PRELIMINARY # STAC9708/11 Multi-Channel AC'97 Codec With Multi-Codec Option ### **GENERAL DESCRIPTION:** SigmaTel's STAC9708/11 is a general purpose 18-bit, full duplex, audio codec that conforms to the analog component specification of AC'97 (Audio Codec 97 Component Specification Rev. 2.1). The STAC9708/11 incorporates SigmaTel's proprietary Sigma-Delta technology to achieve a DAC SNR in excess of 95dB. The DACs, ADCs, and mixer are integrated with analog I/Os, which include four analog line-level stereo inputs, two analog line-level mono inputs, two stereo outputs, and one mono output channel. Also included are two additional high quality DACs, with independent volume control, for multi-channel applications. With SigmaTel's 3D stereo enhancement (SS3D), independently selectable on both LINE OUT and DAC OUT, the multi-channel mode immerses the user in a richer and livelier listening experience. The STAC9708/11 may be used as a secondary codec, with the STAC9704/07 as the primary, in a multiple codec configuration conforming to the AC'97 Rev. 2.1 specification. This configuration can provide true six-channel, AC-3 playback required for DVD applications. The STAC9708/11 communicates via the five-wire AC-Link to any digital component of AC'97 providing flexibility in the audio system design. Packaged in an AC'97 compliant 48-pin TQFP, the STAC9708/11 can be placed on the motherboard, daughter boards, add-on cards or PCMCIA cards. 1 ### **FEATURES:** - High performance $\Sigma\Delta$ technology - Two additional high quality DAC's for multi-channel applications - 18-bit full duplex stereo ADC, DACs - AC-Link protocol compliance - Multiple power supply options - Pin compatible with the STAC9704/07 - SigmaTel Surround (SS3D) Stereo Enhancement - Energy saving power down modes - Multi-Codec option (Intel AC'97 rev 2.1) - Six analog line-level inputs - 48-pin TOFP - SNR > 95 dB through Mixer and DAC # **ORDERING INFORMATION:** | PART | PACKAGE | TEMPERATURE | SUPPLY RANGE | |-----------|------------------------------|----------------|--------------------------------| | NUMBER | | RANGE | | | STAC9708T | 48-pin TQFP 7mm x7mm x 1.4mm | 0° C to +70° C | DVdd = 3.3V or 5V, AVdd = 5V | | STAC9711T | 48-pin TQFP 7mmx7mm x 1.4mm | 0° C to +70° C | DVdd = 3.3V, AVdd = 3.3V | SigmaTel reserves the right to change specifications without notice. | SigmaTel, Inc | | Preliminar | y STAC92 | STAC9708/1. | | |---------------|--|------------|--|-------------|--| | | Table of Contents | | 3.1.2.2 Slot 2: Status Data Port3.1.2.3 Slot 3: PCM Record Left | 21 | | | C | anoval Decemention | 1 | Channel 3.1.2.4 Slot 4: PCM Record Right | 21 | | | G | eneral Description | 1 | Channel | 21 | | | Oı | rdering Information | 2 | 3.1.2.5 Slots 5-12: Reserved | 21 | | | | DIMIGROUPLE DE LA | 0 | 3.2 AC-Link Low Power Mode | 21 | | | ı. | PIN/SIGNAL Descriptions | 9 | | | | | | 1.1 Digital I/O | 9 | 3.2.1 Waking up the AC-Link | 22 | | | | 1.2 Analog I/O | 10 | | | | | | 1.3 Filter/References/GPIO | 11 4. | STAC9708/11 Mixer | 23 | | | | 1.4 Power and Ground Signal | 12 | 4.1 Mixer Input. | 25 | | | • | ACTI | 12 | 4.2 Mixer Output | 25 | | | 2. | AC-Link | 12 | 4.3 PC Beep Implementations | 25 | | | | 2.1 Clocking | 13 | 4.4 Programming Registers | 26 | | | | 2.2 Reset | 13 | | | | | 2 | Disided Technology | 1.4 | 4.4.1 Reset Register | 27 | | | J. | Digital Interface | 14 | 4.4.2 Play Master Volume Registers | 27 | | | | 3.1 AC-Link Digital Serial Interface | 1.4 | 4.4.3 PC Beep Register | 27 | | | | Protocol | 14 | 4.4.4 Analog Mixer Input Gain | 28 | | | | 2.1.1 AC Link Andia Output France | | 4.4.5 Record Select Control | 28 | | | | 3.1.1 AC-Link Audio Output Frame | 1.5 | 4.4.6 Record Gain Registers | 30 | | | | (SDATA_OUT) | 15 | 4.4.7 General Purpose Register | 30 | | | | 2 1 1 1 Clot 1. Command Address Dout | 16 | 4.4.8 3D Control Register | 30 | | | | 3.1.1.1 Slot 1: Command Address Port 3.1.1.2 Slot 2: Command Data Port | 17 | 4.4.9 Multi-Channel Programming | 31 | | | | | 1 / | 4.4.10 Powerdown Control/Status | 32 | | | | 3.1.1.3 Slot 3: PCM Playback Left
Channel | 17 | 4.4.10.1 External Amplifier Power | | | | | 3.1.1.4 Slot 4: PCM Playback Right | 1 / | Down (EAPD) Control | 33 | | | | Channel | 17 | 4.4.11 Extended Audio ID Register | 33 | | | | 3.1.1.5 Slot 5: Reserved | 17 | 4.4.12 Extended Audio Status Register | 33 | | | | 3.1.1.6 Slot 6: PCM Center Channel | 17 | 4.4.13 Analog Special Register | 33 | | | | 3.1.1.7 Slot 7: PCM Left Surround | 17 | 4.4.14 Vendor ID1 and ID2 Registers | 33 | | | | Channel | 18 = | | | | | | 3.1.1.8 Slot 8: PCM Right Surround | 5. | Low Power Modes | 34 | | | | Channel | 18 | | | | | | 3.1.1.9 Slot 9: PCM Low Frequency | 6. | Multiple Codec Support | 36 | | | | Channel | 18 | 6.1 Primary/Secondary Codec Selection | 36 | | | | 3.1.1.10 Slot 10: PCM Alternate Left | | 6.1.1 Primary Codec Operation | 36 | | | | 3.1.1.11 Slot 11: PCM Alternate Righ | | 6.1.2 Secondary Codec Operation | 36 | | | | 3.1.1.12 Slot 12: Reserved | 19 | 6.2 Secondary Codec Register Access | | | | | 3.1.1.12 510t 12. Reserved | 1) | Definitions | 36 | | | | 3.1.2 AC-Link Audio Input Frame | 7. | Testability | 37 | | | | (SDATA_In) | 19 | • | | | | | 3.1.2.1 Slot 1: Status Address Port | 20 | | | | | S | igmaTel, Inc | Preliminary | STAC9708/1 | |----|--|-------------|------------| | 8. | Extended Codec Functionality | 38 | | | | 8.1 Anti-Pop Circuitry | 38 | | | 9. | AC Timing Characteristics | 38 | | | | 9.1 Cold Reset. | 38 | | | | 9.2 Warm Reset | 39 | | | | 9.3 Clocks | 40 | | | | 9.4 Data Setup and Hold | 41 | | | | 9.5 Signal Rise and Fall Times | 42 | | | | 9.6 AC-Link Low Power Mode Timing | 43 | | | | 9.7 ATE Test Mode | 44 | | | 10 | . Electrical Specifications | 45 | | | | 10.1 Absolute Maximum Conditions | 45 | | | | 10.2 Recommended Operating Conditions | 45 | | | | 10.3 Power Consumption | 46 | | | | 10.4 AC-Link Static Digital Specifications | 46 | | | | 10.5 9708 Analog Performance | | | | | Characteristics | 47 | | | | 10.6 9711 Analog Performance | | | | | Characteristics | 49 | | | ΑI | PPENDIX A | 51 | | | ΑI | PPENDIX B | 52 | | | SigmaTel, Inc | Prelimin | nary STAC9708/ | <i>'11</i> | |--|------------|---|------------| | Table of Contents – Tables | | Table 30 – Operating Conditions | 44 | | Table 1 – Package Dimensions | 6 | Table 28 – Power Consumption | 45 | | Table 2 – Pin Designation | 6 | Table 29 - AC-Link Static Specifications | 45 | | Table 3 – Digital Signal List | 9 | Table 30 – 9708 Analog Performance | 16 | | Table 4 – Analog Signal List | 10 | Characteristics Table 31 – 9711 Analog Performance Characteristics | 46
48 | | Table 5 – Filtering and Voltage Reference | es 11 | | 40 | | Table 6 – 9708/11 Power Signal List | 11 | Table of Contents – Figures | | | Table 7 –Mixer Functional Connections | 24 | Figure 1 – Package Outline | 6 | | Table 8 – Programming Registers | 25 | Figure 2 – STAC9708 Block Diagram | 7 | | Table 9 – Play Master Volume Register | 26 | Figure 3 – Connection Diagram | 8 | | Table 10 – PC Beep Register | 27 | Figure 4 – STAC9708 AC-Link | 12 | | Table 11 – Analog Mixer Input Gain Reg | gister 27 | Figure 5 – AC'97 Standard Bi-directional | 15 | | Table 12, 13 – Record Select Control Re | | Figure 6 – AC-Link Audio Output Frame | 15 | | Table 14 – Record Gain Registers | 29 | Figure 7 – Start of an Audio Output Frame | 16 | | Table 15 – General Purpose Registers | 29 | Figure 8 – STAC9708 Audio Input Frame | 19 | | Table 16, 17 – 3D Control Registers | 30 | Figure 9 – Start of an Audio Input Frame | 20 | | Table 18- Multi-Channel Programming | | Figure 10 – STAC9708 Powerdown Timing | 22 | | Register | 31 | Figure 11 – STAC9708 Mixer Functional Diagram | 23 | | Table 19 – Powerdown Status Registers | 31 | Figure 12 – Example of STAC9708 Powerdown/ | 25 | | Table 20 – Low Power Modes | 32 | Powerup flow | 35 | | Table 21 - Codec ID Selection | 36 | Figure 13 – STAC9708 Powerdown/Powerup with analog still alive | 35 | | Table 22 - Secondary Codec Register Acc
Slot 0 Bit Definitions | cess
37 | Figure 14 – Cold Reset | 38 | | Table 23 – Cold Reset | 36 | Figure 15 – Warm Reset | 39 | | Table 24 – Warm Reset | 36 | Figure 16 – Clocks | 39 | | Table 25 – Clocks | 37 | Figure 17 – Data Setup and Hold | 40 | | | 38 | Figure 18 – Signal Rise and Fall Times | 41 | | Table 26 – Data Setup and Hold Table 27 – Signal Rice and Fall Times | | Figure 19 – AC-Link Low Power Mode Timing | 42 | | Table 27 – Signal Rise and Fall Times | 39 | Figure 20 – ATE Test Mode | 42 | | Table 28 – AC-Link Low Power Mode T | C | | | | Table 29 – ATE Test Mode | 40 | | | Figure 1. Package Outline Table 1. Package Dimensions | KEY | 9708/11 DIMENSION | |----------------|-------------------| | | TQFP | | D | 9.00 mm | | D1 | 7.00 mm | | E | 9.00 mm | | E1 | 7.00 mm | | a (lead width) | 0.20 mm | | e (pitch) | 0.50 mm | | thickness | 1.4 mm | Table 2. Pin Designation | PIN | SIGNAL | PI | SIGNAL | PIN | SIGNAL | PIN | SIGNAL | |-----|-----------|-----|-----------|-----|------------|-----|-----------| | # | NAME | N # | NAME | # | NAME | # | NAME | | 1 | DVdd1 | 13 | PHONE | 25 | AVdd1 | 37 | MONO_OUT | | 2 | XTL_IN | 14 | AUX_L | 26 | AVss1 | 38 | AVdd2 | | 3 | XTL_OUT | 15 | AUX_R | 27 | Vref | 39 | DAC_OUT_L | | 4 | DVss1 | 16 | VIDEO_L | 28 | Vrefout | 40 | NC | | 5 | SDATA_OUT | 17 | VIDEO_R | 29 | AFILT1 | 41 | DAC_OUT_R | | 6 | BIT_CLK | 18 | CD_L | 30 | AFILT2 | 42 | AVss2 | | 7 | DVss2 | 19 |
CD_GND | 31 | CAP1 | 43 | NC | | 8 | SDATA_IN | 20 | CD_R | 32 | CAP2 | 44 | NC | | 9 | DVdd2 | 21 | MIC1 | 33 | CAP3 | 45 | CID0 | | 10 | SYNC | 22 | MIC2 | 34 | APOP | 46 | CID1 | | 11 | RESET# | 23 | LINE_IN_L | 35 | LINE_OUT_L | 47 | EAPD | | 12 | PC_BEEP | 24 | LINE_IN_R | 36 | LINE_OUT_R | 48 | NC | # denotes active low Figure 2. STAC9708 Block Diagram The STAC9708/11 block diagram, above, illustrates its primary functional blocks. It performs fixed 48K sample rate D-A & A-D conversion, mixing, and analog processing. The digital interface communicates with the AC'97 controller via the five wire AC-Link and contains the 64 word by 16-bit registers. Four, fixed 48Ks/s DAC's support two stereo PCM-out channels for surround sound applications requiring four speakers. The digital mix of all software sources, including the internal synthesizer and any other digital sources, is performed in the digital controller. The Mixer block mixes the PCM_OUT with any analog sources, then outputs to LINE_OUT. The surround DACs are output to DAC_OUT, and this stereo output has independent volume control. In addition, the surround DACs can be input to the Mixer block and output to LINE_OUT. The MONO_OUT delivers either mic only or a mono mix of sources from the mixer. The two fixed 48Ks/s ADC's take any mix of mono or stereo sources and convert it to a stereo PCM-in signal. All ADC's and DAC's operate at 18-bit resolution. The **STAC9708/11** is designed primarily to support multi-channel, 4-speaker PC audio. However, true AC-3 playback can be achieved for 6-speaker applications by taking advantage of the multi-codec option in the **STAC9708/11**. Using this option with a STAC9704/07 as the primary codec, and the STAC9708 as the secondary codec, 6-channel output can be achieved in an AC'97 architecture. Also, the **STAC9708/11** provides for a stereo enhancement feature, *Sigmatel Surround 3D or SS3D*. *SS3D* provides the listener with several options to expand the soundstage beyond the normal 2-speaker arrangement. Together with the logic component (controller or advanced core logic chip-set) of AC'97, STAC9708/11 can be SoundBlaster[®] and Windows Sound System[®] compatible. SoundBlaster[®] is a registered trademark of Creative Labs. Windows[®] is a registered trademark of Microsoft Corporation. Figure 3. Connection Diagram – SigmaTel, Inc. See Appendix A for an alternative connection diagram when using separate supplies. See Appendix B for specific connection requirements prior to operation. # 1. PIN/SIGNAL DESCRIPTIONS # 1.1 Digital I/O These signals connect the **STAC9708/11** to its AC'97 controller counterpart, an external crystal, multicodec selection and external audio amplifier. Table 3. Digital Signal List | SIGNAL NAME | ТҮРЕ | DESCRIPTION | |-------------|------|--| | RESET # | I | AC'97 Master H/W Reset | | XTL_IN | I | 24.576 MHz Crystal | | XTL_OUT | 0 | 24.576 MHz Crystal | | SYNC | I | 48 kHz fixed rate sample sync | | BIT_CLK | 0 | 12.288 MHz serial data clock | | | - | | | SDATA_OUT | I | Serial, time division multiplexed, AC'97 input stream | | SDATA_IN | 0 | Serial, time division multiplexed, AC'97 output stream | | CID0 | I | Multi-Codec ID select – bit 0 | | CID1 | I | Multi-Codec ID select – bit 1 | | EAPD | О | External Amplifier Power Down | # denotes active low # 1.2 Analog I/O These signals connect the STAC9708/11 to analog sources and sinks, including microphones and speakers. Table 4. Analog Signal List | SIGNAL NAME | ТҮРЕ | DESCRIPTION | |-------------|------|--| | PC-BEEP | I | PC Speaker beep pass-through | | PHONE | I | From telephony subsystem speakerphone (or DLP - Down Line Phone) | | MIC1 | I | Desktop Microphone Input | | MIC2 | I | Second Microphone Input | | LINE-IN-L | I | Line In Left Channel | | LINE-IN-R | I | Line In Right Channel | | CD-L | I | CD Audio Left Channel | | CD-GND | I | CD Audio analog ground | | CD-R | I | CD Audio Right Channel | | VIDEO-L | I | Video Audio Left Channel | | VIDEO-R | I | Video Audio Right Channel | | AUX-L | I | Aux Left Channel | | AUX-R | I | Aux Right Channel | | LINE-OUT-L | 0 | Line Out Left Channel | | LINE-OUT-R | 0 | Line Out Right Channel | | MONO-OUT | 0 | To telephony subsystem speakerphone (or DLP – Down Line Phone) | | DAC_OUT_L | О | Surround DAC Out Left Channel | |-----------|---|--------------------------------| | DAC_OUT_R | О | Surround DAC Out Right Channel | ^{*} Note: any unused input pins should have a capacitor (1 uF suggested) to ground. # 1.3 Filter/References/GPIO These signals are connected to resistors, capacitors, specific voltages, or provide general purpose I/O. Table 5. Filtering and Voltage References | SIGNAL NAME | ТҮРЕ | DESCRIPTION | |-------------|------|---| | Vref | О | Reference Voltage | | Vrefout | О | Reference Voltage out 5mA drive (intended for mic bias) | | AFILT1 | О | Anti-Aliasing Filter Cap - ADC channel | | AFILT2 | О | Anti-Aliasing Filter Cap - ADC channel | | CAP1 | 0 | Analog Output Hold-Off Delay | | CAP2 | 0 | ADC reference Cap | | CAP3 | 0 | Anti-Pop Power Sustain Delay | | APOP | 0 | Anti-Pop Output Ground Shunt Control | | EAPD | 0 | External Amplifier Power Down Control | # 1.4 Power and Ground Signals Table 6. Power Signal List STAC9708/11 | SIGNAL NAME | TYPE | STAC9708 | STAC9711 | |-------------|------|--------------------------------|----------------------| | AVdd1 | I | Analog $Vdd = 5.0V$ | Analog $Vdd = 3.3V$ | | AVdd2 | I | Analog $Vdd = 5.0V$ | Analog $Vdd = 3.3V$ | | AVss1 | I | Analog Gnd | Analog Gnd | | AVss2 | I | Analog Gnd | Analog Gnd | | DVdd1 | I | Digital $Vdd = 5.0V$ or $3.3V$ | Digital $Vdd = 3.3V$ | | DVdd2 | I | Digital $Vdd = 5.0V$ or $3.3V$ | Digital $Vdd = 3.3V$ | | DVss1 | I | Digital Gnd | Digital Gnd | | DVss2 | I | Digital Gnd | Digital Gnd | ### 2. AC-LINK Below is the figure of the AC-Link point to point serial interconnect between the STAC9708/11 and its companion controller. All digital audio streams and command/status information are communicated over this AC-Link. Please refer to the "Digital Interface" section 3 for details. Figure 4. STAC9708/11's AC-Link to its companion controller # 2.1 Clocking STAC9708/11 derives its clock internally from an externally connected 24.576 MHz crystal or an oscillator through the XTAL_IN pin. Synchronization with the AC'97 controller is achieved through the BIT_CLK pin at 12.288 MHz (half of crystal frequency). The beginning of all audio sample packets, or "Audio Frames", transferred over AC-Link is synchronized to the rising edge of the "SYNC" signal driven by the AC'97 controller. Data is transitioned on AC-Link on every rising edge of BIT_CLK, and subsequently sampled by the receiving side on each immediately following falling edge of BIT_CLK. #### 2.2 Reset There are 3 types of resets as detailed under "Timing Characteristics". - 1. a "cold" reset where all STAC9708/11 logic and registers are initialized to their default state - 2. a "warm" reset where the contents of the STAC9708/11 register set are left unaltered - 3. a "register" reset which only initializes the STAC9708/11 registers to their default states After signaling a reset to the **STAC9708/11**, the AC'97 controller should not attempt to play or capture audio data until it has sampled a "Codec Ready" indication via register 26h from the **STAC9708/11**. For proper reset operation SDATA_OUT should be "0" during "cold" reset. #### 3. DIGITAL INTERFACE SigmaTel, Inc. #### 3.1 AC-Link Digital Serial Interface Protocol The STAC9708/11 communicates to the AC'97 controller via a 5-pin digital serial AC-Link interface, which is a bi-directional, fixed rate, serial PCM digital stream. All digital audio streams, commands and status information are communicated over this point-to-point serial interconnect. The AC-Link handles multiple inputs, and output audio streams, as well as control register accesses using a time division multiplexed (TDM) scheme. The AC'97 controller synchronizes all AC-Link data transaction. The following data streams are available on the STAC9708/11: | • | PCM Playback | 4 output slots | 4 Channel composite PCM output stream | |---|-----------------|----------------|---------------------------------------| | • | PCM Record data | 2 input slots | 2 Channel composite PCM input stream | | • | Control | 2 output slots | Control register write port | | • | Status | 2 input slots | Control register read port | Synchronization of all AC-Link data transactions is handled by the AC'97 controller. STAC9708/11 drives the serial bit clock onto AC-Link. The AC'97 controller then qualifies with a synchronization signal to construct audio frames. SYNC, fixed at 48 kHz, is derived by dividing down the serial bit clock (BIT_CLK). BIT_CLK, fixed at 12.288 MHz, provides the necessary clocking granularity to support 12, 20-bit outgoing and incoming time slots. AC-Link serial data is transitioned on each rising edge of BIT CLK. The receiver of AC-Link data, STAC9708/11 for outgoing data and AC'97 controller for incoming data, samples each serial bit on the falling edges of BIT_CLK. The AC-Link protocol provides for a special 16-bit (13-bits defined, with 3 reserved trailing bit positions) time slot (Slot 0) wherein each bit conveys a valid tag for its corresponding time slot within the current audio frame. A "1" in a given bit position of slot 0 indicates that the corresponding time slot within the current audio frame has been assigned to a data stream, and contains valid data. If a slot is "tagged" invalid, it is the responsibility of the source of the data, (STAC9708/11 for the input stream, AC'97 controller for the output stream), to stuff all bit positions with 0's during that slot's active time. SYNC remains high for a total duration of 16 BIT_CLKs at the beginning of each
audio frame. The portion of the audio frame where SYNC is high is defined as the "Tag Phase". The remainder of the audio frame where SYNC is low is defined as the "Data Phase". Additionally, for power savings, all clock, sync, and data signals can be halted. Figure 5. AC'97 Standard Bi-directional Audio Frame ## 3.1.1 AC-Link Audio Output Frame (SDATA_OUT) The audio output frame data streams correspond to the multiplexed bundles of all digital output data targeting the **STAC9708/11** DAC inputs, and control registers. Each audio output frame supports up to 12 20-bit outgoing data time slots. Slot 0 is a special reserved time slot containing 16 bits that are used for AC-Link protocol infrastructure. Within slot 0, the first bit is a global bit (SDATA_OUT slot 0, bit 15) which flags the validity for the entire audio frame. If the "Valid Frame" bit is a 1, this indicates that the current audio frame contains at least one slot time of valid data. The next 12 bit positions sampled by the STAC9708/11 indicate which of the corresponding 12 times slots contain valid data. In this way data streams of differing sample rates can be transmitted across AC-Link at its fixed 48kHz audio frame rate. The following diagram illustrates the time slot based AC-Link protocol. A new audio output frame begins with a low to high transition of SYNC. SYNC is synchronous to the rising edge of BIT_CLK. On the immediately following falling edge of BIT_CLK, the STAC9708/11 samples the assertion of SYNC. This following edge marks the time when both sides of AC-Link are aware of the start of a new audio frame. On the next rising edge of BIT_CLK, the AC'97 controller transitions SDATA_OUT into the first bit position of slot 0 (Valid Frame bit). Each new bit position is presented to AC-Link on a rising edge of BIT_CLK, and subsequently sampled by the STAC9708/11 on the following falling edge of BIT_CLK. This sequence ensures that data transitions, and subsequent sample points for both incoming and outgoing data streams are time aligned. Figure 7. Start of an Audio Output Frame SDATA_OUT's composite stream is MSB justified (MSB first) with all non-valid slots' bit positions stuffed with 0's by the AC'97 controller. When mono audio sample streams are sent from the AC'97 controller, it is necessary that BOTH left and right sample stream time slots be filled with the same data. #### 3.1.1.1 Slot 1: Command Address Port The command port is used to control features, and monitor status (see Audio Input Frame Slots 1 and 2) of the **STAC9708/11** functions including, but not limited to, mixer settings, and power management (refer to the control register section of this specification). The control interface architecture supports up to 64 16-bit read/write registers, addressable on even byte boundaries. Only the even registers (00h, 02h, etc.) are valid. Audio output frame slot 1 communicates control register address, and write/read command information to the STAC9708/11. Command Address Port bit assignments: Bit (19) Read/Write command (1= read, 0=write) Bit (18:12) Control Register Index (64 16-bit locations, addressed on even byte boundaries) Bit (11:0) Reserved (Stuffed with 0's) The first bit (MSB) sampled by **STAC9708/11** indicates whether the current control transaction is a read or a write operation. The following 7 bit positions communicate the targeted control register address. The trailing 12 bit positions within the slot are reserved and must he stuffed with 0's by the AC'97 controller. #### 3.1.1.2 Slot 2: Command Data Port SigmaTel, Inc. The command data port is used to deliver 16-bit control register write data in the event that the current command port operation is a write cycle. (as indicated by Slot 1, bit 19) Control Register Write Data (Stuffed with 0's if current operation is a read) Bit (19:4) Bit (3:0) (Stuffed with 0's) If the current command port operation is a read then the entire slot time must be stuffed with 0's by the AC'97 controller. #### 3.1.1.3 Slot 3: PCM Playback Left Channel Audio output frame slot 3 is the composite digital audio left playback stream. In a typical "Games Compatible" PC this slot is composed of standard PCM (.wav) output samples digitally mixed (on the AC'97 controller or host processor) with music synthesis output samples. If a sample stream of resolution less than 20-bits is transferred, the AC'97 controller must stuff all trailing non-valid bit positions within this time slot with 0's. #### 3.1.1.4 Slot 4: PCM Playback Right Channel Audio output frame slot 4 is the composite digital audio right playback stream. In a typical "Games Compatible" PC this slot is composed of standard PCM (.wav) output samples digitally mixed (on the AC'97 controller or host processor) with music synthesis output samples. If a sample stream of resolution less than 20-bits is transferred, the AC'97 controller must stuff all trailing non-valid bit positions within this time slot with 0's. #### 3.1.1.5 Slot 5: Reserved Audio output frame slot 5 is reserved for modem operation and is not used by the STAC9708/11. #### 3.1.1.6 Slot 6: PCM Center Channel Audio output frame slot 6 is the composite digital audio center stream used in a multi-channel application where the STAC9708/11 is programmed to accept the primary DAC PCM data from slots 6 and 9. As a programming option, PCM data from slots 6 and 9 may be used to supply data to the surround DACs when slots 7 and 8 are used to drive the primary DACs. Please refer to the register programming section for details on the multi-channel programming options. #### 3.1.1.7 Slot 7: PCM Left Surround Channel SigmaTel, Inc. Audio output frame slot 7 is the composite digital audio left surround stream. In the default state, the STAC9708/11 accepts PCM data from slots 7 and 8 for the surround DACs, for output to the DAC_OUT pins. As a programming option, PCM data from slots 7 and 8 may be used to supply data to the primary DACs when slots 6 and 9 are used to drive the surround DACs. Please refer to the register programming section for details on the multi-channel programming options. #### 3.1.1.8 Slot 8: PCM Right Surround Channel Audio output frame slot 8 is the composite digital audio right surround stream. In the default state, the STAC9708/11 accepts PCM data from slots 7 and 8 for the surround DACs, for output to the DAC_OUT pins. As a programming option, PCM data from slots 7 and 8 may be used to supply data to the primary DACs when slots 6 and 9 are used to drive the surround DACs. Please refer to the register programming section for details on the multi-channel programming options. #### 3.1.1.9 Slot 9: PCM Low Frequency Channel Audio output frame slot 9 is the composite digital audio low frequency stream used in a multichannel application where the STAC9708/11 is programmed to accept the primary DAC PCM data from slots 6 and 9. As a programming option, PCM data from slots 6 and 9 may be used to supply data to the surround DACs when slots 7 and 8 are used to drive the primary DACs. Please refer to the register programming section for details on the multi-channel programming options. #### 3.1.1.10 Slot 10: PCM Alternate Left Audio output frame slot 10 is the composite digital audio alternate left stream used in a multichannel application where the STAC9708/11 is programmed to accept the primary DAC PCM data from slots 6 and 9. Please refer to the register programming section for details on the multi channel programming options. #### 3.1.1.11 Slot 11: PCM Alternate Right Audio output frame slot 11 is the composite digital audio alternate right stream used in a multi-channel application where the STAC9708/11 is programmed to accept the primary DAC PCM data from slots 6 and 9. Please refer to the register programming section for details on the multi channel programming options. #### 3.1.1.12 Slot 12: Reserved Audio output frame slot 12 is reserved for modem operations and is not used by the STAC9708/11. ## 3.1.2 AC-Link Audio Input Frame (SDATA_IN) The audio input frame data streams correspond to the multiplexed bundles of all digital input data targeting the AC'97 controller. As is the case for audio output frame, each AC-Link audio input frame consists of 12, 20-bit time slots. Slot 0 is a special reserved time slot containing 16 bits that are used for AC-Link protocol infrastructure. Within slot 0 the first bit is a global bit (SDATA_IN slot 0, bit 15) which flags whether the STAC9708/11 is in the "Codec Ready" state or not. If the "Codec Ready" bit is a 0, this indicates that STAC9708/11 is not ready for normal operation. This condition is normal following the de-assertion of power on reset, for example, while STAC9708/11's voltage references settle. When the AC-Link "Codec Ready" indicator bit is a 1, it indicates that the AC-Link and STAC9708/11 control/status registers are in a fully operational state. The AC'97 controller must further probe the Powerdown Control Status Register (refer to Mixer Register section) to determine exactly which subsections, if any, are ready. Prior to any attempts at putting **STAC9708/11** into operation the AC'97 controller should poll the first bit in the audio input frame (SDATA_IN slot 0, bit 15) for an indication that **STAC9708/11** has become "Codec Ready". Once the **STAC9708/11** is sampled "Codec Ready", the next 12 bit positions sampled by the AC'97 controller indicate which of the corresponding 12 time slots are assigned to input data streams, and that they contain valid data. The following diagram illustrates the time slot based AC-Link protocol. Figure 8. STAC9708/11 Audio Input Frame A new audio input frame begins with a low to high transition of SYNC. SYNC is synchronous to the rising edge of BIT_CLK. On the immediately following falling edge of BIT_CLK, STAC9708/11 samples the assertion of SYNC. This falling edge marks the time when both sides of AC-Link are aware of the start of a new audio frame. On the next rising of BIT_CLK,
the STAC9708/11 transitions SDATA_IN into the first bit position of slot 0 ("Codec Ready" bit). Each new bit position is presented to AC-Link on a rising edge of BIT_CLK and subsequently sampled by the AC'97 controller on the following falling edge of BIT_CLK. This sequence ensures that data transitions, and subsequent sample points for both incoming and outgoing data streams are time aligned. Figure 9. Start of an Audio Input Frame SDATA_IN's composite stream is MSB justified (MSB first) with all non-valid bit positions (for assigned and/or unassigned time slots) stuffed with 0's by **STAC9708/11**. SDATA_IN data is sampled on the falling edges of BIT_CLK. #### 3.1.2.1 Slot 1: Status Address Port The status port is used to monitor status for STAC9708/11 functions including, but not limited to, mixer settings, and power management. Audio input frame slot 1's stream echoes the control register index, for historical reference, for the data to be returned in slot 2. (Assuming that slots 1 and 2 had been tagged "valid" by STAC9708/11 during slot 0) Status Address Port hit assignments: Bit (19) RESERVED (Stuffed with 0) Bit (18;12) Control Register Index (Echo of register index for which data is being returned) Bit (11:0) RESERVED (Stuffed with 0's) The first bit (MSB) generated by **STAC9708/11** is always stuffed with a 0. The following 7 bit positions communicate the associated control register address, and the trailing 12 bit positions are stuffed with 0's by **STAC9708/11**. #### 3.1.2.2 Slot 2: Status Data Port SigmaTel, Inc. The status data port delivers 16-bit control register read data. Bit (19:4) Control Register Read Data (Stuffed with 0's if tagged "invalid") Bit (3:0) RESERVED (Stuffed with 0's) If Slot 2 is tagged "invalid" by STAC9708/11, then the entire slot will be stuffed with 0's. #### 3.1.2.3 Slot 3: PCM Record Left Channel Audio input frame slot 3 is the left channel output of STAC9708/11 input MUX, post-ADC. **STAC9708/11** ADCs are implemented to support 18-bit resolution. STAC9708/11 outputs its ADC data (MSB first), and stuffs any trailing non-valid bit positions with 0's to fill out its 20-bit time slot. #### 3.1.2.4 Slot 4: PCM Record Right Channel Audio input frame slot 4 is the right channel output of STAC9708/11 input MUX, post-ADC. STAC9708/11 outputs its ADC data (MSB first), and stuffs any trailing non-valid bit positions with 0's to fill out its 20-bit time slot. #### 3.1.2.5 Slots 5-12: Reserved Audio input frame slots 5-12 are not used by the STAC97908/11 and are always stuffed with 0's. ### 3.2 AC-Link Low Power Mode The STAC9708/11 AC-Link can be placed in the low power mode by programming register 26h to the appropriate value. Both BIT_CLK and SDATA_IN will be brought to, and held at a logic low voltage level. The AC'97 controller can wake up the STAC9708/11 by providing the appropriate reset signals. Note: BIT_CLK not to scale BIT_CLK and SDATA_IN are transitioned low immediately (within the maximum specified time) following the decode of the write to the Powerdown Register (26h) with PR4. When the AC'97 controller driver is at the point where it is ready to program the AC-Link into its low power mode, slots (1 and 2) are assumed to be the only valid stream in the audio output frame (all sources of audio input have been neutralized). The AC'97 controller should also drive SYNC, and SDATA_OUT low after programming the STAC9708/11 to this low power mode. ## 3.2.1 Waking up the AC-Link Once the STAC9708/11 has halted BIT_CLK, there are only two ways to "wake up" the AC-Link. Both methods must be activated by the AC'97 controller. The AC-Link protocol provides for a "Cold AC'97 Reset", and a "Warm AC'97 Reset". The current power down state would ultimately dictate which form of reset is appropriate. Unless a "cold" or "register" reset (a write to the Reset register) is performed, wherein the AC'97 registers are initialized to their default values, registers are required to keep state during all power down modes. Once powered down, re-activation of the AC-Link via reassertion of the SYNC signal must not occur for a minimum of 4 audio frame times following the frame in which the power down was triggered. When AC-Link powers up it indicates readiness via the Codec Ready bit (input slot 0, bit 15). **Cold Reset** - a cold reset is achieved by asserting RESET# for the minimum specified time. By driving RESET# low, BIT_CLK, and SDATA_IN will be activated, or re-activated as the case may be, and all **STAC9708/11** control registers will be initialized to their default power on reset values. Note: RESET# is an asynchronous input. # denotes active low **Warm Reset** - a warm reset will re-activate the AC-Link without altering the current **STAC9708/11** register values. A warm reset is signaled by driving SYNC high for a minimum of 1us in the absence of BIT_CLK. Note: Within normal audio frames, SYNC is a synchronous input. However, in the absence of BIT_CLK, SYNC is treated as an asynchronous input used in the generation of a warm reset to the STAC9708/11. #### 4. STAC9708/11 MIXER The STAC9708/11 mixer is designed to the AC'97 specification to manage the playback and record of all digital and analog audio sources in the PC environment. These include: - System Audio: digital PCM input and output for business, games and multimedia - CD/DVD: analog CD/DVD-ROM Redbook audio with internal connections to Codec mixer - Mono microphone: choice of desktop mic, with programmable boost and gain - Speakerphone: use of system mic and speakers for telephone, DSVD, and video conferencing - Video: TV tuner or video capture card with internal connections to Codec mixer - AUX/synth: analog FM or wavetable synthesizer, or other internal source Figure 11. STAC9708/11 Mixer Functional Diagram Table 7. Mixer Functional Connections | SOURCE | FUNCTION | CONNECTION | |----------|--|------------------------------| | PC_Beep | PC beep pass thru | from PC beeper output | | PHONE | speakerphone or DLP in | from telephony subsystem | | MIC1 | desktop microphone | from mic jack | | MIC2 | second microphone | from second mic jack | | LINE_IN | external audio source | from line-in jack | | CD | audio from CD-ROM | cable from CD-ROM | | VIDEO | audio from TV tuner or video camera | cable from TV or VidCap card | | AUX | upgrade synth or other external source | internal connector | | PCM out | digital audio output from AC'97 Controller | AC-Link | | LINE_OUT | stereo mix of all sources | To output jack | | DAC_OUT | surround stereo DAC output | To output jack | | MONO_OUT | mic or mix for speakerphone or DLP out | to telephony subsystem | | PCM in | digital audio input to AC'97 Controller | AC-Link | ## 4.1 Mixer Input The mixer provides recording and playback of any audio sources or output mix of all sources. The STAC9708/11 supports the following input sources: - any mono or stereo source - mono or stereo mix of all sources - 2-channel input w/mono output reference (mic + stereo mix) Note: any unused input pins should have a capacitor (1 uF suggested) to ground. ### 4.2 Mixer Output The mixer generates two distinct outputs: - a stereo mix of all sources for output to the LINE_OUT - a stereo mix of the surround DACs for output to the DAC_OUT - a mono, mic only or mix of all sources for MONO_OUT - * Note: Mono output of stereo mix is attenuated by -6 dB. # 4.3 PC Beep Implementation PC Beep is active on power up and defaults to an unmuted state. The user should mute this input before using any other mixer input because the PC Beep input can contribute noise to the lineout during normal operation. # **4.4 Programming Registers:** SigmaTel, Inc. Table 8. Programming Registers | REG# | NAME | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | DE
FAULT | |------|----------------------------------|--------------|-----|-----|-------------|-----|-----|-----|-----|---------------|------|-----|-----|------|------|-------------|-------------|-------------| | 00h | Reset | X | SE4 | SE3 | SE2 | SE1 | SE0 | ID9 | ID8 | ID7 | ID6 | ID5 | ID4 | ID3 | ID2 | ID1 | ID0 | 6940h | | 02h | Master Volume | Mute | X | X | ML4 | ML3 | ML2 | ML1 | ML0 | X | X | X | MR4 | MR3 | MR2 | MR1 | MR0 | 8000h | | 04h | Surround DAC
Mixer Volume | Mute | X | X | GL4 | GL3 | GL2 | GL1 | GL0 | X | X | X | GR4 | GR3 | GR2 | GR1 | GR0 | 8808h | | 06h | Master Volume
Mono | Mute | X | X | X | X | X | X | X | X | X | X | MM4 | MM3 | MM2 | MM1 | MM0 | 8000h | | 0Ah | PC_BEEP Volume | Mute | X | X | X | X | X | X | X | X | X | X | PV3 | PV2 | PV1 | PV0 | X | 0000h | | 0Ch | Phone volume | Mute | X | X | X | X | X | X | X | X | X | X | GN4 | GN3 | GN2 | GN1 | GN0 | 8008h | | 0Eh | Mic Volume | Mute | X | X | X | X | X | X | X | X | 20dB | X | GN4 | GN3 | GN2 | GN1 | GN0 | 8008h | | 10h | Line In Volume | Mute | X | X | GL4 | GL3 | GL2 | GL1 | GL0 | X | X | X | GR4 | GR3 | GR2 | GR1 | GR0 | 8808h | | 12h | CD Volume | Mute | X | X | GL4 | GL3 | GL2 | GL1 | GL0 | X | X | X | GR4 | GR3 | GR2 | GR1 | GR0 | 8808h | | 14h | Video Volume | Mute | X | X | GL4 | GL3 | GL2 | GL1 | GL0 | X | X | X | GR4 | GR3 | GR2 | GR1 | GR0 | 8808h | | 16h | AUX Volume | Mute | X | X | GL4 | GL3 | GL2 | GL1 | GL0 | X | X | X | GR4 | GR3 | GR2 | GR1 | GR0 | 8808h | | 18h | PCM Out Volume | Mute | X | X | GL4 | GL3 | GL2 | GL1 | GL0 | X | X | X | GR4 | GR3 | GR2 | GR1 | GR0 | 8808h | | 1Ah | Record Select | X | X | X | X | X | SL2 | SL1 | SL0 | X | X | X | X | X | SR2 | SR1 | SR0 | 0000h | | 1Ch | Record Gain | Mute | X | X | X | GL3 | GL2 | GL1 | GL0 | X | X | X | X | GR3 | GR2 | GR1 | GR0 | 8000h | | 20h | General Purpose | X | X | 3D | X | X | X | MIX | MS | LPBK | X | X | X | X | X | X | X | 0000h | | 22h | 3D Control | X | X | X | X | X | X | X | X | X | X | X | X | DPR1 | DPR0 | DP1 | DP0 | 0000h | | 26h | Powerdown
Ctrl/Stat | EAPD | PR6 | PR5 | PR4 | PR3 | PR2 | PR1 | PR0 | X | X | X | X |
REF | ANL | DAC | ADC | 000Fh | | 28h | Extended Audio
ID | ID1 | ID0 | X | X | X | X | X | X | SDAC | X | X | X | X | X | X | X | 0000h | | 2Ah | Extended Audio
Status Control | X | X | X | PWD
SDAC | X | X | X | X | SDAC
Ready | X | X | X | X | X | X | X | 0000h | | 38h | Surround DAC
Master Volume | Mute
Left | X | X | ML4 | ML3 | ML2 | ML1 | ML0 | Mute
Right | X | X | MR4 | MR3 | MR2 | MR1 | MR0 | 8080h | | 6Ch | Analog Special | X | X | X | X | X | X | X | X | X | X | X | X | X | X | DAC
-6dB | ADC
-6dB | 0000h | | 74h | Multi-Channel
Selection | X | X | X | X | X | X | X | X | X | X | X | X | X | X | MC1 | MC0 | 0000h | | 7Ch | Vendor ID1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 8384h | | 7Eh | Vendor ID2 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 7608h | #### Notes: - All registers not shown and bits containing an X are reserved. - Any reserved bits, marked X, can be written to but are don't care upon read back. - 3. PC_BEEP default to 0000h, mute off. - **4.** If optional bits D13, D5 of register 02h or D5 of register 06h are set to 1, then the corresponding attenuation is set to 46dB and the register reads will produce 1Fh as a value for this attenuation/gain block. #### 4.4.1 Reset Register (Index 00h) Writing any value to this register performs a register reset, which causes all registers to revert to their default values. Reading this register returns the ID code of the part. # 4.4.2 Play Master Volume Registers (Index 02h, 38h, and 06h) These registers manage the output signal volumes. Register 02h controls the stereo LINE_OUT master volume (both right and left channels), register 04h controls the surround stereo DAC_OUT volume, and register 06h controls the mono volume output. Each step corresponds to 1.5 dB. The MSB of the register is the mute bit. When this bit is set to 1 the level for that channel is set at -∞ dB. ML5 through ML0 is for left channel level, MR5 through MR0 is for the right channel and MM5 through MM0 is for the mono out channel. The default value is 8000h for registers 02h and 06h(8080h for register 38h), which corresponds to 0 dB attenuation with mute on. | MUTE | Mx5Mx0 | FUNCTION | RANGE | |------|---------|------------------|-------| | 0 | 00 0000 | 0dB Attenuation | Req. | | 0 | 01 1111 | 46.5 Attenuation | Req. | | 1 | xx xxxx | ∞ dB Attenuation | Reg. | Table 9. Play Master Volume Register ### 4.4.3 PC Beep Register (Index 0Ah) This register controls the level for the PC Beep input. Each step corresponds to approximately 3 dB of attenuation. The MSB of the register is the mute bit. When this bit is set to 1 the level for that channel is set at -∞ dB. PC_BEEP supports motherboard implementations. The intention of routing PC_BEEP through the STAC9708/11 mixer is to eliminate the requirement for an onboard speaker by guaranteeing a connection to speakers connected via the output jack. In order for this to be viable the PC_BEEP signal needs to reach the output jack at all times. NOTE: the PC_BEEP is recommended to be routed to L & R Line outputs even when the STAC9708/11 is in a RESET state. This is so that Power On Self Test (POST) codes can be heard by the user in case of a hardware problem with the PC. For further PC_BEEP implementation details please refer to the AC'97 Technical FAQ sheet. The default value can be 0000h or 8000h, which corresponds to 0 dB attenuation with mute off or on. Table 10. PC_BEEP Register | MUTE | PV3PV0 | FUNCTION | |------|--------|-------------------| | 0 | 0000 | 0 dB Attenuation | | 0 | 1111 | 45 dB Attenuation | | 1 | xxxx | ∞ dB Attenuation | ### 4.4.4 Analog Mixer Input Gain Registers (Index 0Ch - 18h, 04h) These registers control the gain/attenuation for each of the analog inputs. Each step corresponds to approximately 1.5 dB. The MSB of the register is the mute bit. When this bit is set to 1 the level for that channel is set at $-\infty$ dB. Register 0Eh (Mic Volume Register) has an extra bit that is for a 20dB boost. When bit 6 is set to 1, the 20 dB boost is on. The default value is 8008, which corresponds to 0 dB gain with mute on. The default value for the mono registers is 8008h, which corresponds to 0dB gain with mute on. The default value for stereo registers is 8808h, which corresponds to 0 dB gain with mute on. Table 11. Analog Mixer Input Gain Register | MUTE | Gx4Gx0 | FUNCTION | |------|--------|---------------| | 0 | 00000 | +12 dB gain | | 0 | 01000 | 0 dB gain | | 0 | 11111 | -34.5 dB gain | | 1 | xxxxx | -∞ dB gain | ### 4.4.5 Record Select Control Register (Index 1Ah) Used to select the record source independently for right and left. The default value is 0000h, which corresponds to Mic in. Table 12, 13. Record Select Control Registers | SR2SR0 | RIGHT RECORD SOURCE | | | |--------|---------------------|--|--| | 0 | Mic | | | | 1 | CD In (right) | | | | 2 | Video In (right) | | | | 3 | Aux In (right) | | | | 4 | Line In (right) | | | | 5 | Stereo Mix (right) | | | | 6 | Mono Mix | | | | 7 | Phone | | | | SL2SL0 | LEFT RECORD SOURCE | | |--------|--------------------|--| | 0 | Mic | | | 1 | CD In (L) | | | 2 | Video In (L) | | | 3 | Aux In (L) | | | 4 | Line In (L) | | | 5 | Stereo Mix (L) | | | 6 | Mono Mix | | | 7 | Phone | | #### 4.4.6 Record Gain Registers (Index 1Ch) The 1Ch register adjusts the stereo input record gain. Each step corresponds to 1.5 dB. 22.5 dB corresponds to 0F0Fh and 000Fh respectively. The MSB of the register is the mute bit. When this bit is set to 1, the level for that channel(s) is set at -∞ dB. The default value is 8000h, which corresponds to 0 dB gain with mute on. MUTE Gx3... Gx0 FUNCTION 0 1111 +22.5 dB gain 0 0000 0 dB gain 1 xxxx -∞ gain Table 14. Record Gain Registers ### 4.4.7 General Purpose Register (Index 20h) This register is used to control some miscellaneous functions. Below is a summary of each bit and its function. The MS bit controls the mic selector. The LPBK bit enables loopback of the ADC output to the DAC input without involving the AC-Link, allowing for full system performance measurements. | BIT | FUNCTION | |------|-------------------------------------| | 3D | 3D Stereo Enhancement on/off 1 = on | | MIX | Mono output select 0 = Mix, 1= Mic | | MS | Mic select $0 = Mic1$, $1 = Mic2$ | | LPBK | ADC/DAC loopback mode | Table 15. General Purpose Register # 4.4.8 3D Control Register (Index 22h) This register is used to control the 3D stereo enhancement function, *Sigmatel Surround 3D (SS3D)*, built into the AC'97 component. Note that register bits, DP1-DP0 and DPR1-DPR0 are used to control the separation ratios in the 3D control for both LINE OUT and DAC OUT respectively. This allows SigmaTel, Inc. for independent control of the stereo enhancement between LINE_OUT and DAC_OUT. SS3D provides for a wider soundstage extending beyond the normal 2-speaker arrangement. Note that the 3D bit in the general purpose register (20h) must be set to 1 to enable SS3D functionality and for the bits in 22h to take effect. | Table 16, 17 . | 3D Control Registers | |-----------------------|----------------------| | | | | DP1, DP0 | LINE_OUT
SEPARATION
RATIO | |----------|---------------------------------| | 0 0 | 0 (Off) | | 0 1 | 3 (Low) | | 1 0 | 4.5 (Med) | | 1 1 | 6 (High) | | DPR1, DPR0 | DAC_OUT
SEPARATION
RATIO | |------------|--------------------------------| | 0 0 | 0 (Off) | | 0 1 | 3 (Low) | | 1 0 | 4.5 (Med) | | 1 1 | 6 (High) | The three separation ratios are implemented as shown above. The separation ratio defines a series of equations that determine the amount of depth difference (High, Medium, and Low) perceived during two-channel playback. The ratios provide for options to narrow or widen the soundstage. ## 4.4.9 Multi-Channel Programming Register (Index 74h) This read/write register is used to program the various options for multi-channel configurations. Only the two LSBs are used (MC0 and MC1), and they define which AC-Link slot data is supplied to the four audio DACs on the STAC9708/11. PCM2 in the table below is the surround stereo DAC, which drives the DAC_OUT pins. The purpose of using slot 10 and 11 in the final configuration is to allow the possibility of an eight channel architecture using two STAC9708 devices in the multi-codec configuration. Also see "Multiple Codec Support" discussion for information on the use of external pins CID1 and CID0. | MC1, MC0 | PCM OUT | PCM OUT | PCM2
LEFT | PCM2
RIGHT | |----------|---------|---------|--------------|---------------| | 0, 0 | Slot 3 | Slot 4 | Slot 7 | Slot 8 | | 0, 1 | Slot 7 | Slot 8 | Slot 6 | Slot 9 | | 1, 0 | Slot 6 | Slot 9 | Slot 7 | Slot 8 | | 1, 1 | Slot 6 | Slot 9 | Slot 10 | Slot 11 | **Table 18.** Multi-Channel Programming Register ### 4.4.10 Powerdown Control/Status Register (Index 26h) SigmaTel, Inc. This read/write register is used to program powerdown states and monitor subsystem readiness. The lower half of this register is read only status, a "1" indicating that the subsection is "ready". Ready is defined as the subsection's ability to perform in its nominal state. When this register is written, the bit values that come in on AC-Link will have no effect on read only bits 0-7. Bit 15, When the AC-Link "Codec Ready" indicator bit (SDATA_IN slot 0, bit 15) is a 1, it indicates that the AC-Link and AC'97 control and status registers are in a fully operational state. The AC'97 controller must further probe this Powerdown Control/Status Register to determine exactly which subsections, if any are ready. Table 19. Powerdown Status Registers | BIT | FUNCTION | | | |------|------------------------------------|--|--| | EAPD | External Amplifier Power Down | | | | REF | VREF's up to nominal level | | | | ANL | Analog mixers, etc. ready | | | | DAC | DAC section ready to playback data | | | | ADC | ADC section ready to playback data | | | ### 4.4.10.1 External Amplifier Power Down Control The EAPD bit 15 of
the Powerdown Control/Status Register (Index 26h) directly controls the output of the EAPD output, pin 45, and produces a logical "1" when this bit is set to logic high. This function is used to control an external audio amplifier power down. EAPD = 0 places approximately 0V on the output pin, enabling an external audio amplifier. EAPD = 1 places approximately DVdd on the output pin, disabling the external audio amplifier. Audio amplifiers that operate with reverse polarity will likely require an external inverter to maintain software driver compatibility. ### 4.4.11 Extended Audio ID Register (Index 28) The Extended Audio ID register is a read only register used to communicate information to the digital controller on two functions. ID1 and ID0 echo the configuration of the codec as defined by the programming of pins 47 and 48 externally. "00" returned defines the codec as the primary codec, while any other code identifies the codec as one of three secondary codec possibilities. SDAC=1 tells the controller that the **STAC9708** is a multi-channel codec as defined by the Intel spec. #### 4.4.12 Extended Audio Status Register (Index 2Ah) The Extended Audio Status Control register contains two active bits for powerdown and status of the surround DACs. PWD is a read/write bit which is used to powerdown the surround DACs, and SDAC a read only bit to tell the controller when the surround DACs are ready to receive data. #### 4.4.13 Analog Special Register (Index 6Ch) The Analog Special Register has two read/write bits used to control two functions specific to the **STAC9708.** DAC –6dB is used to program the DAC outputs to a –6dB signal level relative to the value of gain already programmed. Similarly, ADC –6dB attenuates any signal input to the ADC by 6dB. This second function is very useful in applications with greater than 1Vrms input levels, as is the case with many CDROMs. # 4.4.14 Vendor ID1 and ID2 (Index 7Ch and 7Eh) These two registers contain four 8-bit ID codes. The first three codes have been assigned by Microsoft using their Plug and Play Vendor ID methodology. The fourth code is a *SigmaTel*, Inc. assigned code identifying the **STAC9708/11**. The ID1 register (index 7Ch) contains the value 8384h, which is the first (83h) and second (84h) characters of the Microsoft® ID code. The ID2 register (index 7Eh) contains the value 7608h, which is the third (76h) of the Microsoft® ID code, and 08h which is the **STAC9708/11** ID code. NOTE: The lower half of the Vendor ID2 register (index 7Eh) currently contains the value 08h identifying the STAC9708/11. This value can be used by the audio driver, or miniport driver in the case of WIN98®, to adjust software functionality to match the feature-set of the STAC9708/11. This portion of the register will likely contain different values if the software profile of the STAC9708/11 changes, as in the case of silicon level device modifications. This will allow the software driver to identify any required operational differences between the existing STAC9708/11 and any future versions. #### 5. LOW POWER MODES SigmaTel, Inc. The STAC9708/11 is capable of operating at reduced power when no activity is required. The state of power down is controlled by the Powerdown Register (26h). There are 7 commands of separate power down. The power down options are listed in Table 18. The first three bits, PR0..PR2, can be used individually or in combination with each other, and control power distribution to the ADC's, DAC's and Mixer. The last analog power control bit, PR3, affects analog bias and reference voltages, and can only be used in combination with PR1, PR2, and PR3. PR3 essentially removes power from all analog sections of the codec, and is generally only asserted when the codec will not be needed for long periods. PR0 and PR1 control the PCM ADC's and DAC's only. PR2 and PR3 do not need to be "set" before a PR4, but PR0 and PR1 must be "set" before PR4. Table 20. Low Power Modes | GRP BITS | FUNCTION | | | |----------|---|--|--| | PR0 | PCM in ADC's & Input Mux Powerdown | | | | PR1 | PCM out DACs Powerdown | | | | PR2 | Analog Mixer powerdown (Vref still on) | | | | PR3 | Analog Mixer powerdown (Vref off) | | | | PR4 | Digital Interface (AC-Link) powerdown (extnl clk off) | | | | PR5 | Internal Clk disable | | | | PR6 | Not implemented | | | | PRJ | Powerdown Surround DACs | | | Figure 12. Example of STAC9708/11 Powerdown/Powerup flow The above figure illustrates one example procedure to do a complete powerdown of STAC9708/11. From normal operation, sequential writes to the Powerdown Register are performed to power down STAC9708/11 a piece at a time. After everything has been shut off, a final write (of PR4) can be executed to shut down the AC-Link. The part will remain in sleep mode with all its registers holding their static values. To wake up, the AC'97 controller will send an extended pulse on the sync line, issuing a warm reset. This will restart the AC-Link (resetting PR4 to zero). The STAC9708/11 can also be woken up with a cold reset. A cold reset will reset all of the registers to their default states. When a section is powered back on, the Powerdown Control/Status register (index 26h) should be read to verify that the section is ready (stable) before attempting any operation that requires it. Figure 13. STAC9708/11 Powerdown/Powerup flow with analog still alive The above figure illustrates a state when all the mixers should work with the static volume settings that are contained in their associated registers. This configuration can be used when playing a CD (or external LINE_IN source) through STAC9708/11 to the speakers, while most of the system in low power mode. The procedure for this follows the previous except that the analog mixer is never shut down. #### 6. MULTIPLE CODEC SUPPORT The STAC9708/11 provides support for the multi-codec option according to the Intel AC'97, rev 2.1 specification. By definition there can be only one Primary Codec (Codec ID 00) and up to three Secondary Codecs (Codec IDs 01,10, and 11). The Codec ID functions as a chip select. Secondary devices therefore have completely orthogonal register sets; each is individually accessible and they do not share registers. ### 6.1 Primary/Secondary Codec Selection In a multi-codec environment the codec ID is provided by external programming of pins 45 and 46 (CID0 and CID1). The CID pin electrical function is logically inverted from the codec ID designation. The corresponding pin state and its associated codec ID are listed in the "Codec ID Selection" table. Also see slot assignment discussion, "Multi-Channel Programming Register (Index 74)". | CID1 STATE | CID0 STATE | CODEC ID | CODEC STATUS | |-----------------|-----------------|----------|--------------| | +5V or floating | +5V or floating | 00 | Primary | | +5V or floating | 0V | 01 | Secondary | | 0V | +5V or floating | 10 | Secondary | | 0V | 0V | 11 | Secondary | Table 21. Codec ID Selection #### 6.1.1 Primary Codec Operation As a Primary device the **STAC9708/11** is completely compatible with existing AC'97 definitions and extensions. Primary Codec registers are accessed exactly as defined in the AC'97 Component Specification and AC'97 Extensions. The **STAC9708/11** operates as Primary by default, and the external ID pins (47 and 48), have internal pull-ups so that these pins may be left as no-connects for primary operation. When used as the Primary Codec, the **STAC9708/11** generates the master AC-Link BIT_CLK for both the AC'97 Digital Controller and any Secondary Codecs. The **STAC9708/11** can support up to 4, 10 K Ω 50 pF loads on the BIT_CLK. This is to insure that up to 4 Codec implementations will not load down the clock output. #### 6.1.2 Secondary Codec Operation When the STAC9708/11 is configured as a Secondary device the BIT_CLK pin is configured as an input at power up. Using the BIT_CLK provided by the Primary Codec insures that everything on the AC-Link will be synchronous. As a Secondary device it can be defined as Codec ID 01, 10, or 11 in the two-bit field(s) of the Extended Audio and/or Extended Modem ID Register(s). #### 6.2 Secondary Codec Register Access Definitions The AC'97 Digital Controller can independently access Primary and Secondary Codec registers by using a 2-bit Codec ID field (chip select) which is defined as the LSBs of Output Slot 0. For Secondary Codec access, the AC'97 Digital Controller must invalidate the tag bits for Slot 1 and 2 Command Address and Data (Slot 0, bits 14 and 13) and place a non-zero value (01, 10, or 11) into the Codec ID field (Slot 0, bits 1 and 0). As a Secondary Codec, the STAC9708/11 will disregard the Command Address and Command Data (Slot 0, bits 14 and 13) tag bits when it sees a 2-bit Codec ID value (Slot 0, bits 1 and 0) that matches its configuration. In a sense the Secondary Codec ID field functions as an alternative Valid Command Address (for Secondary reads and writes) and Command Data (for Secondary writes) tag indicator. Secondary Codecs must monitor the Frame Valid bit, and ignore the frame (regardless of the state of the Secondary Codec ID bits) if it is not valid. AC'97 Digital Controllers should set the frame valid bit for a frame with a secondary register access, even if no other bits in the output tag slot except the Secondary Codec ID bits are set. This method is designed to be backward compatible with existing AC'97 controllers and Codecs. There is no change to output Slot 1 or 2 definitions. | Output Tag S | Output Tag Slot (16-bits) | | | | | | | |------------------|---|--|--|--|--|--|--| | Bit | Description | | | | | | | | 15 | Frame Valid | | | | | | | | 14 | Slot 1 Valid Command Address bit (†Primary Codec only) | | | | | | | | 13 | Slot 2 Valid Command Data bit (†Primary Codec only) | | | | | | | | 12-3 | Slot 3-12
Valid bits as defined by AC'97 | | | | | | | | 2 | Reserved (Set to "0") | | | | | | | | †1-0 | 2-bit Codec ID field (00 reserved for Primary; 01, 10, 11 indicate Secondary) | | | | | | | | † New definition | ons for Secondary Codec Register Access | | | | | | | **Table 22.** Secondary Codec Register Access Slot 0 Bit Definitions ### 7. TESTABILITY The STAC9708/11 has two test modes. One is for ATE in-circuit test and the other is restricted for SigmaTel's internal use. STAC9708/11 enters the ATE in circuit test mode if SDATA_OUT is sampled high at the trailing edge of RESET#. Once in the ATE test mode, the digital AC-Link outputs (BIT_CLK and SDATA_IN) are driven to a high impedance state. This allows ATE in-circuit testing of the AC'97 controller. This case will never occur during standard operating conditions. Once either of the two test modes have been entered, the STAC9704/7 must be issued another rest with all AC-link signals held low to return to the normal operating mode. ### 8. EXTENDED CODEC FUNCTIONALITY ### 8.1 Anti-Pop Circuitry The STAC9708/11 provides an integrated output signal (APOP on pin 34) to aid in low-component-count antipop implementations. An audible speaker "pop" can occur when the main power is applied to, or removed from, the codec or audio output amplifier. In ac coupled systems, the speaker sided of the ac coupling capacitor is shunted to ground through a transistor or FET; this prevents audible pops when the system is powering on and off. A +10 uF capacitor on CAP1 provides a delay to hold-off power to the output stages on power up. A +22 uF capacitor provides reserve power to sustain the output shunting action until the power has been fully removed on power down. APOP is active logic high during shunting operations; APOP is at logic low during normal operations. ### 9. AC TIMING CHARACTERISTICS $(T_{ambient} = 25 \, ^{\circ}C, AVdd = DVdd = 5.0V \text{ or } 3.3V \pm 5\%, AVss = DVss + 0V; 50pF \text{ external load})$ ### 9.1 Cold Reset Figure 14. Cold Reset Table 23. Cold Reset | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | |--|----------|-------|-----|-----|-------| | RESET# active low pulse width | Tres_low | 1.0 | - | - | us | | RESET# inactive to BIT_CLK startup delay | Trst2clk | 162.8 | 1 | 1 | ns | # denotes active low. # 9.2 Warm Reset Figure 15. Warm Reset Table 24. Warm Reset | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | |--|------------|-------|-----|-----|-------| | SYNC active high pulse width | Tsync_high | - | 1.3 | - | us | | SYNC inactive to BIT_CLK startup delay | Tsync2clk | 162.8 | 1 | - | ns | # 9.3 Clocks Figure 16. Clocks Table 25. Clocks | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | |----------------------------------|--------------|-------|--------|-------|-------| | BIT_CLK frequency | | - | 12.288 | - | MHz | | BIT_CLK period | Tclk_period | - | 81.4 | - | ns | | BIT_CLK output jitter | | - | - | 750 | ps | | BLT_CLK high pulsewidth (note 1) | Tclk_high | 32.56 | 40.7 | 48.84 | ns | | BIT_CLK low pulse width (note 1) | Tclk_low | 32.56 | 40.7 | 48.84 | ns | | SYNC frequency | | - | 48.0 | - | kHz | | SYNC period | Tsync_period | - | 20.8 | - | us | | SYNC high pulse width | Tsync_high | - | 1.3 | - | us | | SYNC low_pulse width | Tsync_low | - | 19.5 | - | us | Notes: 1) Worst case duty cycle restricted to 40/60. # **9.4 Data Setup and Hold** (50pF external load) Figure 17. Data Setup and Hold Table 26. Data Setup and Hold | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | |-----------------------------------|--------|------|-----|-----|-------| | Setup to falling edge of BIT_CLK | Tsetup | 15.0 | - | 1 | ns | | Hold from falling edge of BIT_CLK | Thold | 5.0 | - | - | ns | Note 1: Setup and hold time parameters for SDATA_IN are with respect to the AC'97 controller. # **9.5 Signal Rise and Fall Times** - (50pF external load; from 10% to 90% of Vdd) Figure 18. Signal Rise and Fall Times Table 27. Signal Rise and Fall Times | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | |--------------------|----------|-----|-----|-----|-------| | BIT_CLK rise time | Triseclk | 2 | - | 6 | ns | | BIT_CLK fall time | Tfallclk | 2 | - | 6 | ns | | SDATA_IN rise time | Trisedin | 2 | - | 6 | ns | | SDATA_IN fall time | Tfalldin | 2 | - | 6 | ns | # 9.6 AC-Link Low Power Mode Timing Figure 19. AC-Link Low Power Mode Timing Note: BIT_CLK not to scale Table 28. AC-Link Low Power Mode Timing | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | |--|-----------|-----|-----|-----|-------| | End of Slot 2 to BIT_CLK, SDATA_IN low | Ts2_pdown | 1 | - | 1.0 | us | ### 9.7 ATE Test Mode Figure 20. ATE Test Mode Table 29. ATE Test Mode | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | |-------------------------------------|------------|------|-----|------|-------| | Setup to trailing edge of RESET# | Tsetup2rst | 15.0 | - | - | ns | | (also applies to SYNC) | | | | | | | Rising edge of RESET# to Hi-Z delay | Toff | - | - | 25.0 | ns | #### Notes: - 1. All AC-Link signals are normally low through the trailing edge of RESET#. Bringing SDATA_OUT high for the trailing edge of RESET# causes **STAC9708/11**'s AC-Link outputs to go high impedance which is suitable for ATE in circuit testing. - 2. Once either of the two test modes have been entered, the STAC9708/11 must be issued another RESET# with all AC-Link signals low to return to the normal operating mode. # denotes active low. ### 10. ELECTRICAL SPECIFICATIONS: # **10.1 Absolute Maximum Ratings:** SigmaTel, Inc. Vss - 0.3V TO Vdd + 0.3VVoltage on any pin relative to Ground 0 $^{\rm o}$ C TO 70 $^{\rm o}$ C Operating Temperature Storage Temperature -55 °C TO +125 ° C Soldering Temperature 260 °C FOR 10 SECONDS Output Current per Pin $\pm 4 \text{ mA except Vrefout} = \pm 5 \text{mA}$ # 10.2 Recommended Operating Conditions Table 30. Operating Conditions | PARAME | TER | MIN | TYP | MAX | UNITS | |---------------------|----------------|-------|-----|-------|-------| | Power Supplies | + 3.3V Digital | 3.135 | 3.3 | 3.435 | V | | | + 5V Digital | 4.75 | 5 | 5.25 | V | | | + 5V Analog | 4.75 | 5 | 5.25 | V | | | + 3.3V Analog | 3.135 | 3.3 | 3.435 | V | | | | | | | | | Ambient Temperature | | 0 | - | 70 | oC | SigmaTel reserves the right to change specifications without notice. # **10.3 Power Consumption** Table 31. Power Consumption | PARAMETER | | MIN | TYP | MAX | UNITS | |---|--------------------------------|-----|------------------------------------|-----|----------------------------------| | Digital Supply Current | + 5V Digital
+ 3.3V Digital | | 55
35 | | mA
mA | | Analog Supply Current | + 5V Analog
+ 3.3V Analog | | 80
70 | | mA
mA | | Power Down Status PR0 +5V Analog Supply Current PR1 +5V Analog Supply Current PRJ +5V Analog Supply Current PR2 +5V Analog Supply Current PR3 +5V Analog Supply Current PR4 +3.3V Digital Supply Current PR4 +5V Digital Supply Current PR5 No effect | | | 68
54
40
30
0.1
0.1 | | mA
mA
mA
mA
mA
mA | **10.4** AC-Link Static Digital Specifications $(T_{ambient} = 25 \text{ }^{o}\text{C}, \text{ DVdd} = 5.0\text{V or } 3.3\text{V} \pm 5\%, \text{ AVss=DVss=0V}; 50pF \text{ external load})$ Table 32. AC-Link Static Specifications | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | |---|--------|-----------|-----|-------------|-------| | Input Voltage Range | Vin | -0.30 | | DVdd + 0.30 | V | | Low level input range | Vil | - | - | 0.30xDVdd | V | | High level input voltage | Vih | 0.40xDVdd | - | - | V | | High level output voltage | Voh | 0.50xDVdd | - | - | V | | Low level output voltage | Vol | - | - | 0.2xDVdd | V | | Input Leakage Current (AC-Link inputs) | - | -10 | - | 10 | uA | | Output Leakage Current (Hi-Z'd AC-Link outputs) | - | -10 | - | 10 | uA | | Output buffer drive current | - | - | 4 | | mA | **10.5** STAC9708 Analog Performance Characteristics ($T_{ambient} = 25$ °C, AVdd = 5.0V ± 5%, DVdd = 3.3V ± 5%, AVss=DVss=0V; 1 kHz input sine wave; Sample Frequency = 48 kHz; 0 dB = 1 Vrms, $10K\Omega/50pF$ load, Testbench Characterization BW: 20 Hz - 20 kHz, 0 dB settings on all gain stages) Table 33. Analog Performance Characteristics | PARAMETER | MIN | ТҮР | MAX | UNITS | |---|--------|-------------|--------|-------| | Full Scale Input Voltage: | | | | | | Line Inputs | - | 1.0 | - | Vrms | | Mic Inputs ¹ | - | 0.1 | - | | | Full Scale Output Voltage: | | | | | | Line Output 5V | - | 1.0 | - | Vrms | | Analog S/N: | | | | | | CD to LINE_OUT 5V | 90 | 98 | - | dB | | Other to LINE_OUT 5V | - | 98 | - | | | Analog Frequency Response ² | 20 | - | 20,000 | Hz | | Digital S/N ³ | | | | | | D/A 5V | 85 | 96 | - | dB | | A/D 5V | 75 | 86 | - | | | Total Harmonic Distortion: | | | | | | Line Output ⁴ | - | - | 0.02 | % | | D/A & A/D Frequency Response ⁵ | 20 | - | 19,200 | Hz | | Transition Band | 19,200 | - | 28,800 | Hz | | Stop Band | 28,800 | - | ∞ | Hz | | Stop Band Rejection ⁶ | +85 | - | _ | dB | | Out-of-Band Rejection ⁷ | - | +40 | _ | dB | | Group Delay | - | - | 1 | ms | | Power Supply Rejection Ratio (1kHz) | - | +40 | _ | dB | | Crosstalk between Input channels | = | - | -70 | dB | | Spurious Tone Rejection | - | +100 | _ | dB | | Attenuation, Gain Step Size | - | 1.5 | _ | dB | | Input Impedance | 10 | - | _ | ΚΩ | | Input Capacitance | - | 15 | _ | pF | | Vrefout | - | 0.41 x AVdd | - | V | | Interchannel Gain Mismatch ADC | | | 0.5 | dB | |--------------------------------|----|-----|-----|------------| | Interchannel Gain Mismatch DAC | | - | 0.5 | dB | | Gain Drift | | 100 | | ppm/deg. C | | DAC
Offset Voltage | | 10 | 50 | mV | | Deviation from Linear Phase | | | 1 | degree | | External Load Impedance | 10 | | | K ohm | | Mute Attenuation (Vrms input) | 90 | 96 | | dB | #### Notes: SigmaTel, Inc. - 1. With +20 dB Boost on, 1.0Vrms with Boost off - 2. ± 1 dB limits - 3. The ratio of the rms output level with 1 kHz full scale input to the rms output level with all zeros into the digital input. Measured "A weighted" over a 20 Hz to a 20 kHz bandwidth. (AES17-1991 Idle Channel Noise or EIAJ CP-307 Signal-to-noise Ratio). - 4. 0 dB gain, 20 kHz BW, 48 kHz Sample Frequency - 5. ± 0.25 dB limits - 6. Stop Band rejection determines filter requirements. Out-of-Band rejection determines audible noise. - 7. The integrated Out-of-Band noise generated by the DAC process, during normal PCM audio playback, over a bandwidth 28.8 to 100 kHz, with respect to a 1 Vrms DAC output. **10.6 STAC9711 Analog Performance Characteristics** (T_{ambient} = 25 °C, AVdd = DVdd = $3.3V \pm 5\%$, AVss=DVss=0V; 1 kHz input sine wave; Sample Frequency = 48 kHz; 0 dB = 1 Vrms, $10K\Omega/50pF$ load, Testbench Characterization BW: 20 Hz – 20 kHz, 0 dB settings on all gain stages) Table 34. Analog Performance Characteristics | PARAMETER | MIN | TYP | MAX | UNITS | |---|--------|-----|--------|-------| | Full Scale Output Voltage: | | | | | | Line Inputs to line output 3.3V | - | 0.5 | - | Vrms | | Line Inputs to LINE_OUT 3.3V @ Line In = | | | | | | 1 Vrms and @ Gain setting of -6 dB | | 0.5 | | Vrms | | Line Inputs to LINE_OUT 3.3V @ Line In = | | | | | | 0.5 Vrms and @ gain setting of 0dB | | 0.5 | | Vrms | | PCM to LINE_OUT 3.3V @ full scale PCM input | | | | | | @PCM gain setting of 0dB | | 0.5 | | Vrms | | PCM to Line Output 3.3V | | | | | | MIC Inputs to LINE_OUT 3.3V @ MIC In | | 0.5 | | Vrms | | = 1 Vrms and @ gain setting of 0dB | | | | | | Analog S/N: | | | | | | CD to LINE_OUT 3.3V | - | 90 | - | | | Other to LINE_OUT 3.3V | | 90 | | | | Analog Frequency Response ² | 20 | - | 20,000 | Hz | | Digital S/N ³ | | | | | | D/A 3.3V | 85 | 90 | - | | | A/D 3.3V | 75 | 85 | - | | | Total Harmonic Distortion: | | | | | | Line Output ⁴ | ı | - | 0.02 | % | | D/A & A/D Frequency Response ⁵ | 20 | - | 19,200 | Hz | | Transition Band | 19,200 | - | 28,800 | Hz | | Stop Band | 28,800 | - | 8 | Hz | | Stop Band Rejection ⁶ | +85 | - | _ | dB | | Out-of-Band Rejection ⁷ | - | +40 | _ | dB | | Group Delay | - | - | 1 | ms | | Power Supply Rejection Ratio (1kHz) | - | +40 | _ | dB | | Crosstalk between Input channels | = | - | -70 | dB | | Spurious Tone Rejection | - | +100 | _ | dB | |--------------------------------|----|----------------|-----|---------------------| | Attenuation, Gain Step Size | - | 1.5 | _ | dB | | Input Impedance | 10 | - | _ | ΚΩ | | Input Capacitance | - | 15 | _ | pF | | Vrefout | - | 0.41 x
AVdd | ı | V | | Interchannel Gain Mismatch ADC | | | 0.5 | dB | | Interchannel Gain Mismatch DAC | | - | 0.5 | dB | | Gain Drift | | 100 | | ppm/ ^o C | | DAC Offset Voltage | | 10 | 50 | mV | | Deviation from Linear Phase | | | 1 | degree | | External Load Impedance | 10 | | | ΚΩ | | Mute Attenuation (0 dB) | 90 | 96 | | dB | #### Notes: - 1. With +20 dB Boost on, 1.0Vrms with Boost off - 2. ± 1 dB limits - 3. The ratio of the rms output level with 1 kHz full scale input to the rms output level with all zeros into the digital input. Measured "A weighted" over a 20 Hz to a 20 kHz bandwidth. (AES17-1991 Idle Channel Noise or EIAJ CP-307 Signal-to-noise Ratio). - 4. 0 dB gain, 20 kHz BW, 48 kHz Sample Frequency - 5. ± 0.25 dB limits - 6. Stop Band rejection determines filter requirements. Out-of-Band rejection determines audible noise. - 7. The integrated Out-of-Band noise generated by the DAC process, during normal PCM audio playback, over a bandwidth 28.8 to 100 kHz, with respect to a 1 Vrms DAC output. # Appendix A #### SPLIT INDEPENDENT POWER SUPPLY OPERATION In PC applications, one power supply input to the STAC9708/11 may be derived from a supply regulator (as shown in Figure 3) and the other directly from the PCI power supply bus. When power is applied to the PC, the regulated supply input to the IC will be applied some time delay after the PCI power supply. Without proper on-chip partitioning of the analog and digital circuitry, some manufacturer's codecs would be subject to on-chip SCR type latch-up. SigmaTel's STAC9708/11 specifically allows power-up sequencing delays between the analog (AVddx) and digital (VDddx) supply pins. These two power supplies can power-up independently and at different rates with no adverse effects to the codec. The IC is designed with independent analog and digital circuitry that prevents on-chip SCR type latch-up. ### Appendix B #### +5.0V/+3.3V POWER SUPPLY OPERATION NOTES The STAC9708 is capable of operating from a single 5V supply connected to both DVdd and AVdd. Even though the STAC9708 has digital switching levels of 0.2Vdd to 0.5Vdd (See AC Link Electrical Characteristics in this data book), we recommend that all digital interface signals to the AC-Link be 5V. If digital interface signals below 5V are used, then appropriate level shifting circuitry must be provided to ensure adequate digital noise immunity. The STAC9708 can also operate from a 3.3V digital supply connected to DVdd while maintaining a 5V analog supply on AVdd. On-chip level shifters ensure accurate logic transfers between the analog and digital portions of the STAC9708. If digital interface signals above 3.3V are used (i.e. a +5V AC-Link interface), then appropriate level shifting circuitry must be provided to ensure adequate digital noise immunity and to prevent on-chip ESD protection diodes from turning on. (See Appendixes A concerning SPLIT INDEPENDENT POWER SUPPLY OPERATION). The STAC9711 must be run from a 3.3V supply connected to both DVdd and AVdd. If digital interface signals above 3.3V are used (i.e. a +5V AC-Link interface), then appropriate level shifting circuitry must be provided to ensure adequate digital noise immunity and to prevent on-ship ESD protection diodes from turning on. *Always operate the STAC97xx digital supply from the same supply voltage as the digital controller supply. *All the analog inputs must be ac-coupled with a capacitor of 3.3 uF or greater. It is recommended that a resistor of about $47K\Omega$ be connected from the signal side of the capacitor to analog GND as shown below. *All the analog outputs must be ac-coupled. If an external amplifier is used, make sure that the input impedance of the amplifier is at least $10 \mathrm{K}\Omega$ and use an ac-coupling capacitor of 3.3 uF. - NOTES - - NOTES - - NOTES - SigmaTel, Inc. For more information, please contact: SigmaTel, Inc. 6101 W. Courtyard Dr., Bldg. 1, Suite 100 Austin, Texas 78730 Tel (512) 343-6636, Fax (512) 343-6199 email: sales@sigmatel.com Homepage: www.sigmatel.com