

Universal Serial Bus
Device Class Definition

for
MIDI Devices

Releas e 1.0

Nov 1, 1999

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 ii

Scope of this Revision
This document is the 1.0 release of this device class definition.

Contributors
Gal Ashour IBM Corporation

Billy Brackenridge Microsoft Corporation

Oren Tirosh Altec Lansing

Mike Kent Roland Corporation

E-mail: mikekent@compuserve.com

Geert Knapen Philips ITCL-USA

1000 West Maude Avenue
Sunnyvale, CA 94086-2810
Phone: +1 (408) 617-4677
Fax: +1 (408) 617-7721
E-mail: gknapen@pmc.philips.com

Revision History

Revision Date Filename Authors Description

0.6 Jun. 1, 97 MIDI06.doc Mike Kent

Geert
Knapen

Initial version

0.7 Sep. 1, 97 MIDI07.doc Mike Kent

Geert
Knapen

Reworked the architecture

0.7a Dec. 1, 97 MIDI07a.doc Mike Kent

Geert
Knapen

Introduced multiple output Elements.
Removed Appliance.

0.7b Mar. 1, 98 MIDI07b.doc Mike Kent

Geert
Knapen

Minor changes and clean-ups.

0.7c May. 1, 98 MIDI07c.doc Mike Kent

Geert
Knapen

Introduced the Event Packet structure.
Removed all references to ‘F5’ message.

0.7d Nov. 1, 98 MIDI07d.doc Mike Kent

Geert
Knapen

Small editorial changes. Removed all
references to time stamps.

0.8 Apr. 1, 99 MIDI08.doc Mike Kent

Geert
Knapen

Minor changes. Added Management
Overview. Made provisions for future
extensions. Changed bit definitions for the
Element.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 iii

Revision Date Filename Authors Description

0.9 Aug. 1, 99 MIDI09.doc Mike Kent

Geert
Knapen

Deleted Synthesizer example. Updated a
number of references. Small editorial
changes.

1.0 Nov. 1, 99 MIDI10.doc Mike Kent

Geert
Knapen

No Changes, except changing revision
number from 0.9 to 1.0

USB Device Class Definition for Audio Devices
Copyright © 1996, USB Implementers Forum

All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS SPECIFICATION FOR
INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR INTENDED
HEREBY.

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION
IN THIS SPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO NOT WARRANT OR
REPRES ENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

All other product names are trademarks, registered trademarks, or service marks of their respective owners.

Please send comments via electronic mail to usbhtech@mailbag.intel.com

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 iv

Table of Contents

Table of Contents... iv

List of Tables.. vi

List of Figures... vii

1 Introduction.. 8
1.1 Background ... 8
1.2 Purpose .. 8
1.3 Related Documents.. 9
1.4 Terms and Abbreviations ... 9

2 Management Overview ...10

3 Functional Characteristics...11
3.1 USB-MIDI Function Topology..11
3.2 USB-MIDI Converter...12

3.2.1 MIDI Endpoints and Embedded MIDI Jacks...13
3.2.2 Transfer Endpoints..13

3.3 External MIDI Jack ..13
3.3.1 PARALLEL OUT...13
3.3.2 MIDI Through..14

3.4 Element ...14
3.4.1 Element Capability ...15
3.4.2 Link to the Audio Function...15

4 USB-MIDI Event Packets..16

5 Operational Model ..18
5.1 Communication from Host to USB-MIDI Function ...18
5.2 Communication from USB-MIDI Function to Host ...18

5.2.1 High Bandwidth Data Transfer Mechanism ..18

6 Descriptors ..20
6.1 MIDIStreaming Interface Descriptors ...20

6.1.1 Standard MS Interface Descriptor...20
6.1.2 Class-Specific MS Interface Descriptor...21

6.2 MIDIStreaming Endpoint Descriptors ...25
6.2.1 Standard MS Bulk Data Endpoint Descriptor...25
6.2.2 Class-Specific MS Bulk Data Endpoint Descriptor ...26
6.2.3 Standard MS Transfer Bulk Data Endpoint Descriptor27
6.2.4 Class-Specific MS Transfer Bulk Data Endpoint Descriptor...............................27

7 Requests..28
7.1 Standard Requests..28
7.2 Class-Specific Requests..28

7.2.1 Request Layout ..28
7.2.2 MIDIStreaming Requests...31

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 v

7.2.3 Additional Requests..32

8 Glossary ..34
8.1 MIDI: Musical Instrument Digital Interface..34
8.2 GM: General MIDI ...34
8.3 Roland GS..34
8.4 Yamaha XG ..35

Appendix A. Audio Device Class Codes: MIDIStreaming...36
A.1 MS Class-Specific Interface Descriptor Subtypes ...36
A.2 MS Class-Specific Endpoint Descriptor Subtypes ..36
A.3 MS MIDI IN and OUT Jack types ..36
A.4 Class-Specific Request Codes ...36
A.5 Control Selector Codes ..36

A.5.1 Endpoint Control Selectors ..36

Appendix B. Example: Simple MIDI Adapter (Informative)..37
B.1 Device Descriptor ..37
B.2 Configuration Descriptor...37
B.3 AudioControl Interface Descriptors ..38

B.3.1 Standard AC Interface Descriptor ...38
B.3.2 Class-specific AC Interface Descriptor..39

B.4 MIDIStreaming Interface Descriptors ...39
B.4.1 Standard MS Interface Descriptor...39
B.4.2 Class-specific MS Interface Descriptor ...40
B.4.3 MIDI IN Jack Descriptor...40
B.4.4 MIDI OUT Jack Descriptor ...41

B.5 Bulk OUT Endpoint Descriptors ..42
B.5.1 Standard Bulk OUT Endpoint Descriptor ...42
B.5.2 Class-specific MS Bulk OUT Endpoint Descriptor..42

B.6 Bulk IN Endpoint Descriptors..42
B.6.1 Standard Bulk IN Endpoint Descriptor...42
B.6.2 Class-specific MS Bulk IN Endpoint Descriptor ...43

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 vi

List of Tables

Table 4-1: Code Index Number Classifications...16

Table 4-2: Examples of Parsed MIDI Events in 32-bit USB-MIDI Event Packets...............17

Table 6-1: Standard MIDIStreaming Interface Descriptor ...20

Table 6-2: Class-Specific MS Interface Header Descriptor..21

Table 6-3: MIDI IN Jack Descriptor..22

Table 6-4: MIDI OUT Jack Descriptor ..22

Table 6-5: MIDI Element Descriptor ..24

Table 6-6: Standard MS Bulk Data Endpoint Descriptor ...25

Table 6-7: Class-specific MS Bulk Data Endpoint Descriptor...26

Table 6-8: Standard MS Transfer Bulk Data Endpoint Descriptor27

Table 7-1: Set Request Values...29

Table 7-2: Get Request Values...30

Table 7-3: Set Endpoint Control Request Values..31

Table 7-4: Get Endpoint Control Request Values..31

Table 7-5: Association Control Parameter Block ..32

Table 7-6: Set Memory Request Values..32

Table 7-7: Get Memory Request Values...33

Table 7-8: Get Status Request Values..33

Table B-1: MIDI Adapter Device Descriptor ..37

Table B-2: MIDI Adapter Configuration Descriptor..37

Table B-3: MIDI Adapter Standard AC Interface Descriptor ..38

Table B-4: MIDI Adapter Class-specific AC Interface Descriptor39

Table B-5: MIDI Adapter Standard MS Interface Descriptor..39

Table B-6: MIDI Adapter Class-specific MS Interface Descriptor.....................................40

Table B-7: MIDI Adapter MIDI IN Jack Descriptor (Embedded)..40

Table B-8: MIDI Adapter MIDI IN Jack Descriptor (External) ...40

Table B-9: MIDI Adapter MIDI OUT Jack Descriptor (Embedded)41

Table B-10: MIDI Adapter MIDI OUT Jack Descriptor (External)......................................41

Table B-11: MIDI Adapter Standard Bulk OUT Endpoint Descriptor42

Table B-12: MIDI Adapter Class-specific Bulk OUT Endpoint Descriptor42

Table B-13: MIDI Adapter Standard Bulk IN Endpoint Descriptor....................................42

Table B-14: MIDI Adapter Class-specific Bulk IN Endpoint Descriptor.............................43

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 vii

List of Figures

Figure 1: Simple USB-MIDI Interface... 8

Figure 2: USB-MIDI Synthesizer .. 8

Figure 3: Complex USB-MIDI Device ... 9

Figure 4: USB-MIDI Function Topology ..12

Figure 5: PARALLEL OUT...14

Figure 6: MIDI THROUGH..14

Figure 7: Synthesizer – Input Terminal Relationship ...15

Figure 8: 32-bit USB-MIDI Event Packet..16

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 8

1 Introduction
Following is the USB Audio Device Class Definition for MIDI Devices. It is designed to cover the widest
range of possible MIDI applications and products. This document must be considered an integral part of the
USB Audio Device Class Definition.

1.1 Background
MIDI, introduced in 1983, is a mature standard with many existing products and applications. It is a standard
that defines not only the data protocol for exchange of musical control information but also the hardware
connection, used to physically exchange the data. Therefore, transferring MIDI data over another hardware
connection like USB is not really conforming to the MIDI specification and will be called USB-MIDI from
here on.

1.2 Purpose
This specification for MIDI exchange over USB is designed to be an elegant method to enable a wide range
of MIDI system configurations, from the simplest to the most complex. Furthermore, this specification
expands on MIDI, allowing applications not possible with non-USB MIDI configurations.

The first two figures show simple USB-MIDI systems that form the base of any MIDI related system on USB
and the third example shows a very complex USB-MIDI system combining variations of the first two.

Figure 1 shows a simple USB-MIDI interface, which would allow many existing non-USB MIDI devices to
connect to USB.

External MIDI IN

External MIDI OUT

MIDI

MIDIU
S

B
-M

ID
I

C
on

ve
rte

r

USB

USB Function

Figure 1: Simple USB-MIDI Interface

Figure 2 shows a simple USB-MIDI synthesizer receiving MIDI data via USB and supplying its output audio
back to the Host for routing to USB speakers.

U
S

B
-M

ID
I

C
on

ve
rte

r

USB Function

SynthesizerMIDI

USB

USB

Figure 2: USB-MIDI Synthesizer

Figure 3 shows a very complex USB-MIDI system including the most challenging configurations.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 9

External MIDI IN

External MIDI OUT

MIDI

MIDI

U
S

B
-M

ID
I C

on
ve

rte
r

USB Function

Wavetable
Synthesizer for
General MIDI and
DLS1 (32 ch.)

FM Synthesizer

Custom Type
Synthesizer

MIDI

MIDI

MIDI

MIDI

MIDI

External MIDI OUT

External MIDI OUT

MIDI

USBUSB

USB

Figure 3: Complex USB-MIDI Device

1.3 Related Documents
• Universal Serial Bus Specification, 1.0 final draft revision (also referred to as the USB Specification).

In particular, see Chapter 9, “USB Device Framework”.
• Universal Serial Bus Device Class Definition for Audio Devices (referred to in this document as USB

Audio Devices).
• Universal Serial Bus Device Class Definition for Audio Data Formats (referred to in this document as

USB Audio Data Formats).
• Universal Serial Bus Device Class Definition for Terminal Types (referred to in this document as USB

Audio Terminal Types).
• Complete MIDI 1.0 Detailed Specification as defined by the MIDI Manufacturers Association.
• General MIDI System Level 1 as defined by the MIDI Manufacturers Association.

1.4 Terms and Abbreviations
See Section 8, “Glossary”.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 10

2 Management Overview
The USB is well suited for connecting MIDI Interfaces and MIDI instruments to computers. MIDI is a
recognized protocol for music control that is serving the marketplace very well. The USB builds on the
strengths of MIDI by adding higher speed of transfer and increased MIDI channels through its multiple
"virtual" cable support.

In principle, a versatile bus like the USB provides many ways to handle MIDI data. For the industry,
however, it is very important that MIDI transport mechanisms be well defined and standardized on the USB.
Only in this way can we predict interoperability, guarantee reliable performance, and maintain the good
market image of MIDI itself. Standardized MIDI transport mechanisms also help keep software drivers as
generic as possible. The MIDIStreaming Interface Class described in this document satisfies those
requirements. It is written and revised by experts in the MIDI field. Other device classes that address MIDI
in some way should refer to this document for their MIDI specification.

The USB transfers MIDI data at rate hundreds of times faster than the original MIDI 1.0 hardware
specification. In addition, this specification takes advantage of the USB's bandwidth and flexible data
handling to enable the transfer of many "virtual" cables worth of MIDI data.

Multiport MIDI interfaces have become more commonplace today and they need a connection to the
computer that can handle multiple MIDI connections on one cable. USB is very well suited to this task.

Synthesizers and other MIDI instruments have increased in abilities. The bandwidth of a traditional MIDI
connection can be more easily consumed when trying to serve the high polyphony and increasing number
of MIDI message types commonly used. Typical synthesizers now also use the 16 MIDI channels available
on a MIDI bus in one instrument alone, requiring multiple MIDI busses in a typical setup with more than
one MIDI instrument. Additionally, timing accuracy is essential in music.

USB can easily handle heavy loads of MIDI data while preserving the timing integrity of the data. Hundreds
of MIDI note messages can be sent all at the same time. In addition, by handling multiple "virtual" cables
the USB offers a solution to go beyond MIDI's 16-channel limit.

This document contains all necessary information for a designer to build a USB-compliant device that
incorporates MIDI functionality. It specifies the standard and class specific descriptors that must be present
in each USB MIDI Function. It further explains the transfer of MIDI events, parsed into 32 bit messages for
standardized transfer over the USB and for easy handling by MIDI devices. The MIDI data itself is
transferred transparently, without any changes. Furthermore, if the MIDI 1.0 specification is updated, new
MIDI events or definitions are fully supported.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 11

3 Functional Characteristics
As is the case for all audio functionality, USB-MIDI functionality resides at the interface level in the USB
Device Framework hierarchy. The MIDIStreaming interface represents the entire functionality of the USB-
MIDI function. It is defined as a subclass of the Audio Interface Class.

Audio functions are addressed through their audio interfaces. Each audio function has a single
AudioControl interface and can have several AudioStreaming and MIDIStreaming interfaces. The
AudioControl (AC) interface is used to access the audio Controls of the function whereas the
AudioStreaming (AS) interfaces are used to transport audio streams into and out of the function. The
MIDIStreaming (MS) interfaces are used to transport USB-MIDI data streams into and out of the audio
function. The collection of the single AudioControl interface and the AudioStreaming and MIDIStreaming
interfaces that belong to the same audio function is called the Audio Interface Collection (AIC). Refer to the
Universal Serial Bus Device Class Definition for Audio Devices document for further details.

3.1 USB-MIDI Function Topology
USB-MIDI functions may contain several building blocks. All USB-MIDI functions must contain a USB-
MIDI Converter, many may have some Embedded or External MIDI Jacks and some may contain one or more
Elements. Elements and MIDI Jacks are generically called Entities and they are connected to each other to
implement the desired MIDI functionality as shown in the following diagram (Figure 4).

Entities provide the basic building blocks to fully describe most USB-MIDI functions.

An Element is the representation of an engine that either interprets MIDI data streams and transforms them
into audio streams or accepts audio streams and transforms them into MIDI data streams. Some Elements
may even accept MIDI data streams and transform them into other MIDI data streams. Elements are
uniquely identified by their ElementID. An Element can have one or more Input Pins and one or more Output
Pins. Each Pin carries a single MIDI data stream. Furthermore, this specification provides the necessary
concepts to allow asynchronous transfers of larger data sets between the Host and an Element. This can be
used to implement DLS. Dedicated Transfer bulk endpoints are used for this purpose.

In addition, the concept of a MIDI Jack is introduced. There are two types of MIDI Jacks. A MIDI IN Jack is
an Entity that represents a starting point for a MIDI data stream inside the USB-MIDI function. MIDI data
streams enter the USB-MIDI function through a MIDI IN Jack. A MIDI OUT Jack represents an ending
point for MIDI data streams. MIDI data streams leave the USB-MIDI function through a MIDI OUT Jack.
From the USB-MIDI function’s perspective, a USB endpoint is a typical example of a MIDI IN or MIDI OUT
Jack. It either provides MIDI streams to the USB-MIDI function or consumes MIDI streams coming from the
USB-MIDI function. Such MIDI Jacks, representing a USB endpoint are called Embedded MIDI Jacks.
Likewise, all the physical MIDI connections, built into a USB-MIDI function are represented by External
MIDI Jack Entities. Connection to a MIDI IN Jack is made through its single Output Pin. A MIDI OUT Jack
can have multiple Input Pins. The MIDI OUT Jack will merge the MIDI data streams, received over its Input
Pins, effectively transforming them into a single MIDI data stream. MIDI Jacks are uniquely identified by
their JackID.

Entities are wired together by connecting their I/O Pins according to the required topology.

Input Pins of an Entity are numbered starting from one up to the total number of Input Pins on the Entity.
Likewise, Output Pins are numbered starting from one up to the total number of Output Pins on the Entity.

Every Entity in the USB-MIDI function is fully described by its associated Entity Descriptor. The Entity
Descriptor contains all necessary fields to identify and describe the Entity.

Each Entity within the USB-MIDI function is assigned a unique identification number, the EntityID,
contained in the bJackID or bElementID field of the descriptor. The value 0x00 is reserved for undefined ID,
effectively restricting the total number of addressable Entities in the USB-MIDI function (both Jacks and
Elements) to 255.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 12

Besides uniquely identifying all addressable Entities in an USB-MIDI function, the IDs also serve to
describe the topology of the function; i.e. the baSourceID() array of a Jack or Element descriptor indicates to
which other Entities this Entity’s Input Pins are connected. In addition, the baSourcePin() array of a Jack or
Element descriptor further qualifies the connection by indicating to which Output Pin of the other Entities
this Entity’s Input Pins are connected.

The ensemble of Element and MIDI Jack descriptors provide a full description of the USB-MIDI function to
the Host. A generic MIDI driver should be able to fully control the USB-MIDI function.

The descriptors are further detailed in Section 6, “Descriptors” of this document.

USB-MIDI Converter

USB-MIDI Function

External MIDI IN External MIDI OUT

USB

Element 1

External MIDI OUT

Embedded MIDI OUT

Embedded MIDI OUT

External MIDI IN

Embedded MIDI IN

Embedded MIDI IN

MIDI OUT Endpoint

MIDI OUT Endpoint

MIDI IN Endpoint

MIDI IN Endpoint

Element 2

Element n

XFR OUT Endpoint

XFR OUT Endpoint

XFR IN Endpoint

XFR IN Endpoint

Figure 4: USB-MIDI Function Topology

3.2 USB-MIDI Converter
The USB-MIDI Converter is the heart of every USB-MIDI function since it provides the link between the
Host and the USB-MIDI function. Therefore, it is a mandatory building block. On one side, it interfaces with
the USB pipes that are used to exchange MIDI data streams between the Host and the USB-MIDI function’s
MIDI endpoints. On the other side, it presents a number of Embedded MIDI Jacks. The Embedded MIDI
Jack is a logical concept to represent true MIDI connectivity within the USB-MIDI function. The USB-MIDI
Converter provides the link between a MIDI OUT endpoint and the associated Embedded MIDI IN Jack.
Likewise, it converts between an Embedded MIDI OUT Jack and the corresponding MIDI IN endpoint.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 13

3.2.1 MIDI Endpoints and Embedded MIDI Jacks
The USB-MIDI Converter typically contains one or more MIDI IN and/or MIDI OUT endpoints. These
endpoints use bulk transfers to exchange data with the Host. Consequently, a large quantity of USB-MIDI
data can simultaneously be sent by an application without missing any MIDI events. Therefore, music
applications can perform complex MIDI operations, including sending many MIDI Note On messages at the
same time to more smoothly play the most complex music.

The information flowing from the Host to a MIDI OUT endpoint is routed to the USB-MIDI function
through one or more Embedded MIDI IN Jacks, associated with that endpoint. Information going to the
Host leaves the USB-MIDI function through one or more Embedded MIDI OUT Jacks and flows through the
MIDI IN endpoint to which the Embedded MIDI Out Jacks are associated.

USB-MIDI converters can connect to multiple Embedded MIDI Jacks. Each MIDI Endpoint in a USB-MIDI
converter can be connected to up to 16 Embedded MIDI Jacks. Each Embedded MIDI Jack connected to one
MIDI Endpoint is assigned a number from 0 to 15. MIDI Data is transferred over the USB in 32-bit USB-
MIDI Event Packets, with the first 4 bits used to designate the appropriate Embedded MIDI Jack.

A 32-bit USB-MIDI Event Packet is adopted to construct multiplexed MIDI streams (MUX MIDI) that can be
sent or received by each MIDI Endpoint. At the sending end, multiple individual MIDI streams are placed
into constant sized packets (with cable number) and are interleaved into a single MUX MIDI stream. At the
receiving end, the multiplexed stream is properly demultiplexed, the data is extracted from the 32-bit USB-
MIDI Event Packets, and each original MIDI stream is routed to the indicated virtual MIDI port. In this way,
one endpoint can have multiple Embedded MIDI Jacks logically assigned. This method makes economical
use of few endpoints but requires a mux/demux process on both ends of the pipe. For more information, see
Section 4, “USB-MIDI Event Packets”.

3.2.2 Transfer Endpoints
The USB-MIDI Converter can contains one or more XFR IN and/or XFR OUT endpoints. These endpoints
use bulk transfers to exchange data sets between the Host and any of the Elements within the USB-MIDI
function. A mechanism of dynamic association is used to link a Transfer endpoint to an Element whenever
that Element needs out-of-band data sets exchanged with the Host. A typical application for this type of
endpoint is the transfer of DownLoadable Samples to a Synthesizer Element. The same technique could be
used to download program code to an Element that contains a programmable DSP core.

3.3 External MIDI Jack
External MIDI Jacks represent physical MIDI Jacks, as defined by the MIDI Specification. They are the
physical connections used by the USB-MIDI function to interface with external MIDI-compliant devices.
Inside the USB-MIDI function, they are connected to Embedded MIDI Jacks, to other External MIDI Jacks
or to Elements. The use of External MIDI Jacks is optional.

3.3.1 PARALLEL OUT
If multiple External MIDI OUT Jacks are linked to the same Element’s or MIDI IN Jack’s Output Pin
(Embedded or External), these MIDI OUT Jacks output the same raw MIDI message streams, effectively
implementing MIDI PARALLEL OUT.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 14

USB-MIDI Function

External MIDI OUT

Element or Embedded/
External Midi IN Jack

External MIDI OUT

External MIDI OUT

PARALLEL OUT

Figure 5: PARALLEL OUT

3.3.2 MIDI Through
If an External MIDI OUT Jack is linked to an External MIDI IN Jack, the raw MIDI message stream which is
input from the External MIDI IN Jack is duplicated on the External MIDI OUT Jack. This effectively
implements MIDI THROUGH.

USB-MIDI Function

External MIDI OUT

MIDI THROUGH

External MIDI IN

To internal USB-MIDI entities

Figure 6: MIDI THROUGH

3.4 Element
A USB-MIDI function contains one or more processing engines, called Elements. Typical Elements may
include:

• Synthesizer engines
• External Time Code to MIDI Time Code (MTC) converters
• MIDI controlled audio effects processors
• other MIDI controlled engines

The Element is typically connected to one or more of the Embedded MIDI Jacks or External MIDI Jacks.
Commonly, when an Element is a Synthesizer, it creates an audio output stream, based on the MIDI data
received from the USB-MIDI converter. This audio output is then brought into the audio function through
an Input Terminal, representing the Synthesizer.

An Element may also want to send raw MIDI message streams to the Host. A typical case is the ‘bulk dump’
of settings or status from an Element (such as a Synthesizer) within a USB-MIDI function. Another examp le

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 15

could be MTC messages, converted from External Time Code such as LTC (SMPTE) signals, coming from an
external SMPTE Jack on the USB Device. The use of a USB-MIDI Element is optional.

3.4.1 Element Capability
There are numerous different types of Elements with MIDI capabilities, which may be reported to the Host.
Some specifications for Synthesizer capabilities are defined. These capabilities may be defined by an
industry standard (such as General MIDI or DownLoadableSounds) or a de-facto standard (such as GS or
XG). The capabilities may be vendor-specific. Some other types of Elements may have other defined
capabilities including support for MMC (MIDI Machine Control) or Sync Features (such as SMPTE-MTC
conversion). Any one Element may have one or several of these capabilities.

Note: See Section 8, “Glossary” for more information about some of these de-facto standard or
industry standard specifications.

3.4.2 Link to the Audio Function
Elements that either create or consume audio streams must be represented in the audio function through
Input or Output Terminals respectively. The audio streams can then further be processed using all the
facilities, provided by the Audio Device Class. By using the class-specific AudioControl Requests as
defined by the USB Audio Device Class, Host applications can control a Synthesizer's or Audio Effect
Processor’s output/input levels, equalizer settings, mixing levels with other audio streams, etc. Refer to the
USB Audio Device Class documentation for more information about implementing these non-MIDI, audio
features. Figure 7 illustrates the relationship between a USB-MIDI Element and its associated Input
Terminal.

MIDIStreaming
Interface

Synthesizer
Element

Input Terminal, representing the
Synthesizer Output. Connects to
the internals of the audio function.

AudioControl
Interface

IT

Figure 7: Synthesizer – Input Terminal Relationship

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 16

4 USB-MIDI Event Packets
MIDI data is transferred over USB using 32-bit USB-MIDI Event Packets. These packets provide an efficient
method to transfer multiple MIDI streams with fixed length messages. The 32-bit USB-MIDI Event Packet
allows multiple "virtual MIDI cables" routed over the same USB endpoint. This approach minimizes the
number of required endpoints. It also makes parsing MIDI events easier by packetizing the separate bytes of
a MIDI event into one parsed USB-MIDI event.

The first byte in each 32-bit USB-MIDI Event Packet is a Packet Header contains a Cable Number (4 bits)
followed by a Code Index Number (4 bits). The remaining three bytes contain the actual MIDI event. Most
typical parsed MIDI events are two or three bytes in length. Unused bytes must be padded with zeros (in
the case of a one- or two-byte MIDI event) to preserve the 32-bit fixed length of the USB-MIDI Event
Packet. They are reserved for future use. Figure 8 illustrates the layout of the packet.

Cable
Number

Code
Index

Number
MIDI_0 MIDI_1 MIDI_2

 Byte 0 Byte 1 Byte 2 Byte 3

Figure 8: 32-bit USB-MIDI Event Packet

The Cable Number (CN) is a value ranging from 0x0 to 0xF indicating the number assignment of the
Embedded MIDI Jack associated with the endpoint that is transferring the data. The Code Index Number
(CIN) indicates the classification of the bytes in the MIDI_x fields. The following table summarizes these
classifications.

Table 4-1: Code Index Number Classifications

CIN MIDI_x Size Description

0x0 1, 2 or 3 Miscellaneous function codes. Reserved for future extensions.

0x1 1, 2 or 3 Cable events. Reserved for future expansion.

0x2 2 Two-byte System Common messages like MTC, SongSelect, etc.

0x3 3 Three-byte System Common messages like SPP, etc.

0x4 3 SysEx starts or continues

0x5 1 Single-byte System Common Message
 or
SysEx ends with following single byte.

0x6 2 SysEx ends with following two bytes.

0x7 3 SysEx ends with following three bytes.

0x8 3 Note-off

0x9 3 Note-on

0xA 3 Poly-KeyPress

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 17

CIN MIDI_x Size Description

0xB 3 Control Change

0xC 2 Program Change

0xD 2 Channel Pressure

0xE 3 PitchBend Change

0xF 1 Single Byte

Note1: F4 and F5 messages are undefined by the MIDI Specification 1.0. If they are defined in the
future, the length should be two or three bytes. In this case they would be categorized as
CIN=0x2 or CIN=0x3.

Note2: CIN=0xF, Single Byte: in some special cases, an application may prefer not to use parsed MIDI
events. Using CIN=0xF, a MIDI data stream may be transferred by placing each individual byte
in one 32 Bit USB-MIDI Event Packet. This way, any MIDI data may be transferred without
being parsed.

The following table presents a number of examples on the use of the 32-bit USB-MIDI Event Packets and
their relationship with the original MIDI 1.0 event.

Table 4-2: Examples of Parsed MIDI Events in 32-bit USB-MIDI Event Packets

Description MIDI_ver. 1.0 Event Packet

Note-on message on virtual cable 1 (CN=0x1; CIN=0x9) 9n kk vv 19 9n kk vv

Control change message on cable 10 (CN=0xA; CIN=0xB) Bn pp vv AB Bn pp vv

Real-time message F8 on cable 3 (CN=0x3; CIN=0xF) F8 xx xx 3F F8 xx xx

SysEx message on cable p (CN=0xp).
Start of SysEx: CIN=0x4. End of SysEx: CIN=0x5

F0 00 01 F7 p4 F0 00 01
p5 F7 00 00

SysEx message on cable p (CN=0xp).
Start of SysEx: CIN=0x4. End of SysEx: CIN=0x6

F0 00 01 02 F7 p4 F0 00 01
p6 02 F7 00

SysEx message on cable p (CN=0xp).
Start of SysEx: CIN=0x4. End of SysEx: CIN=0x7

F0 00 01 02 03 F7 p4 F0 00 01
p7 02 03 F7

Special case: two-byte SysEx on cable p (CN=0xp; CIN=0x6) F0 F7 p6 F0 F7 00

Special case: three-byte SysEx on cable p (CN=0xp;
CIN=0x7)

F0 mm F7 p7 F0 mm F7

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 18

5 Operational Model
The USB-MIDI function exposes a single MIDIStreaming interface that is used by Host software to interact
and control the entire MIDI functionality of the function. Since all control messages are performed in-band
(buried into the MIDI data stream) there is no need for a separate control and status interface. The
MIDIStreaming interface contains one or more MIDI endpoints, which all use bulk transfers to exchange
MIDI data with the Host. In addition, one or more Transfer bulk endpoints can be present to provide a high
bandwidth path to some of the Elements inside the USB-MIDI function.

As already mentioned before, MUX MIDI data streams can be used to optimize communication between
Host and USB-MIDI function. The following paragraphs describe the data paths involved when
communication is taking place between multiple MIDI applications on the Host and multiple USB-MIDI
Elements or external MIDI appliances, connected to the USB-MIDI function. However, it must be clearly
understood that the part of the discussion involving Host behavior is merely there to complete the full
picture and is not imposing any implementation rules on Host software. This specification is limited to
specifying USB-MIDI function behavior only.

5.1 Communication from Host to USB-MIDI Function
Multiple applications may want to send MIDI data streams to different parts of the USB-MIDI function. For
efficiency reasons, it is desirable not to have a different USB pipe for every communication path to be
established although this specification does not prevent implementations that desire to do so. In general,
multiple MIDI data streams, possibly originating from different applications will be multiplexed into a single
MUX MIDI data stream by some MIDI Mixer entity in Host software. The format of the MUX MIDI data
stream is based upon the use of 32 Bit USB-MIDI Event Packets with cable numbers and is further detailed
in Section 4, “USB-MIDI Event Packets”. This MUX MIDI data stream is sent over a USB pipe to a MIDI
OUT Endpoint, residing in the USB-MIDI Converter. The USB-MIDI Converter inspects the incoming MUX-
MIDI USB-MIDI Data Packets. It extracts the MIDI data from the packets and routes the original MIDI data
streams to the proper Embedded MIDI IN jacks, according to the cable number embedded in the USB-MIDI
Data Packets. There is a one to one relationship between cable numbers and JackIDs of the Embedded MIDI
IN Jacks, associated with the MIDI OUT endpoint. Once present at the Embedded MIDI IN Jacks, the MIDI
data streams follow the routing as dictated by the implemented topology.

5.2 Communication from USB-MIDI Function to Host
Multiple Entities in the USB-MIDI function may want to send MIDI data streams to different applications in
the Host. For efficiency reasons, it is desirable not to have a different USB pipe for every communication
path to be established although this specification does not prevent implementations that desire to do so. In
general, multiple MIDI data streams, originating from different Entities within the USB-MIDI function arrive
at the different Embedded MIDI OUT Jacks, associated with a MIDI IN endpoint in the USB-MIDI
Converter. The USB-MIDI Converter converts each MIDI data stream into 32 Bit USB-MIDI Event Packets
with the appropriate cable number message and multiplexes all the MIDI data streams into a single MUX
MIDI data stream. This MUX MIDI data stream is sent over a USB pipe to the Host. The Host software then
inspects the incoming MUX-MIDI USB-MIDI Data Packets, extracts the MIDI data from the packets and
routes the original MIDI data streams to the proper applications, according to the cable number embedded
in the USB-MIDI Data Packets.

5.2.1 High Bandwidth Data Transfer Mechanism
To efficiently implement features like DownLoadable Samples, there is a need for a high bandwidth data
transfer mechanism between the Host and one or more Elements within the USB-MIDI function. The most
straightforward way to implement such a facility would be to associate a separate bulk endpoint to each
Element that requires this high bandwidth path. However, a more conservative approach has been chosen

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 19

where a Transfer bulk endpoint can be dynamically allocated to any Element that needs the facility at a
certain moment in time. Typically, a USB-MIDI function would have one Transfer bulk IN and one Transfer
bulk OUT endpoint to serve all the Elements inside the USB-MIDI function. However, if necessary, multiple
Transfer bulk IN and OUT endpoints may be implemented to increase the available bandwidth of the transfer
mechanism. A class-specific Request is provided to control the allocation of a Transfer bulk endpoint (See
Section 7.2.2.2.3.1, “Association Control”). This specification makes no assumptions as to which data
formats are used over the Transfer bulk endpoint. The Transfer mechanism merely provides a high
bandwidth data path between the Host and the currently associated Entity.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 20

6 Descriptors
The MIDIStreaming (MS) interface and endpoint descriptors contain all relevant information to fully
characterize the corresponding USB-MIDI function. The standard interface descriptor characterizes the
interface itself, whereas the class-specific interface descriptor provides pertinent information concerning the
internals of the USB-MIDI function. It specifies revision level information and lists the capabilities of each
Jack and Element.

6.1 MIDIStreaming Interface Descriptors

6.1.1 Standard MS Interface Descriptor
The standard MIDIStreaming (MS) interface descriptor is identical to the standard interface descriptor
defined in Section 9.6.3 of the USB Specification, except that some fields have now dedicated values.

Table 6-1: Standard MIDIStreaming Interface Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 9

1 bDescriptorType 1 Constant INTERFACE descriptor type

2 bInterfaceNumber 1 Number Number of interface. A zero-based value
identifying the index in the array of
concurrent interfaces supported by this
configuration.

3 bAlternateSetting 1 Number Value used to select an alternate setting
for the interface identified in the prior
field.

4 bNumEndpoints 1 Number Number of MIDI endpoints used by this
interface (excluding endpoint 0).

5 bInterfaceClass 1 Class AUDIO. Audio Interface Class code
(assigned by the USB). See Appendices
in the Universal Serial Bus Device Class
Definition for Audio Devices document.

6 bInterfaceSubClass 1 Subclass MIDISTREAMING. Audio Interface
Subclass code. Assigned by this
specification. See Appendices in the
Universal Serial Bus Device Class
Definition for Audio Devices document.

7 bInterfaceProtocol 1 Protocol Not used. Must be set to 0.

8 iInterface 1 Index Index of a string descriptor that describes
this interface.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 21

6.1.2 Class-Specific MS Interface Descriptor

The class-specific MS interface descriptor is a concatenation of all the descriptors that are used to fully
describe the USB-MIDI function, i.e. all MIDI IN and MIDI OUT Jack Descriptors (JDs) and Element
Descriptors (EDs).

6.1.2.1 Class-Specific MS Interface Header Descriptor
The total length of the class-specific MS interface descriptor depends on the number of Jacks and Elements
in the USB-MIDI function. Therefore, the descriptor starts with a header that reflects the total length in
bytes of the entire class-specific MS interface descriptor in the wTotalLength field. The bcdMSC field
identifies the release of the MIDIStreaming SubClass Specification with which this USB-MIDI function and
its descriptors are compliant. The order in which the Jack and Element descriptors are reported is not
important since every descriptor can be identified through its bDescriptorType and bDescriptorSubtype
field. The bDescriptorType field identifies the descriptor as being a class-specific interface descriptor. The
bDescriptorSubtype field further qualifies the exact nature of the descriptor.

The following table defines the class-specific MS interface header descriptor.

Table 6-2: Class-Specific MS Interface Header Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 7

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant MS_HEADER descriptor subtype.

3 bcdMSC 2 BCD MIDIStreaming SubClass Specification
Release Number in Binary-Coded
Decimal. Currently 01.00.

5 wTotalLength 2 Number Total number of bytes returned for the
class-specific MIDIStreaming interface
descriptor. Includes the combined length
of this descriptor header and all Jack and
Element descriptors.

This header is followed by one or more Jack and/or Element Descriptors. The layout of the descriptors
depends on the type of Jack or Element they represent. The first four fields are common for all Jack and
Element Descriptors. They contain the Descriptor Length, Descriptor Type, Descriptor Subtype and Jack or
Element ID.

Each Jack and Element within the USB-MIDI function is assigned a unique identification number, the JackID
or ElementID, contained in the bJackID or bElementID field of the descriptor. The value 0x00 is reserved for
undefined ID, effectively restricting the total number of addressable Entities in the USB-MIDI function (both
Jacks and Elements) to 255.

6.1.2.2 MIDI IN Jack Descriptor

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 22

Table 6-3: MIDI IN Jack Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 6

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant MIDI_IN_JACK descriptor subtype.

3 bJackType 1 Constant EMBEDDED or EXTERNAL

4 bJackID 1 Constant Constant uniquely identifying the MIDI IN
Jack within the USB-MIDI function.

5 iJack 1 Index Index of a string descriptor, describing
the MIDI IN Jack.

6.1.2.3 MIDI OUT Jack Descriptor
Table 6-4: MIDI OUT Jack Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 6+2*p

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant MIDI_OUT_JACK descriptor subtype.

3 bJackType 1 Constant EMBEDDED or EXTERNAL

4 bJackID 1 Constant Constant uniquely identifying the MIDI
OUT Jack within the USB-MIDI function.

5 bNrInputPins 1 Number Number of Input Pins of this MIDI OUT
Jack: p

6 baSourceID(1) 1 Number ID of the Entity to which the first Input Pin
of this MIDI OUT Jack is connected.

7 BaSourcePin(1) 1 Number Output Pin number of the Entity to which
the first Input Pin of this MIDI OUT Jack is
connected.

… … … … …

6+2*(p-1) baSourceID (p) 1 Number ID of the Entity to which the last Input Pin
of this MIDI OUT Jack is connected.

6+2*(p-1)+1 BaSourcePin(p) 1 Number Output Pin number of the Entity to which
the last Input Pin of this MIDI OUT Jack is
connected.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 23

Offset Field Size Value Description

5+2*p iJack 1 Index Index of a string descriptor, describing
the MIDI OUT Jack.

6.1.2.4 Element Descriptor
The bInTerminalLink field contains the unique Terminal ID of the Input Terminal to which this Element is
connected. If there is no link to an Input Terminal, then the bInTerminalLink field must be set to zero.

The bOutTerminalLink field contains the unique Terminal ID of the Output Terminal to which this Element
is connected, effectively implementing a Sampler, an Effector controlled by MIDI, and so on. If there is no
link to an Output Terminal, then the bOutTerminalLink field must be set to zero.

The bElCapsSize field represents the size in bytes of the bmElementCaps field. Currently, this field is set to
1. However, this field is here to accommodate future extensions.

Each bit in the bmElementCaps field represents some capability of a USB-MIDI Element. When a bit is set, it
indicates that the corresponding capability is supported by the Element. At least one bit should be set (bit
D7 if no other applicable).

D0: CUSTOM UNDEFINED The Element has unique, undefined features. A typical example
would be a unique synthesizer type or MIDI controlled audio
effects processor.

D1: MIDI CLOCK MIDI CLOCK messages are supported. Typical example
Elements include drum machines and MIDI CLOCK to FSK
converters.

D2: MIDI TIME CODE (MTC) Synchronization features are supported. Typical example
Elements include MTC to SMPTE converters.

D3: MIDI MACHINE CONTROL (MMC) MMC messages are supported.

D4: GM1 General MIDI System Level 1 compatibility as defined by the
MIDI Manufacturers Association.

D5: GM2 General MIDI System Level 2 compatibility as defined by the
MIDI Manufacturers Association.

D6: GS GS Format compatibility as defined by Roland Corporation.

D7: XG XG compatibility as defined by Yamaha Corporation.

D8: EFX The Element provides an audio effects processor controlled by
USB.

D9: MIDI Patch Bay The Element provides an internal MIDI Patcher or Router.

D10: DLS1 DownLoadable Sounds Standard Level 1 compatibility as
defined by the MIDI Manufacturers Association.

D11: DLS2 DownLoadable Sounds Standard Level 2 compatibility as
defined by the MIDI Manufacturers Association.

D12 and higher Represents future possible common defined MIDI type such
as DLS3, GM3 and so on.

iElement represents the Index of a string descriptor, describing the Element.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 24

Table 6-5: MIDI Element Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 10+2*p+n

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant ELEMENT descriptor subtype.

3 bElementID 1 Constant Constant uniquely identifying the MIDI
OUT Jack within the USB-MIDI function.

4 bNrInputPins 1 Number Number of Input Pins of this Element: p

5 baSourceID(1) 1 Number ID of the Entity to which the first Input Pin
of this Element is connected.

6 BaSourcePin(1) 1 Number Output Pin number of the Entity to which
the first Input Pin of this Element is
connected.

… … … … …

5+2*(p-1) baSourceID (p) 1 Number ID of the Entity to which the last Input Pin
of this Element is connected.

5+2*(p-1)+1 BaSourcePin(p) 1 Number Output Pin number of the Entity to which
the last Input Pin of this Element is
connected.

5+2*p bNrOutputPins 1 Number Number of Output Pins of this Element: q

6+2*p bInTerminalLink 1 Constant The Terminal ID of the Input Terminal to
which this Element is connected

7+2*p bOutTerminalLink 1 Constant The Terminal ID of the Output Terminal to
which this Element is connected

8+2*p bElCapsSize 1 Number Size, in bytes of the bmElementCaps
field.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 25

Offset Field Size Value Description

9+2*p bmElementCaps n BitMap D0: Custom Undefined Type
D1: MIDI CLOCK
D2: MTC
D3: MMC
D4: GM1
D5: GM2
D6: GS
D7: XG
D8: EFX
D9: MIDI Patch Bay
D10: DLS1
D11: DLS2
D12..Dx: Reserved for future common

defined MIDI types

9+2*p+n iElement 1 Index Index of a string descriptor, describing
the Element.

6.2 MIDIStreaming Endpoint Descriptors
The following paragraphs outline the descriptors that fully characterize the endpoint(s) used for
transporting MIDI data streams to and from the USB-MIDI function. In addition, the descriptors of the
Transfer bulk endpoint(s) are also described.

6.2.1 Standard MS Bulk Data Endpoint Descriptor
The standard MS bulk MIDI data endpoint descriptor is identical to the standard endpoint descriptor
defined in Section 9.6.4, “Endpoint,” of the USB Specification and further expanded as defined in the
Universal Serial Bus Class Specification. D7 of the bEndpointAddress field indicates whether the endpoint
is a MIDI data source (D7 = 1) or a MIDI data sink (D7 = 0). The bmAttributes Field bits are set to reflect the
bulk type of the endpoint. The synchronization type is indicated by D3..2 and must be set to None.

Table 6-6: Standard MS Bulk Data Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 9

1 bDescriptorType 1 Constant ENDPOINT descriptor type

2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB
device described by this descriptor. The
address is encoded as follows:

D7: Direction.
 0 = OUT endpoint
 1 = IN endpoint

D6..4: Reserved, reset to zero

D3..0: The endpoint number,
 determined by the designer.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 26

Offset Field Size Value Description

3 bmAttributes 1 Bit Map D7..4: Reserved

D3..2: Synchronization type
 00 = None

D1..0: Transfer type
 10 = Bulk

4 wMaxPacketSize 2 Number Maximum packet size this endpoint is
capable of sending or receiving when
this configuration is selected.

6 bInterval 1 Number Interval for polling endpoint for data
transfers expressed in milliseconds.
This field is ignored for bulk endpoints.

Must be reset to 0.

7 bRefresh 1 Number Reset to 0.

8 bSynchAddress 1 Endpoint The address of the endpoint used to
communicate synchronization
information if required by this endpoint.
Reset to zero.

6.2.2 Class-Specific MS Bulk Data Endpoint Descriptor
The bNumEmbMIDIJack field contains the number of Embedded MIDI Jacks , associated with this MS bulk
data endpoint. In case of a data IN endpoint, these would be Embedded MIDI OUT Jacks. If it is a data OUT
endpoint, these would be Embedded MIDI IN Jacks. The baAssocJacks() array contains the JackID’s of
these Embedded MIDI Jacks.

Table 6-7: Class-specific MS Bulk Data Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 4+n

1 bDescriptorType 1 Constant CS_ENDPOINT

2 bDescriptorSubTyp
e

1 Constant MS_GENERAL

3 bNumEmbMIDIJack 1 Number
Number of Embedded MIDI Jacks: n.

4 baAssocJackID(1) 1 Constant ID of the first Embedded Jack that is
associated with this endpoint.

...

4+(n-1) baAssocJackID(n) 1 Constant ID of the last Embedded Jack that is
associated with this endpoint.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 27

6.2.3 Standard MS Transfer Bulk Data Endpoint Descriptor
The standard MS Transfer bulk MIDI data endpoint descriptor is identical to the standard endpoint
descriptor defined in Section 9.6.4, “Endpoint,” of the USB Specification and further expanded as defined in
the Universal Serial Bus Class Specification. D7 of the bEndpointAddress field indicates whether the
endpoint is a Transfer IN (D7 = 1) or a Transfer OUT (D7 = 0) endpoint. The bmAttributes Field bits are set
to reflect the bulk type of the endpoint. The synchronization type is indicated by D3..2 and must be set to
None.

Table 6-8: Standard MS Transfer Bulk Data Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 9

1 bDescriptorType 1 Constant ENDPOINT descriptor type

2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB
device described by this descriptor. The
address is encoded as follows:

D7: Direction.
 0 = OUT endpoint
 1 = IN endpoint

D6..4: Reserved, reset to zero

D3..0: The endpoint number,
 determined by the designer.

3 bmAttributes 1 Bit Map D7..4: Reserved

D3..2: Synchronization type
 00 = None

D1..0: Transfer type
 10 = Bulk

4 wMaxPacketSize 2 Number Maximum packet size this endpoint is
capable of sending or receiving when
this configuration is selected.

6 bInterval 1 Number Interval for polling endpoint for data
transfers expressed in milliseconds.
This field is ignored for bulk endpoints.

Must be reset to 0.

7 bRefresh 1 Number Reset to 0.

8 bSynchAddress 1 Endpoint The address of the endpoint used to
communicate synchronization
information if required by this endpoint.
Reset to zero.

6.2.4 Class-Specific MS Transfer Bulk Data Endpoint Descriptor
There is no class-specific MS Transfer bulk data endpoint descriptor.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 28

7 Requests

7.1 Standard Requests
The Audio Device Class supports the standard requests described in Section 9, “USB Device Framework,”
of the USB Specification. The MIDIStreaming SubClass places no specific requirements on the values for
the standard requests.

7.2 Class-Specific Requests
Most class-specific requests are used to set and get MIDI related Controls. At this time, only the Set and
Get Association Control for Transfer bulk endpoints is defined, but a more general framework for
MIDIStreaming Control requests is presented for future use.

The following request types are defined:

• MIDIStreaming Requests. Control of the class-specific behavior of a MIDIStreaming interface is
performed through manipulation of either interface Controls or endpoint Controls. These can be either
standard Controls, as defined in this specification or vendor-specific. In either case, the same request
layout can be used. MIDIStreaming requests are directed to the recipient where the Control resides.
This can be either the interface or its associated bulk endpoints.

The MIDIStreaming SubClass supports additional class-specific request:

• Memory Requests. Every addressable Entity in the USB-MIDI function (Element, MIDI Jack) can
expose a memory-mapped interface that provides the means to generically manipulate the Entity.
Vendor-specific Control implementations could be based on this type of request.

• The Get Status request is a general query to an Entity in a MIDIStreaming interface and does not
manipulate Controls.

In principle, all requests are optional. If a USB-MIDI function does not support a certain request, it must
indicate this by stalling the control pipe when that request is issued to the function. However, if a certain
Set request is supported, the associated Get request must also be supported. Get requests may be
supported without the associated Set request being supported.

The rest of this section describes the class-specific requests used to manipulate both interface Controls and
endpoint Controls.

7.2.1 Request Layout
The following paragraphs describe the general structure of the Set and Get requests. Subsequent
paragraphs detail the use of the Set/Get requests for the different request types.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 29

7.2.1.1 Set Request
This request is used to set an attribute of a Control inside an Entity of the USB-MIDI function. Additionally,
the memory space attribute of an Entity itself can be set through this request.

Table 7-1: Set Request Values

bmRequest
Type

bRequest wValue wIndex wLength Data

00100001B Entity ID
and

Interface

00100010B

SET_CUR
SET_MIN
SET_MAX
SET_RES
SET_MEM

See following
paragraphs

Endpoint

Length of
parameter
block

Parameter
block

The bmRequestType field specifies that this is a SET request (D7=0b0). It is a class-specific request
(D6..5=0b01), directed to either a MIDIStreaming interface of the USB-MIDI function (D4..0=0b00001) or a
bulk endpoint of an MIDIStreaming interface (D4..0=0b00010).

The bRequest field contains a constant, identifying which attribute of the addressed Control or Entity is to
be modified. Possible attributes for a Control are its:

• Current setting attribute (SET_CUR)
• Minimum setting attribute (SET_MIN)
• Maximum setting attribute (SET_MAX)
• Resolution attribute (SET_RES)

Possible attributes for an Entity are its:

• Memory space attribute (SET_MEM)

If the addressed Control or Entity does not support modification of a certain attribute, the control pipe must
indicate a stall when an attempt is made to modify that attribute. In most cases, only the CUR and MEM
attribute will be supported for the Set request. However, this specification does not prevent a designer from
making other attributes programmable. For the list of Request constants, refer to Section A.4, “Class-
Specific Request Codes”.

The wValue field interpretation is qualified by the value in the wIndex field. Depending on what Entity is
addressed, the layout of the wValue field changes. The following paragraphs describe the contents of the
wValue field for each Entity separately. In most cases, the wValue field contains the Control Selector (CS) in
the high byte. It is used to address a particular Control within Entities that can contain multiple Controls. If
the Entity only contains a single Control, there is no need to specify a Control Selector and the wValue field
can be used to pass additional parameters.

The wIndex field specifies the interface or endpoint to be addressed in the low byte and the Entity ID or zero
in the high byte. In case an interface is addressed, the virtual Entity ‘interface’ can be addressed by
specifying zero in the high byte. The values in wIndex must be appropriate to the recipient. Only existing
Entities in the USB-MIDI function can be addressed and only appropriate interface or endpoint numbers
may be used. If the request specifies an unknown or non-Entity ID or an unknown interface or endpoint
number, the control pipe must indicate a stall.

The actual parameter(s) for the Set request are passed in the data stage of the control transfer. The length of
the parameter block is indicated in the wLength field of the request. The layout of the parameter block is
qualified by both the bRequest and wIndex fields. Refer to the following sections for a detailed description
of the parameter block layout for all possible Entities.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 30

7.2.1.2 Get Request
This request returns the attribute setting of a specific Control inside an Entity of the USB-MIDI function.
Additionally, the memory space attribute of an Entity itself can be returned through this request.

Table 7-2: Get Request Values

bmRequest
Type

bRequest wValue wIndex wLength Data

10100001B Entity ID
and

Interface

10100010B

GET_CUR
GET_MIN
GET_MAX
GET_RES
GET_MEM

See following
paragraphs

Endpoint

Length of
parameter
block

Parameter
block

The bmRequestType field specifies that this is a GET request (D7=0b1). It is a class-specific request
(D6..5=0b01), directed to either a MIDIStreaming interface of the USB-MIDI function (D4..0=0b00001) or a
bulk endpoint of a MIDIStreaming interface (D4..0=0b00010).

The bRequest field contains a constant, identifying which attribute of the addressed Control or Entity is to
be returned. Possible attributes for a Control are its:

• Current setting attribute (GET_CUR)
• Minimum setting attribute (GET_MIN)
• Maximum setting attribute (GET_MAX)
• Resolution attribute (GET_RES)

Possible attributes for an Entity are its:

• Memory space attribute (GET_MEM)

If the addressed Control or Entity does not support readout of a certain attribute, the control pipe must
indicate a stall when an attempt is made to read that attribute. For the list of Request constants, refer to
Section A.4, “Class-Specific Request Codes”.

The wValue field interpretation is qualified by the value in the wIndex field. Depending on what Entity is
addressed, the layout of the wValue field changes. The following paragraphs describe the contents of the
wValue field for each Entity separately. In most cases, the wValue field contains the Control Selector (CS) in
the high byte. It is used to address a particular Control within Entities that can contain multiple Controls. If
the Entity only contains a single Control, there is no need to specify a Control Selector and the wValue field
can be used to pass additional parameters.

The wIndex field specifies the interface or endpoint to be addressed in the low byte and the Entity ID or zero
in the high byte. In case an interface is addressed, the virtual Entity ‘interface’ can be addressed by
specifying zero in the high byte. The values in wIndex must be appropriate to the recipient. Only existing
Entities in the USB-MIDI function can be addressed and only appropriate interface or endpoint numbers
may be used. If the request specifies an unknown or non-Entity ID or an unknown interface or endpoint
number, the control pipe must indicate a stall.

The actual parameter(s) for the Get request are returned in the data stage of the control transfer. The length
of the parameter block to return is indicated in the wLength field of the request. If the parameter block is
longer than what is indicated in the wLength field, only the initial bytes of the parameter block are returned.
If the parameter block is shorter than what is indicated in the wLength field, the device indicates the end of
the control transfer by sending a short packet when further data is requested. The layout of the parameter
block is qualified by both the bRequest and wIndex fields. Refer to the following sections for a detailed
description of the parameter block layout for all possible Entities.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 31

7.2.2 MIDIStreaming Requests
MIDIStreaming requests can be directed either to the MIDIStreaming interface or to the associated bulk data
endpoint(s), depending on the location of the Control to be manipulated.

7.2.2.1 Interface Control Requests
For now, this specification does not support interface Control Requests.

7.2.2.2 Endpoint Control Requests
The following sections describe the requests a USB-MIDI function can support for its MIDIStreaming bulk
endpoints. The same layout of the parameter blocks is used for both the Set and Get requests.

7.2.2.2.1 Set Endpoint Control Request
This request is used to set an attribute of an endpoint Control inside a particular endpoint of the USB-MIDI
function.

Table 7-3: Set Endpoint Control Request Values

bmRequest
Type

bRequest wValue wIndex wLength Data

00100010B

SET_CUR
SET_MIN
SET_MAX
SET_RES

CS

endpoint Length of
parameter
block

Parameter
block

The bRequest field indicates which attribute the request is manipulating. The MIN, MAX, and RES
attributes are usually not supported for the Set request.

The wValue field specifies the Control Selector (CS) in the high byte and the low byte must be set to zero.
The Control Selector indicates which type of Control this request is manipulating (Association, etc.) If the
request specifies an unknown CS to that endpoint, the control pipe must indicate a stall.

For a description of the parameter block for the endpoint Control Selectors, see Section 7.2.2.2.3, “Endpoint
Controls.”

7.2.2.2.2 Get Endpoint Control Request
This request returns the attribute setting of a specific endpoint Control inside an endpoint of the USB-MIDI
function.

Table 7-4: Get Endpoint Control Request Values

bmRequest
Type

bRequest wValue wIndex wLength Data

10100010B

GET_CUR
GET_MIN
GET_MAX
GET_RES

CS endpoint Length of
parameter
block

Parameter
block

The bRequest field indicates which attribute the request is reading.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 32

The wValue field specifies the Control Selector (CS) in the high byte and the low byte must be set to zero.
The Control Selector indicates which type of Control this request is manipulating (Association, etc.) If the
request specifies an unknown CS to that endpoint, the control pipe must indicate a stall.

For a description of the parameter block for the endpoint Control Selectors, see Section 7.2.2.2.3, “Endpoint
Controls .”

7.2.2.2.3 Endpoint Controls

7.2.2.2.3.1 Association Control
The Association Control is used to establish a link between the endpoint and the Entity who’s ID is
provided in the Parameter Block. Once the link is established, all data traveling over this endpoint will be
delivered to or will originate from this Entity. The Association Control only supports the CUR attribute and
must contain a valid EntityID. An association can only be established to Entities that support this feature. If
a non-existent or invalid EntityID is specified, the control pipe must indicate a stall. One exception to this
occurs when the bEntityID is set to 0 for a Set Association request. In this case, the current association is
terminated and any subsequent data transfer to this endpoint results in a halt of the endpoint.

Table 7-5: Association Control Parameter Block

Control Selector ASSOCIATION_CONTROL

wLength 1

Offset Field Size Value Description

0 bEntityID 1 Number The ID of the Entity that is currently
associated with this endpoint.

7.2.3 Additional Requests

7.2.3.1 Memory Requests
The Host can interact with an addressable Entity (Element, Jack, interface or endpoint) within the USB-MIDI
function in a very generic way. The Entity presents a memory space to the Host whose layout depends on
the implementation. The Memory request provides full access to this memory space.

7.2.3.1.1 Set Memory Request
This request is used to download a parameter block into a particular Entity of the USB-MIDI function.

Table 7-6: Set Memory Request Values

bmRequest
Type

bRequest wValue wIndex wLength Data

00100001B Entity ID
and

Interface

00100010B

SET_MEM Offset

Endpoint

Length of
parameter
block

Parameter
block

The bRequest field indicates that the MEM attribute of the Entity is addressed.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 33

The wValue field specifies a zero-based offset value that can be used to access only parts of the Entity’s
memory space.

The layout of the parameter block is implementation dependent. A device is required to reevaluate its
memory space at the end of each Set Memory request.

7.2.3.1.2 Get Memory Request
This request is used to upload a parameter block from a particular Entity of the USB-MIDI function.

Table 7-7: Get Memory Request Values

bmRequest
Type

bRequest wValue wIndex wLength Data

10100001B Entity ID
and

Interface

10100010B

GET_MEM Offset

Endpoint

Length of
parameter
block

Parameter
block

The bRequest field indicates that the MEM attribute of the Entity is addressed.

The wValue field specifies a zero-based offset value that can be used to access only parts of the Entity’s
parameter space.

The layout of the parameter block is implementation dependent.

7.2.3.2 Get Status Request
This request is used to retrieve status information from an Entity within the USB-MIDI function.

Table 7-8: Get Status Request Values

bmRequest
Type

bRequest wValue wIndex wLength Data

10100001B Entity ID
and

Interface

10100010B

GET_STAT Zero

Endpoint

Status
message
length

Status
message

The bRequest field contains the GET_STAT constant, defined in Section A.4, “Class-Specific Request
Codes”.

The wValue field is currently unused and must be set to zero.

The wLength field specifies the number of bytes to return. If the status message is longer than the wLength
field, only the initial bytes of the status message are returned. If the status message is shorter than the
wLength field, the function indicates the end of the control transfer by sending short packet when further
data is requested.

The contents of the status message is reserved for future use. For the time being, a null packet should be
returned in the data stage of the control transfer.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 34

8 Glossary

8.1 MIDI: Musical Instrument Digital Interface
MIDI is a standard for musical instruments and audio devices to communicate with each other and with
computers. For more information contact the MMA or AMEI at:

• MIDI Manufacturers Association

P.O.Box 3173, La Habra, CA 90632-3173 USA
Fax: (310) 947-4569
E-mail: mma@midi.org
http://www.midi.org/

• Association of Musical Electronics Industry

Ito Bldg.4th Floor 2-16-9 Misaki-cho Chiyoda-ku Tokyo 101 Japan
Fax:+81-3-5226-8549

8.2 GM: General MIDI
The General MIDI System is a universal set of specifications for sound generating devices. These
specifications seek to allow for the creation of music data, which is not limited to equipment by a particular
manufacturer, or to specific models. The General MIDI System defines the minimum number of voices that
should be supported, the MIDI messages that should be recognized, which sounds correspond to which
Program Change numbers, and the layout of rhythm sounds on the keyboard. Thanks to these
specifications, any device that is equipped with sound sources supporting the General MIDI System, will be
able to accurately reproduce General MIDI Scores (music data created for the General MIDI System),
regardless of the manufacturer or model.

In September of 1991 the MIDI Manufacturers Association (MMA) and the Japan MIDI Standards
Committee (JMSC) created the beginning of a new era in MIDI technology, by adopting the General MIDI
System Level 1 specification (GM). The specification is designed to provide a minimum level of performance
compatibility among MIDI instruments, and has helped pave the way for MIDI in the growing consumer and
multimedia markets.

The full specification document is part of the official Complete MIDI 1.0 Detailed Specification published
by the MMA. Developers of General MIDI devices and compatible software (including MIDI files) should
also obtain the new GM Developer Guidelines and Survey document to assist with understanding GM
compatibility issues and additional recommendations.

8.3 Roland GS
The GS Format is Roland's set of specifications for standardizing the performance of sound generating
devices. It includes support for everything defined by the General MIDI System. Furthermore, the highly
compatible GS Format offers an expanded number of sounds, provides for the editing of sounds, and spells
out many details for a wide range of extra features, including effects such as reverberation and chorus.

Designed with the future in mind, the GS Format can readily include new sounds and support new hardware
features when they arrive. It is backward compatible with the General MIDI System. Therefore, Roland's GS
Format is capable of reliably playing back GM Scores equally well as it performs GS Music Data (music data
that has been created with the GS Format in mind).

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 35

8.4 Yamaha XG
The Yamaha XG format is a set of rules describing how a tone generator will respond to MIDI data. The
current GM (General MIDI) format is a similar concept, allowing GM music data to be reproduced accurately
on any GM tone generator from any manufacturer. GM, however, applies only to a limited set of parameters.
XG significantly expands on the basic GM format, providing many more voices, voice editing capability,
effects, external input, and other features that contribute to enhanced musical expression. Since XG is totally
backward compatible with GM, GM data can be accurately reproduced on any XG tone generator.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 36

Appendix A. Audio Device Class Codes: MIDIStreaming

A.1 MS Class-Specific Interface Descriptor Subtypes

Descriptor Subtype Value

MS_DESCRIPTOR_UNDEFINED 0x00

MS_HEADER 0x01

MIDI_IN_JACK 0x02

MIDI_OUT_JACK 0x03

ELEMENT 0x04

A.2 MS Class-Specific Endpoint Descriptor Subtypes

Descriptor Subtype Value

DESCRIPTOR_UNDEFINED 0x00

MS_GENERAL 0x01

A.3 MS MIDI IN and OUT Jack types

MIDI IN and OUT Jack type Value

JACK_TYPE_UNDEFINED 0x00

EMBEDDED 0x01

EXTERNAL 0x02

A.4 Class-Specific Request Codes
For a complete list of class-specific Request Codes, refer to the Universal Serial Bus Device Class
Definition for Audio Devices.

A.5 Control Selector Codes

A.5.1 Endpoint Control Selectors

Control Selector Value

EP_CONTROL_UNDEFINED 0x00

ASSOCIATION_CONTROL 0x01

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 37

Appendix B. Example: Simple MIDI Adapter (Informative)

B.1 Device Descriptor
Table B-1: MIDI Adapter Device Descriptor

Offset Field Size Value Description

0 bLength 1 0x12 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x01 DEVICE descriptor.

2 bcdUSB 2 0x0110 1.10 - current revision of USB
specification.

4 bDeviceClass 1 0x00 Device defined at Interface level.

5 bDeviceSubClass 1 0x00 Unused.

6 bDeviceProtocol 1 0x00 Unused.

7 bMaxPacketSize0 1 0x08 8 bytes.

8 idVendor 2 0xXXXX Vendor ID.

10 idProduct 2 0xXXXX Product ID.

12 bcdDevice 2 0xXXXX Device Release Code.

14 iManufacturer 1 0x01 Index to string descriptor that contains
the string <Your Name> in Unicode.

15 iProduct 1 0x02 Index to string descriptor that contains
the string <Your Product Name> in
Unicode.

16 iSerialNumber 1 0x00 Unused.

17 bNumConfigurations 1 0x01 One configuration.

B.2 Configuration Descriptor
Table B-2: MIDI Adapter Configuration Descriptor

Offset Field Size Value Description

0 bLength 1 0x09 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x02 CONFIGURATION descriptor.

2 wTotalLength 2 0x00XX Length of the total configuration block,
including this descriptor, in bytes.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 38

Offset Field Size Value Description

4 bNumInterfaces 1 0x02 Two interfaces.

5 bConfigurationValu
e

1 0x01 ID of this configuration.

6 iConfiguration 1 0x00 Unused.

7 bmAttributes 1 0x80 Bus Powered device, not Self Powered,
no Remote wakeup capability.

8 MaxPower 1 0x32 100 mA Max. power consumption.

B.3 AudioControl Interface Descriptors
The AudioControl interface describes the device structure (audio function topology) and is used to
manipulate the Audio Controls. This device has no audio function incorporated. However, the
AudioControl interface is mandatory and therefore both the standard AC interface descriptor and the class-
specific AC interface descriptor must be present. The class-specific AC interface descriptor only contains
the header descriptor.

B.3.1 Standard AC Interface Descriptor
The AudioControl interface has no dedicated endpoints associated with it. It uses the default pipe
(endpoint 0) for all communication purposes. Class-specific AudioControl Requests are sent using the
default pipe. There is no Status Interrupt endpoint provided.

Table B-3: MIDI Adapter Standard AC Interface Descriptor

Offset Field Size Value Description

0 bLength 1 0x09 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x04 INTERFACE descriptor.

2 bInterfaceNumber 1 0x00 Index of this interface.

3 bAlternateSetting 1 0x00 Index of this setting.

4 bNumEndpoints 1 0x00 0 endpoints.

5 bInterfaceClass 1 0x01 AUDIO.

6 bInterfaceSubclass 1 0x01 AUDIO_CONTROL.

7 bInterfaceProtocol 1 0x00 Unused.

8 iInterface 1 0x00 Unused.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 39

B.3.2 Class-specific AC Interface Descriptor
The Class-specific AC interface descriptor is always headed by a Header descriptor that contains general
information about the AudioControl interface. It contains all the pointers needed to describe the Audio
Interface Collection, associated with the described audio function. Only the Header descriptor is present in
this device because it does not contain any audio functionality as such.

Table B-4: MIDI Adapter Class-specific AC Interface Descriptor

Offset Field Size Value Description

0 bLength 1 0x09 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x24 CS_INTERFACE.

2 bDescriptorSubtype 1 0x01 HEADER subtype.

3 bcdADC 2 0x0100 Revision of class specification - 1.0

5 wTotalLength 2 0x0009 Total size of class specific descriptors.

7 bInCollection 1 0x01 Number of streaming interfaces.

8 baInterfaceNr(1) 1 0x01 MIDIStreaming interface 1 belongs to this
AudioControl interface.

B.4 MIDIStreaming Interface Descriptors

B.4.1 Standard MS Interface Descriptor
Table B-5: MIDI Adapter Standard MS Interface Descriptor

Offset Field Size Value Description

0 bLength 1 0x09 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x04 INTERFACE descriptor.

2 bInterfaceNumber 1 0x01 Index of this interface.

3 bAlternateSetting 1 0x00 Index of this alternate setting.

4 bNumEndpoints 1 0x02 2 endpoints.

5 bInterfaceClass 1 0x01 AUDIO.

6 bInterfaceSubclass 1 0x03 MIDISTREAMING.

7 bInterfaceProtocol 1 0x00 Unused.

8 iInterface 1 0x00 Unused.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 40

B.4.2 Class-specific MS Interface Descriptor
Table B-6: MIDI Adapter Class-specific MS Interface Descriptor

Offset Field Size Value Description

0 bLength 1 0x07 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x24 CS_INTERFACE descriptor.

2 bDescriptorSubtype 1 0x01 MS_HEADER subtype.

3 BcdADC 2 0x0100 Revision of this class specification.

5 wTotalLength 2 0x0041 Total size of class-specific descriptors.

B.4.3 MIDI IN Jack Descriptor
Table B-7: MIDI Adapter MIDI IN Jack Descriptor (Embedded)

Offset Field Size Value Description

0 bLength 1 0x06 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x24 CS_INTERFACE descriptor.

2 bDescriptorSubtype 1 0x02 MIDI_IN_JACK subtype.

3 bJackType 1 0x01 EMBEDDED.

4 bJackID 1 0x01 ID of this Jack.

5 iJack 1 0x00 Unused.

Table B-8: MIDI Adapter MIDI IN Jack Descriptor (External)

Offset Field Size Value Description

0 bLength 1 0x06 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x24 CS_INTERFACE descriptor.

2 bDescriptorSubtype 1 0x02 MIDI_IN_JACK subtype.

3 bJackType 1 0x02 EXTERNAL.

4 bJackID 1 0x02 ID of this Jack.

5 iJack 1 0x00 Unused.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 41

B.4.4 MIDI OUT Jack Descriptor
Table B-9: MIDI Adapter MIDI OUT Jack Descriptor (Embedded)

Offset Field Size Value Description

0 bLength 1 0x09 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x24 CS_INTERFACE descriptor.

2 bDescriptorSubtype 1 0x03 MIDI_OUT_JACK subtype.

3 bJackType 1 0x01 EMBEDDED.

4 bJackID 1 0x03 ID of this Jack.

5 bNrInputPins 1 0x01 Number of Input Pins of this Jack.

6 BaSourceID(1) 1 0x02 ID of the Entity to which this Pin is
connected.

7 BaSourcePin(1) 1 0x01 Output Pin number of the Entity to which
this Input Pin is connected.

8 iJack 1 0x00 Unused.

Table B-10: MIDI Adapter MIDI OUT Jack Descriptor (External)

Offset Field Size Value Description

0 bLength 1 0x09 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x24 CS_INTERFACE descriptor.

2 bDescriptorSubtype 1 0x03 MIDI_OUT_JACK subtype.

3 bJackType 1 0x02 EXTERNAL.

4 bJackID 1 0x04 ID of this Jack.

5 bNrInputPins 1 0x01 Number of Input Pins of this Jack.

6 BaSourceID(1) 1 0x01 ID of the Entity to which this Pin is
connected.

7 BaSourcePin(1) 1 0x01 Output Pin number of the Entity to which
this Input Pin is connected.

8 iJack 1 0x00 Unused.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 42

B.5 Bulk OUT Endpoint Descriptors

B.5.1 Standard Bulk OUT Endpoint Descriptor
Table B-11: MIDI Adapter Standard Bulk OUT Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 0x09 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x05 ENDPOINT descriptor.

2 bEndpointAddress 1 0x01 OUT Endpoint 1.

3 bmAttributes 1 0x02 Bulk, not shared.

4 wMaxPacketSize 2 0x0040 64 bytes per packet.

6 bInterval 1 0x00 Ignored for Bulk. Set to zero.

7 bRefresh 1 0x00 Unused.

8 bSynchAddress 1 0x00 Unused.

B.5.2 Class-specific MS Bulk OUT Endpoint Descriptor
Table B-12: MIDI Adapter Class-specific Bulk OUT Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 0x05 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x25 CS_ENDPOINT descriptor

2 bDescriptorSubtype 1 0x01 MS_GENERAL subtype.

3 bNumEmbMIDIJack 1 0x01 Number of embedded MIDI IN Jacks.

4 BaAssocJackID(1) 1 0x01 ID of the Embedded MIDI IN Jack.

B.6 Bulk IN Endpoint Descriptors

B.6.1 Standard Bulk IN Endpoint Descriptor
Table B-13: MIDI Adapter Standard Bulk IN Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 0x09 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x05 ENDPOINT descriptor.

USB Device Class Definition for MIDI Devices

Release 1.0 Nov 1, 1999 43

Offset Field Size Value Description

2 bEndpointAddress 1 0x81 IN Endpoint 1.

3 bmAttributes 1 0x02 Bulk, not shared.

4 wMaxPacketSize 2 0x0040 64 bytes per packet.

6 bInterval 1 0x00 Ignored for Bulk. Set to zero.

7 bRefresh 1 0x00 Unused.

8 bSynchAddress 1 0x00 Unused.

B.6.2 Class-specific MS Bulk IN Endpoint Descriptor
Table B-14: MIDI Adapter Class-specific Bulk IN Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 0x05 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x25 CS_ENDPOINT descriptor

2 bDescriptorSubtype 1 0x01 MS_GENERAL subtype.

3 bNumEmbMIDIJack 1 0x01 Number of embedded MIDI OUT Jacks.

4 BaAssocJackID(1) 1 0x03 ID of the Embedded MIDI OUT Jack.

