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NSCLSpecTcl Meeting the Needs of 
Preliminary Nuclear Physics Data Analysis  

Ron Fox, Chase Bolen, Kanayo Orji, Jason Venema 

      Section V will describe the structure of the 
NSCLSpecTcl C++ application framework, introducing 
the technology of application frameworks, the structure 
of the framework we have developed, describing how 
Tcl/Tk is integrated into the software as a control 
language. 

Abstract--The National Superconducting Cyclotron Laboratory 
at Michigan State University (NSCL) is a user facility performing 
basic reasearch in heavy ion collisions with rare isotopes.   A wide 
variety of experiments are performed at the NSCL, each with 
specialized analysis needs.  Providing a package that balances ad-
hoc extensibility and performance was the distinct challenge 
facing the NSCL software support staff.  We chose to implement a 
hybrid C/C++ application framework and TCL/Tk extension 
language.  This paper will describe nuclear experimental physics, 
the needs of the community, how they are met by NSCSLSpecTcl, 
the structure of the software and the extension language.  We will 
also describe several extensions to NSCLSpecTcl that have been 
created by the user community and others. 

 

I.  INTRODUCTION 

THIS paper will describe a Tcl/Tk[1]  extension that 
consists of a C++ application framework that is 

controlled by an extended Tcl/Tk interpreter.  NSCLSpecTcl  
is intended to be used during online and early stage offline 
analysis of nuclear physics event data.  The structure of the 
paper will be as follows: 

• 

• 

• 

                                                          

Section II will introduce experimental nuclear physics, 
the National Superconducting Cyclotron Laboratory 
(NSCL) [2] and its research objectives.  Research at the 
NSCL will be placed in the context of the national goals 
for basic research. 
Section III describes the requirements of the software.  
We will describe technical as well as usability goals.     
Section IV describes the approach of other packages in 
use in nuclear and  high energy physics that embed 
scripting languages provides the motivation for our 
choice of Tcl/Tk as an embedded scripting language for 
NSCLSpecTcl. 

 

• 

• 

• 

Section VI will describe some of the extensions that 
have been written for NSCLSpecTcl.   
The paper will conclude with a summary of the 
experiences with the system, the level of community 
acceptance within the NSCL and the nuclear physics 
community in general.  The availability of the software 
will be described as well. 

II. BACKGROUND 
In this section we will describe how experimental nuclear 

physicists study the structure of the atomic nucleus.  The 
National Superconducting Cyclotron Laboratory (NSCL), a 
National Science Foundation (NSF)[3] funded university 
laboratory will be introduced and its research agenda will be 
placed in the context of  national near-term and long-range 
nuclear science research goals. 

A. Experimental Nuclear Physics 
In experimental nuclear physics, scientists study the structure 

of the core of the atom through particle-nucleus collisions.  By 
scattering particles off the nucleus we can learn about the inner 
composition, shape of the nucleus as well as improve our 
understanding of the forces that govern nucleon-nucleon 
interactions.    

 
Particles are scattered off the nucleus either in collider or 

fixed target accelerator systems. In a collider two accelerated 
beams of nuclei move in opposite directions.  The two beams 
intersect, causing some of  the nuclei in one beam to collide 
with particles in the other beam.   In fixed target systems, a 
particle accelerator accelerates a beam of projectiles that is 
transported to a target consisting of the element being studied.  
In either case, complex detector systems surround the 
interaction region to capture and measure the properties of the 
resulting collision fragments.  While higher reaction energies 
are possible with collider systems, these systems are generally 
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limited to the study of symmetric systems.  Fixed target 
systems, on the other hand support the study of  asymmetric 
systems. 
 
 Electrons and other nuclei have been used as projectiles in 
fixed target systems. Electrons, are not subject to the nucleon-
nucleon force, but will scatter off the charge of the protons in 
the nucleus, and therefore make excellent probes of  the 
spatial structure of the nucleus.  Using nuclei as projectiles  
provides information about the interactions of the constituents 
of the nucleus with each other.  This allows scientists to probe 
the energy level scheme of the nucleus,  the stability of the 
nucleus under deformation and, if sufficient numbers of 
nucleons interact, the statistical properties of nuclear matter. 
 
Figure 1 shows a schematic of an event in  typical fixed 

target experiment.  An event is a single collision that 
produces measurable results.  Figure 1 shows the  remnant of 
a projectile that has scattered at some angle to its original 
incident trajectory, a target remnant knocked out of the target 

in the forward direction and a scattering of smaller fragments 
that may have come from the projectile, the target or both.  A 
detection system around the target area will capture and 
detect the properties of some or all of these reaction products. 

Figure 1 Schematic view of nucleus-nucleus collisions in a fixed target system. 

B. The National Superconducting Cyclotron Laboratory 

The National Superconducting Cyclotron Laboratory at 
Michigan State University (NSCL) is a National Science 
Foundation supported university laboratory that performs 
nuclear physics experiments.  The NSCL has a pair of 
cyclotrons that accelerate beams for fixed target experiments.  

The cyclotrons are capable of accelerating beams as heavy as 
Uranium with energies of up to about 1GeV/nucleon.  An 
electron volt (eV) is the energy gained by an electron falling 
through a potential energy difference of 1V.  The electrons 
returning to your car battery have an energy of about 12eV.  
At the other end of the energy scale, a typical donut has the 
chemical energy equivalent of 1015 GeV. 
 
 A unique feature of the NSCL is the A1900 fragment 
separator.  Primary beam from the cyclotrons interacts with a 
production target at the entrance of the A1900.  Fragments of 
the projectile enter a spectrograph where the isotopes of 
interest are selected.  These projectile fragments continue to 
travel with energies close to those of the primary beam.  This 
allows exotic nuclei to be transported to experimental targets.  
The A1900 allows researchers at the NSCL to study the 
properties of highly unstable isotopes that do not occur in 
nature.  Figure 2 and 3 show NSCL experimental area floor 
plan as well as as schematic of the A1900. 
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Figure 2  The NSCL experimental floor plan. 
 

 
Figure 3 The A1900 mass separator 
 
  The NSCL is a user facility.  Scientists from all over the 
world submit proposals to an independent Program Advisory 
Committee which awards beam time on the basis of scientific 
merit.  

 

 
 
 



 3

C. The NSCL and U.S. scientific research goals. 
 

NSCL research is focused on interactions between heavy ions.   
Heavy ion physics research helps us understand the nature of 
the inter-nucleon strong force, and to probe the statistical 
properties of nuclear matter such as the nuclear equation of 
state and phase transitions that may occur in hot nuclear matter.  
Experiments with unstable isotopes from the A1900 allow  us 
to answer questions about the properties of nuclear matter in 
conditions far from stability.   This has direct bearing on 
understanding what happened in the early universe and what 
happens in the interiors of stars.  Measuring the lifetimes, 
decay modes and the probabilities of each decay mode 
(branching ratios) contribute to an understanding of the 
distribution of isotopes in the universe and how this 
distribution came about.   

 
 In the past several years the U.S. nuclear physics community  
has been moving towards the development of a new 
experimental facility called the Rare Isotope Accelerator 
(RIA).  The NSCL A1900 is the precursor facility to RIA.  
When built, RIA will extend the energies and intensities of the 
beams of exotic nuclei that can be produced enabling 
experiments with nuclei even further away from stability. In 
2002, RIA was endorsed by the DOE/NSF Nuclear Science 
Advisory committee as the one of the second highest priorities 
for funding [4].  In November 2003, U.S. Energy Secretary  
Spencer Abraham released the Office of Science priority list 
showing funding for RIA tied for third place amongst the near-
term priorities [5].   NSCL accelerator physicists have been a 
leaders in the conceptual design of the RIA facility. MSU is 
competing with Argonne National Laboratory to host RIA.   
Since the NSCL is a world leader in the production of rare 
isotope beams by projectile fragmentation, MSU would be the 
logical place to build RIA. 
 
An architectural sketch of the ½ km long linear accelerator that 
will make up RIA is shown in Figure 4 below. 

III. REQUIREMENTS FOR PRELIMINARY ANALYSIS SOFTWARE 
This section outlines the requirements for preliminary nuclear 
physics data analysis software.  These requirements break 
down in to two groups: 

• Technical or functional requirements must be met for 
the software to be minimally useable for data analysis. 

• Usability requirements enable physicists to work 
efficiently and effectively on their research problems. 

A. Technical requirements 
 
In the early stages of data analysis, physicists are trying to 
understand the experiment they are performing or have 
performed.   This is done by creating various histograms from 
parameters in the event data.   To create these histograms, the 

raw event data acquired from the digitizers attached to the 
detector system must be decoded to produce a set of 
parameters.   These parameters may be as simple as the height 
of a voltage pulse from a solid state detector that stops a heavy 
fragment, or as complex as computing fragment positions vi a 
Gaussian fit to the charge deposited on  a set of pads in a 
Cathode Readout Drift Chamber .  

Figure 4: The Rare Isotope Accelerator (RIA) at MSU. 

 
Experimenters need to: 

Histogram individual detector channels to monitor their 
health.  Histograms can be of several types including 
simple single parameter histograms, histograms of 
parameter pairs (2-d),  histograms of the bits set in a 
bitmask, histograms showing summaries of the data in 
multiple similar channels (summary Spectra) or 
histograms that are multiply incremented for several 
parameters (e.g γ-ray decay cascade histograms). 

• 

• 

• 

• 

• 

Calculate and histogram calibrated parameters by 
transforming raw parameters to physically meaningful 
values. 
Produce “purified” histograms by defining conditions 
that must be met by an  event  for a histogram to be 
incremented.  For example, a particle identification gate 
may be set around 10Li fragments to gate a detector 
energy spectrum so that the resulting spectrum shows 
the allowed energy states of that neutron rich Lithium 
isotope. 
Produce and histogram parameters that represent 
correlations between raw or calculated parameters, such 
as fragment opening angles, total transverse and 
perpendicular momentum vectors etc, and histogram 
these as well. 
Create filtered event files that contain useful subsets of 
the parameters of events that meet a particular 
condition. 
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• View and graphically interact with histograms as they 
are being created. 

B. Usability Requirements 
Usability requirements are driven by several factors.  Nuclear 
physicists have a wide range of computer expertise ranging 
from highly sophisticated to illiterate.  Experiments at the 
NSCL are run by collaborations of scientists, some or all of 
whom may come from outside the NSCL and not be familiar 
with our data acquisition and analysis software. 
 
  Often, experiments are built by plugging together modular 
pieces of apparatus.  For example the NSCL Segmented 
Germanium Array (SeGA)[6] a gamma ray spectrometer, is 
often run at the target chamber of a large spectrograph called 
the S800 [28].   Each of these systems have relatively 
independent software requirements. To extract physics from 
these experiments, however requires computing parameters 
that represent correlations between these two detector systems. 
 
NSCL experiments run for about a week, and can produce up 
to 80Gbytes of raw event data that may contain as  many as 2 
billion events.  This implies that if 1ms is required to analyze 
an event, 740 hours of compute time  would be required to do a 
single pass analysis of the entire experimental data set.  Event 
analysis is often an iterative process involving several passes 
over subsets of the data and over the entire data set if 
necessary.   
 
These and other considerations led us to the following usability 
requirements: 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

The software must be easy to learn to use by people at 
all levels of computer expertise (or lack thereof). 
The software must be quickly adaptable to specific 
experimental needs. 
The software must be extensible to meet needs that were 
not anticipated by the initial structure. 
Good histogramming performance is essential given the 
volume of data that is pumped through the system. 
Data acquisition system neutrality to support analysis of 
data taken by NSCL physicists visiting other 
laboratories, and to support a broader user community 
than the NSCL. 
 

IV. WHY EMBED TCL/TK 
The desire for extensibility and a high level of adaptability  
pointed towards embedding a scripting language in the 
software.     Analysis performance needs, however dictate that 
then inner analysis loops must run at compiled code speed. 
This is not a new approach in the nuclear/high energy physics 
community.  The developers of two popular packages, the 
Physics Analysis Workstation (PAW) [8], and Root [9] have 
chosen to do this as well. 

 
   In the case of PAW, a custom interpreter called KUIP was 
developed and embedded.  In addition, ad-hoc analysis is 
supported by the inclusion of a FORTRAN interpreter called 
COMIS.   PAW is a very powerful analysis tool, well suited for 
late stage analysis, however the learning curve for PAW is 
quite steep.  The KUIP command language has a rather arcane 
syntax as well and rather limited functionality.  Paw fails to 
satisfy both our technical and usability requirements because of 
its steep learning curve and the fact that the user interface is 
essentially unresponsive during data analysis. 
 
 The Root developers chose to embed the C-INT[10] 
interpreter.  C-INT is an interpreter of the C/C++ programming 
language.  Thus scripting in Root is effectively programming 
in C or C++. To do this requires a thorough knowledge of the 
Root class library.  Root has been successfully employed in 
High Energy Physics experimental program where the lead 
time for an experiment is on the order of 5 years, and each 
collaboration employs a software development group 
consisting of several people.   Root’s learning curve is steeper 
than that of PAW although, once more Root may be well suited 
for later analysis projects.  We also have philosophical 
problems with C/C++ as a ‘command language.”   Root fails 
our usability requirements due to its steep learning curve, and 
requirement that the user be a reasonably knowledgeable C++ 
programmer. 
 
We chose to embed the Tcl/Tk interpreter because it was 
usable at several levels of complexity, depending on the needs 
and abilities of the user: 

To the novice user, Tcl/Tk verbs provide a simple  
imperative command language with a model that 
matches their experience with the Unix command line. 
For slightly more expert users, Tcl/Tk can be used to 
automate simple repetitive tasks, or script complex 
analysis tasks. 
Tcl/Tk allows non programmers or unskilled 
programmers to easily  build application specific 
Graphical User  Interfaces (GUIs) to provide simplified 
access to more complex, scripted functionality. 
Tcl/Tk is an extensible language that allows expert users 
to integrate application specific extensions to the core 
framework of the analysis package. 
Tcl/Tk is an existing language, with good community 
support, a rich set of add on packages.  

 

V. THE STRUCTURE OF NSCLSPECTCL 
 
NSCLSpecTcl [11] is an application framework that embeds 
and extends the base Tcl/Tk interpreter.   Application 
frameworks provide the main flow of control of an application 
allowing the programmer to implement application specific 
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functionality by providing code that hooks into well defined 
extension points.  In short, an application framework is a 
program in search of a library. 
 
Using the application framework approach in NSCLSpecTcl 
frees the non-expert physicist/programmer from many design 
issues, and allows them to concentrate on meeting the needs of 
their research.  This is in stark contrast to the approach taken 
by the developers of Root, which can be thought of as little 
more than a class library that delegates the bulk of these design 
decisions to the user. 
 
Experience has shown that physicists absorb software 
documentation best via a set of sample programs, rather than 
through  reading detailed software manuals.  The base classes 
of the extension points for an application framework provide a 

[13] Xt [14] and Motif [15] toolkits, as well as more recent 
GUI class libraries  such as Fox [16], Qt [17], and Gtk [18]are 
examples of application frameworks intended for the 
development of graphical user interfaces.   Writing even simple 
applications for these frameworks requires extensive 
knowledge of their libraries.   In the High Energy Physics 
community Root, mentioned in the previous section appears to 
the user like an application framework.  This framework too 
requires extensive class library knowledge to perform even 
simple tasks. 
 
 Tcl/Tk’s application programming interface (API) is another 
example of an application framework.  This framework 
succeeds much better at allowing programmers to function with 
only a limited knowledge of the API.   If you can do simple 
UNIX command line processing, you can write Tcl extensions.  
Application
Framework for

Creating Histograms

C++ TCL wrapper

Tcl/Tk command 
language

TCL 
Extensions
Interfacing
With the 

App
Framework

User
Parameter 
Production

User
Configuration

Scripts

User extensions of
The framework

(optional)

User extensions
To Tcl/Tk (optional)

Figure 5 Block structure of the NSCLSpecTcl application framework. 
relatively natural basis for these examples.   
 
Many well known, and successful application frameworks 
exist.  The Microsoft Foundation Classes (MFC) [12], the X11 

Our goal in designing the NSCLSpecTcl’s  framework was to 
be closer to the Tcl/Tk model than the Root model.  In fact, 
NSCLSpecTcl uses the Tk application framework to provide 
the program control flow, and external event dispatch. 
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A. High Level  Structure of NSCLSpecTcl 
 
Figure 5  is a  diagram of  NSCLSpecTcl’s major subsystems. 
It also shows the extension points for the framework. 
 
The core of the system is a library for efficiently taking 
parameter n-tuples and incrementing (possibly conditionally) 
histograms.  This is the block labeled “Application Framework 
for Creating Histograms”.  An n-tuple is High Energy/Nuclear 
Physics jargon for a one-dimensional array of parameters, 
where some indices may not always refer to valid values. 
 
The Framework interacts with the Tcl/Tk interpreter through a 
C++ encapsulation of the Tcl API.  The histogramming data 
flow is registered with Tk as an event processor that is called 

by the Tk application framework when the SpecTcl event data 
source becomes readable. 
 
The Histogramming kernel is configured via a set of Tcl 
language extensions.  These extensions are implemented in 
terms of the C++ Tcl API wrappers.  The extensions provide 
commands that define, manipulate and introspect the 
definitions of parameters, spectra, gates and other entities 
needed to analyze data.    
 
To use SpecTcl the user must provide code that transforms a 
raw event into its n-tuple representation.  In NSCLSpecTcl, an 
n-tuple is represented as a simple wrapper around the Standard 
Template Library’s [23]  vector class called CEvent.  CEvents 
contain valid-value objects.  A valid value is a floating point 
number that knows if it has been assigned a value since the last 
time it was invalidated.  To the experimentalist, CEvent is an 
array.  CEvent objects automatically expand as needed to 
accommodate the largest referenced index.  The allocation of 
CEvent objects, and their dynamic resizing presented 
performance problems in the first versions of NSCLSpecTcl. 

Therefore the framework re-circulates a set of CEvent objects 

 

Data 
Source

File ANSI
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Pipe

Analysis
Control

Raw event buffers

Top Level 
Buffer
Decode

Event processor

Event processor

Event processor

Raw 
event
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User 
written

Adapts NSCLSpecTcl to 
different DAQ systems

Event
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(Histogrammer)

Event 
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Figure 6 Event processing flow 
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which eventually will expand to hold the worst case size 
needed by the application. 
 
The user can extend NSCL SpecTcl in three other ways as 
shown in Figure 6: 

1. User written scripts configure the core framework and 
can provide application specific GUIs. 

2. Users can extend the framework.     Several subsystems 
of the NSCLSpecTcl application framework are built 
with extensibility in mind.  For example, the Segmented 
Germanium Array collaboration at the NSCL (SeGA) 
have extended the spectrum I/O subsystem to support 
transparent export of histograms to the Gelifit gamma 
ray spectrum fitting component of Radware [19]. 

3. Users can make use of the C++ Tcl classes to extend the 
command language understood by NSCLSpecTcl.  
These extensions are often hybrids extending  
NSCLSpecTcl framework to add functionality that is  
controlled and monitored via new Tcl commands or 
steered via Tcl variables.  

 

B. Event Processing Model of NSCLSpecTcl 
Figure 6 shows NSCLSpecTcl’s event processing model.  Tcl 
extensions configure a source of event data.  At present, data 
sources can be disk files, ANSI labeled tapes (the nuclear 
physics community has a large amount of older data on ANSI 
labelled tapes), or the standard output of a program attached to 
a pipe.  The pipe data source is how NSCLSpecTcl connects to 
an online data acquisition system.   The pipe data source is one 
mechanism that maintains NSCLSpecTcl’s data acquisition 
system neutrality. 
 
The event data source is processed as a Tk event handler.  This 
allows the user interface to remain fully live while a data set is 
being processed.  While this feature is useful for offline 
analysis of large data sets, it is crucial for online data analysis. 
 
Buffers from the data source are routed to the analysis control 
subsystem.  The Analysis control subsystem interacts with a 
Top Level Buffer Decoding module (TLBD).  The TLBD 
module is an extensible and replaceable NSCLSpecTcl module.  
This module is the second mechanism used to maintain data 
acquisition system neutrality within NSCLSpecTcl.  The 
TLBD module makes callbacks to well defined entries in the 
Analysis Control subsystem to dispatch control to the 
appropriate handler software.   In general, files of event data 
meta-data describing the run as well as raw event data.  In this 
paper, we will only be concerned with what happens to the 
event data. 
 
Replacement TLBD modules have been written.  These 
modules have supported transparent analysis of data produced 
by TUNL/IUCF Xsys [24] as well as data taken from the NIRS 
HIMAC in Chiba Japan [25]. 

 
NSCLSpecTcl cannot analyze raw events.  It only knows how 
to analyze decoded event data: n-tuples.  The user of 
NSCLSpecTcl must provide at least one event processor.  
Event processors are user written classes fill an n-tuple from a 
raw event.   The user can provide a many-staged logical 
pipeline that performs this transformation.  Each stage of the 
pipeline has access to the raw event, and to partial n-tuple 
created by previous pipeline stages. 
 
This pipelined organization serves three functions: 
1. If raw event data are appropriately formatted, it is possible 

to use separate stages of the pipeline to unpack the data 
from relatively independent detector subsystems. 

2. The event pipeline isolates the production of computed 
parameters from the format of the raw data.  For example, 
a separate stage can calibrate the data from a detector, 
producing calibrated parameters, by referencing the 
previously unpacked data in the n-tuple. 

3. When detector systems are combined in an experiment, 
computed parameters that span detector subsystem 
boundaries can be computed without any knowledge of the 
format of the raw data produced by the subsystems. 

 
At the discretion of the programmer, event processors may be 
controlled via Tcl command extensions or steered via Tcl 
variables.  For example, calibrated parameters require 
determining the parameterization of a calibration function.  
This parameterization is not known at the beginning of the 
experiment.  The calibration event processor can be written  so 
that it can be dynamically enabled or disabled via a Tcl 
variable treated as a boolean flag or by Tcl command 
extensions. The calibration function parameters could be Tcl 
variables. 
 
N-tuples created by the event processing pipeline are passed to 
another logical pipeline of event sinks.  Two types of event 
sinks have been written: 

1. The histogrammer, which produces the set of histograms 
defined by the Tcl commands used to configure it.  The 
histogrammer makes the histograms it creates available 
to the visualization component, a separate Motif/X11 
program called Xamine [26]. 

2. Event filters.  Event filters allow the creation of output 
event files that receive a specified subset of the 
parameters in the event only when a condition evaluated 
on the event is true.  Filter output files are written in a 
simple self describing form.  An pre-written event 
processor that unpacks filtered event files to n-tuples is 
provided. 

 
User written event sinks are supported.  At this time none have 
been written.  One use for a user written event source would be 
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to produce an output event file in a format other than the NSCL 
event file format. 

C. The Extension Language 
NSCLSpecTcl implements a set of about 25 commands and 
scripts that extend the functionality of Tcl/Tk.  These 
commands are intended to configure and control the 
application framework.    Several Tcl global variables are also 
maintained to expose the state of analysis and provide some 
analysis statistics.  A minimal sample GUI is provided as well. 
 
Commands have been added to Tcl/Tk to: 
• 

• 

• 

• 

• 
• 

Establish the event data source and control the analysis 
from it. 
Associate names with n-tuple slots and define the 
properties of the parameters in these slots.  A pseudo 
command allows a new parameter to be created from 
existing parameters by executing a Tcl procedure.  
Define, clear and access spectra, and make them known to 
Xamine.  Spectra can also be written to and read from disk 
files or any Tcl file descriptor created with the Tcl open 
command. 
Define event conditions and apply them to spectra.  These 
conditions can also be set by directly clicking points on 
spectra displayed by Xamine. 
Define and activate filters. 
Save and restore the state of the analysis. 

 
All commands that produce objects also allow complete 
introspection of these objects.  This introspection is necessary 
to suport many features required by GUI front ends.  Example 
1 shows a sample analysis session for a very simple 
experiment.  In this experiment a pair of silicon detectors each 
produce an energy (de and e), and timing information that help 
to determine whether or not events in the detector are beam 
related (t).   

Finally we start analyzing from the event file run1234.evt and, 
when analysis is complete we write the gated energy spectrum. 
Note that an analysis state variable RunState  can be used to 
automate end of analysis actions via either trace or vwait 
(depending on whether or not the analysis is batch or 
interactive).  For example, preceding the swrite command in 
Example 1 with a “vwait RunState” would have blocked script 
execution until the run had been analyzed and then proceded 
with the swrite command.   Experimenters use this idiom to do 
offline batch analysis. 

#   Define the parameters: 
parameter de 0                       # name n-tuple slot number 
parameter e   1     
parameter t    2 
 
#   define 1-d spectra doing it this way is overkill but 
#   It demonstrates introspection. Large detector systems 
#  (1000’s of params) do this. 
foreach parame [parameter –list] {;   #Iterate over params. 
   set name [lindex $parname 0];        # Extract param name. 
#               spname type   parname   axis specification 
   spectrum $name 1       $name    {{0 4095 4096}} 
} 
#   Make the 2-d spectrum: 
 
spectrum pid 2 {de e} {{0 4095 1024} {0 4095 1024}} 
 
#    name    type    param    low   hi    (slice gate). 
gate Beam    s     {t            {287 305}} 
 
#.... user clicks in the 10Li gate: 
 
gate BeamRelated10Li * {Beam 10Li}; # And gate. 
spectrum 10LiEnergy 1  e {{0 1023 1024}} 
apply BeamRelated10Li 10LiEnergy 
 
sbind –all;                       # bind all spectra to Xamine. 
 
clear -all 
attach –file run1234.evt 
start 
#   .... Run is analyzed.... 
swrite –format ascii run1234LiEnergy.spec 10LiEnergy 
 
Example 1: Sample NSCLSpecTcl extension commands in action  

 
Using parameter introspection, spectra are created for all raw 
parameters.  A 2-d spectrum (pid) is created with de on the X 
axis and e on the Y axis.  This produces a crude particle ID 
spectrum for charged particles (each particle species produces 
a hyperbolic hill in the 2-d spectrum).   The axis specification 
for the spectrum command specifies the low and high limits of 
the parameter and the number of channels used to bin that 
interval.  The ADC and TDC channels are assumed to be 12 bit 
digitizers. 
 

VI. EXTENSIONS TO NSCLSPECTCL We show the creation of a gate on the time spectrum to select 
beam related particles, and assume that the user clicked in a 
contour gate around the 10Li peak in the 2-d spectrum.  We 
then create an energy spectrum for the beam related 10Li 
particles. 

This section will describe three specific, significant extensions 
to NSCLSpecTcl.  Two of these projects were undertaken by 
experimental groups at the NSCL. The last was performed by 
one of the authors as part of a consulting project. 
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A. The MoNA Graphical User Interface 
An important research topic at the NSCL are the properties of 
neutron rich nuclei.  These nuclei, when excited will often 
decay to more stable nuclei by shedding their neutron excesses.  
The Modular Neutron Array (MoNA)  [20] a detector system 
that came online at the NSCL in August 2004 to study the 
properties of neutron rich nuclei. 
 
The detector consists of 9 layers of 16 blocks of scintillator.  
Neutrons that enter a scintillator block will produce light.  The 
light output is amplified by photomultipliers attached to either 
end of each brick.  Position along the brick can be determined 
by a light division algorithm, while the brick position itself 
determines position in the axis perpendicular to the long axis of 
the bricks.    Time of flight relative to an upstream start 
detector provides an accurate measurement of neutron energy 
as well. 
The efficiency of this detector is high enough that neutrons can 
be tracked through the detector to ensure that they originated at 
the target.  
MoNA is shown in figure 7.  The photomultiplier tubes are the 
cylindrical devices at the left and right side of the detector. 
 

 
MoNA was built collaboratively by undergraduate students 
from several colleges and universities.  In addition to providing 
information about the properties of neutron rich nuclei, MoNA 
provides undergraduate students valuable experience in 
experimental nuclear physics. 
  
MoNA produces a large number of spectra of both raw and 
computed parameters.   William Peters, a graduate student with 
the NSCL part of the MoNA collaboration produced the 
control panel shown in figure 8.  This panel allows spectra to 
be incrementally created as they become meaningful. The GUI 

can also control the data source and start and stop analysis.  A 
status frame displays the progress of the current analysis case. 
 

B. Structure on top of the n-tuple: TreeParam 
 
The model of a flat n-tuple is difficult to use for large 

hierarchically organized detector systems.  Daniel Bazin [21], 
the NSCL S800 device physicist, has written an extension to 
the NSCLSpecTcl framework that supports superimposing a 
hierarchical structure on top of the NSCLSpecTcl n-tuple.   
This extension is called treeparam. 

Figure 8 The MoNA GUI 

Figure 7 The Modular Neutron Array (MoNA). 

 
Treeparam is used by most large detector system collaborations 
at the NSCL.  In addition to class library support for this 
structured overlay, Dr. Bazin has extended Tcl to allow 
treeparam parameters to be arbitrarily scaled and for this 
scaling to be introspected.  He has used this support to build a 
Treeparam GUI that supports, among other things, creating 
new spectra by navigating the parameter hierarchy, setting and 
inspecting parameter scale factors, and maintaining a similar 
structured set of parameters obund to Tcl variable.  This GUI is 
shown in figure 8.  
 

C. Scripting the Raw event to n-tuple unpack. 
Experiments at the NSCL and other nuclear physics facilities 
use a wide variety of nuclear electronics.   Optimum data rates 
are achieved by acquiring data in an event format that is very 
close to what the hardware produces.  Unfortunately, this 
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format is not always self describing.  If it were, users would 
not have to write software to unpack their raw data into an n-
tuple, NSCLSpecTcl could do it for them. 
 
A subset of the nuclear electronics do produce data with 
enough internal structure to permit a mechanical 
transformation from raw event to n-tuple.  An example of these 
devices are the 32 channel VME bus digitizers  produced by 
Construzuioni Apparecchiature Elettroniche Nucleari spa. 
(CAEN). The model 785 peak sensing ADC, models 792 and 
864 charge integrating ADCs (QDCs), and 775 time interval 
digitizer (TDC) [27], all produce compatible self-describing 
output. 
 
One of the authors, under contract to Lawrence Livermore 
National Laboratory to provide a turnkey, but flexible data 
acquisition and analysis system for γ-ray spectroscopy wrote 
extensions to the SpecTcl framework and Tcl command set to 
support mechanically unpacking experiments based solely on 
these modules [22].    The concept of the extension is that the 
user defines modules of various types.  These modules are 

configured in much the same way Tk widgets are configured.  
Modules can be organized in a hierarchy of packets.  A packet 
is a block of event data that is preceded by a size and an 
identifier.    Modules are added to packets or the top level 
event (which is itself a packet).  The parameters associated 
with each module can be described when configuring the 
module.   The Readout software of the data acquisition systems 
that use this scheme source the same script, and use it to 
configure the online readout of the hardware, ensuring 
consistency between the structure of the event data and the 
configuration of the software that unpacks it. 

 
Figure 8 The treeparam GUI 

 
Example 2 shows a fragment of a configuration script chosen 
to give the flavor of this extension.  In this example, two 
packets are created named first and second.  The first packet is 
given an identifying word with value 0x1000 and the second 
an identifying word with the value 0x2000.  The fragment 
shows the creation and configuration of a CAEN V785 adc, as 
well as the syntax to insert it an other modules into the packets, 
and then the packets  into the top level event definition. 
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VII. EXPERIENCE, STATUS AND AVAILABILITY 
 
NSCLSpecTcl is the laboratory standard online and early stage 
data analysis package at the NSCL. NSCLSpecTcl has been 
used in all of the experiments run the NSCL for online data 
analysis since the commissioning of the A1900 in 2001.  
NSCLSpecTcl is also used by most experiments for early 
offline analysis.  
 
   The MSU board of trustees released NSCLSpecTcl to the 
GPL.  The software is currently in use at about 20 other 
institutions in the U.S. and Europe.  Wiener Plein-Baus 
recommends NSCLSpecTcl, the NSCL data acquisition system 
and the scripted unpacking extension of NSCLSpecTcl to its 
U.S. customers of CAEN electronics.  The software is freely 
available for download and installation from SourceForge at: 
http://www.sourceforge.net/projects/nsclspectcl. 
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