‘
MIDI o
{
mpi —»| Wavetable L
L MIDI —» Synthesizer for \
General MIDI and
«—MD— p.S1(32ch)) <
—wmbl—» FM Synthesizer
USB
——MDI—» Custom Type)
«—Mp — Synthesizer

< o
: W\ \
o A\

External MIDI OUT

]

J
\

Figure 3: Complex USB-MIDI Device

1.3 Related Documents

Universal Serial Bus Specification, 1.0 final draft revision (also referred to as the USB Specification).
In particular, see Chapter 9, “USB Device Framework”.
Universal Serial Bus Device Class Definition for Audio Devices (referred to in this document asUSB

Audio Devices).

Universal Serial Bus Device Class Definition for Audio Data Formats (referred to in this document as

USB Audio Data Formats).

Universal Serial Bus Device Class Definition for Terminal Types (referred to in this document asUSB
Audio Terminal Types).

Complete MIDI 1.0 Detailed Specification as defined by the MIDI Manufacturers Association.
General MIDI System Level 1 as defined by the MIDI Manufacturers Association.

1.4 Terms and Abbreviations

See Section 8, “ Glossary”.

Release 1.0

Nov 1, 1999

USB Device Class Definition for MIDI Devices

2 Management Overview

The USB iswell suited for connecting MIDI Interfaces and MIDI instruments to computers. MIDI isa
recognized protocol for music control that is serving the marketplace very well. The USB builds on the
strengths of MIDI by adding higher speed of transfer and increased MIDI channels through its multiple
"virtual" cable support.

In principle, aversatile buslike the USB provides many waysto handle MIDI data. For the industry,
however, it isvery important that MIDI transport mechanisms be well defined and standardized on the USB.
Only in thisway can we predict interoperability, guarantee reliable performance, and maintain the good
market image of MIDI itself. Standardized MIDI transport mechanisms also help keep software drivers as
generic as possible. The MIDI Streaming Interface Class described in this document satisfies those
requirements. It iswritten and revised by expertsin the MIDI field. Other device classes that address MIDI
in some way should refer to this document for their MIDI specification.

The USB transfers MIDI data at rate hundreds of times faster than the original MIDI 1.0 hardware
specification. In addition, this specification takes advantage of the USB's bandwidth and flexible data
handling to enable the transfer of many "virtual" cables worth of MIDI data.

Multiport MIDI interfaces have become more commonplace today and they need a connection to the
computer that can handle multiple MIDI connections on one cable. USB isvery well suited to this task.

Synthesizers and other MIDI instruments have increased in abilities. The bandwidth of atraditional MIDI
connection can be more easily consumed when trying to serve the high polyphony and increasing number
of MIDI message types commonly used. Typical synthesizers now also usethe 16 MIDI channels available
on aMIDI busin oneinstrument alone, requiring multiple MIDI bussesin atypical setup with more than
one MIDI instrument. Additionally, timing accuracy is essential inmusic.

USB can easily handle heavy loads of MIDI datawhile preserving the timing integrity of the data. Hundreds
of MIDI note messages can be sent all at the same time. In addition, by handling multiple "virtual" cables
the USB offers a solution to go beyond MIDI's 16-channel limit.

This document contains all necessary information for a designer to build a USB-compliant device that
incorporates MIDI functionality. It specifies the standard and class specific descriptors that must be present
in each USB MIDI Function. It further explains the transfer of MIDI events, parsed into 32 bit messages for
standardized transfer over the USB and for easy handling by MIDI devices. The MIDI dataitself is
transferred transparently, without any changes. Furthermore, if the MIDI 1.0 specification is updated, new
MIDI events or definitions are fully supported.

Release 1.0 Nov 1, 1999 10

USB Device Class Definition for MIDI Devices

3 Functional Characteristics

Asisthe casefor al audio functionality, USB-MIDI functionality resides at the interface level in the USB
Device Framework hierarchy. The MI1DIStreaming interface represents the entire functionality of the USB-
MIDI function. It isdefined as a subclass of the Audio Interface Class.

Audio functions are addressed through their audio interfaces. Each audio function hasasingle
AudioControl interface and can have several AudioStreaming and MIDIStreaming interfaces. The
AudioControl (AC) interface is used to access the audio Controls of the function whereas the
AudioStreaming (AS) interfaces are used to transport audio streams into and out of the function. The
MIDIStreaming (MS) interfaces are used to transport USB-MIDI data streamsinto and out of the audio
function. The collection of the single AudioControl interface and the AudioStreaming and MIDI Streaming
interfaces that belong to the same audio function is called the Audio Interface Collection (AIC). Refer to the
Universal Serial Bus Device Class Definition for Audio Devices document for further details.

3.1 USB-MIDI Function Topology

USB-MIDI functions may contain several building blocks. All USB-MIDI functions must contain a USB-
MIDI Converter, many may have some Embedded or External MIDI Jacks and some may contain one or more
Elements. Elements and MIDI Jacks are generically called Entities and they are connected to each other to
implement the desired MIDI functionality as shown in the following diagram (Figure 4).

Entities provide the basic building blocksto fully describe most USB-MIDI functions.

An Element is the representation of an engine that either interprets MIDI data streams and transforms them
into audio streams or accepts audio streams and transforms them into MIDI data streams. Some Elements
may even accept MIDI data streams and transform them into other MIDI data streams. Elements are
uniquely identified by their ElementID. An Element can have one or more Input Pins and one or more Output
Pins. Each Pin carriesasingle MIDI data stream. Furthermore, this specification provides the necessary
conceptsto allow asynchronoustransfers of larger data sets between the Host and an Element. This can be
used to implement DL S. Dedicated Transfer bulk endpoints are used for this purpose.

In addition, the concept of aMIDI Jack isintroduced. There are two types of MIDI Jacks. A MIDI IN Jack is
an Entity that represents a starting point for aMIDI data stream inside the USB-MIDI function. MIDI data
streams enter the USB-MIDI function through aMIDI IN Jack. A MIDI OUT Jack represents an ending
point for MIDI data streams. MIDI data streams leave the USB-MIDI function through aMIDI OUT Jack.
From the USB-MIDI function’s perspective, aUSB endpoint is atypical example of aMIDI IN or MIDI OUT
Jack. It either provides MIDI streams to the USB-MIDI function or consumes MIDI streams coming from the
USB-MIDI function. Such MIDI Jacks, representing a USB endpoint are called Embedded MIDI Jacks.
Likewise, all the physical MIDI connections, built into a USB-MIDI function are represented by External
MIDI Jack Entities. Connection to aMIDI IN Jack is made through its single Output Pin. A MIDI OUT Jack
can have multiple Input Pins. The MIDI OUT Jack will merge the MIDI data streams, received over its Input
Pins, effectively transforming them into asingle MIDI data stream. MIDI Jacks are uniquely identified by
their JackID.

Entities are wired together by connecting their I/0O Pins according to the required topology.

Input Pins of an Entity are numbered starting from one up to the total number of Input Pins on the Entity.
Likewise, Output Pins are numbered starting from one up to the total number of Output Pins on the Entity.

Every Entity in the USB-MIDI function isfully described by its associated Entity Descriptor. The Entity
Descriptor contains all necessary fieldsto identify and describe the Entity.

Each Entity within the USB-MIDI function is assigned a unique identification number, the EntityID,
contained in the bJackI D or bElementID field of the descriptor. The value 0x00 is reserved for undefined ID,
effectively restricting the total number of addressable Entitiesin the USB-MIDI function (both Jacks and
Elements) to 255.

Release 1.0 Nov 1, 1999 11

USB Device Class Definition for MIDI Devices

Besides uniquely identifying all addressable Entitiesin an USB-MIDI function, the IDs also serve to
describe the topology of the function; i.e. the baSourcel D() array of a Jack or Element descriptor indicates to
which other Entitiesthis Entity’ s Input Pins are connected. In addition, the baSour cePin() array of a Jack or
Element descriptor further qualifies the connection by indicating to which Output Pin of the other Entities
this Entity’ s Input Pins are connected.

The ensemble of Element and MIDI Jack descriptors provide afull description of the USB-MIDI function to
the Host. A generic MIDI driver should be able to fully control the USB-MIDI function.

The descriptors are further detailed in Section 6, “Descriptors” of this document.

uUsB
USB-MIDI Converter
MIDI OUT Endpoint XFR OUT Endpoint XFR IN Endpoint MIDI IN Endpoint
| | | |
MIDI OUT Endpoint XFR OUT Endpoint XFR IN Endpoint MIDI IN Endpoint
L (¢ g
Embedded MIDI IN {,)—o o— o =H.2) Embedded MIDI OUT
ol oot Element 1 f- o3
1 o— o 1
| |
1 (}_ [iy
Embedded MIDI IN ”)\—o o— Lo o {: Embedded MIDI OUT
n--{ Element 2 -« o
o —O

External MIDI IN {, 3—o

™Y External MIDI OUT

e.
(2% Dy

\

2 External MIDI OUT

3
(2°

o— —O0
= -1 Elementn o
External MIDI IN {2, _s)—0 0— —o -

USB-MIDI Function

Figure 4. USB-MIDI Function Topology

3.2 USB-MIDI Converter

The USB-MIDI Converter isthe heart of every USB-MIDI function sinceit providesthe link between the
Host and the USB-MIDI function. Therefore, it isamandatory building block. On one side, it interfaces with
the USB pipesthat are used to exchange MIDI data streams between the Host and the USB-MIDI function’s
MIDI endpoints. On the other side, it presents a number of Embedded MIDI Jacks. The Embedded MIDI
Jack isalogical concept to represent true MIDI connectivity within the USB-MIDI function. The USB-MIDI
Converter providesthe link between aMIDI OUT endpoint and the associated Embedded MIDI IN Jack.
Likewise, it converts between an Embedded MIDI OUT Jack and the corresponding MIDI IN endpoint.

Release 1.0 Nov 1, 1999 12

USB Device Class Definition for MIDI Devices

3.2.1 MIDI Endpoints and Embedded MIDI Jacks

The USB-MIDI Converter typically contains one or more MIDI IN and/or MIDI OUT endpoints. These
endpoints use bulk transfers to exchange data with the Host. Consequently, alarge quantity of USB-MIDI
data can simultaneously be sent by an application without missing any MIDI events. Therefore, music
applications can perform complex MIDI operations, including sending many MIDI Note On messages at the
same time to more smoothly play the most complex music.

Theinformation flowing from the Host to aMIDI OUT endpoint is routed to the USB-MIDI function

through one or more Embedded MIDI IN Jacks, associated with that endpoint. |nformation going to the
Host leaves the USB-MIDI function through one or more Embedded MIDI OUT Jacks and flows through the
MIDI IN endpoint to which the Embedded MIDI Out Jacks are associated.

USB-MIDI converters can connect to multiple Embedded MIDI Jacks. Each MIDI Endpoint in aUSB-MIDI
converter can be connected to up to 16 Embedded MIDI Jacks. Each Embedded MIDI Jack connected to one
MIDI Endpoint is assigned a number from 0 to 15. MIDI Dataistransferred over the USB in 32-bit USB-
MIDI Event Packets, with the first 4 bits used to designate the appropriate Embedded MIDI Jack.

A 32-bit USB-MIDI Event Packet is adopted to construct multiplexed MIDI streams (MUX MIDI) that can be
sent or received by each MIDI Endpoint. At the sending end, multiple individual MIDI streams are placed
into constant sized packets (with cable number) and are interleaved into asingle MUX MIDI stream. At the
receiving end, the multiplexed stream is properly demultiplexed, the dataiis extracted from the 32-bit USB-
MIDI Event Packets, and each original MIDI stream isrouted to the indicated virtual MIDI port. In thisway,
one endpoint can have multiple Embedded MIDI Jacks logically assigned. This method makes economical
use of few endpoints but requires a mux/demux process on both ends of the pipe. For more information, see
Section 4, “USB-MIDI Event Packets”.

3.2.2 Transfer Endpoints

The USB-MIDI Converter can contains one or more XFR IN and/or XFR OUT endpoints. These endpoints
use bulk transfers to exchange data sets between the Host and any of the Elements within the USB-MIDI
function. A mechanism of dynamic association isused to link a Transfer endpoint to an Element whenever
that Element needs out-of-band data sets exchanged with the Host. A typical application for this type of
endpoint is the transfer of DownL oadable Samplesto a Synthesizer Element. The same technique could be
used to download program code to an Element that contains a programmable DSP core.

3.3 External MIDI Jack

External MIDI Jacks represent physical MIDI Jacks, as defined by the MIDI Specification. They are the
physical connections used by the USB-MIDI function to interface with external MIDI-compliant devices.
Inside the USB-MIDI function, they are connected to Embedded MIDI Jacks, to other External MIDI Jacks
or to Elements. The use of External MIDI Jacksis optional.

3.3.1 PARALLEL OUT

If multiple External MIDI OUT Jacks are linked to the same Element’s or MIDI IN Jack’s Output Pin
(Embedded or External), these MIDI OUT Jacks output the same raw MIDI message streams, effectively
implementing MIDI PARALLEL OUT.

Release 1.0 Nov 1, 1999 13

USB Device Class Definition for MIDI Devices

Element or Embedded/ 7N
External Midi IN Jack | © o—{,s) External MIDI OUT
—0—@.6;} External MIDI OUT PARALLEL OUT

—o—<> External MIDI OUT

USB-MIDI Function

Figure5: PARALLEL OUT

3.3.2 MIDI Through

If an External MIDI OUT Jack islinked to an External MIDI IN Jack, the raw MIDI message stream which is
input from the External MIDI IN Jack is duplicated on the External MIDI OUT Jack. This effectively
implements MIDI THROUGH.

MIDI THROUGH

o o—{s Extemal MIDI OUT

—d \0

External MIDI IN

3

To internal USB-MIDI entities

USB-MIDI Function

Figure 6: MIDI THROUGH

3.4 Element

A USB-MIDI function contains one or more processing engines, called Elements. Typical Elements may
include:

Synthesizer engines

External Time Codeto MIDI Time Code (MTC) converters
MIDI controlled audio effects processors

other MIDI controlled engines

The Element istypically connected to one or more of the Embedded MIDI Jacks or External MIDI Jacks.
Commonly, when an Element is a Synthesizer, it creates an audio output stream, based on the MIDI data
received from the USB-MIDI converter. This audio output isthen brought into the audio function through
an Input Terminal, representing the Synthesizer.

An Element may also want to send raw M1DI message streamsto the Host. A typical caseisthe ‘bulk dump’
of settings or status from an Element (such as a Synthesizer) within aUSB-MIDI function. Another example

Release 1.0 Nov 1, 1999 14

USB Device Class Definition for MIDI Devices

could be MTC messages, converted from External Time Code such asLTC (SMPTE) signals, coming from an
external SMPTE Jack on the USB Device. The use of aUSB-MIDI Element is optional.

3.4.1 Element Capability

There are numerous different types of Elements with MIDI capabilities, which may be reported to the Host.
Some specifications for Synthesizer capabilities are defined. These capabilities may be defined by an
industry standard (such as General MIDI or DownL oadableSounds) or a de-facto standard (such as GS or
XG). The capabilities may be vendor-specific. Some other types of Elements may have other defined
capabilitiesincluding support for MMC (MIDI Machine Control) or Sync Features (such as SMPTE-MTC
conversion). Any one Element may have one or several of these capabilities.

Note: See Section 8, “Glossary” for more information about some of these de-facto standard or
industry standard specifications.

3.4.2 Linkto the Audio Function

Elementsthat either create or consume audio streams must be represented in the audio function through
Input or Output Terminals respectively. The audio streams can then further be processed using al the
facilities, provided by the Audio Device Class. By using the class-specific AudioControl Requests as
defined by the USB Audio Device Class, Host applications can control a Synthesizer's or Audio Effect
Processor’ s output/input levels, equalizer settings, mixing levelswith other audio streams, etc. Refer to the
USB Audio Device Class documentation for more information about implementing these non-MIDI, audio
features. Figure 7 illustrates the relationship between a USB-MIDI Element and its associated Input
Terminal.

AudioControl
Interface

MIDIStreaming
Interface

I
I
I
I
- I
Synthesizer
Element
I
I

Input Terminal, representing the
Synthesizer Output. Connects to
the internals of the audio function.

Figure7: Synthesizer — Input Terminal Relationship

Release 1.0 Nov 1, 1999 15

USB Device Class Definition for MIDI Devices

4 USB-MIDI Event Packets

MIDI dataistransferred over USB using 32-bit USB-MIDI Event Packets. These packets provide an efficient
method to transfer multiple MIDI streams with fixed length messages. The 32-bit USB-MIDI Event Packet
alows multiple "virtual MIDI cables" routed over the same USB endpoint. This approach minimizes the
number of required endpoints. It also makes parsing MIDI events easier by packetizing the separate bytes of
aMIDI event into one parsed USB-MIDI event.

Thefirst byte in each 32-bit USB-MIDI Event Packet is a Packet Header contains a Cable Number (4 bits)
followed by a Code Index Number (4 bits). The remaining three bytes contain the actual MIDI event. M ost
typical parsed MIDI events are two or three bytes in length. Unused bytes must be padded with zeros (in
the case of a one- or two-byte MIDI event) to preserve the 32-bit fixed length of the USB-MIDI Event
Packet. They arereserved for future use. Figure 8 illustrates the layout of the packet.

Byte G Byte 1 Byte 2 Byte 3
Code
Nii’gee ; Index MIDI_O MIDI_1 MIDI_2
Number

Figure 8: 32-bit USB-MIDI Event Packet

The Cable Number (CN) isavalue ranging from 0x0 to OxF indicating the number assignment of the
Embedded MIDI Jack associated with the endpoint that istransferring the data. The Code Index Number
(CIN) indicates the classification of the bytes inthe MIDI_xfields. The following table summarizes these
classifications.

Table 4-1: Code Index Number Classifications

CIN | MIDI_x Size | Description

0x0 1,2o0r3 Miscellaneous function codes. Reserved for future extensions.
Ox1 1,20r3 Cable events. Reserved for future expansion.

ox2 2 Two-byte System Common messages like MTC, SongSelect, etc.
0x3 3 Three-byte System Common messages like SPP, etc.

0x4 3 SysEx starts or continues

0x5 1 Single-byte System Common Message

or
SysEx ends with following single byte.

0x6 2 SysEx ends with following two bytes.
Oox7 3 SysEx ends with following three bytes.
0x8 3 Note-off

0x9 3 Note-on

OxA 3 Poly-KeyPress

Release 1.0 Nov 1, 1999 16

USB Device Class Definition for MIDI Devices

CIN | MIDI_x Size | Description

0xB 3 Control Change
oxC 2 Program Change
0xD 2 Channel Pressure
OxXE 3 PitchBend Change
OxF 1 Single Byte

Notel: F4 and F5 messages are undefined by the MIDI Specification 1.0. If they are defined in the
future, the length should be two or three bytes. In this case they would be categorized as

CIN=0x2 or CIN=0x3.
Note2:

CIN=0xF, Single Byte: in some special cases, an application may prefer not to use parsed MIDI

events. Using CIN=0xF, aMIDI data stream may be transferred by placing each individual byte

in one 32 Bit USB-MIDI Event Packet. Thisway, any MIDI data may be transferred without

being parsed.

The following table presents a number of examples on the use of the 32-bit USB-MIDI Event Packets and

their relationship with the original MIDI 1.0 event.

Table 4-2: Examples of Parsed MIDI Events in 32-bit USB-MIDI Event Packets

CIN=0x7)

Description MIDI_ver. 1.0 Event Packet

Note-on message on virtual cable 1 (CN=0x1; CIN=0x9) 9n kk w 19 9n kk ww
Control change message on cable 10 (CN=0xA; CIN=0xB) Bn pp w AB Bn pp w
Real-time message F8 on cable 3 (CN=0x3; CIN=0xF) F8 xx xx 3F F8 xx xx
SysEx message on cable p (CN=0xp). FO 0001 F7 p4 FO 00 01
Start of SysEx: CIN=0x4. End of SysEx: CIN=0x5 p5F7 00 00
SysEx message on cable p (CN=0xp). FO 000102 F7 p4 FO 00 01
Start of SysEx: CIN=0x4. End of SysEx: CIN=0x6 p6 02 F7 00
SysEx message on cable p (CN=0xp). FO00010203F7 | p4 FOO0001
Start of SysEx: CIN=0x4. End of SysEx: CIN=0x7 p7 02 03 F7
Special case: two-byte SysEx on cable p (CN=0xp; CIN=0x6) | FOF7 p6 FO F7 00
Special case: three-byte SysEx on cable p (CN=0xp; FO mm F7 p7 FO mm F7

Release 1.0 Nov 1, 1999

17

USB Device Class Definition for MIDI Devices

5 Operational Model

The USB-MIDI function exposes a single MIDI Streaming interface that is used by Host software to interact
and control the entire MIDI functionality of the function. Since al control messages are performed in-band
(buried into the MIDI data stream) there is no need for a separate control and status interface. The

MIDI Streaming interface contains one or more MIDI endpoints, which all use bulk transfers to exchange
MIDI datawith the Host. In addition, one or more Transfer bulk endpoints can be present to provide a high
bandwidth path to some of the Elementsinside the USB-MIDI function.

As already mentioned before, MUX MIDI data streams can be used to optimize communication between
Host and USB-MIDI function. The following paragraphs describe the data paths involved when
communication istaking place between multiple MIDI applications on the Host and multiple USB-MIDI
Elements or external MIDI appliances, connected to the USB-MIDI function. However, it must be clearly
understood that the part of the discussion involving Host behavior is merely there to complete the full
picture and is not imposing any implementation rules on Host software. This specification islimited to
specifying USB-MIDI function behavior only.

5.1 Communication from Host to USB-MIDI Function

Multiple applications may want to send MIDI data streams to different parts of the USB-MIDI function. For
efficiency reasons, it is desirable not to have a different USB pipe for every communication path to be
established although this specification does not prevent implementations that desire to do so. In general,
multiple MIDI data streams, possibly originating from different applicationswill be multiplexed into asingle
MUX MIDI data stream by some MIDI Mixer entity in Host software. The format of the MUX MIDI data
stream is based upon the use of 32 Bit USB-MIDI Event Packets with cable numbers and is further detailed
in Section 4, “USB-MIDI Event Packets”. ThisMUX MIDI data stream is sent over aUSB pipeto aMIDI
OUT Endpoint, residing in the USB-MIDI Converter. The USB-MIDI Converter inspects the incoming MUX-
MIDI USB-MIDI Data Packets. It extractsthe MIDI datafrom the packets and routes the original MIDI data
streamsto the proper Embedded MIDI IN jacks, according to the cable number embedded in the USB-MIDI
Data Packets. There is a one to one relationship between cable numbers and Jackl Ds of the Embedded MIDI
IN Jacks, associated with the MIDI OUT endpoint. Once present at the Embedded MIDI IN Jacks, the MIDI
data streams follow the routing as dictated by the implemented topol ogy.

5.2 Communication from USB-MIDI Function to Host

Multiple Entitiesin the USB-MIDI function may want to send MIDI data streams to different applicationsin
the Host. For efficiency reasons, it is desirable not to have a different USB pipe for every communication
path to be established although this specification does not prevent implementations that desire to do so. In
general, multiple MIDI data streams, originating from different Entities within the USB-MIDI function arrive
at the different Embedded MIDI OUT Jacks, associated withaMIDI IN endpoint in the USB-MIDI
Converter. The USB-MIDI Converter converts each MIDI data stream into 32 Bit USB-MIDI Event Packets
with the appropriate cable number message and multiplexes all the MIDI data streamsinto asingle MUX
MIDI data stream. ThisMUX MIDI data stream is sent over a USB pipe to the Host. The Host software then
inspects theincoming MUX-MIDI USB-MIDI Data Packets, extracts the MIDI data from the packets and
routes the original MIDI data streams to the proper applications, according to the cable number embedded
inthe USB-MIDI Data Packets.

5.2.1 High Bandwidth Data Transfer Mechanism

To efficiently implement features like DownL oadable Samples, there is aneed for a high bandwidth data
transfer mechanism between the Host and one or more Elements within the USB-MIDI function. The most
straightforward way to implement such afacility would be to associate a separate bulk endpoint to each
Element that requires this high bandwidth path. However, a more conservative approach has been chosen

Release 1.0 Nov 1, 1999 18

USB Device Class Definition for MIDI Devices

where a Transfer bulk endpoint can be dynamically allocated to any Element that needs the facility at a
certain moment intime. Typicaly, aUSB-MIDI function would have one Transfer bulk IN and one Transfer
bulk OUT endpoint to serve all the Elementsinside the USB-MIDI function. However, if necessary, multiple
Transfer bulk IN and OUT endpoints may be implemented to increase the avail able bandwidth of the transfer
mechanism. A class-specific Request is provided to control the allocation of a Transfer bulk endpoint (See
Section 7.2.2.2.3.1, “Association Control”). This specification makes no assumptions as to which data
formats are used over the Transfer bulk endpoint. The Transfer mechanism merely provides ahigh
bandwidth data path between the Host and the currently associated Entity.

Release 1.0 Nov 1, 1999 19

USB Device Class Definition for MIDI Devices

6 Descriptors

The MIDIStreaming (MS) interface and endpoint descriptors contain all relevant information to fully
characterize the corresponding USB-MIDI function. The standard interface descriptor characterizes the
interface itself, whereas the class-specific interface descriptor provides pertinent information concerning the
internals of the USB-MIDI function. It specifiesrevision level information and lists the capabilities of each

Jack and Element.

6.1 MIDIStreaming Interface Descriptors

6.1.1 Standard MS Interface Descriptor

The standard MIDI Streaming (M S) interface descriptor isidentical to the standard interface descriptor
defined in Section 9.6.3 of the USB Specification, except that some fields have now dedicated values.

Table 6-1: Standard MIDIStreaming Interface Descriptor

Offset Field Size Value Description

0 bLength 1 Number | Size of this descriptor, in bytes: 9

1 bDescriptorType 1 Constant | INTERFACE descriptor type

2 binterfaceNumber 1 Number | Number of interface. A zero-based value
identifying the index in the array of
concurrent interfaces supported by this
configuration.

3 bAlternateSetting 1 Number | Value used to select an alternate setting
for the interface identified in the prior
field.

4 bNumEndpoints 1 Number | Number of MIDI endpoints used by this
interface (excluding endpoint 0).

5 binterfaceClass 1 Class AUDIO. Audio Interface Class code
(assigned by the USB). See Appendices
in the Universal Serial Bus Device Class
Definition for Audio Devices document.

6 binterfaceSubClass 1 Subclass | MIDISTREAMING. Audio Interface
Subclass code. Assigned by this
specification. See Appendices in the
Universal Serial Bus Device Class
Definition for Audio Devices document.

7 binterfaceProtocol 1 Protocol | Not used. Must be set to 0.

8 iInterface 1 Index Index of a string descriptor that describes
this interface.

Release 1.0 Nov 1, 1999

20

USB Device Class Definition for MIDI Devices

6.1.2 Class-Specific MS Interface Descriptor

The class-specific MSinterface descriptor is a concatenation of all the descriptorsthat are used to fully
describe the USB-MIDI function, i.e. all MIDI IN and MIDI OUT Jack Descriptors (JDs) and Element
Descriptors (EDs).

6.1.2.1 Class-Specific MS Interface Header Descriptor

Thetotal length of the class-specific M S interface descriptor depends on the number of Jacks and Elements
inthe USB-MIDI function. Therefore, the descriptor starts with a header that reflectsthe total length in
bytes of the entire class-specific MS interface descriptor in thewTotalL ength field. The bcdM SC field
identifies the release of the MIDI Streaming SubClass Specification with which this USB-MIDI function and
its descriptors are compliant. The order in which the Jack and Element descriptors are reported is not
important since every descriptor can be identified through itsbDescriptor Type and bDescriptor Subtype
field. The bDescriptor Type field identifiesthe descriptor as being a class-specific interface descriptor. The
bDescriptor Subtype field further qualifies the exact nature of the descriptor.

The following table defines the class-specific M S interface header descriptor.
Table 6-2: Class-Specific MS Interface Header Descriptor

Offset Field Size Value Description
0 bLength 1 Number | Size of this descriptor, in bytes: 7
1 bDescriptorType 1 Constant | CS_INTERFACE descriptor type.
2 bDescriptorSubtype 1 Constant | MS_HEADER descriptor subtype.
3 bcdMSC 2 BCD MIDIStreaming SubClass Specification

Release Number in Binary-Coded
Decimal. Currently 01.00.

5 wTotalLength 2 Number | Total number of bytes returned for the
class-specific MIDIStreaming interface
descriptor. Includes the combined length
of this descriptor header and all Jack and
Element descriptors.

This header isfollowed by one or more Jack and/or Element Descriptors. The layout of the descriptors
depends on the type of Jack or Element they represent. The first four fields are common for all Jack and
Element Descriptors. They contain the Descriptor Length, Descriptor Type, Descriptor Subtype and Jack or
Element ID.

Each Jack and Element within the USB-MIDI function is assigned a unique identification number, the Jacki D
or ElementI D, contained in the bJacklD or bElementI D field of the descriptor. The value 0x00 is reserved for
undefined ID, effectively restricting the total number of addressable Entitiesin the USB-MIDI function (both
Jacks and Elements) to 255.

6.1.2.2 MIDIIN Jack Descriptor

Release 1.0 Nov 1, 1999 21

USB Device Class Definition for MIDI Devices

Table 6-3: MIDI IN Jack Descriptor

Offset Field Size Value Description
0 bLength 1 Number | Size of this descriptor, in bytes: 6
1 bDescriptorType 1 Constant | CS_INTERFACE descriptor type.
2 bDescriptorSubtype 1 Constant | MIDI_IN_JACK descriptor subtype.
3 bJackType 1 Constant | EMBEDDED or EXTERNAL
4 bJackiD 1 Constant | Constant uniquely identifying the MIDI IN
Jack within the USB-MIDI function.
5 iJack 1 Index Index of a string descriptor, describing

the MIDI IN Jack.

6.1.2.3 MIDI OUT Jack Descriptor

Table 6-4: MIDI OUT Jack Descriptor

Offset Field Size Value Description

0 bLength 1 Number | Size of this descriptor, in bytes: 6+2*p

1 bDescriptorType 1 Constant | CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant | MIDI_OUT_JACK descriptor subtype.

3 bJackType 1 Constant | EMBEDDED or EXTERNAL

4 bJackiD 1 Constant | Constant uniquely identifying the MIDI
OUT Jack within the USB-MIDI function.

5 bNrInputPins 1 Number | Number of Input Pins of this MIDI OUT
Jack: p

6 baSourcelD(1) 1 Number | ID of the Entity to which the first Input Pin
of this MIDI OUT Jack is connected.

7 BaSourcePin(1) 1 Number | Output Pin number of the Entity to which
the first Input Pin of this MIDI OUT Jack is
connected.

6+2*(p-1) baSourcelD (p) 1 Number | ID of the Entity to which the last Input Pin
of this MIDI OUT Jack is connected.
6+2*(p-1)+1 BaSourcePin(p) 1 Number | Output Pin number of the Entity to which

the last Input Pin of this MIDI OUT Jack is
connected.

Release 1.0

Nov 1, 1999

22

USB Device Class Definition for MIDI Devices

Offset Field Size Value Description

5+2*p iJack 1 Index Index of a string descriptor, describing

the MIDI OUT Jack.

6.1.2.4 Element Descriptor

ThebInTerminalLink field contains the unique Terminal 1D of the Input Terminal to which this Element is
connected. If thereisno link to an Input Terminal, then the binTerminalLink field must be set to zero.

The bOutTerminalLink field contains the unique Terminal 1D of the Output Terminal to which this Element
is connected, effectively implementing a Sampler, an Effector controlled by MIDI, and so on. If thereisno
link to an Output Terminal, then the bOutTerminalLink field must be set to zero.

The bEICapsSizefield represents the size in bytes of the bmElementCaps field. Currently, thisfield is set to
1. However, thisfield is here to accommodate future extensions.

Each bit in the bmElementCaps field represents some capability of a USB-MIDI Element. When abit is set, it
indicates that the corresponding capability is supported by the Element. At least one bit should be set (bit

D7 if no other applicable).
DO: CUSTOM UNDEFINED

D1: MIDI CLOCK

D2: MIDI TIME CODE (MTC)

D3: MIDI MACHINE CONTROL (MMC)
D4: GM1

D5: GM2

D6. GS
D7: XG
D8: EFX

D9: MIDI Patch Bay
D10: DLS1

D11:DLS2

D12 and higher

The Element has unique, undefined features. A typical example
would be a unique synthesizer type or MIDI controlled audio
effects processor.

MIDI CLOCK messages are supported. Typical example
Elementsinclude drum machines and MIDI CLOCK to FSK
converters.

Synchronization features are supported. Typical example
Elementsinclude MTC to SMPTE converters.

MM C messages are supported.

General MIDI System Level 1 compatibility as defined by the
MIDI Manufacturers Association.

General MIDI System Level 2 compatibility as defined by the
MIDI Manufacturers Association.

GS Format compatibility as defined by Roland Corporation.
XG compatibility as defined by Y amaha Corporation.

The Element provides an audio effects processor controlled by
USB.

The Element provides an internal MIDI Patcher or Router.

DownL oadable Sounds Standard Level 1 compatibility as
defined by the MIDI Manufacturers Association.

DownL oadable Sounds Standard Level 2 compatibility as
defined by the MIDI Manufacturers Association.

Represents future possible common defined MIDI type such
asDLS3, GM3 and so on.

iElement represents the Index of a string descriptor, describing the Element.

Release 1.0 Nov 1, 1999

23

USB Device Class Definition for MIDI Devices

Table 6-5: MIDI Element Descriptor

Offset Field Size Value Description

0 bLength 1 Number | Size of this descriptor, in bytes: 10+2*p+n

1 bDescriptorType 1 Constant | CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant | ELEMENT descriptor subtype.

3 bElementID 1 Constant | Constant uniquely identifying the MIDI
OUT Jack within the USB-MIDI function.

4 bNrInputPins 1 Number | Number of Input Pins of this Element: p

5 baSourcelD(1) 1 Number | ID of the Entity to which the first Input Pin
of this Element is connected.

6 BaSourcePin(1) 1 Number | Output Pin number of the Entity to which
the first Input Pin of this Element is
connected.

5+2*(p-1) baSourcelD (p) 1 Number | ID of the Entity to which the last Input Pin
of this Element is connected.
5+2*(p-1)+1 BaSourcePin(p) 1 Number | Output Pin number of the Entity to which
the last Input Pin of this Element is
connected.
5+2*p bNrOutputPins 1 Number | Number of Output Pins of this Element: g
6+2*p binTerminalLink 1 Constant | The Terminal ID of the Input Terminal to
which this Element is connected
7+2*p bOutTerminalLink 1 Constant | The Terminal ID of the Output Terminal to
which this Element is connected
8+2*p bEICapsSize 1 Number | Size, in bytes of the bmElementCaps
field.
Release 1.0 Nov 1, 1999

24

USB Device Class Definition for MIDI Devices

Offset Field Size Value Description
9+2*p bmElementCaps n BitMap DO: Custom Undefined Type
D1: MIDI CLOCK
D2: MTC
D3: MMC
D4: GM1
D5: GM2
D6: GS
D7: XG
D8: EFX
D9: MIDI Patch Bay
D10: DLS1
D11: DLS2
D12.Dx: Reserved for future common
defined MIDI types
9+2*p+n iElement 1 Index Index of a string descriptor, describing
the Element.

6.2 MIDIStreaming Endpoint Descriptors

Thefollowing paragraphs outline the descriptors that fully characterize the endpoint(s) used for
transporting MIDI data streamsto and from the USB-MIDI function. In addition, the descriptors of the
Transfer bulk endpoint(s) are also described.

6.2.1 Standard MS Bulk Data Endpoint Descriptor

The standard M S bulk MIDI data endpoint descriptor isidentical to the standard endpoint descriptor
defined in Section 9.6.4, “Endpoint,” of the USB Specification and further expanded as defined in the
Universal Serial Bus Class Specification. D7 of the bEndpointAddressfield indicates whether the endpoint
isaMIDI datasource (D7 = 1) or aMIDI datasink (D7 = 0). The bmAttributes Field bits are set to reflect the
bulk type of the endpoint. The synchronization type isindicated by D3..2 and must be set to None.

Table 6-6: Standard MS Bulk Data Endpoint Descriptor

Offset Field Size Value | Description
0 bLength 1 Number | Size of this descriptor, in bytes: 9
1 bDescriptorType 1 Constant | ENDPOINT descriptor type
2 bEndpointAddress 1 Endpoint | The address of the endpoint on the USB

device described by this descriptor. The
address is encoded as follows:

D7: Direction.
0 = OUT endpoint
1 =IN endpoint

D6..4: Reserved, reset to zero

D3..0: The endpoint number,
determined by the designer.

Release 1.0 Nov 1, 1999 25

USB Device Class Definition for MIDI Devices

Offset Field Size Value Description
3 bmAttributes 1 BitMap | D7..4: Reserved
D3..2: Synchronization type
00 = None
D1..0: Transfer type
10 = Bulk
4 wMaxPacketSize 2 Number | Maximum packet size this endpoint is
capable of sending or receiving when
this configuration is selected.
6 binterval 1 Number | Interval for polling endpoint for data
transfers expressed in milliseconds.
This field is ignored for bulk endpoints.
Must be reset to 0.
7 bRefresh 1 Number | Resetto 0.
8 bSynchAddress 1 Endpoint | The address of the endpoint used to

communicate synchronization
information if required by this endpoint.
Reset to zero.

6.2.2 Class-Specific MS Bulk Data Endpoint Descriptor

The bNumEmMbMIDIlJack field contains the number of Embedded MIDI Jacks, associated with this MS bulk
data endpoint. In case of adataIN endpoint, these would be Embedded MIDI OUT Jacks. If itisadataOUT

endpoint, these would be Embedded MIDI IN Jacks. The baAssocJacks() array contains the JacklD’ s of
these Embedded MIDI Jacks.

Table 6-7: Class-specific MS Bulk Data Endpoint Descriptor

Offset Field Size Value Description
0 bLength 1 Number | Size of this descriptor, in bytes: 4+n
1 bDescriptorType 1 Constant [CS_ENDPOINT
2 bDescriptorSubTyp 1 Constant | MS_GENERAL
e
3 bNUMEMbMIDIJack 1 Number Number of Embedded MIDI Jacks: n.
4 baAssocJackID(1) 1 Constant | ID of the first Embedded Jack that is
associated with this endpoint.
4+(n-1) baAssocJackID(n) 1 Constant | ID of the last Embedded Jack that is

associated with this endpoint.

Release 1.0

Nov 1, 1999

USB Device Class Definition for MIDI Devices

6.2.3 Standard MS Transfer Bulk Data Endpoint Descriptor

The standard MS Transfer bulk MIDI data endpoint descriptor isidentical to the standard endpoint
descriptor defined in Section 9.6.4, “Endpoint,” of the USB Specification and further expanded as defined in
the Universal Serial Bus Class Specification. D7 of the bEndpointAddressfield indicates whether the
endpoint isaTransfer IN (D7 = 1) or aTransfer OUT (D7 = 0) endpoint. The bmAttributes Field bits are set

to reflect the bulk type of the endpoint. The synchronization type isindicated by D3..2 and must be set to

None.

Table 6-8: Standard MS Transfer Bulk Data Endpoint Descriptor

Offset Field

Size

Value

Description

0 bLength

Number

Size of this descriptor, in bytes: 9

1 bDescriptorType

Constant

ENDPOINT descriptor type

2 bEndpointAddress

Endpoint

The address of the endpoint on the USB

device described by this descriptor. The
address is encoded as follows:

D7: Direction.
0 = OUT endpoint
1 =IN endpoint

D6..4: Reserved, reset to zero

D3..0: The endpoint number,

determined by the designer.

3 bmAttributes

Bit Map

D7..4: Reserved

D3..2: Synchronization type

00 = None

D1..0: Transfer type

10 = Bulk

4 wMaxPacketSize

Number

Maximum packet size this endpoint is
capable of sending or receiving when
this configuration is selected.

6 binterval

Number

Interval for polling endpoint for data
transfers expressed in milliseconds.
This field is ignored for bulk endpoints.

Must be reset to 0.

7 bRefresh

Number

Reset to 0.

8 bSynchAddress

Endpoint

The address of the endpoint used to
communicate synchronization
information if required by this endpoint.
Reset to zero.

6.2.4 Class-Specific MS Transfer Bulk Data Endpoint Descriptor
Thereis no class-specific MS Transfer bulk data endpoint descriptor.

Release 1.0 Nov 1, 1999

27

USB Device Class Definition for MIDI Devices

7 Requests

7.1 Standard Requests

The Audio Device Class supports the standard requests described in Section 9, “USB Device Framework,”
of the USB Specification. The MIDIStreaming SubClass places no specific requirements on the values for
the standard requests.

7.2 Class-Specific Requests

Most class-specific requests are used to set and get MIDI related Controls. At thistime, only the Set and
Get Association Control for Transfer bulk endpointsis defined, but amore general framework for
MIDI Streaming Control requestsis presented for future use.

The following request types are defined:

MI1DI Streaming Requests. Control of the class-specific behavior of aMIDIStreaming interfaceis
performed through manipulation of either interface Controls or endpoint Controls. These can be either
standard Controls, as defined in this specification or vendor-specific. In either case, the same request
layout can be used. MIDI Streaming requests are directed to the recipient where the Control resides.
This can be either the interface or its associated bulk endpoints.

The MIDI Streaming SubClass supports additional class-specific request:

Memory Requests. Every addressable Entity in the USB-MIDI function (Element, MIDI Jack) can
expose amemory-mapped interface that provides the means to generically manipulate the Entity.
Vendor-specific Control implementations could be based on this type of request.

The Get Status request isageneral query to an Entity in aMIDIStreaming interface and does not
manipulate Controls.

In principle, al requests are optional. If aUSB-MIDI function does not support a certain request, it must
indicate this by stalling the control pipe when that request isissued to the function. However, if acertain
Set request is supported, the associated Get request must also be supported. Get requests may be
supported without the associated Set request being supported.

Therest of this section describes the class-specific requests used to manipulate both interface Controls and
endpoint Controls.

7.2.1 Request Layout

The following paragraphs describe the general structure of the Set and Get requests. Subsequent
paragraphs detail the use of the Set/Get requests for the different request types.

Release 1.0 Nov 1, 1999 28

USB Device Class Definition for MIDI Devices

7.2.1.1 Set Request

Thisrequest isused to set an attribute of a Control inside an Entity of the USB-MIDI function. Additionally,

the memory space attribute of an Entity itself can be set through this request.

Table 7-1: Set Request Values

bmRequest bRequest wValue wlndex wlLength Data
Type
00100001B SET_CUR See following Entity ID Length of Parameter
SET_MIN paragraphs and parameter block
SET_MAX Interface block
SET_RES
00100010B | SET_MEM Endpoint

The bmRequest Type field specifies that thisisa SET request (D7=0b0). It is a class-specific request
(D6..5=0b01), directed to either aMIDI Streaming interface of the USB-MIDI function (D4..0=0b00001) or a
bulk endpoint of an MIDIStreaming interface (D4..0=0b00010).

The bRequest field contains a constant, identifying which attribute of the addressed Control or Entity isto
be modified. Possible attributes for a Control areits:

Current setting attribute (SET_CUR)

Minimum setting attribute (SET_MIN)

M aximum setting attribute (SET_MAX)

Resolution attribute (SET_RES)
Possible attributes for an Entity areits:

Memory space attribute (SET_MEM)

If the addressed Control or Entity does not support modification of a certain attribute, the control pipe must
indicate a stall when an attempt ismade to modify that attribute. In most cases, only the CUR and MEM
attribute will be supported for the Set request. However, this specification does not prevent a designer from
making other attributes programmable. For the list of Request constants, refer to Section A .4, “ Class-
Specific Request Codes’.

ThewValuefield interpretation is qualified by the value in the windexfield. Depending on what Entity is
addressed, the layout of the wValuefield changes. The following paragraphs describe the contents of the
wValuefield for each Entity separately. In most cases, the wValuefield contains the Control Selector (CS) in
the high byte. It is used to address a particular Control within Entities that can contain multiple Controls. If
the Entity only contains a single Control, there is no need to specify a Control Selector and the wValuefield
can be used to pass additional parameters.

The windexfield specifies the interface or endpoint to be addressed in the low byte and the Entity ID or zero
in the high byte. In case an interface is addressed, the virtual Entity ‘interface’ can be addressed by
specifying zero in the high byte. The values inwlndex must be appropriate to the recipient. Only existing
Entitiesin the USB-MIDI function can be addressed and only appropriate interface or endpoint numbers
may be used. If the request specifies an unknown or non-Entity ID or an unknown interface or endpoint
number, the control pipe must indicate astall.

The actual parameter(s) for the Set request are passed in the data stage of the control transfer. The length of
the parameter block isindicated in the wLength field of the request. The layout of the parameter block is
qualified by both the bRequest and windex fields. Refer to the following sections for a detailed description
of the parameter block layout for all possible Entities.

Release 1.0 Nov 1, 1999 29

USB Device Class Definition for MIDI Devices

7.2.1.2 Get Request

Thisrequest returns the attribute setting of a specific Control inside an Entity of the USB-MIDI function.
Additionally, the memory space attribute of an Entity itself can be returned through this request.

Table 7-2: Get Request Values

bmRequest bRequest wValue wlndex wlLength Data
Type
10100001B GET_CUR See following Entity ID Length of Parameter
GET_MIN paragraphs and parameter block
GET_MAX Interface block
GET_RES
101000108 | GET_MEM Endpoint

The bmRequest Type field specifiesthat thisisa GET request (D7=0b1). It is a class-specific request
(D6..5=0001), directed to either aMIDIStreaming interface of the USB-MIDI function (D4..0=0b00001) or a
bulk endpoint of a MIDI Streaming interface (D4..0=0b00010).

The bRequest field contains a constant, identifying which attribute of the addressed Control or Entity isto
be returned. Possible attributes for a Control areits:

Current setting attribute (GET_CUR)

Minimum setting attribute (GET_MIN)

M aximum setting attribute (GET_MAX)

Resol ution attribute (GET_RES)
Possible attributes for an Entity areits:

Memory space attribute (GET_MEM)

If the addressed Control or Entity does not support readout of a certain attribute, the control pipe must
indicate a stall when an attempt is made to read that attribute. For the list of Request constants, refer to
Section A .4, “ Class-Specific Request Codes”.

ThewValuefield interpretation is qualified by the value in the windexfield. Depending on what Entity is
addressed, the layout of the wValuefield changes. The following paragraphs describe the contents of the
wValuefield for each Entity separately. In most cases, the wValuefield contains the Control Selector (CS) in
the high byte. It is used to address a particular Control within Entities that can contain multiple Controls. If
the Entity only contains a single Control, thereis no need to specify a Control Selector and the wValue field
can be used to pass additional parameters.

The windexfield specifies the interface or endpoint to be addressed in the low byte and the Entity 1D or zero
in the high byte. In case an interface is addressed, the virtual Entity ‘interface’ can be addressed by
specifying zero in the high byte. The values inwlndex must be appropriate to the recipient. Only existing
Entitiesin the USB-MIDI function can be addressed and only appropriate interface or endpoint numbers
may be used. If the request specifies an unknown or non-Entity ID or an unknown interface or endpoint
number, the control pipe must indicate astall.

The actua parameter(s) for the Get request are returned in the data stage of the control transfer. The length
of the parameter block to return isindicated in the wL ength field of the request. If the parameter block is
longer than what isindicated in the wLength field, only the initial bytes of the parameter block are returned.
If the parameter block is shorter than what isindicated in the wL ength field, the device indicates the end of
the control transfer by sending a short packet when further data is requested. The layout of the parameter
block is qualified by both the bRequest and windexfields. Refer to the following sections for adetailed
description of the parameter block layout for all possible Entities.

Release 1.0 Nov 1, 1999 30

USB Device Class Definition for MIDI Devices

7.2.2 MIDIStreaming Requests

MIDI Streaming requests can be directed either to the MIDI Streaming interface or to the associated bulk data
endpoint(s), depending on the location of the Control to be manipulated.

7.2.2.1 Interface Control Requests
For now, this specification does not support interface Control Requests.

7.2.2.2 Endpoint Control Requests

The following sections describe the requests a USB-MIDI function can support for its MIDI Streaming bulk
endpoints. The same layout of the parameter blocksis used for both the Set and Get requests.

7.2.2.2.1 Set Endpoint Control Request

Thisrequest is used to set an attribute of an endpoint Control inside a particular endpoint of the USB-MIDI
function.

Table 7-3: Set Endpoint Control Request Values

bmRequest bRequest wValue wlndex wlLength Data
Type
00100010B SET_CUR Cs endpoint Length of Parameter
SET_MIN parameter block
SET_MAX block
SET_RES

The bRequest field indicates which attribute the request is manipulating. The MIN, MAX, and RES
attributes are usually not supported for the Set request.

ThewValuefield specifies the Control Selector (CS) in the high byte and the low byte must be set to zero.
The Control Selector indicates which type of Control this request is manipulating (Association, etc.) If the
request specifies an unknown CS to that endpoint, the control pipe must indicate astall.

For a description of the parameter block for the endpoint Control Selectors, see Section7.2.2.2.3, “Endpoint
Controls.”

7.2.2.2.2 Get Endpoint Control Request

Thisrequest returns the attribute setting of a specific endpoint Control inside an endpoint of the USB-MIDI
function.

Table 7-4: Get Endpoint Control Request Values

bmRequest bRequest wValue windex wlLength Data
Type
10100010B GET_CUR CSs endpoint Length of Parameter
GET_MIN parameter block
GET_MAX block
GET_RES

The bRequest field indicates which attribute the request is reading.

Release 1.0 Nov 1, 1999 31

USB Device Class Definition for MIDI Devices

ThewValuefield specifies the Control Selector (CS) in the high byte and the low byte must be set to zero.
The Control Selector indicates which type of Control this request is manipulating (Association, etc.) If the
request specifies an unknown CS to that endpoint, the control pipe must indicate astall.

For a description of the parameter block for the endpoint Control Selectors, see Section7.2.2.2.3, “Endpoint
Controls.”

7.2.2.2.3 Endpoint Controls

7.2.2.2.3.1 Association Control

The Association Control is used to establish alink between the endpoint and the Entity who's ID is
provided in the Parameter Block. Oncethe link is established, all datatraveling over this endpoint will be
delivered to or will originate from this Entity. The Association Control only supports the CUR attribute and
must contain avalid EntitylD. An association can only be established to Entities that support this feature. If
anon-existent or invalid EntitylD is specified, the control pipe must indicate astall. One exception to this
occurs when the bEntityl D is set to O for a Set Association request. In this case, the current association is
terminated and any subsequent data transfer to this endpoint resultsin ahalt of the endpoaint.

Table 7-5: Association Control Parameter Block

Control Selector ASSOCIATION_CONTROL
wLength 1
Offset Field Size Value Description
0 bEntitylD 1 Number | The ID of the Entity that is currently
associated with this endpoint.

7.2.3 Additional Requests

7.2.3.1 Memory Requests

The Host can interact with an addressabl e Entity (Element, Jack, interface or endpoint) within the USB-MIDI
functionin avery generic way. The Entity presents amemory space to the Host whose layout depends on
the implementation. The Memory request provides full access to this memory space.

7.2.3.1.1 Set Memory Request
This request is used to download a parameter block into a particular Entity of the USB-MIDI function.

Table 7-6: Set Memory Request Values

bmRequest bRequest wValue wlndex wlLength Data
Type
00100001B SET_MEM Offset Entity ID Length of Parameter
and parameter block
Interface block
00100010B Endpoint

The bRequest field indicates that the MEM attribute of the Entity is addressed.

Release 1.0 Nov 1, 1999 32

USB Device Class Definition for MIDI Devices

The wValuefield specifies a zero-based offset value that can be used to access only parts of the Entity’s
memory space.

The layout of the parameter block isimplementation dependent. A deviceisrequired to reevaluate its
memory space at the end of each Set Memory request.

7.2.3.1.2 Get Memory Request
Thisrequest is used to upload a parameter block from a particular Entity of the USB-MIDI function.

Table 7-7: Get Memory Request Values

bmRequest bRequest wValue wlndex wlLength Data
Type
10100001B GET_MEM Offset Entity ID Length of Parameter
and parameter block
Interface block
10100010B Endpoint

The bRequest field indicates that the MEM attribute of the Entity is addressed.

ThewValuefield specifies azero-based offset value that can be used to access only parts of the Entity’s
parameter space.

The layout of the parameter block isimplementation dependent.

7.2.3.2 Get Status Request
Thisrequest is used to retrieve status information from an Entity within the USB-MIDI function.

Table 7-8: Get Status Request Values

bmRequest bRequest wValue wlindex wlLength Data
Type
10100001B GET_STAT Zero Entity ID Status Status
and message message
Interface length
10100010B Endpoint

The bRequest field containsthe GET_STAT constant, defined in Section A .4, “ Class-Specific Request
Codes”.

ThewValuefieldis currently unused and must be set to zero.

The wLength field specifies the number of bytesto return. If the status message is longer than the wL ength
field, only theinitial bytesof the status message are returned. If the status message is shorter than the
wLength field, the function indicates the end of the control transfer by sending short packet when further
dataisrequested.

The contents of the status message is reserved for future use. For the time being, a null packet should be
returned in the data stage of the control transfer.

Release 1.0 Nov 1, 1999 33

USB Device Class Definition for MIDI Devices

8 Glossary

8.1 MIDI: Musical Instrument Digital Interface

MIDI isastandard for musical instruments and audio devices to communicate with each other and with
computers. For more information contact the MMA or AMEI at:

MIDI Manufacturers Association

P.O.Box 3173, LaHabra, CA 90632-3173 USA
Fax: (310) 947-4569

E-mail: mma@midi.org

http://www.midi.org/

Association of Musical ElectronicsIndustry

Ito Bldg.4th Floor 2-16-9 Misaki-cho Chiyoda-ku Tokyo 101 Japan
Fax:+81-3-5226-8549

8.2 GM: General MIDI

The General MIDI System isauniversal set of specifications for sound generating devices. These
specifications seek to allow for the creation of music data, which isnot limited to equipment by a particular
manufacturer, or to specific models. The General MIDI System defines the minimum number of voices that
should be supported, the MIDI messages that should be recogni zed, which sounds correspond to which
Program Change numbers, and the layout of rhythm sounds on the keyboard. Thanksto these
specifications, any device that is equipped with sound sources supporting the General MIDI System, will be
able to accurately reproduce General M DI Scores (music data created for the General MIDI System),
regardless of the manufacturer or model.

In September of 1991 the MIDI Manufacturers Association (MMA) and the Japan MIDI Standards
Committee (JM SC) created the beginning of anew erain MIDI technol ogy, by adopting the General MIDI
System Level 1 specification (GM). The specification is designed to provide a minimum level of performance
compatibility among MIDI instruments, and has hel ped pave the way for MIDI in the growing consumer and
multimedia markets.

The full specification document is part of the official Complete MIDI 1.0 Detailed Specification published
by the MMA.. Devel opers of General MIDI devices and compatible software (including MIDI files) should
also obtain the new GM Developer Guidelines and Survey document to assist with understanding GM
compatibility issues and additional recommendations.

8.3 Roland GS

The GS Format is Roland's set of specifications for standardizing the performance of sound generating
devices. It includes support for everything defined by the General MIDI System. Furthermore, the highly
compatible GS Format offers an expanded number of sounds, provides for the editing of sounds, and spells
out many details for awide range of extrafeatures, including effects such as reverberation and chorus.

Designed with the future in mind, the GS Format can readily include new sounds and support new hardware
features when they arrive. It is backward compatible with the General MIDI System. Therefore, Roland's GS
Format is capable of reliably playing back GM Scores equally well asit performs GS Music Data (music data
that has been created with the GS Format in mind).

Release 1.0 Nov 1, 1999 34

USB Device Class Definition for MIDI Devices

8.4 Yamaha XG

The Yamaha X G format is a set of rules describing how atone generator will respond to MIDI data. The
current GM (General MIDI) format isasimilar concept, allowing GM music datato be reproduced accurately
on any GM tone generator from any manufacturer. GM, however, applies only to alimited set of parameters.
XG significantly expands on the basic GM format, providing many more voices, voice editing capability,
effects, external input, and other features that contribute to enhanced musical expression. Since XG istotally
backward compatible with GM, GM data can be accurately reproduced on any XG tone generator.

Release 1.0 Nov 1, 1999 35

USB Device Class Definition for MIDI Devices

Appendix A. Audio Device Class Codes: MIDIStreaming

A.l MS Class-Specific Interface Descriptor Subtypes

Descriptor Subtype Value
MS_DESCRIPTOR_UNDEFINED 0x00
MS_HEADER 0x01
MIDI_IN_JACK 0x02
MIDI_OUT_JACK 0x03
ELEMENT 0x04

A.2 MS Class-Specific Endpoint Descriptor Subtypes

Descriptor Subtype Value
DESCRIPTOR_UNDEFINED 0x00
MS_GENERAL 0x01

A.3 MS MIDIIN and OUT Jack types

MIDI IN and OUT Jack type Value
JACK_TYPE_UNDEFINED 0x00
EMBEDDED 0x01
EXTERNAL 0x02

A4 Class-Specific Request Codes

For acompletelist of class-specific Request Codes, refer tothe Universal Serial Bus Device Class
Definition for Audio Devices.

A5 Control Selector Codes

A5.1 Endpoint Control Selectors

Control Selector Value
EP_CONTROL_UNDEFINED 0x00
ASSOCIATION_CONTROL 0x01

Release 1.0 Nov 1, 1999

USB Device Class Definition for MIDI Devices

Appendix B.

B.1 Device Descriptor
Table B-1: MIDI Adapter Device Descriptor

Example: Simple MIDI Adapter (Informative)

Offset Field Size Value Description

0 bLength 1 0x12 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x01 DEVICE descriptor.

2 bcdUSB 2 0x0110 1.10 - current revision of USB
specification.

4 bDeviceClass 1 0x00 Device defined at Interface level.

5 bDeviceSubClass 1 0x00 Unused.

6 bDeviceProtocol 1 0x00 Unused.

7 bMaxPacketSize0 1 0x08 8 bytes.

8 idvVendor 2 OXXXXX | Vendor ID.

10 idProduct 2 OXXXXX | Product ID.

12 bcdDevice 2 OXXXXX | Device Release Code.

14 iManufacturer 1 0x01 Index to string descriptor that contains
the string <Your Name> in Unicode.

15 iProduct 1 0x02 Index to string descriptor that contains
the string <Your Product Name> in
Unicode.

16 iSerialNumber 1 0x00 Unused.

17 bNumCaonfigurations 1 0x01 One configuration.

B.2 Configuration Descriptor
Table B-2: MIDI Adapter Configuration Descriptor

Offset Field Size Value Description
0 bLength 1 0x09 Size of this descriptor, in bytes.
1 bDescriptorType 1 0x02 CONFIGURATION descriptor.
2 wTotalLength 2 0x00XX | Length of the total configuration block,
including this descriptor, in bytes.
Release 1.0 Nov 1, 1999 37

USB Device Class Definition for MIDI Devices

Offset Field Size Value Description
4 bNuminterfaces 1 0x02 Two interfaces.
5 bConfigurationValu 1 0x01 ID of this configuration.
e
6 iConfiguration 1 0x00 Unused.
7 bmAttributes 1 0x80 Bus Powered device, not Self Powered,
no Remote wakeup capability.
8 MaxPower 1 0x32 100 mA Max. power consumption.

B.3 AudioControl Interface Descriptors

The AudioControl interface describes the device structure (audio function topology) and is used to

mani pulate the Audio Controls. This device has no audio function incorporated. However, the
AudioControl interface is mandatory and therefore both the standard AC interface descriptor and the class-
specific AC interface descriptor must be present. The class-specific AC interface descriptor only contains
the header descriptor.

B.3.1 Standard AC Interface Descriptor

The AudioControl interface has no dedicated endpoints associated with it. It uses the default pipe
(endpoint 0) for all communication purposes. Class-specific AudioControl Requests are sent using the
default pipe. Thereis no Status Interrupt endpoint provided.

Table B-3: MIDI Adapter Standard AC Interface Descriptor

Offset Field Size Value Description
0 bLength 1 0x09 Size of this descriptor, in bytes.
1 bDescriptorType 1 0x04 INTERFACE descriptor.
2 binterfaceNumber 1 0x00 Index of this interface.
3 bAlternateSetting 1 0x00 Index of this setting.
4 bNumEndpoints 1 0x00 0 endpoints.
5 binterfaceClass 1 0x01 AUDIO.
6 binterfaceSubclass 1 0x01 AUDIO_CONTROL.
7 binterfaceProtocol 1 0x00 Unused.
8 iinterface 1 0x00 Unused.

Release 1.0 Nov 1, 1999 38

USB Device Class Definition for MIDI Devices

B.3.2 Class-specific AC Interface Descriptor

The Class-specific AC interface descriptor is always headed by a Header descriptor that contains general
information about the AudioControl interface. It contains all the pointers needed to describe the Audio
Interface Collection, associated with the described audio function. Only the Header descriptor is present in
this device because it does not contain any audio functionality as such.

Table B-4: MIDI Adapter Class-specific AC Interface Descriptor

Offset Field Size Value Description
0 bLength 1 0x09 Size of this descriptor, in bytes.
1 bDescriptorType 1 0x24 CS_INTERFACE.
2 bDescriptorSubtype 1 0x01 HEADER subtype.
3 bcdADC 2 0x0100 Revision of class specification- 1.0
5 wTotalLength 2 0x0009 | Total size of class specific descriptors.
7 bInCollection 1 0x01 Number of streaming interfaces.
8 balnterfaceNr(1) 1 0x01 MIDIStreaming interface 1 belongs to this
AudioControl interface.

B.4 MIDIStreaming Interface Descriptors

B.4.1 Standard MS Interface Descriptor
Table B-5: MIDI Adapter Standard MS Interface Descriptor

Offset Field Size Value Description
0 bLength 1 0x09 Size of this descriptor, in bytes.
1 bDescriptorType 1 0x04 INTERFACE descriptor.
2 binterfaceNumber 1 0x01 Index of this interface.
3 bAlternateSetting 1 0x00 Index of this alternate setting.
4 bNumEndpoints 1 0x02 2 endpoints.
5 binterfaceClass 1 0x01 AUDIO.
6 binterfaceSubclass 1 0x03 MIDISTREAMING.
7 binterfaceProtocol 1 0x00 Unused.
8 iinterface 1 0x00 Unused.

Release 1.0 Nov 1, 1999 39

USB Device Class Definition for MIDI Devices

B.4.2 Class-specific MS Interface Descriptor
Table B-6: MIDI Adapter Class-specific MS Interface Descriptor
Offset Field Size Value Description
0 bLength 1 0x07 Size of this descriptor, in bytes.
1 bDescriptorType 1 0x24 CS_INTERFACE descriptor.
2 bDescriptorSubtype 1 0x01 MS_HEADER subtype.
3 BcdADC 2 0x0100 Revision of this class specification.
5 wTotalLength 2 0x0041 | Total size of class-specific descriptors.
B.4.3 MIDI IN Jack Descriptor
Table B-7: MIDI Adapter MIDI IN Jack Descriptor (Embedded)
Offset Field Size Value Description
0 bLength 1 0x06 Size of this descriptor, in bytes.
1 bDescriptorType 1 0x24 CS_INTERFACE descriptor.
2 bDescriptorSubtype 1 0x02 MIDI_IN_JACK subtype.
3 bJackType 1 0x01 EMBEDDED.
4 bJackiD 1 0x01 ID of this Jack.
5 iJack 1 0x00 Unused.
Table B-8: MIDI Adapter MIDI IN Jack Descriptor (External)
Offset Field Size Value Description
0 bLength 1 0x06 Size of this descriptor, in bytes.
1 bDescriptorType 1 0x24 CS_INTERFACE descriptor.
2 bDescriptorSubtype 1 0x02 MIDI_IN_JACK subtype.
3 bJackType 1 0x02 EXTERNAL.
4 bJackiD 1 0x02 ID of this Jack.
5 iJack 1 0x00 Unused.
Release 1.0 Nov 1, 1999 40

USB Device Class Definition for MIDI Devices

B.4.4 MIDI OUT Jack Descriptor
Table B-9: MIDI Adapter MIDI OUT Jack Descriptor (Embedded)
Offset Field Size Value Description
0 bLength 1 0x09 Size of this descriptor, in bytes.
1 bDescriptorType 1 0x24 CS_INTERFACE descriptor.
2 bDescriptorSubtype 1 0x03 MIDI_OUT_JACK subtype.
3 bJackType 1 0x01 EMBEDDED.
4 bJackiD 1 0x03 ID of this Jack.
5 bNrinputPins 1 0x01 Number of Input Pins of this Jack.
6 BaSourcelD(1) 1 0x02 ID of the Entity to which this Pin is
connected.
7 BaSourcePin(1) 1 0x01 Output Pin number of the Entity to which
this Input Pin is connected.
8 iJack 1 0x00 Unused.
Table B-10: MIDI Adapter MIDI OUT Jack Descriptor (External)
Offset Field Size Value Description
0 bLength 1 0x09 Size of this descriptor, in bytes.
1 bDescriptorType 1 0x24 CS_INTERFACE descriptor.
2 bDescriptorSubtype 1 0x03 MIDI_OUT_JACK subtype.
3 bJackType 1 0x02 EXTERNAL.
4 bJackiD 1 0x04 ID of this Jack.
5 bNrinputPins 1 0x01 Number of Input Pins of this Jack.
6 BaSourcelD(1) 1 0x01 ID of the Entity to which this Pin is
connected.
7 BaSourcePin(1) 1 0x01 Output Pin number of the Entity to which
this Input Pinis connected.
8 iJack 1 0x00 Unused.
Release 1.0 Nov 1, 1999 41

USB Device Class Definition for MIDI Devices

B.5 Bulk OUT Endpoint Descriptors

B.5.1 Standard Bulk OUT Endpoint Descriptor
Table B-11: MIDI Adapter Standard Bulk OUT Endpoint Descriptor

Offset Field Size Value Description
0 bLength 1 0x09 Size of this descriptor, in bytes.
1 bDescriptorType 1 0x05 ENDPOINT descriptor.
2 bEndpointAddress 1 0x01 OUT Endpoint 1.
3 bmAttributes 1 0x02 Bulk, not shared.
4 wMaxPacketSize 2 0x0040 | 64 bytes per packet.
6 binterval 1 0x00 Ignored for Bulk. Set to zero.
7 bRefresh 1 0x00 Unused.
8 bSynchAddress 1 0x00 Unused.

B.5.2 Class-specific MS Bulk OUT Endpoint Descriptor
Table B-12: MIDI Adapter Class-specific Bulk OUT Endpoint Descriptor

Offset Field Size Value Description
0 bLength 1 0x05 Size of this descriptor, in bytes.
1 bDescriptorType 1 0x25 CS_ENDPOINT descriptor
2 bDescriptorSubtype 1 0x01 MS_GENERAL subtype.
3 bNumEmbMIDIJack 1 0x01 Number of embedded MIDI IN Jacks.
4 BaAssocJackID(1) 1 0x01 ID of the Embedded MIDI IN Jack.

B.6 Bulk IN Endpoint Descriptors

B.6.1 Standard Bulk IN Endpoint Descriptor
Table B-13: MIDI Adapter Standard Bulk IN Endpoint Descriptor

Offset Field Size Value Description
0 bLength 1 0x09 Size of this descriptor, in bytes.
1 bDescriptorType 1 0x05 ENDPOINT descriptor.

Release 1.0 Nov 1, 1999

USB Device Class Definition for MIDI Devices

Offset Field Size Value Description
2 bEndpointAddress 1 0x81 IN Endpoint 1.
3 bmAttributes 1 0x02 Bulk, not shared.
4 wMaxPacketSize 2 0x0040 | 64 bytes per packet.
6 binterval 1 0x00 Ignored for Bulk. Set to zero.
7 bRefresh 1 0x00 Unused.
8 bSynchAddress 1 0x00 Unused.
B.6.2 Class-specific MS Bulk IN Endpoint Descriptor

Table B-14: MIDI Adapter Class-specific Bulk IN Endpoint Descriptor

Offset Field Size Value Description
0 bLength 1 0x05 Size of this descriptor, in bytes.
1 bDescriptorType 1 0x25 CS_ENDPOINT descriptor
2 bDescriptorSubtype 1 0x01 MS_GENERAL subtype.
3 bNumEmbMIDIJack 1 0x01 Number of embedded MIDI OUT Jacks.
4 BaAssocJackID(1) 1 0x03 ID of the Embedded MIDI OUT Jack.

Release 1.0

Nov 1, 1999

43

