
 1

NSCLSpecTcl Meeting the Needs of
Preliminary Nuclear Physics Data Analysis

Ron Fox, Chase Bolen, Kanayo Orji, Jason Venema

 Section V will describe the structure of the
NSCLSpecTcl C++ application framework, introducing
the technology of application frameworks, the structure
of the framework we have developed, describing how
Tcl/Tk is integrated into the software as a control
language.

Abstract--The National Superconducting Cyclotron Laboratory
at Michigan State University (NSCL) is a user facility performing
basic reasearch in heavy ion collisions with rare isotopes. A wide
variety of experiments are performed at the NSCL, each with
specialized analysis needs. Providing a package that balances ad-
hoc extensibility and performance was the distinct challenge
facing the NSCL software support staff. We chose to implement a
hybrid C/C++ application framework and TCL/Tk extension
language. This paper will describe nuclear experimental physics,
the needs of the community, how they are met by NSCSLSpecTcl,
the structure of the software and the extension language. We will
also describe several extensions to NSCLSpecTcl that have been
created by the user community and others.

I. INTRODUCTION

THIS paper will describe a Tcl/Tk[1] extension that
consists of a C++ application framework that is

controlled by an extended Tcl/Tk interpreter. NSCLSpecTcl
is intended to be used during online and early stage offline
analysis of nuclear physics event data. The structure of the
paper will be as follows:

•

•

•

Section II will introduce experimental nuclear physics,
the National Superconducting Cyclotron Laboratory
(NSCL) [2] and its research objectives. Research at the
NSCL will be placed in the context of the national goals
for basic research.
Section III describes the requirements of the software.
We will describe technical as well as usability goals.
Section IV describes the approach of other packages in
use in nuclear and high energy physics that embed
scripting languages provides the motivation for our
choice of Tcl/Tk as an embedded scripting language for
NSCLSpecTcl.

•

•

•

Section VI will describe some of the extensions that
have been written for NSCLSpecTcl.
The paper will conclude with a summary of the
experiences with the system, the level of community
acceptance within the NSCL and the nuclear physics
community in general. The availability of the software
will be described as well.

II. BACKGROUND
In this section we will describe how experimental nuclear

physicists study the structure of the atomic nucleus. The
National Superconducting Cyclotron Laboratory (NSCL), a
National Science Foundation (NSF)[3] funded university
laboratory will be introduced and its research agenda will be
placed in the context of national near-term and long-range
nuclear science research goals.

A. Experimental Nuclear Physics
In experimental nuclear physics, scientists study the structure

of the core of the atom through particle-nucleus collisions. By
scattering particles off the nucleus we can learn about the inner
composition, shape of the nucleus as well as improve our
understanding of the forces that govern nucleon-nucleon
interactions.

Particles are scattered off the nucleus either in collider or

fixed target accelerator systems. In a collider two accelerated
beams of nuclei move in opposite directions. The two beams
intersect, causing some of the nuclei in one beam to collide
with particles in the other beam. In fixed target systems, a
particle accelerator accelerates a beam of projectiles that is
transported to a target consisting of the element being studied.
In either case, complex detector systems surround the
interaction region to capture and measure the properties of the
resulting collision fragments. While higher reaction energies
are possible with collider systems, these systems are generally

Ron Fox is with the National Superconducting Cyclotron Laboratory at
Michigan State University, East Lansing, MI 48824-1321

Chase Bolen is currently a graduate student in the Department of Electrical
Engineering at Michigan State University, East Lansing, MI 48824

Kanayo Orji is now a Medical Student at the Medical School of Wayne
State University, Detroit Michigan

Jason Venema is an employee of Boeing Corp St. Louis MO 63166

 2

limited to the study of symmetric systems. Fixed target
systems, on the other hand support the study of asymmetric
systems.

 Electrons and other nuclei have been used as projectiles in
fixed target systems. Electrons, are not subject to the nucleon-
nucleon force, but will scatter off the charge of the protons in
the nucleus, and therefore make excellent probes of the
spatial structure of the nucleus. Using nuclei as projectiles
provides information about the interactions of the constituents
of the nucleus with each other. This allows scientists to probe
the energy level scheme of the nucleus, the stability of the
nucleus under deformation and, if sufficient numbers of
nucleons interact, the statistical properties of nuclear matter.

Figure 1 shows a schematic of an event in typical fixed

target experiment. An event is a single collision that
produces measurable results. Figure 1 shows the remnant of
a projectile that has scattered at some angle to its original
incident trajectory, a target remnant knocked out of the target

in the forward direction and a scattering of smaller fragments
that may have come from the projectile, the target or both. A
detection system around the target area will capture and
detect the properties of some or all of these reaction products.

Figure 1 Schematic view of nucleus-nucleus collisions in a fixed target system.

B. The National Superconducting Cyclotron Laboratory

The National Superconducting Cyclotron Laboratory at
Michigan State University (NSCL) is a National Science
Foundation supported university laboratory that performs
nuclear physics experiments. The NSCL has a pair of
cyclotrons that accelerate beams for fixed target experiments.

The cyclotrons are capable of accelerating beams as heavy as
Uranium with energies of up to about 1GeV/nucleon. An
electron volt (eV) is the energy gained by an electron falling
through a potential energy difference of 1V. The electrons
returning to your car battery have an energy of about 12eV.
At the other end of the energy scale, a typical donut has the
chemical energy equivalent of 1015 GeV.

 A unique feature of the NSCL is the A1900 fragment
separator. Primary beam from the cyclotrons interacts with a
production target at the entrance of the A1900. Fragments of
the projectile enter a spectrograph where the isotopes of
interest are selected. These projectile fragments continue to
travel with energies close to those of the primary beam. This
allows exotic nuclei to be transported to experimental targets.
The A1900 allows researchers at the NSCL to study the
properties of highly unstable isotopes that do not occur in
nature. Figure 2 and 3 show NSCL experimental area floor
plan as well as as schematic of the A1900.

detector
system

fragmentsscattered
target

scattered projectile

Figure 2 The NSCL experimental floor plan.

Figure 3 The A1900 mass separator

 The NSCL is a user facility. Scientists from all over the
world submit proposals to an independent Program Advisory
Committee which awards beam time on the basis of scientific
merit.

 3

C. The NSCL and U.S. scientific research goals.

NSCL research is focused on interactions between heavy ions.
Heavy ion physics research helps us understand the nature of
the inter-nucleon strong force, and to probe the statistical
properties of nuclear matter such as the nuclear equation of
state and phase transitions that may occur in hot nuclear matter.
Experiments with unstable isotopes from the A1900 allow us
to answer questions about the properties of nuclear matter in
conditions far from stability. This has direct bearing on
understanding what happened in the early universe and what
happens in the interiors of stars. Measuring the lifetimes,
decay modes and the probabilities of each decay mode
(branching ratios) contribute to an understanding of the
distribution of isotopes in the universe and how this
distribution came about.

 In the past several years the U.S. nuclear physics community
has been moving towards the development of a new
experimental facility called the Rare Isotope Accelerator
(RIA). The NSCL A1900 is the precursor facility to RIA.
When built, RIA will extend the energies and intensities of the
beams of exotic nuclei that can be produced enabling
experiments with nuclei even further away from stability. In
2002, RIA was endorsed by the DOE/NSF Nuclear Science
Advisory committee as the one of the second highest priorities
for funding [4]. In November 2003, U.S. Energy Secretary
Spencer Abraham released the Office of Science priority list
showing funding for RIA tied for third place amongst the near-
term priorities [5]. NSCL accelerator physicists have been a
leaders in the conceptual design of the RIA facility. MSU is
competing with Argonne National Laboratory to host RIA.
Since the NSCL is a world leader in the production of rare
isotope beams by projectile fragmentation, MSU would be the
logical place to build RIA.

An architectural sketch of the ½ km long linear accelerator that
will make up RIA is shown in Figure 4 below.

III. REQUIREMENTS FOR PRELIMINARY ANALYSIS SOFTWARE
This section outlines the requirements for preliminary nuclear
physics data analysis software. These requirements break
down in to two groups:

• Technical or functional requirements must be met for
the software to be minimally useable for data analysis.

• Usability requirements enable physicists to work
efficiently and effectively on their research problems.

A. Technical requirements

In the early stages of data analysis, physicists are trying to
understand the experiment they are performing or have
performed. This is done by creating various histograms from
parameters in the event data. To create these histograms, the

raw event data acquired from the digitizers attached to the
detector system must be decoded to produce a set of
parameters. These parameters may be as simple as the height
of a voltage pulse from a solid state detector that stops a heavy
fragment, or as complex as computing fragment positions vi a
Gaussian fit to the charge deposited on a set of pads in a
Cathode Readout Drift Chamber .

Figure 4: The Rare Isotope Accelerator (RIA) at MSU.

Experimenters need to:

Histogram individual detector channels to monitor their
health. Histograms can be of several types including
simple single parameter histograms, histograms of
parameter pairs (2-d), histograms of the bits set in a
bitmask, histograms showing summaries of the data in
multiple similar channels (summary Spectra) or
histograms that are multiply incremented for several
parameters (e.g γ-ray decay cascade histograms).

•

•

•

•

•

Calculate and histogram calibrated parameters by
transforming raw parameters to physically meaningful
values.
Produce “purified” histograms by defining conditions
that must be met by an event for a histogram to be
incremented. For example, a particle identification gate
may be set around 10Li fragments to gate a detector
energy spectrum so that the resulting spectrum shows
the allowed energy states of that neutron rich Lithium
isotope.
Produce and histogram parameters that represent
correlations between raw or calculated parameters, such
as fragment opening angles, total transverse and
perpendicular momentum vectors etc, and histogram
these as well.
Create filtered event files that contain useful subsets of
the parameters of events that meet a particular
condition.

 4

• View and graphically interact with histograms as they
are being created.

B. Usability Requirements
Usability requirements are driven by several factors. Nuclear
physicists have a wide range of computer expertise ranging
from highly sophisticated to illiterate. Experiments at the
NSCL are run by collaborations of scientists, some or all of
whom may come from outside the NSCL and not be familiar
with our data acquisition and analysis software.

 Often, experiments are built by plugging together modular
pieces of apparatus. For example the NSCL Segmented
Germanium Array (SeGA)[6] a gamma ray spectrometer, is
often run at the target chamber of a large spectrograph called
the S800 [28]. Each of these systems have relatively
independent software requirements. To extract physics from
these experiments, however requires computing parameters
that represent correlations between these two detector systems.

NSCL experiments run for about a week, and can produce up
to 80Gbytes of raw event data that may contain as many as 2
billion events. This implies that if 1ms is required to analyze
an event, 740 hours of compute time would be required to do a
single pass analysis of the entire experimental data set. Event
analysis is often an iterative process involving several passes
over subsets of the data and over the entire data set if
necessary.

These and other considerations led us to the following usability
requirements:

•

•

•

•

•

•

•

•

•

•

The software must be easy to learn to use by people at
all levels of computer expertise (or lack thereof).
The software must be quickly adaptable to specific
experimental needs.
The software must be extensible to meet needs that were
not anticipated by the initial structure.
Good histogramming performance is essential given the
volume of data that is pumped through the system.
Data acquisition system neutrality to support analysis of
data taken by NSCL physicists visiting other
laboratories, and to support a broader user community
than the NSCL.

IV. WHY EMBED TCL/TK
The desire for extensibility and a high level of adaptability
pointed towards embedding a scripting language in the
software. Analysis performance needs, however dictate that
then inner analysis loops must run at compiled code speed.
This is not a new approach in the nuclear/high energy physics
community. The developers of two popular packages, the
Physics Analysis Workstation (PAW) [8], and Root [9] have
chosen to do this as well.

 In the case of PAW, a custom interpreter called KUIP was
developed and embedded. In addition, ad-hoc analysis is
supported by the inclusion of a FORTRAN interpreter called
COMIS. PAW is a very powerful analysis tool, well suited for
late stage analysis, however the learning curve for PAW is
quite steep. The KUIP command language has a rather arcane
syntax as well and rather limited functionality. Paw fails to
satisfy both our technical and usability requirements because of
its steep learning curve and the fact that the user interface is
essentially unresponsive during data analysis.

 The Root developers chose to embed the C-INT[10]
interpreter. C-INT is an interpreter of the C/C++ programming
language. Thus scripting in Root is effectively programming
in C or C++. To do this requires a thorough knowledge of the
Root class library. Root has been successfully employed in
High Energy Physics experimental program where the lead
time for an experiment is on the order of 5 years, and each
collaboration employs a software development group
consisting of several people. Root’s learning curve is steeper
than that of PAW although, once more Root may be well suited
for later analysis projects. We also have philosophical
problems with C/C++ as a ‘command language.” Root fails
our usability requirements due to its steep learning curve, and
requirement that the user be a reasonably knowledgeable C++
programmer.

We chose to embed the Tcl/Tk interpreter because it was
usable at several levels of complexity, depending on the needs
and abilities of the user:

To the novice user, Tcl/Tk verbs provide a simple
imperative command language with a model that
matches their experience with the Unix command line.
For slightly more expert users, Tcl/Tk can be used to
automate simple repetitive tasks, or script complex
analysis tasks.
Tcl/Tk allows non programmers or unskilled
programmers to easily build application specific
Graphical User Interfaces (GUIs) to provide simplified
access to more complex, scripted functionality.
Tcl/Tk is an extensible language that allows expert users
to integrate application specific extensions to the core
framework of the analysis package.
Tcl/Tk is an existing language, with good community
support, a rich set of add on packages.

V. THE STRUCTURE OF NSCLSPECTCL

NSCLSpecTcl [11] is an application framework that embeds
and extends the base Tcl/Tk interpreter. Application
frameworks provide the main flow of control of an application
allowing the programmer to implement application specific

 5

functionality by providing code that hooks into well defined
extension points. In short, an application framework is a
program in search of a library.

Using the application framework approach in NSCLSpecTcl
frees the non-expert physicist/programmer from many design
issues, and allows them to concentrate on meeting the needs of
their research. This is in stark contrast to the approach taken
by the developers of Root, which can be thought of as little
more than a class library that delegates the bulk of these design
decisions to the user.

Experience has shown that physicists absorb software
documentation best via a set of sample programs, rather than
through reading detailed software manuals. The base classes
of the extension points for an application framework provide a

[13] Xt [14] and Motif [15] toolkits, as well as more recent
GUI class libraries such as Fox [16], Qt [17], and Gtk [18]are
examples of application frameworks intended for the
development of graphical user interfaces. Writing even simple
applications for these frameworks requires extensive
knowledge of their libraries. In the High Energy Physics
community Root, mentioned in the previous section appears to
the user like an application framework. This framework too
requires extensive class library knowledge to perform even
simple tasks.

 Tcl/Tk’s application programming interface (API) is another
example of an application framework. This framework
succeeds much better at allowing programmers to function with
only a limited knowledge of the API. If you can do simple
UNIX command line processing, you can write Tcl extensions.
Application
Framework for

Creating Histograms

C++ TCL wrapper

Tcl/Tk command
language

TCL
Extensions
Interfacing
With the

App
Framework

User
Parameter
Production

User
Configuration

Scripts

User extensions of
The framework

(optional)

User extensions
To Tcl/Tk (optional)

Figure 5 Block structure of the NSCLSpecTcl application framework.
relatively natural basis for these examples.

Many well known, and successful application frameworks
exist. The Microsoft Foundation Classes (MFC) [12], the X11

Our goal in designing the NSCLSpecTcl’s framework was to
be closer to the Tcl/Tk model than the Root model. In fact,
NSCLSpecTcl uses the Tk application framework to provide
the program control flow, and external event dispatch.

 6

A. High Level Structure of NSCLSpecTcl

Figure 5 is a diagram of NSCLSpecTcl’s major subsystems.
It also shows the extension points for the framework.

The core of the system is a library for efficiently taking
parameter n-tuples and incrementing (possibly conditionally)
histograms. This is the block labeled “Application Framework
for Creating Histograms”. An n-tuple is High Energy/Nuclear
Physics jargon for a one-dimensional array of parameters,
where some indices may not always refer to valid values.

The Framework interacts with the Tcl/Tk interpreter through a
C++ encapsulation of the Tcl API. The histogramming data
flow is registered with Tk as an event processor that is called

by the Tk application framework when the SpecTcl event data
source becomes readable.

The Histogramming kernel is configured via a set of Tcl
language extensions. These extensions are implemented in
terms of the C++ Tcl API wrappers. The extensions provide
commands that define, manipulate and introspect the
definitions of parameters, spectra, gates and other entities
needed to analyze data.

To use SpecTcl the user must provide code that transforms a
raw event into its n-tuple representation. In NSCLSpecTcl, an
n-tuple is represented as a simple wrapper around the Standard
Template Library’s [23] vector class called CEvent. CEvents
contain valid-value objects. A valid value is a floating point
number that knows if it has been assigned a value since the last
time it was invalidated. To the experimentalist, CEvent is an
array. CEvent objects automatically expand as needed to
accommodate the largest referenced index. The allocation of
CEvent objects, and their dynamic resizing presented
performance problems in the first versions of NSCLSpecTcl.

Therefore the framework re-circulates a set of CEvent objects

Data
Source

File ANSI
tape

Pipe

Analysis
Control

Raw event buffers

Top Level
Buffer
Decode

Event processor

Event processor

Event processor

Raw
event

Parameter set

User
written

Adapts NSCLSpecTcl to
different DAQ systems

Event
Sink

(Histogrammer)

Event
Sink

Canonicalized

event

TCL
Configurable

Visualization

Figure 6 Event processing flow

 7

which eventually will expand to hold the worst case size
needed by the application.

The user can extend NSCL SpecTcl in three other ways as
shown in Figure 6:

1. User written scripts configure the core framework and
can provide application specific GUIs.

2. Users can extend the framework. Several subsystems
of the NSCLSpecTcl application framework are built
with extensibility in mind. For example, the Segmented
Germanium Array collaboration at the NSCL (SeGA)
have extended the spectrum I/O subsystem to support
transparent export of histograms to the Gelifit gamma
ray spectrum fitting component of Radware [19].

3. Users can make use of the C++ Tcl classes to extend the
command language understood by NSCLSpecTcl.
These extensions are often hybrids extending
NSCLSpecTcl framework to add functionality that is
controlled and monitored via new Tcl commands or
steered via Tcl variables.

B. Event Processing Model of NSCLSpecTcl
Figure 6 shows NSCLSpecTcl’s event processing model. Tcl
extensions configure a source of event data. At present, data
sources can be disk files, ANSI labeled tapes (the nuclear
physics community has a large amount of older data on ANSI
labelled tapes), or the standard output of a program attached to
a pipe. The pipe data source is how NSCLSpecTcl connects to
an online data acquisition system. The pipe data source is one
mechanism that maintains NSCLSpecTcl’s data acquisition
system neutrality.

The event data source is processed as a Tk event handler. This
allows the user interface to remain fully live while a data set is
being processed. While this feature is useful for offline
analysis of large data sets, it is crucial for online data analysis.

Buffers from the data source are routed to the analysis control
subsystem. The Analysis control subsystem interacts with a
Top Level Buffer Decoding module (TLBD). The TLBD
module is an extensible and replaceable NSCLSpecTcl module.
This module is the second mechanism used to maintain data
acquisition system neutrality within NSCLSpecTcl. The
TLBD module makes callbacks to well defined entries in the
Analysis Control subsystem to dispatch control to the
appropriate handler software. In general, files of event data
meta-data describing the run as well as raw event data. In this
paper, we will only be concerned with what happens to the
event data.

Replacement TLBD modules have been written. These
modules have supported transparent analysis of data produced
by TUNL/IUCF Xsys [24] as well as data taken from the NIRS
HIMAC in Chiba Japan [25].

NSCLSpecTcl cannot analyze raw events. It only knows how
to analyze decoded event data: n-tuples. The user of
NSCLSpecTcl must provide at least one event processor.
Event processors are user written classes fill an n-tuple from a
raw event. The user can provide a many-staged logical
pipeline that performs this transformation. Each stage of the
pipeline has access to the raw event, and to partial n-tuple
created by previous pipeline stages.

This pipelined organization serves three functions:
1. If raw event data are appropriately formatted, it is possible

to use separate stages of the pipeline to unpack the data
from relatively independent detector subsystems.

2. The event pipeline isolates the production of computed
parameters from the format of the raw data. For example,
a separate stage can calibrate the data from a detector,
producing calibrated parameters, by referencing the
previously unpacked data in the n-tuple.

3. When detector systems are combined in an experiment,
computed parameters that span detector subsystem
boundaries can be computed without any knowledge of the
format of the raw data produced by the subsystems.

At the discretion of the programmer, event processors may be
controlled via Tcl command extensions or steered via Tcl
variables. For example, calibrated parameters require
determining the parameterization of a calibration function.
This parameterization is not known at the beginning of the
experiment. The calibration event processor can be written so
that it can be dynamically enabled or disabled via a Tcl
variable treated as a boolean flag or by Tcl command
extensions. The calibration function parameters could be Tcl
variables.

N-tuples created by the event processing pipeline are passed to
another logical pipeline of event sinks. Two types of event
sinks have been written:

1. The histogrammer, which produces the set of histograms
defined by the Tcl commands used to configure it. The
histogrammer makes the histograms it creates available
to the visualization component, a separate Motif/X11
program called Xamine [26].

2. Event filters. Event filters allow the creation of output
event files that receive a specified subset of the
parameters in the event only when a condition evaluated
on the event is true. Filter output files are written in a
simple self describing form. An pre-written event
processor that unpacks filtered event files to n-tuples is
provided.

User written event sinks are supported. At this time none have
been written. One use for a user written event source would be

 8

to produce an output event file in a format other than the NSCL
event file format.

C. The Extension Language
NSCLSpecTcl implements a set of about 25 commands and
scripts that extend the functionality of Tcl/Tk. These
commands are intended to configure and control the
application framework. Several Tcl global variables are also
maintained to expose the state of analysis and provide some
analysis statistics. A minimal sample GUI is provided as well.

Commands have been added to Tcl/Tk to:
•

•

•

•

•
•

Establish the event data source and control the analysis
from it.
Associate names with n-tuple slots and define the
properties of the parameters in these slots. A pseudo
command allows a new parameter to be created from
existing parameters by executing a Tcl procedure.
Define, clear and access spectra, and make them known to
Xamine. Spectra can also be written to and read from disk
files or any Tcl file descriptor created with the Tcl open
command.
Define event conditions and apply them to spectra. These
conditions can also be set by directly clicking points on
spectra displayed by Xamine.
Define and activate filters.
Save and restore the state of the analysis.

All commands that produce objects also allow complete
introspection of these objects. This introspection is necessary
to suport many features required by GUI front ends. Example
1 shows a sample analysis session for a very simple
experiment. In this experiment a pair of silicon detectors each
produce an energy (de and e), and timing information that help
to determine whether or not events in the detector are beam
related (t).

Finally we start analyzing from the event file run1234.evt and,
when analysis is complete we write the gated energy spectrum.
Note that an analysis state variable RunState can be used to
automate end of analysis actions via either trace or vwait
(depending on whether or not the analysis is batch or
interactive). For example, preceding the swrite command in
Example 1 with a “vwait RunState” would have blocked script
execution until the run had been analyzed and then proceded
with the swrite command. Experimenters use this idiom to do
offline batch analysis.

Define the parameters:
parameter de 0 # name n-tuple slot number
parameter e 1
parameter t 2

define 1-d spectra doing it this way is overkill but
It demonstrates introspection. Large detector systems
(1000’s of params) do this.
foreach parame [parameter –list] {; #Iterate over params.
 set name [lindex $parname 0]; # Extract param name.
spname type parname axis specification
 spectrum $name 1 $name {{0 4095 4096}}
}
Make the 2-d spectrum:

spectrum pid 2 {de e} {{0 4095 1024} {0 4095 1024}}

name type param low hi (slice gate).
gate Beam s {t {287 305}}

#.... user clicks in the 10Li gate:

gate BeamRelated10Li * {Beam 10Li}; # And gate.
spectrum 10LiEnergy 1 e {{0 1023 1024}}
apply BeamRelated10Li 10LiEnergy

sbind –all; # bind all spectra to Xamine.

clear -all
attach –file run1234.evt
start
.... Run is analyzed....
swrite –format ascii run1234LiEnergy.spec 10LiEnergy

Example 1: Sample NSCLSpecTcl extension commands in action

Using parameter introspection, spectra are created for all raw
parameters. A 2-d spectrum (pid) is created with de on the X
axis and e on the Y axis. This produces a crude particle ID
spectrum for charged particles (each particle species produces
a hyperbolic hill in the 2-d spectrum). The axis specification
for the spectrum command specifies the low and high limits of
the parameter and the number of channels used to bin that
interval. The ADC and TDC channels are assumed to be 12 bit
digitizers.

VI. EXTENSIONS TO NSCLSPECTCL We show the creation of a gate on the time spectrum to select
beam related particles, and assume that the user clicked in a
contour gate around the 10Li peak in the 2-d spectrum. We
then create an energy spectrum for the beam related 10Li
particles.

This section will describe three specific, significant extensions
to NSCLSpecTcl. Two of these projects were undertaken by
experimental groups at the NSCL. The last was performed by
one of the authors as part of a consulting project.

 9

A. The MoNA Graphical User Interface
An important research topic at the NSCL are the properties of
neutron rich nuclei. These nuclei, when excited will often
decay to more stable nuclei by shedding their neutron excesses.
The Modular Neutron Array (MoNA) [20] a detector system
that came online at the NSCL in August 2004 to study the
properties of neutron rich nuclei.

The detector consists of 9 layers of 16 blocks of scintillator.
Neutrons that enter a scintillator block will produce light. The
light output is amplified by photomultipliers attached to either
end of each brick. Position along the brick can be determined
by a light division algorithm, while the brick position itself
determines position in the axis perpendicular to the long axis of
the bricks. Time of flight relative to an upstream start
detector provides an accurate measurement of neutron energy
as well.
The efficiency of this detector is high enough that neutrons can
be tracked through the detector to ensure that they originated at
the target.
MoNA is shown in figure 7. The photomultiplier tubes are the
cylindrical devices at the left and right side of the detector.

MoNA was built collaboratively by undergraduate students
from several colleges and universities. In addition to providing
information about the properties of neutron rich nuclei, MoNA
provides undergraduate students valuable experience in
experimental nuclear physics.

MoNA produces a large number of spectra of both raw and
computed parameters. William Peters, a graduate student with
the NSCL part of the MoNA collaboration produced the
control panel shown in figure 8. This panel allows spectra to
be incrementally created as they become meaningful. The GUI

can also control the data source and start and stop analysis. A
status frame displays the progress of the current analysis case.

B. Structure on top of the n-tuple: TreeParam

The model of a flat n-tuple is difficult to use for large

hierarchically organized detector systems. Daniel Bazin [21],
the NSCL S800 device physicist, has written an extension to
the NSCLSpecTcl framework that supports superimposing a
hierarchical structure on top of the NSCLSpecTcl n-tuple.
This extension is called treeparam.

Figure 8 The MoNA GUI

Figure 7 The Modular Neutron Array (MoNA).

Treeparam is used by most large detector system collaborations
at the NSCL. In addition to class library support for this
structured overlay, Dr. Bazin has extended Tcl to allow
treeparam parameters to be arbitrarily scaled and for this
scaling to be introspected. He has used this support to build a
Treeparam GUI that supports, among other things, creating
new spectra by navigating the parameter hierarchy, setting and
inspecting parameter scale factors, and maintaining a similar
structured set of parameters obund to Tcl variable. This GUI is
shown in figure 8.

C. Scripting the Raw event to n-tuple unpack.
Experiments at the NSCL and other nuclear physics facilities
use a wide variety of nuclear electronics. Optimum data rates
are achieved by acquiring data in an event format that is very
close to what the hardware produces. Unfortunately, this

 10

format is not always self describing. If it were, users would
not have to write software to unpack their raw data into an n-
tuple, NSCLSpecTcl could do it for them.

A subset of the nuclear electronics do produce data with
enough internal structure to permit a mechanical
transformation from raw event to n-tuple. An example of these
devices are the 32 channel VME bus digitizers produced by
Construzuioni Apparecchiature Elettroniche Nucleari spa.
(CAEN). The model 785 peak sensing ADC, models 792 and
864 charge integrating ADCs (QDCs), and 775 time interval
digitizer (TDC) [27], all produce compatible self-describing
output.

One of the authors, under contract to Lawrence Livermore
National Laboratory to provide a turnkey, but flexible data
acquisition and analysis system for γ-ray spectroscopy wrote
extensions to the SpecTcl framework and Tcl command set to
support mechanically unpacking experiments based solely on
these modules [22]. The concept of the extension is that the
user defines modules of various types. These modules are

configured in much the same way Tk widgets are configured.
Modules can be organized in a hierarchy of packets. A packet
is a block of event data that is preceded by a size and an
identifier. Modules are added to packets or the top level
event (which is itself a packet). The parameters associated
with each module can be described when configuring the
module. The Readout software of the data acquisition systems
that use this scheme source the same script, and use it to
configure the online readout of the hardware, ensuring
consistency between the structure of the event data and the
configuration of the software that unpacks it.

Figure 8 The treeparam GUI

Example 2 shows a fragment of a configuration script chosen
to give the flavor of this extension. In this example, two
packets are created named first and second. The first packet is
given an identifying word with value 0x1000 and the second
an identifying word with the value 0x2000. The fragment
shows the creation and configuration of a CAEN V785 adc, as
well as the syntax to insert it an other modules into the packets,
and then the packets into the top level event definition.

 11

VIII. REFERENCES The module command is extensible. Additional module types
can be easily added to the system, as long as their associated
unpackers are capable of recognizing and unpacking their data.
The extension has since been used in turnkey systems delivered
to research groups at the Lawrence Berkeley National
Laboratory 88” cyclotron, Rensellear Polytechnic University,
Triangle University National Laboratory, University of New
Hampshire, and within the NSCL, used in the single event
effect test beamline, as well as in the MoNA and Sweeper
magnet data acquisition systems.

[1] J.K. Ousterhout TCL and the Tk Toolkit Addison-Wesley 1994
[2] http://www.nscl.msu.edu
[3] http://www.nsf.gov
[4] 2002 NSAC Long-Range Plan for Nuclear Science

http://www.phy.anl.gov/atlas/NSAC_transmittal_letter.htm
[5] DOE Publication: Facilities for the Future of Science A Twenty-Year

Outlook http://www.science.doe.gov/bes/FFS_10NOV03.pdf
[6] T. Glasmacher et al.

http://groups.nscl.msu.edu/gamma/research/gedets_description/home.html
[7] D. Bazin et al. http://groups.nscl.msu.edu/s800
[8] H. Jonstad Physics Analysis Workstation IEEE Trans. Nucl. Sci. V36 No.

5 1989 pg. 1568 See as well R. Brun et al. http://paw.web.cern.ch/paw
[9] R. Brun et al. http://root.cern.ch
[10] M. Goto http://root.cern.ch/root/Cint.html
[11] R. Fox et al. The SpecTcl analysis system in Proc. of the IEEE Real-Time

Conference, Montreal, QC, Canada, March 2004.
[12] (unattributed) Programming with MFC Microsoft Press 1995
[13] A. Nye Xlib Reference ManualO’Reilly & Assoc 1990
[14] D. Flanagan X Toolkit Intrinsics Reference Manual O’Reilly & Assoc.

192
[15] P.M. Ferguson and D. Brennan Motif Reference Manual O’ Reilly &

Assoc. 1993
[16] The Fox Toolkit homepage: http://www.fox-toolkit.com
[17] Qt homepage: http://www.trolltech.com
[18] Gtk homepage: http://www.gtk.org
[19] D. Radford et al. http://radware.phy.ornl.gov
[20] T. Baumann et al. http://groups.nscl.msu.edu/mona
[21] D. Bazin http://docs.nscl.msu.edu/daq/appnotes/TreeParameter.html
[22] R. Fox http://docs.nscl.msu.edu/daq/scripted/ScriptedReference.pdf
[23] D. Mussser, G.J. Derge, A. Saini STL Tutorial and Reference Guide,
module first packet id 0x1000
module second packet id 0x2000

module adc1 caenv785 slot 5 crate 0
adc1 config parameters {ring1_0 ring1_1 ring1_2...
 ... ring1_31}
...
Define and configure modules adc2, adc3 and adc4
…
first add adc1 adc2
second add adc3 adc4

unpack add first second

Example 2 Sample unpacking definition script

Second Edition Addison Wesley 2001.

[24] C.R. Gould, N.R. Roberson Vax 11/780 Data Acquisition Facility at
Triangle Universities Nuclear Laboratory IEEE Trans. Nucl Sci. Vol 30
No. 5 Oct. 1983 pg. 3758

The NSCL Sweeper magnet collaboration has extended the
module command to encompass special purpose gate array
driven acquisition modules as well as, as the the CAEN V1290
multihit Time digitizer.

[25] http://www.nirs.go.jp
[26] R. Fox, A. Vander Molen The Xamine Online/Offline Display Program

IEEE Trans. Nucl. Sci Vol 43 No 1 pg 55.
[27] See e.g. Technical Information Manual Mod. V785 32 channel Peak

Sensing Converter CAEN 2000
[28] See http://groups.nscl.msu.edu/s800

VII. EXPERIENCE, STATUS AND AVAILABILITY

NSCLSpecTcl is the laboratory standard online and early stage
data analysis package at the NSCL. NSCLSpecTcl has been
used in all of the experiments run the NSCL for online data
analysis since the commissioning of the A1900 in 2001.
NSCLSpecTcl is also used by most experiments for early
offline analysis.

 The MSU board of trustees released NSCLSpecTcl to the
GPL. The software is currently in use at about 20 other
institutions in the U.S. and Europe. Wiener Plein-Baus
recommends NSCLSpecTcl, the NSCL data acquisition system
and the scripted unpacking extension of NSCLSpecTcl to its
U.S. customers of CAEN electronics. The software is freely
available for download and installation from SourceForge at:
http://www.sourceforge.net/projects/nsclspectcl.

http://www.sourceforge.net/projects/nsclspectcl
http://www.nscl.msu.edu/
http://www.nsf.gov/
http://www.phy.anl.gov/atlas/NSAC_transmittal_letter.htm
http://www.science.doe.gov/bes/FFS_10NOV03.pdf
http://groups.nscl.msu.edu/gamma/research/gedets_description/home.html
http://groups.nscl.msu.edu/s800
http://paw.web.cern.ch/paw
http://root.cern.ch/
http://root.cern.ch/root/Cint.html
http://www.fox-toolkit.com/
http://www.trolltech.com/
http://www.gtk.org/
http://radware.phy.ornl.gov/
http://groups.nscl.msu.edu/mona
http://docs.nscl.msu.edu/daq/appnotes/TreeParameter.html
http://docs.nscl.msu.edu/daq/scripted/ScriptedReference.pdf
http://www.nirs.go.jp/
http://groups.nscl.msu.edu/s800

	INTRODUCTION
	Background
	Experimental Nuclear Physics
	The National Superconducting Cyclotron Laboratory
	The NSCL and U.S. scientific research goals.

	Requirements for Preliminary Analysis Software
	Technical requirements
	Usability Requirements

	Why embed Tcl/Tk
	The Structure of NSCLSpecTcl
	High Level Structure of NSCLSpecTcl
	Event Processing Model of NSCLSpecTcl
	The Extension Language

	Extensions to NSCLSpecTcl
	The MoNA Graphical User Interface
	Structure on top of the n-tuple: TreeParam
	Scripting the Raw event to n-tuple unpack.

	Experience, Status and Availability
	References

