
Actions: A Simple Implementation
Bryan Oakley

bryan@bitmover.com

October, 2004

Introduction

Writing rich, highly interactive event driven user interfaces offer challenges not present in
other types of programs. I define highly interactive programs as those in which the controls
constantly reflect the state of the application. For example, a cut button or menu item would
be disabled in the absence of a selected object or span of text.

Rich user interfaces present the user with multiple ways to accomplish a task. For example,
again considering a traditional "cut" function, the application may provide a toolbar button, an
item under the Edit menu of the menubar, a keyboard accelerator, and an item on a context
sensitive (right-click) menu. A highly accessible application may even provide for speech
input, mouse gestures or other input devices.

The Difficulty in Writing Rich Applications

Two large problems exist for developers of such user interfaces. One is the need to
constantly synchronize the controls with the ever-changing state of the application or data.
When no text is selected, for example, the cut and copy buttons should be disabled.

Another problem is that as programs evolve over time it can become tedious and error
prone to update the parts of the code that act upon these controls. A traditional solution is to
simply call the configure configure subcommand of each widget in order to set the state; this
can become cumbersome as the number of widgets grows, or as the number of places
that enable or disable the widgets grows.

Solving The Problem With Actions

One technique which can be used to solve both of these problems is to define end user
functionality as pseudo-objects referred to in this paper as actions. Actions are much like
procs in that they are defined with arguments and a body of code to be executed.

Unlike procs however, actions may be in an enabled or disabled state. Disabled actions will
do nothing when invoked. Also, actions are bound to widgets or parts of a widget (in the
case of menu items) so that any time the state of the action changes, the associated
widget(s) are changed accordingly.

A Short Example

The following example defines an action named "copy" which arranges for the focus
window to perform a copy operation. Two widgets and an accelerator are then associated

with this action:

action define copy {} {event generate [focus] <<Copy>>}
button .toolbar.copy \
 -text "Copy" \
 -command [list action invoke copy]
.menubar.editMenu add command \
 -label "Copy" \
 -command [list action invoke copy]
action associate copy .toolbar.copy
action associate copy .menubar.editMenu "Copy"
bind all <Control-c> [list action invoke copy]

Initially the state of the copy action may be disabled since the user hasn't yet selected
anything in the application. This would be accomplished with the following code as part of
the start up sequence:

action disable copy

When the action is disabled, any widgets that are associated with the action will
automatically be disabled. Later the application may detect that the user has selected
something, in which case it would enable the copy action and thus enable all associated
widgets:

action enable copy

What happens if later a requirement comes down to add a context sensitive menu or some
other method of invoking the function? All the programmer must do is create the new
widgets and associate them with the action. The widgets will then automatically be enabled
or disabled at the appropriate times without having to make any other modifications
to the application:

menu .popup
.popup add command \
 -label "Copy" \
 -command [list action invoke copy]

Additional Benefits of Actions

When designing applications around the concept of actions, a good rule of thumb is to
create an action for every discrete bit of work the user can perform. Cut would be an action,
copy would be an action, paste would be an action, and so on.

By sticking to this rule, actions can provide additional benefits. For example, if all user
interaction is via actions it would be possible to modify the action code to log all user
interactions in order to determine which features are used most often by your customers. Or,
actions could be saved in a stack to implement a high level undo, or they could be
combined to create a macro facility.

Actions can also be used to help automate the process of gui testing. For example, one
might write a test script like this:

action invoke insert 1.0 "Hello, world\n"
action invoke select 1.0 1.5
action invoke copy
set clipboard [clipboard get]
if {$clipboard ne "Hello"} {
 puts stderr "test failed"
 exit 1
}

Actions could also be used to provide an API for third party developers. With actions
themselves defined through a common API it becomes simple to automatically generate
API documentation.

A Simple API

There are a myriad of ways to introduce the concept of actions into an application. This
paper presents a very simple API that performs the basic functions of defining actions,
associating them with widgets, and enabling and disabling the actions:

action define actionName args body

This behaves much like the proc command, defining a body of code to be executed when
the action is invoked.

action associate actionName pathName ?index?

This associates an action with a widget or menu item. When an action is enabled or
disabled, so will the widget or menu item be enabled or disabled.

action enable actionName ?actionName ...?
action disable actionName ?actionName ...?
action state actionName

These three commands set or query the state of an action. Actions are always either in a
"normal" or "disabled" state.

action invoke ?-force? actionName ?args?

Unlike the proc command which creates a new command by a given name, this
implementation requires that actions be invoked via "action invoke". If the action is disabled,
invoking it will have no effect unless the -force option is given.

The full implementation, which is only about 150 lines of code, appears at the end of this
paper.

Alternate Implementations

This paper presents one simple API for implementing actions, but there are many different
ways to implement the same concept. For example, actions could be implemented as
SNIT objects with methods for creating associated widgets, e.g.:

action copyAction {} {event generate [focus] <<Copy>>}
...
copyAction button .toolbar.copy -text Copy ...
copyAction menu .editMenu add command -label Copy ...
...
copyAction enable

Another alternative is to associate additional widget attributes with an action in addition to
state so that all widgets and menu items have identical labels or images:

action create copy \
 -text "Copy" \
 -image copyImage \
 -command
button .toobar.copy
action associate copy .toolbar.copy

Conclusions

Actions have many uses and many benefits, with negligible costs. No matter what form the
API takes, the ability to associate a set of widgets with one another, and to be able to
enable or disable all widgets that perform a specific function with a single command, is a
powerful technique for creating highly interactive, rich user interfaces.

While it is certainly possible to develop rich, highly interactive applications without using
actions, it is my experience that using actions leads to a cleaner internal design which in turn
results in a higher quality application with lower maintenance costs.

Actions.tcl

actions.tcl

usage:
#
action define actionName args body
action associate actionName pathName ?index?
action enable actionName ?actionName ...?
action disable actionName ?actionName ...?
action state actionName
action invoke ?-force? actionName ?args?
#
package provide actions 1.0

namespace eval ::action {
 variable action
 variable actionState
 namespace export action
}

proc ::action::action {subcommand args} {
 variable action
 variable actionState

 set result ""
 switch -exact -- $subcommand {
 "enable" -
 "disable" {
 if {[string equal $subcommand "enable"]} {
 set state normal
 } else {
 set state disabled
 }
 foreach actionName $args {
 if {![info exists actionState($actionName)]} {
 return -code error "action $subcommand:\
 unknown action \"$actionName\""
 }
 }
 foreach actionName $args {
 ::action::setState $actionName $state
 }
 }

 "associate" {
 set actionName [lindex $args 0]
 set args [lrange $args 1 end]

 if {![info exists actionState($actionName)]} {
 return -code error \
 "action associate: unknown action \"$actionName\""
 }
 if {![info exists action($actionName)]} {

 set action($actionName) [list $args]
 } else {
 lappend action($actionName) $args
 }

 ::action::setState $actionName

 # return a result that could be used as an argument
 # to a -command option of a widget.
 set result [list action invoke $actionName]

 }

 "state" {
 set actionName [lindex $args 0]
 if {[info exists actionState($actionName)]} {
 set result $actionState($actionName)
 }

 }

 "define" {
 set actionName [lindex $args 0]
 set actionArgs [lindex $args 1]
 set actionBody [lindex $args 2]
 proc ::action::action-$actionName $actionArgs $actionBody

 if {![info exists actionState($actionName)]} {
 set actionState($actionName) "normal"
 }
 set action($actionName) [list]
 }

 "invoke" {
 # normally, disabled actions won't do anything. If
 # the first argument after invoke is "-force", it will
 # run the action regardless of the state. This is useful
 # in scripts. The default behavior of not doing anything
 # if the action is disabled is quite handy when calling
 # actions from keybindings.
 if {[lindex $args 0] eq "-force"} {
 set actionName [lindex $args 1]
 set args [lrange $args 2 end]
 set ok 1
 } else {
 set actionName [lindex $args 0]
 set args [lrange $args 1 end]
 if {[info exists actionState($actionName)] &&
 $actionState($actionName) != "normal"} {
 set ok 0
 } else {
 set ok 1
 }
 }

 if {$ok} {
 set command [linsert $args 0 \
 ::action::action-$actionName]
 # set result [eval $command]
 set result [uplevel $command]
 } else {
 set result ""
 }
 }
 }

 return $result
}

called with a null state, will re-configure all associated
widgets to be in sync with the current state. Useful when associating
new widgets with an action
proc ::action::setState {actionName {newState {}}} {
 variable action
 variable actionState

 if {[info exists action($actionName)]} {
 foreach association $action($actionName) {
 if {[string equal $newState ""]} {
 set state $actionState($actionName)
 } else {
 set state $newState
 }
 set widget [lindex $association 0]
 if {[string equal [winfo class $widget] "Menu"]} {
 set index [lindex $association 1]
 $widget entryconfigure $index -state $state
 } else {
 $widget configure -state $state
 }
 }
 }
 if {![string equal $newState ""]} {
 set actionState($actionName) $newState
 }
}

