
Real-Time Code Distribution on a Heterogeneous Network
for Laboratory Equipment Control

Robert W Techentin, David R Holmes, III, Barry K Gilbert, and Erik S Daniel
techentin.robert@mayo.edu holmes.david3@mayo.edu gilbert.barry@mayo.edu daniel.erik@mayo.edu

Special Purpose Processor Development Group (SPPDG)
Mayo Clinic and Foundation

200 First Street SW
Rochester, MN 55905

Abstract

A custom distributed computing framework was
developed to support electronics research laboratory
automation, with the primary goal of flexibility in a
heterogeneous network. The custom
implementation is based on Tcl [1] and the “comm”
package[2], is more flexible than traditional remote
procedure call (RPC) methods[3,4] because it is
based on real-time distribution of code. This
technique could be applied to a variety of network
and distributed computing applications.

Introduction

This paper describes an approach to distributed
computing that we call real-time code distribution,
in which compute servers are both highly flexible,
and virtually transparent to the application program.
Like many distributed computing techniques (see
[5] for review or [6] for a description of Tcl-DP),
the remote procedure call [7,8] is transparent to the
application program. The application chooses local
or remote execution at startup, and the rest of the
application code is unchanged. This new approach,
however, distributes executable code to the remote
server at run time, eliminating the need to install,
revise or maintain services on the server system(s).
This dramatically increases flexibility for the
application program, as it can distribute virtually
any procedure or library to the remote server,
without incurring management overhead of remote
services or the possibility of version

incompatibilities between the application and any
given server.

Real-time code distribution was developed for the
Special Purpose Processor Development Group
(SPPDG), at Mayo Clinic. Like many other
electronics research laboratories, we increasingly
rely on computer controlled electronics test
equipment. Any given experiment usually requires
several items of test equipment, ranging in
complexity from simple servo motors or power
supplies to sophisticated sampling oscilloscopes and
network analyzers. In the past, experiments were
controlled by a single workstation connected to the
test equipment by an IEEE 488 (GPIB) bus. A
single workstation application would control all the
pieces of equipment and send the test data to a
centralized file server. However, as modern test
equipment has become more computerized and
more heterogeneous, instrument control has evolved
into more of a distributed network application [9],
where each piece of equipment is controllable by
some form of computer, sometimes dedicated to
that instrument, and sometimes even embedded
within the instrument itself.

Unlike many other laboratories, we must constantly
rearrange test equipment to perform new
experiments, on a weekly or even a daily basis.
Because many of the experiments are virtually
unique, we require a great deal of flexibility in
deploying instrument control applications.
However, deploying new software to a constantly

changing network of PCs, workstations, and
embedded computers is challenging, even in a
modern networked environment.

To address our need for flexibility in the test
laboratory, we have implemented a client/server
network control system that allows an application
program to control many different pieces of test
equipment connected to many different computers.
The application client contains all the code
necessary to perform the experiment. Each piece of
networked equipment runs a simple, generic server
daemon (or service under Microsoft Windows)
which can process arbitrary Tcl code. The
application client computer sends scripts and
commands to the servers, and coordinates their
activities by simple procedure calls.

This paradigm has several advantages in the test
laboratory. First, the server nodes are very flexible.
Client control programs can send literally any code
to the slaves, including commands, simple scripts,
procedure definitions, and even entire Tcl packages.
Once the daemon is installed, it is not necessary to
install or maintain any applications on the servers.
Second, because the libraries and code are pure Tcl,
this remote execution model works equally well
with Unix workstations or PCs running Windows.
The daemon even works on the dedicated PCs
supplied with some test equipment.

The client and server code was easily implemented
in modern Tcl technology. Communications is
accomplished via the Tcllib “comm” package. The
slave installation can be either a “batteries included”
Tcl/Tk distribution, or just a tclkit [10] with the
“comm” package. The client application can supply
custom procedures or even entire Tcl packages
through the network interface.

Laboratory Requirements

The impetus for designing a remote computing
architecture was an experiment which required three
computers: the client system ran the main
application which interacted with the operator via a
GUI; and two server systems which controlled
several servo motors and external sensors. While

each external device had a serial/socket interface,
custom programming was necessary to develop the
Tcl interface for the client application.

Initial application development was done on a test
system with direct connections to the server motors
and sensors. But since it was known that the actual
laboratory deployment would require the
client/server architecture, it was immediately
obvious that parts of the equipment control code
would need to be developed twice: once for “local
mode,” and once for the client/server deployment

A related constraint was imposed by the nature of
experiments conducted in the SPPDG laboratory.
There are several test bays, each of which may be
configured with a different experiment. Depending
on the laboratory work load, different makes and
models of the same type of equipment may be
available for a specific experiment. And for multi-
day experiments, it is possible that equipment
availability could change on any given day. This
implies that it might be necessary to update the
equipment control packages frequently, and that
those updates would need to be deployed to a
number of laboratory workstations.

To avoid these possible development problems, the
authors chose to introduce transparent remote
communications with real-time code distribution
directly into the package development cycle. There
were three notable requirements which guided the
design of the remote communication:

(1) It should appear essentially transparent to the
application programmer
(2) It should work exactly the same remotely as it
does locally (given the same environment)
(3) It should have very little overhead both on the
local side and the remote side

Implementation

There are several ways to implement distributed
computing and remote computation within Tcl.
Several examples are presented, in order of
complexity and automation, to illustrate the

mechanism behind real-time code distribution.
These examples are presented from the client
application perspective, without regard to well
known robust server strategies for multiple
connections, client authentication, code security
(safe interpreters [11]), or service discovery.

One well known networked client/server strategy is
based on Tcl socket support, and is described and
documented in text books [12] and in wiki examples
[13]. The strategy is illustrated in Figure 1 in a
UML sequence diagram. The objects named in the
rectangles represent the client and server processes,
and the descending lines represent time. The arrows
between the objects represent procedure calls within
or between the processes. The computation server
in Figure 1 has pre-defined procedures (e.g., foo)
which can be executed on behalf of the clients. It
also includes code to recognize network
connections, execute the procedures, and return the
results to the client.

 : Application
Client

 : Computation
Server

1: proc foo {} {return bar}

2: set chan [socket serverName portNum]

3: puts $chan foo

5: set result [gets $chan]

4: puts $socket [foo]

Figure 1: Remote execution via socket server (20176)

Figure 2 shows the same functionality implemented
with the tcllib “comm” package. Using the “comm”
package, with semantics based on the Tk send
command, the client simply sends a command to the
server, which executes it and returns the result,
greatly simplifying both the client and server code.
This approach still depends on pre-defined
procedures, but using the “comm” package can be

quite flexible, as the client can ask the server to
execute arbitrary script code. But pushing complex
scripts through a network connection could be
cumbersome.

A more flexible approach, illustrated in Figure 3,
exploits Tcl’s dynamic nature, sending procedure
definitions through the communications channel.
This allows the client to define arbitrary functions,
take advantage of byte-compiling on the server, and
re-use application code with simple calls to the
server. But in this case, it is still necessary to
“send” commands to the server. Application code
must be written specifically to utilize remote
processing.

 : Application
Client

 : Computation
Server

1: proc foo {} {return bar}

2: send foo

3: return "bar"

Figure 2: Remote execution via tcllib 'comm' package
(20177)

 : Application
Client

 : Computation
Server

1: send "proc foo {} {return bar}"

3: return "bar"

2: send foo

Figure 3: Remote execution of client defined procedure
(20178)

Figure 4 depicts an enhancement where the client
sends a procedure to the server, then defines a local
alias or proxy procedure. This alias procedure
simply sends the appropriate commands and
arguments to the server. The comm package
handles the networking, and the result is returned as
if the procedure were executing locally. The comm
package also handles errors elegantly, returning
them through the alias procedure. Error messages
are identical to those produced by local calls,
although the stack traces are somewhat more
complex. As far as the client application is
concerned, the remote procedures are identical to
locally executed code. It is no longer necessary to
customize the application code to perform remote
processing.

The next step in simplifying this approach for the
application program is to wrap the process of
creating remote procedures and the corresponding
aliases into a simple procedure call. The
“remoteCommands” procedure shown in Figure 5
will make new commands available to the client
interpreter. It accepts an arbitrary script which is
sent to the server’s “defineCommands” procedure,
where it is evaluated to define new commands. The
server exploits Tcl’s introspection capability to
compare available commands and namespaces
before and after executing the script. It inspects

both the global namespace and any newly created
namespaces for new commands, and returns the list
of new commands to the client. The client then
creates alias procedures to call the remote
procedures.

 : Application
Client

 : Computation
Server

1: send "proc foo {} {return bar}"

2: proc foo {args} {send foo $args}

3: foo

4: send foo

5: return "bar"

Figure 4: Remote execution of client defined procedure
with alias (20179)

The client code might look like this example, where
the server is named “mynock”, and is listening on
port 3456. Note that the client procedure is actually
an alias that calls the server.

 % remoteCommands mynock 3456
“proc foo {} {return bar}”
 % foo
 bar
 % info body foo
 eval ::comm::comm send {{3456
mynock}} foo {$args}

The next level of automation is illustrated in Figure
6, with new code on both the client and server sides
allowing the server to “source” client code files.
The server renames the core “source” command for
the duration of evaluating the client’s command
script. This new “source” command will request the
contents of the file from the client, and evaluate the
results. Tcl’s introspection capability is essential

for this level of integration, as neither the client nor
the server may have a complete list of newly define
procedures. But as in Figure 5, a list of new server
commands are returned to the client, which sets up
the aliases. This implementation allows a compact
server installation, requiring only a basic Tcl or
tclkit installation and the tcllib “comm” package.
But the server is not limited to pre-installed
services. It can load source code from any file
visible on the client system.

 : Application
Client

 : Computation
Server

5: Create alias procedures

1: send defineCommands "$script"

2: eval $script

4: return $newCmds

3: discover new commands

Figure 5: Automatic definition of remote procedures and
aliases (20180)

 : Application
Client

 : Computation
Server

1: send defineCommands "source clientFile"

2: rename clientSource source

3: eval "source clientFile"

4: getFileContents clientFile

5: eval $fileContents

6: discover new commands

7: return $newCmds

8: create alias procedures

Figure 6: Server loading client source files (20181)

One key feature of the “comm” package is that we
can send commands in synchronous mode, so that
client execution waits until the remoteCommands
definition is complete before proceeding. But while
the client is waiting for the server, it can still
process events and respond to the server’s request
for the source code file. The channels do not block,
and no additional client side code is necessary to
answer the compute server’s requests.

The final step in this paradigm is presented in
Figure 7, where the server can load entire Tcl
packages from the client. The client and server are
extended with a pair of routines that hook into the
server’s “package unknown” facility. When the
client sends the server a “package require”
command to load an unknown package, the server
will query the client for the “if needed” script. For a
pure Tcl package, the “if needed” script usually
includes a number of source commands, which are
already supported by the server and client. The
server will load the client’s copy of the package
automatically.

 : Application
Client

 : Computation
Server

2: send defineCommands "package require clientFile"

1: define package unknown

3: eval "package require clientPkg"

4: getPackageIfNeeded clientPkg

5: eval $ifNeededScript

6: getFileContents clientFile

7: eval $fileContents

8: discover new commands

9: return $newCmds

10: create alias procedures

Figure 7: Server loading client packages

As an example, a client could request a package like
the tcllib “counter” be loaded on the remote server.
Since the server does not have the package, it is
loaded from the client in real time. All future
commands would execute on that server, but they
will appear to work as local commands on the
client.

 % remoteCommands mynock 3456
“package require counter”
 % counter::init x
 % counter::count x
 % counter::count x
 % counter::count x
 % counter::get x
 3

It is almost embarrassing that this kind of flexibility
can be implemented in three simple procedures on
each of the client and server sides. One pair of
procedures supports creation of remote commands.
A second pair of procedures allows the server to
load source code from the client. A third pair of
procedures allows the server to request packages
from the client.

Implementation in the SPPDG Laboratory

Real-time code distribution has been implemented
in the SPPDG test laboratory with satisfactory
results. Instead of “compute servers”, the
“instrument servers” are connected to test
equipment, and loaded with a current version of
ActiveTcl and extensions for controlling the test
equipment. A simple server is installed as either a
daemon or a service, and can be accessed from
application clients which need to control test
equipment.

Experiments are conducted by client applications
which dynamically distribute code to the instrument
servers. The servers can control the experiment,
collect and summarize data, and return the results to
the client application. When the experiment is
complete, the server is reset, and is ready to accept
commands from a new application.

The first implementation of real-time code
distribution was designed into the instrument
control package. The package would normally
operate in local mode, but calling the
RemoteConnect procedure would open a
communications channel to a server, send the
package’s source file, and set up alias procedures
for each exported command. The server would
simply execute commands for the client until it
received a “reset” command. The code worked very
well, but had the disadvantage of requiring
modifications to each package that was to be
executed remotely.

A revised implementation takes advantage of Tcl’s
dynamic nature and introspection capabilities to
allow remote distribution of any pure Tcl package.
This enhancement required support code on both the
client and server sides, but did not require any
package customization. Alias procedures are
defined for any new commands “discovered” by the
server. This has the advantage of being very
flexible, but it is more difficult to switch between
local and client/server modes during application
execution.

Real-time code distribution was found to meet the
previously stated design goals. Because the control
code is distributed from the client application in
real-time, there is no need to update and release
libraries for the instrument servers. Creating alias
procedures on the client makes the remote code
behave as if it is running locally, so there is minimal
impact on the client code. And because the code is
distributed only when a package is loaded, there is
minimal impact to the long running client and
server processes.

Future Enhancements

While we have been controlling electronics
laboratory equipment, this approach should work
equally well for distributing generic computations
across a heterogeneous network. Safe interpreters,
encryption and digital signatures could be employed
to provide application safety. There is significant
ongoing research and development into distributed
computing “grids” (ref globus project at
http://www.globus.org/) that address many of these
higher level concerns. Adding real-time code
distribution into such a framework would greatly
enhance the flexibility of any grid computing
installation.

This paper has focused specifically on distributing
portable Tcl code in a heterogeneous networked
environment. But it is desirable to consider
extending this technique to real-time distribution of
compiled code. Distributed computing is often
compute-intensive, and instrument control often
depends on compiled Tcl extensions. It is
reasonable to envision real-time distribution of
shared libraries by a load-from-client mechanism,
similar to the script support presented here. A
simple implementation would lock the client and
server into the same computer architecture and
operating system, although a more sophisticated
implementation might be able to support
heterogeneous networks. Another approach might
be the application of the CriTcl [14] extension to
dynamically compile and load C code distributed
from the client to the server. This would imply
servers that can compile code, and may introduce

further security risks, but the potential benefits
could be great.

Conclusion

Real-time distribution of Tcl source code was
implemented and demonstrated in the SPPDG
laboratory. This approach had three distinct
advantages. First, it was not necessary to deploy
instrument control libraries to the instrument control
computers, as the code was distributed from the
client application at run time. The only deployment
was creation of a very lightweight server. Second,
the implementation is virtually transparent to the
application programmer: the application code
works the same in both local and distributed modes.
And third, there is very little overhead in real-time
distribution of code.

Real-time distribution and execution of code
highlights the power of Tcl’s dynamic nature and
networking support. Instead of merely simplifying
code deployment with packages, repositories or
Starkits, this approach demonstrates the complete
elimination of instrument control application
deployment in an industrial research laboratory
environment.

References

[1] Ousterhout, J. “Tcl: An Embeddable Command
Language.” Proc. USENIX Winter Conference,
January 1990.

[2] LoVerso, J. “comm - a replacement for send.”
<http://www.schooner.com/~loverso/tcl-tk/ >, May
1999.

[3] Winer D. “XML-RPC Specification.” <
http://www.xmlrpc.com/spec> , Jun 2003

[4] W3C Proposed Recommendation "SOAP
Version 1.2 Part 0: Primer",
<http://www.w3.org/TR/2003/REC-soap12-part0-
20030624>, June 2003.

[5] Zomaya A. Parallel and Distributed Computing
Handbook. McGraw-Hill, New York, 1995.

[6] Smith, B.C., Lawrence R., &Stephen Y. “Tcl
Distributed Programming.” In Proceedings of the
1st Tcl/Tk Workshop. June 1993.

[7] Birrell, A.D. & Nelson, B.J. "Implementing
Remote Procedure Calls." ACM Transactions on
Computer Systems 2, 1 (February 1984): 39-59.

[8] Sun Microsystems. Network Programming
Guide, March 1990.

[9] The Proceedings of Workshop on Automated
Control of Distributed Instrumentation,
April, 1999.

[10] Equi4Software. “Tclkit”
<http://www.equi4.com/tclkit.html> , Mar 2004.

[11] Safe-Tcl
<http://www.tcl.tk/software/plugin/safetcl.html>
April, 2001.

[12] Ball S. Web Tcl Complete McGraw-Hill, April
1999.

[13] Tannenbaum, A. “client/server with fileevent”
<http://wiki.tcl.tk/1757>, Sept 2004.

[14] Equi4Software. “Critcl”
<http://www.equi4.com/critcl.html> , Feb 2004.

