
490272-1732/99/$10.00  1999 IEEE

Consumers and professional audio
content developers continue to demand more
powerful audio systems in the virtual worlds
of games. These needs led our company to
produce the EMU10K1 digital audio proces-
sor, which places both a high-quality music
synthesizer and a powerful audio effects
processor on the same die.

Implemented in a 0.35-micron, three-metal-
layer CMOS process, the processor resides on
a 6.7-mm ×6.5-mm die containing 2,439,711
transistors, a 33-MHz PCI clock, and 50-MHz
and 100-MHz internal audio clocks. It has a
64-channel wavetable synthesizer with per-
channel sample rate converter, digital filter,
envelope generator, low-frequency oscillator,
and routing/mixing logic. The EMU10K1
accesses digital audio data stored in system
memory via a 64-channel PCI bus master sys-
tem with virtual memory mapping identical to
that in Intel CPUs. A powerful audio effects
processor adds environmental simulation, 3D
positioning, and special effects to audio from
the wavetable synthesizer and numerous other
digital audio sources such as S/PDIF
(Sony/Philips Digital Interface), I2S (Philips
Inter-IC Sound bus), and AC97 (Audio Codec
97). Since the processor operates at a fixed 48-

kHz audio sampling rate, it contains dedicat-
ed, high-quality sample rate converters.

PC audio subsystem
This subsystem has evolved to be quite com-

plex with numerous methods for software appli-
cations to interact with various audio sources
and destinations. Applications can either call the
operating system to play back audio stored in
disk files or directly place the digital audio wave-
forms in system memory and make device dri-
ver calls for playback. Applications can produce
music using an abstract language known as
MIDI1 that supports commands such as “play
middle-C” and “use grand piano sound.” MIDI
commands can even originate from an external
synthesizer or keyboard controller connected via
a cable to the computer. In addition to these
sources, other devices such as CD-ROM, DVD,
and microphones also produce audio that the
user can hear and record to a disk file. Recent
3D computer games tend to include 3D audio
as well as graphics, requiring additional pro-
cessing to create a virtual 3D audio environment.

Architecture
The major architectural elements of the

EMU10K1 are the PCI bus master and slave

Thomas C. Savell
Joint Emu/Creative

Technology Center

THE EMU10K1 DIGITAL
AUDIO PROCESSOR

THIS PC AUDIO SOLUTION FULFILLS ITS ORIGINAL DESIGN GOAL AS A

MICROSOFT DIRECTSOUND ACCELERATOR AND, WITH ITS ENVIRONMENTAL

SIMULATION CAPABILITIES, PROMPTED THE DEVELOPMENT OF THE

ENVIRONMENTAL AUDIO EXTENSIONS (EAX) TO MICROSOFT DIRECTSOUND3D.

ORIGINALLY DESIGNED FOR THE CONSUMER COMPUTER MARKET, THE

EMU10K1 ALSO SUPPORTS PROFESSIONAL AUDIO CONTENT DEVELOPMENT.

interfaces, 64-channel wavetable synthesizer,
effects processor, high-quality sample rate con-
verters, and digital audio receivers and trans-
mitters. Figure 1 illustrates the connection
between blocks and their interaction with the
application environment.

Wavetable synthesizer
Each of the 64 channels in the wavetable

synthesizer consists of an interpolating oscil-
lator; a resonant two-pole, digital low-pass fil-
ter; three envelope generators; and a mixing
amplifier with multiple selectable output
buses. See Figure 2.

Background. Wavetable synthesis uses a digital
recording of a natural sound such as a note
played on a piano. The wavetable synthesizer
replays this recording in response to a player
striking keys on a keyboard. When synthesiz-
ing an instrument such as a piano, it is not nec-

essary to record every note the
instrument can play. To con-
serve memory, the sound
designer samples a small num-
ber of notes from across the
entire range of the instrument,
and the synthesizer creates
intermediate notes on the fly
with pitch-shifting hardware.
The equivalence of pitch shift-
ing and sample rate conver-
sion allows the user freedom
in choosing the source sample

rate. The wavetable synthesizer includes loop-
ing hardware to create notes of arbitrary dura-
tion and further conserve sample memory. It
responds to the player’s touch with greater
expressiveness, using the envelope generator to
control the amplitude and filter cutoff.

Interpolating oscillator. The EMU10K1
wavetable synthesis oscillator contains an
interpolating sample rate converter and an
addressing unit capable of looping and pro-
ceeding at an arbitrary, noninteger rate. The
addressing unit maintains a phase accumula-
tor that contains the current memory address,
stored in an integer.fraction format. The inte-
ger portion determines the memory read loca-
tions, and the fractional portion determines
the interpolation phase shift. The addressing
unit adds a phase increment, stored in the
same integer.fraction format, to the current
address every sample period.

50

EMU10K1

IEEE MICRO

Waveforms
in

system
memory

PCI master
with virtual
memory
mapping

PCI
slave

PCI

CPU PCI

Digital
audio

receivers

Effects
processor

and
digital
audio
mixer

SRC

64-channel
wavetable
synthesizer

SRC

ADC

S/PDIF

Digital audio
(S/PDIF)

DAC

DAC

T
ra

ns
m

itt
er

s

EMU10K1 digital audio processor

Speakers

CD

Microphone

Figure 1. PC audio subsystem. All audio sources pass through the effects processor where they are mixed together to create
a virtual 3D environment for rendering on a multiple-speaker system.

48
kHz

+
Out
bus

Interpolating
oscillator

Low-pass
filter Amp

Mixing amplifier

+
Out
bus

Envelope
generator

Envelope
generator

Envelope
generator

Figure 2. EMU10K1 wavetable synthesizer.

The looping hardware uses two program-
mable addresses, the loop start address and the
loop end address. When the waveform address
passes the loop end address, the addressing unit
loads the current address with a value equal to
the loop start address plus the amount by which
the address would have passed the loop end
address. This causes the fetching of data at the
loop start address again and repeating the loop
until stopping the oscillator. Note that the cur-
rent address register can accept any value to
start with, and it proceeds without interrup-
tion until it reaches or passes the loop end
address. This accommodates a different, non-
repeating waveform during the initial attack of
a note, while providing an effective form of data
compression and placing no predetermined
limit on the length of time a sound can play.

The 8-point interpolating sample rate con-
verter uses the fractional address to determine
the position between input samples at which
to output a new sample. This is performed
using the well known Smith-Gossett2 algo-
rithm, which requires 16 multiplies and 24
adds. An on-chip ROM stores the filter coeffi-
cients used in the interpolation algorithm. The
EMU10K1 uses extended-precision arithmetic
to tolerate intermediate overflow operations
and to detect output overflow. In the case of
output overflow, the sample rate converter pro-
duces a saturated output, avoiding severe two’s-
complement wraparound distortion.

Resonant digital filter. The resonant digital fil-
ter implementation is a two-pole low-pass
design. Figure 3 shows the filter topology,
which requires two storage elements, three mul-
tiplies, and four adds. The EMU10K1 uses
techniques presented by Rossum3 in 1991 to
reduce quantization noise, increase the pole
angle resolution at low frequencies, and increase
the pole radius resolution near the unit circle.
The implementation of these techniques
requires special encoding of the coefficients and
an additional two’s-complement operation.

The filter is capable of more than 20 dB of
resonance. The envelope generator can sweep
the filter cutoff frequency in real time.

Envelope generator. Traditional envelope gen-
erators for music synthesizers contain four
phases: attack, decay, sustain, and release. The
envelope generator of the EMU10K1 actual-

ly has six phases: delay, attack,
hold, decay, sustain, and
release, as illustrated in Figure
4. The delay and hold phases
provide additional control to
the sound designer.

Simple playback of record-
ed samples does not have the
expressiveness of a musician
playing a real instrument.
This is because there are
numerous ways the instru-
mental sound changes in
response to a musician’s play-
ing style. When the musician
strikes an instrument harder,
the sound is louder, has a sharper attack, and
is brighter. A softer stroke results in a quieter
sound, a more gradual attack, and is duller.
The envelope generator of the EMU10K1 pro-
duces these effects by separately controlling the
amplifier gain and filter cutoff frequency.

Virtual memory mapping
Within the PC environment, application

memory is virtualized into 4-Kbyte pages that
are mapped into a larger contiguous address
space. An application program must request
an allocation of memory, a buffer, from the
operating system. Throughout the course of
normal computer usage, programs allocate and
deallocate memory buffers millions of times.
As the process continues, it may become
impossible to find a single block of physical
memory to satisfy an allocation request. The
operating system uses virtual memory map-
ping to solve this problem. Each buffer of
memory, while addressed as a contiguous
whole, may in fact be fragmented into many 4-
Kbyte pieces randomly scattered throughout
the physical memory. Since a DMA bus mas-
ter must present physical addresses to the bus,
there must be a way to resolve the virtual
addresses used by the application program.

Double buffering. One solution is to allocate a
single, physically contiguous buffer into
which audio is copied from fragmented vir-
tual memory prior to DMA transport. Due
to operating system limitations, physically
contiguous buffer allocation is not guaran-
teed, and it can only be requested during sys-
tem start-up. Even if it is successful, the

51MARCH–APRIL 1999

+

Z−1

Z−1B1

B2

In Out

−1

2

∗

∗

∗

DCNorm

Figure 3. Digital filter topology.

memory cannot be dynamically allocated and
deallocated at runtime. This is a decided dis-
advantage to the user, as a large segment of
main memory must be permanently assigned
as an audio buffer. It also incurs the CPU
overhead of copying buffers from virtualized
memory to the physically contiguous buffer.

Scatter-gather. Another way is to pass a scat-
ter-gather list to the stream transport engine.
A scatter-gather list is an ordered set of phys-
ical addresses that must be parsed as the
stream is being transported. This allows
dynamic allocation and deallocation, and does
not require the copying of buffers. However,
the same sound is often triggered multiple
times simultaneously, and for music and game
applications each instance may require differ-
ent sample rate conversion ratios. This
requires redundant copies of the same scatter-
gather list. Even more significantly, sounds
that loop to allow them to play for long peri-
ods require excessively long lists.

Page table. The EMU10K1 uses a better
method, translating the addresses in a similar
fashion as the CPU by using a page table and
a translation look-aside buffer. The page table
is located in system memory and contains the
physical addresses of each 4-Kbyte page with-
in the logical sound memory, as shown in Fig-

ure 5 (next page).
The on-chip translation look-aside buffer

contains the physical mapping of the current
logical address. As the stream transport engine
moves through logical memory, it detects
when the logical to physical mapping is no
longer valid, and issues a read from the page
table to reload the translation look-aside
buffer. This method is very efficient for both
the CPU and audio stream transport engine.
It permits dynamic allocation of audio buffers
and has a minimum of redundancy.

As wavetable oscillators proceed, they sub-
mit PCI bus master requests for data. A two-
level priority scheme based on the degree of
data starvation arbitrates bus master access.
This reduces the probability that an oscillator
will run out of input samples. A single bad
sample can be audible, especially when
inputting the audio to a recursive delay line.

Effects processor
The EMU10K1 effects processor creates

the final output that the listener will hear on
a multiple-speaker system. It satisfies the mix-
ing requirements of the PC environment with
a total of 31 inputs and 32 outputs. The 24-
bit audio I/O capability provides an ample
144-dB dynamic range, enough to span the
entire human hearing range from perceived
silence to past the threshold of eardrum dam-
age. However, all instructions use 32-bit inte-
ger or fixed-point operands to support the
additional precision required for complex
operations such as recursive filtering.

ALU. At the core of most signal-processing
algorithms is the multiply-accumulate opera-
tion. Naturally, the center of the EMU10K1
effects processor is a high-speed arithmetic logic
unit that implements variants of this powerful
operation. All instructions use four register
addresses: result, accumulator, multiplier, and
multiplicand. For maximum flexibility, the
operand address space is symmetrical in that
any address is valid for use in any operand. The
effects processor forwards the result register to
conceal pipeline delays and permits the result
to be used as an input operand on the next
instruction period. It processes 32-bit fixed-
point and integer operands and has a 67-bit
accumulator to allow for intermediate over-
flows during multistage operations such as

52

EMU10K1

IEEE MICRO

Release

Delay

Hold

Decay
Attack Sustain

Looped
section

of
waveform

Figure 4. The various phases of the EMU10K1 envelope gen-
erator overlaid on the digital audio waveform. The attack
phase typically contains more high-frequency information as
well as wideband noise. The high frequencies and noise con-
tent become attenuated during the decay phase, and a fun-
damental oscillation, or pitch, becomes prevalent. Once this
occurs, a few points that are looped during the sustain and
release phases can represent the remainder of the sound.

finite-length impulse response filtering.

Delay lines. Delay line buffer registers provide
zero-latency access to a small on-chip delay
memory and a large delay memory located in
the PC host memory. A dedicated delay line
processor performs the tedious job of main-
taining all the circular addresses. The micro-
code works with logical offset addresses that do
not need updates on every sample period,
except for special effects that require modula-
tion of the delay length. Still, only the modu-
lation requires microcode for calculation; the
delay line processor automatically performs the
circular address increment operation.

A dedicated data movement engine absorbs
the long latency of a large external memory.
The effects processor requires instant access to
the delay line. That is not possible when the
delay memory is physically located across an
arbitrated bus such as the PCI. Access time can
even present a challenge to a local memory,
since delay memories must be many thousands

of bytes deep to be useful. By dedicating a small
buffer memory to store the “current” data for
each delay pointer, access time can be instan-
taneous. The data movement engine then can
spread out the accesses into the large delay
memory over the course of a sample period.

Instruction sequencing. The effects processor
has a novel architecture: it does not contain a
program counter or support branch/loop con-
structs. Instead, a powerful conditional exe-
cution mechanism provisionally stores the
results of operations. A special SKIP instruc-
tion that implements the following logic
accomplishes conditional execution:

IF (cond) THEN SKIP instruction_count

The conditional expression, cond, is a
Boolean AND-OR-NOT combination of a
mask operand with a hardware register that
stores condition codes from previous instruc-
tions. This supports both conventional expres-

53MARCH–APRIL 1999

Physical memory

Logical memory

Scatter-
gather
approach

Seg 1 Start
Seg 1 End
Seg 2 Start
Seg 2 End
Seg 3 Start
Seg 3 End
Seg 4 Start
Seg 4 End
Seg 5 Start
Seg 5 End

Scatter-gather list

Page
table

0 12
1 13
2 2
3 3
4 4
5 8
6 17
7 18
8 19
9 10

Mapping

Play list

Start

Loop Start

Loop End

End

Page
table
approach

Figure 5. Scatter-gather (upper) versus page table (lower) virtual memory approaches. Both approaches render the same wave-
form. However, scatter-gather can require a very long list to support looping, while the page table requires no extra data.

sions such as less-than and more complex con-
ditions such as negative-and-overflow-or-zero.
The execution of a SKIP instruction does not
alter the order in which instructions are
fetched. Rather, the processor still fetches,
decodes, and executes skipped instructions,
but does not write back the results.

The processor determines the number of
consecutive instructions to be skipped from
the instruction_count operand. This permits
skipping entire blocks of code and facilitates
real-time loading and unloading of signal-
processing programs without affecting audio
output. The SKIP instruction even serves as
the NOP instruction, using the construct,
ALWAYS SKIP ZERO, which does not store
results and continues executing the program
on the next instruction cycle.

For every output sample period, the effects
processor reads all microcode memory in
sequential order and skips the writing of result
registers based on the conditions specified in
SKIP instructions. This provides for if-then-
else execution, but not looping. A very impor-
tant side effect of this architecture is that the
total execution time of all concurrent pro-
grams is always exactly one sample period.

In a general-purpose DSP, one must take
care to ensure that the entire program executes
within a sample period. Otherwise, audible
defects can result. In the case of infinite-length
impulse response filters and recursive delay
lines, a single sample defect can remain audi-
ble for a very long time. Strange bugs in audio-
processing algorithms have been traced to an
occasional interrupt service routine that caused
program execution time to exceed the length
of a sample period. These types of bugs are not
possible in the EMU10K1 effects processor.

Asynchronous digital audio receivers
We designed the EMU10K1 to receive dig-

ital audio directly from devices such as CD-
ROM and DVD drives. However, the sample
rate of compact disc audio is 44.1 kHz, and
the EMU10K1 output sample rate is 48 kHz.
Due to manufacturing tolerances and drift,
the clock frequency of each compact disc play-
er differs slightly. Even if the output sample
rate were also 44.1 kHz, the slight differences
in clock frequency would cause the relative
phases of the input and output sample rates
to drift over time, eventually resulting in

repeated or dropped samples.
It is possible to force the clock frequencies

to be exactly synchronous by using a tracking
phase-locked loop, or PLL, rather than a fixed-
frequency oscillator. Professional recording
studios distribute a master clock to all inter-
connected digital audio devices, which derive
local clocks from the master. This guarantees
synchronicity of all digital audio streams. This
approach is expensive and difficult, requiring
PLL-based synchronization capabilities in all
digital audio devices. Devices that cannot syn-
chronize to an external clock source must
become the master clock source. This is a dis-
tinct disadvantage as there can only be one
master clock at a time.

A better solution is to use sample rate con-
version to resolve the incoming sample rate to
the output rate. This requires a sample rate
detector that continuously updates an estimate
of the asynchronous digital input rate. The sam-
ple rate estimate maintains a phase accumulator
that controls a 16-point Smith-Gossett2 sample
rate converter. Such an asynchronous sample
rate converter avoids the cost of a tracking PLL
and provides support for multiple, simultaneous
asynchronous audio streams. The EMU10K1
can support three simultaneous asynchronous
stereo streams using high-quality asynchronous
sample rate conversion.

Digital audio recording
Speech recognition, Internet telephony,

music recording, and content authoring appli-
cations need digital audio recording capabil-
ities. Noncritical recordings can use reduced
sample rates to decrease data storage require-
ments. The standard kHz rates needed with-
in the PC are 48, 44.1, 32, 24, 22.05, 16,
11.025, and 8. The conventional method is
to reduce the clock rate of an analog-to-digital
converter, or ADC. However, this requires the
use of separate ADC and DAC chips rather
than an inexpensive monolithic codec.

To ensure adequate alias rejection at all sam-
ple rates, more expensive tracking analog filters
must be used as well. The EMU10K1 supports
the various recording sample rates with very
high-quality, 64-point sample rate converters,
thus permitting the use of low-cost, monolith-
ic codec chips and simple analog antialiasing
filters. Recording incurs very low CPU over-
head by using bus master DMA directly to sys-

54

EMU10K1

IEEE MICRO

tem RAM. At the half-buffer and full-buffer
points, an interrupt signals that software should
flush the audio to disk. All 32 output channels
of the effects processor may be selected for mul-
tichannel recording, enabling the use of the
EMU10K1 in a home studio environment.

Sample rate conversion
The EMU10K1 achieves relatively high-

order multipoint conversion using Smith and
Gossett’s particularly efficient algorithm of lin-

early interpolating the filter coefficients for con-
volution with the sample data stream. Rather
than incurring the high cost of ideal conversion,
the EMU10K1 uses a perceptual optimization
technique so that most distortion components
are inaudible. The key discovery was that most
of the energy in real musical sounds is in the
low-frequency band of human hearing. The
images of these low-frequency components are
located near multiples of the sample rate.

Designing the antialiasing filters to have deep

55MARCH–APRIL 1999

Digital audio mixing
Audio mixing is a weighted summation of the inputs with saturation to avoid the severe

distortion caused by two’s-complement overflow. Mixing multiple digital audio streams
requires that the streams have exactly the same sample rate. However, CD audio sampled
at 44.1 kHz will inevitably need to be mixed with voice or sound effects sampled at some
other rate. Lower sampling rates provide an effective data compression method for sounds
that do not have substantial high-frequency content. In addition, the native sample rate of
the digital audio output may be different, typically 48 kHz. The solution is to convert all sound
sources to the output sample rate before mixing, as shown in Figure A.

Digital audio is simply a numeric representation of an analog waveform. There are infi-
nitely many digital representations of the same analog waveform. Sample rate conversion
is a way to transform one representation into another, which can be done with various degrees
of quality and corresponding complexity. To create a new sample stream at a different rate,
one must interpolate between the original samples. Figure B illustrates the three common-
ly used forms of interpolation: nearest-neighbor, linear, and multipoint.

The simplest form, nearest-neighbor interpolation, requires no arithmetic and has the
worst quality. A better method is linear interpolation, which requires a small amount of arith-
metic and has reasonable quality. Multipoint interpolation requires significant arithmetic, a
coefficients table, and multiple input samples to create a single output sample,1 but pro-
duces the best quality.

We can view sample rate conversion as a three-stage process. First, the conversion algo-
rithm inserts a number of intermediate zero-valued samples in between the original sam-
ples, thus creating a new sample stream at a higher sample rate. The new rate is an integer
multiple of the original rate and is typically thousands of times higher when converting arbi-
trary sample rates. Then, the algorithm filters the new high-rate stream to the lower of the
input and output Nyquist frequencies. The stopband of the low-pass filter must sufficiently
reject aliases to achieve the desired audio quality. Finally, the low-pass filtered stream is
decimated to generate output samples at the desired rate.

High-order sample rate conversion is an extremely computationally intensive operation.
To maintain equivalent quality from input to output, noise due to aliasing must be below the
magnitude of the least significant bit on the input signal. For example, a 20-bit digital audio
waveform has a dynamic range of about 120 decibels. To get equivalent 20-bit output, noise
introduced in the sample rate conversion process must be less than −120 dB. For a 20-bit
stereo signal, this requires more than 320 MIPS of processing power.

References
1. R.E. Crochiere and L.R. Rabiner, Multirate Digital Signal Processing, Prentice-

Hall, Upper Saddle River, N.J., 1983, pp. 127-190.

+

∗

∗

IN1

Out

IN2

IN3

INn

∗

∗

Sample
rate

converter

Sample
rate

converter

Sample
rate

converter

Sample
rate

converter

Figure A. Digital audio mixing.

0.5

1

0

−0.5

−1
0 1 2 3 4 5 6 7 8 9 10

0.5

1

0

−0.5

−1
0 1 2 3 4 5 6 7 8 9 10

0.5

1

0

−0.5

−1
0 1 2 3 4 5 6 7 8 9 10

(1)

(2)

(3)

Figure B. Interpolation methods: nearest-
neighbor (1), linear (2), and ideal multi-
point (3).

notches at multiples of the sample rate at the
expense of some additional high-frequency
aliasing significantly improves the perceived
sound quality results. Rossum4,5 received a
patent in 1992 for interpolation filters designed
in this manner. The high-frequency alias com-
ponents do not have a great deal of energy
because the source material is music, which has
very little information in the upper band. In
addition, Fletcher and Munson6 discovered that
human hearing is strongest in the middle fre-
quency range and very weak in the extreme
low- and high-frequency range. Thus, the
human hearing system itself attenuates the
small amount of high-frequency aliasing. These
notches provide a dramatic improvement in
the sound quality with no increase in compu-
tational complexity. Consequently, the
EMU10K1 wavetable synthesizer has higher
sound quality than would otherwise be expect-
ed when using only 8 points for interpolation.
All EMU10K1 sample rate converters use the
same technique.

Physical design characteristics
As stated earlier, the EMU10K1 is imple-

mented in a 0.35-micron CMOS process with
three metal layers. The 6.7 mm × 6.5 mm die
with 2,439,711 transistors uses a 33-MHz
PCI clock and internal audio clocks running
at 50 and 100 MHz. The chip has 108 signal
pins in a 144-pin PQFP. The device dissipates
about one watt in normal operation, result-
ing in a worst-case junction temperature of
105°C, assuming ambient temperature of
70°C. The core operates at an internal volt-
age of 3.3 V, but the I/O is 5-V tolerant and
supports both 3.3-V and 5-V PCI buses.

Design methodology
We used a VHDL-synthesis method to

design the EMU10K1, although we first devel-
oped portions of the design using a C-language
model and then translated them into VHDL.

Logic verification
Initially, we verified the individual blocks

using RTL simulation. As chip-level integra-
tion progressed, we ran more simulations to
verify the connections between blocks. As we
got closer to tape-out, the importance of sim-
ulation faded and gave way to emulation. The
design complexity coupled with the numerous

asynchronous clock boundaries called for the
use of emulation for final verification. Using
the emulator, we could operate the design in
an actual PC and run millions of times more
cycles than would be possible using simulation
alone. We could also sniff out a few nasty asyn-
chronous boundary bugs that would have oth-
erwise made it into silicon. Emulation does
have its pitfalls, however; it is an immature
technology that often left us feeling frustrated.

Because of the emulator’s physical size and
its FPGA use, the design cannot be run at full
speed. To accomodate the low clock rate of the
emulated design, we modified the target PC
motherboard to reduce its PCI clock speed.
We found that a factor of about 1:50 was nec-
essary for reliable operation, so we operated
the PCI bus at 0.6 MHz. We then ran the
audio codec at the reduced rate, so we could
observe analog audio output on an oscilloscope
and even perform spectral analysis to detect
distortion. These benefits far outweighed the
inconveniences we suffered in getting the emu-
lation environment up and running.

To make efficient use of the emulator, we
required early software support to write a chip
debugger that gave us direct access to the
chip’s features. The debugging software need-
ed to be a DOS program, since Windows
required over an hour to boot. The chip
debugger supported macro scripts, so we
could build higher level operations from
sequences of commands. That made it easy to
perform first-silicon evaluation by reusing the
macro scripts written during development.

Timing analysis
We used static timing analysis for the major-

ity of sign-offs. We could not properly analyze
certain design sections, so we relied on a com-
bination of SDF-annotated (Standard Delay
Format) gate-level simulation and “correct-by-
design” practices supported with billions of
emulation cycles.

One of the more difficult challenges over-
come during timing analysis was fixing setup
and hold violations on the internal RAM inhib-
it pins. We chose to inhibit the RAMs on all
unused clock cycles to conserve power, thereby
reducing the worst-case junction temperature
and increasing our chance of successful silicon.
The vendor’s RAMs inhibit pins worked by gat-
ing the clock. This required setup time before

56

EMU10K1

IEEE MICRO

the clock’s falling edge and hold time after the
clock’s rising edge, reducing our timing win-
dow to much less than 5 ns in some cases. We
solved the problem with careful placement and
routing, and by tweaking the clock arrival times
in layout. Also, satisfying critical PCI timing
required careful placement of the PCI core and,
in some cases, flip-flop duplication so the out-
puts could be placed close to the pad cell.

Testability
The chip has several test modes including

scan, parametric NAND tree, and RAM test.
To support extremely high production vol-
umes, we used functional test vectors to sup-
plement the scan test and achieve the highest
possible fault coverage. We developed the test
vectors by running an RTL simulation to
record the pin states.

Interestingly, we ran a gate-level simulation
to verify vectors. We used emulation as our
primary logic verification tools. So the pri-
mary reason to run the gate-level simulation
was to verify that the vectors would not fail
because of RTL/gate differences in the mod-
eling of unknowns (X’s). The vectors also pro-
vided handoff verification at the vendor. We
encountered a number of vector mismatches
during the handoff that were traced to incon-
sistencies in the handling of X’s by the inter-
nal SRAM models between the various
simulators involved.

The EMU10K1 is an evolutionary step
forward in the development of digital

audio for the PC. The choice of placing both
a high-quality music synthesizer and a pow-
erful audio effects processor on the same die
has helped to push the expectations for 3D
audio in the PC.

The role of the 3D audio accelerator has
become analogous to that of the 3D graphics
accelerators. The demand for more power will
continue as game developers create more elab-
orate virtual worlds that use up processing
bandwidth faster than CPU manufacturers
can create it.

The 33-MHz, 32-bit PCI bus appears to
provide adequate audio bandwidth for now,
but it could become a bottleneck in the near
future. The EMU10K1 internal arbitration
and priority scheme is very optimal and leaves

very little room for increased memory access
performance. Newer 0.25-micron and small-
er processes present some challenges in terms
of I/O voltage, especially considering that most
PC motherboards have 5-V-only PCI buses.
These system limitations will eventually need
to be eliminated to allow further growth and
innovation in the PC audio subsystem. MICRO

References
1. The Complete MIDI 1.0 Detailed Specifica-

tion, MIDI Manufacturers Assoc., 1984-1996.
2. J.O. Smith and P. Gossett, “A Flexible Sam-

pling-Rate Conversion Method,” Proc. IEEE
Int’l Conf. Acoustics, Speech, and Signal Pro-
cessing, IEEE Press, Piscataway, N.J., Mar.
1984, pp. 19.4.1-19.4.4.

3. D. Rossum, “The Armadillo Coefficient En-
coding Scheme for Digital Audio Filters,” Proc.
IEEE ASSP Workshop on Applications of Sig-
nal Processing to Audio and Acoustics, 1991.

4. D. Rossum, U.S. patent no. 5,111,727, May
12, 1992.

5. D. Rossum, “Constraint Based Audio Inter-
polators,” Proc. IEEE ASSP Workshop on
Applications of Signal Processing to Audio
and Acoustics, 1993.

6. H. Fletcher and W.A. Munson, “Loudness,
Definition, Measurement and Calculation,” J.
Acoustic Soc. of America, 1933, Vol. 6, p. 59.

Thomas C. Savell is a staff ASIC engineer at
the Joint E-mu/Creative Technology Center.
His responsibilities include digital and audio
VLSI specification, architecture, design,
implementation, and verification. He holds a
BA in music technology from the University
of California, San Diego, with a double minor
in computer science and cognitive science. He
is a member of the IEEE Computer Society,
Signal Processing Society, and MIDI Manu-
facturers Association Technical Standards
Board for 1997 and 1998.

Direct questions concerning this article to
the author at the Joint Emu/Creative Tech-
nology Center, 1600 Green Hills Road, Suite
101, PO Box 660015, Scotts Valley, CA
95067-0015; tcs@emu.com.

57MARCH–APRIL 1999

