
Using Tcl 8.5 Features to Build an OO System

Donal K. Fellows <donal.k.fellows@manchester.ac.uk>

In this paper I aim to show that object-oriented programming using Tcl is better supported in
the upcoming 8.5 release than at any time before. To show this, I identify the key features of a
basic OO system and illustrate mechanisms in Tcl 8.5 that support them.

Introduction
What is an object-oriented programming system?
Crudely put, at the basic level it is just a scheme for
joining data and the operations that work on that
data together in a single parcel. For something to
be an object, it therefore requires a few things:

• Data parcelled together,

• A reference to the parcel,

• A scheme for going from the parcel-reference
to the operations on that data, and

• A way of making sure that when the parcel-
reference goes away (whether this happens
through explicit or implicit deletion) so does
the data parcel itself.

This is all very well, but what does this mean when
applied to Tcl? What features of the language are
particularly suited to each of these major
requirements?

I also discuss how to take this core OO system and
build it up into something more similar to more
common OO schemes.

An Object Engine Core

Basic Data Model
For parcelling data together it is nice to use Tcl
8.5's new dictionary value type. A dictionary is a
container value, just like a list, except that its
elements are addressable by name and not position.
In many ways (especially when placed in a
variable), it is like an array, but it allows for things
like arbitrary nesting, trivial writing of the whole
collection of values to a channel, and simple
transfer of the values between procedures. It is also
considerably faster.

Indeed, it is best to use a dictionary to hold the
state of whole groups of objects. By storing all
object state in an array in either the class or the OO
package's own namespace, the natural nest-ability
of dictionaries can be leveraged to allow us to
avoid having to work with composite array element
names or other such tricks.

To keep things simple in this paper, I shall store
object states as dictionaries held in a global array.

set states($objName) [dict create \
 foo bar \
 language Tcl \
 bandersnatch {frumious shunned}]

Later, when I discuss methods, I shall show how to
use the facilities of 8.5’s dictionaries to make
referring to the object state very easy indeed.

Object References
The natural object reference in Tcl is the handle
(not the Tcl_Obj, which is really a basic value and
not an object), and the most common kind of
handle is a command. This is what you see in many
packages (for example, [incr Tcl], XOTcl, Snit,
stooop, etc.) and also with several commands in the
Tcl/Tk core (interp and all Tk widgets). The other
kind of object handle is based on pure values, and
this forms the basis of how objects such as I/O
channels and HTTP tokens are managed.

I shall be using the command-like form here; after
all, it is what most people seem to think of as being
objects as represented in Tcl. The command name
also makes for a suitable per-object token for use
when looking up the state of the object. The only
difficulty with this is dealing with command
renaming, but this is also resolvable easily. All that
is required is a call-back that is triggered whenever
the object command is renamed; this is provided by
setting a rename trace.

trace add command $objName rename \
 RenameObject
proc RenameObject {from to op} {
 global states
 set states($to) $states($from)
 unset states($from)
}

However, as it happens it is slightly easier to give
each object a unique sequence number and use that
number as the index into the states array. For
convenience (and looking like other OO systems), I
instead set the this key in the dictionary to be the
name of the current command for the object, so
rename traces are still useful.

dict set states($num) this $objName
trace add command $objName rename \
 [list RenameObject $num]

 Tcl’2004, New Orleans, USA Using Tcl 8.5 Features to Build an OO System

 Donal K. Fellows Page 2 12th September 2004

proc RenameObject {num from to op} {
 global states
 dict set states($num) this $to
}

Object Operations
Now we have our data and our command, the best
way of joining the two is to use some of the
advanced features of Tcl 8.5's ensemble
commands.

Two of the advanced features of the namespace
ensemble command are the -command and -map
options. By specifying the command name
ourselves, we can implement the handle name we
choose directly as a command, and by specifying a
subcommand-to-implementation mapping we have
access to a powerful and fast rewrite engine that
allow us to convert commands like:

objname subcmd arg1 arg2 arg3

into this:

impl objnumber arg1 arg2 arg3

by just including a single entry in the mapping that
states that 'subcmd' is implemented by 'impl
objnumber'. It is easy to derive this information
from the method declarations in the class. As an
additional bonus, the ensemble engine handles
unique command prefixes for you.

namespace ensemble create \
 –command $objName -map [dict create\
 subcmd1 "impl1 $objnumber" \
 subcmd2 "impl2 $objnumber"]

Now that we know how the outline of we are going
to handle methods, we need to look at how the
methods will in turn access the state of the object.
To do this, we use another feature of 8.5 (still in
draft at the time of writing), the dict with
subcommand. This “binds” variables to the keys of
a dictionary for the duration of the execution of a
user-supplied script, and writes any changes back
to the dictionary when the script finishes. (There is
an advanced version, dict update, that lets the user
control what keys are bound and to what variables.)

The strategy for using dict with is to wrap the
supplied script body for the method which is
accessing the state to open out all the dictionary
keys into local variables, so it ends up something
like this:

dict with ::state($objnumber) {
 # The script body goes here, e.g.
 puts "this object is $this"
}

I provide four built-in methods as well, being get,
which allows anyone to read a value from the
object’s state dictionary, set, which lets a value be
inserted into or updated within the object’s state
dictionary, unset, which removes a key (and its
value) from the dictionary, and methods, which

gives access to the machinery for management of
the object’s methods (creating new ones somewhat
like proc, describing whether a particular method
is defined for the object, and providing a list of
what methods are defined for the object.)

Object Deletion
The final component of our look at how modern
Tcl supports object schemes is how to delete
objects neatly. Since our objects are commands, it
is natural to use the deletion of the command as our
signal to dispose of the object. Luckily, we can just
use command traces to detect when this event
occurs and dispose of the object’s state for us by
calling unset on the array member variable holding
the state.

trace add command $objName delete \
 [list DeleteObject $num]
proc DeleteObject {num args} {
 global state
 unset state($num)
}

Wrapping Up
Finally, there is just one more thing to do, and that
is to decide on how to create our objects. To this
end, I simply have a command that spits out new a
new object every time it is asked. It handles the
setting up of the traces, initialization of the state
dictionary, and setting up the default methods so
that the object can be customized for use.

proc NewObject {} {
 global state counter definedMethods
 ### Choose an object name
 set ob ::ob[incr counter]
 ### Set up the state
 set state($counter) [dict create \
 this $ob \
 {state reference} $counter]
 set definedMethods($counter) {}
 ### Initialise the methods
 set map {}
 foreach method {
 get set unset methods
 } {
 dict set map $method [list \
 ${method}Impl $counter]
 }
 ### Make the command
 namespace ensemble create \
 -command $ob -map $map
 ### Set up the traces
 trace add command $ob delete [list \
 DeleteObject $counter]
 trace add command $ob rename [list \
 RenameObject $counter]

 return $ob
}

The definedMethods array is used to keep track of
what methods have been created using the methods
method so that they can be correctly deleted when
the object itself goes away. This can be seen in the
way that the methods method is implemented.

 Tcl’2004, New Orleans, USA Using Tcl 8.5 Features to Build an OO System

 Donal K. Fellows Page 3 12th September 2004

(Also note the way in which the arguments are
parsed; in particular the use of lassign, long a
staple of TclX, to break up the argument list into
formal parameters after parsing.)

proc methodsImpl {this args} {
 global state definedMethods
 set ob [dict get $state($this) this]
 set methods [namespace ensemble \
 configure $ob -map]
 ### General argument parsing
 if {[llength $args] == 0} {
 # Get list of all methods
 return [dict keys $methods]
 } elseif {[llength $args] == 1} {
 # Test for specific method
 return [dict exists $methods \
 [lindex $args 0]]
 } elseif {[llength $args] != 3} {
 # Boom!
 return -code error \
 "wrong # args: must be \
 \"$ob methods ?name? \
 ?arguments body?\""
 }
 ### Construct the implementation proc
 lassign $args name args body
 # Yes, that is a variable name with a
 # space in it.
 set bodypfx
 ";dict with ::oo::state($this) "
 uplevel \#0 [list proc $name \
 [linsert $args 0 {{this object}}]\
 $bodypfx$body]
 ### Splice into ensemble subcmd map
 namespace ensemble configure $ob \
 -map [dict replace $methods \
 $name [list $name $this]]
 lappend definedMethods($this) $name
}

Making More of Objects
Now we have a bare-bones object system, what can
we do with it?

One thing that many people expect from their OO
systems is classes. Their purpose is to issue many
objects of essentially the same kind, all with the
same methods. They also support things like
inheritance, constructors, destructors, reference
handling, etc.

A Class Object
The principle property of any class is its definition,
as that encapsulates what it has as its superclasses,
what its properties are, and what its methods are.
We also need to have some way of describing these
attributes and applying them when we create a new
instance of the class. The easiest way of doing this
is to represent the class definition as a Tcl script, of
course, but that means we need to have an object-
specific mechanism for mapping commands like
inherit, constructor, etc. onto the behaviour we
would like to use for them.

The easiest way of doing this is to use a temporary
namespace. By creating suitable aliases in the

namespace, we specialize the commands so that
they insert methods and state dictionary entries
correctly into the object being created. This even
works for inheritance, because we just need to
recursively process the definition from the
superclass (while keeping a note of the superclass
so we know the overall object’s type hierarchy). So
I set up the method, constructor and destructor
aliases like this (excerpted from the new method of
the Class object’s instances):

interp alias {} ::ooinit::method \
 {} $theObject method
interp alias {} ::ooinit::constructor \
 {} ::ooinit::method constructor
interp alias {} ::ooinit::constructor \
 {} ::ooinit::method destructor {}

And I set up the inherit alias like this:

interp alias {} ::ooinit::inherit \
 {} ::SetupInherit $theObject
proc ::SetupInherit {obj superclass} {
 ### Add to classes if not there
 set classes [$obj get classes]
 if {!($superclass in $classes)} {
 lappend classes $superclass
 $obj set classes $classes
 }
 ### Install the superclass’s defn
 uplevel 1 \
 [$superclass get definition]
}

With these aliases, all I need to do to set up the
instance is execute its definition script in the
correct namespace and then check whether a
constructor has been defined:

Class method new {args} {
 ### Make the object
 set obj [NewObject]
 ### Seed the class hierarchy
 $obj set class $this
 $obj set classes [list $this]

 ### Set up the aliases here…

 ### Install the definition
 namespace eval ::ooinit \
 [$this get definition]
 $obj method delete {} {
 if {[$this method destructor]} {
 $this destructor
 }
 rename $this {}
 }
 ### Run the constructor, if defined
 if {[$obj method constructor]} {
 $obj constructor {expand}$args
 }
 return $obj
}

I handle the removal of objects by defining a delete
method which calls the destructor (if it is defined)
and then deletes the command using rename. This
is installed last so classes can’t (easily) prevent
their instances from being deleted.

 Tcl’2004, New Orleans, USA Using Tcl 8.5 Features to Build an OO System

 Donal K. Fellows Page 4 12th September 2004

An Object Object
Now that we have a class, we should also define a
root of the class hierarchy which has all the things
in which we would like every class to have. I’ll call
this root class Object. In it, I provide six methods:

 eq: An equality-test method for objects,
defined through examining the basic
counter reference embedded within the
object. I use the counter reference because
it is stable even when the command is
renamed or referred to through
namespace export/import.

 isa: A method to test whether the object is of
the given class.

 <: A method that returns the counter
reference embedded within the object.
These are exposed so that collection
classes can keep references that are valid
across object renaming.

 >: A method that returns the object with the
given counter reference, since collections
should not actually return object
references. This method could be
theoretically implemented as a utility
procedure; it is just nice to keep
everything in one place.

 addRef: As with the Tcl_Obj structure in the Tcl
core, the Object class’s instances maintain
a reference counter with about the same
semantics. This method increments that
counter, which starts at zero.

 delRef: This method is the counterpart of the
addRef method, and reduces the reference
count of the object by one, calling the
delete method when the reference count
goes below 1.

To illustrate how these methods are defined, here is
the full definition of the isa method:

method isa someClass {
 expr {$someClass in $classes}
}

This shows not only how succinct a method
declaration can be, but it also illustrates the
(proposed) new in operator in Tcl 8.5. Without
that, the method would need to be written like this:

method isa someClass {
 expr {
 [lsearch –exact \
 $classes $someClass] >= 0
 }
}

As you can see, the in operator makes the code
much clearer!

The last part of the Object/Class complex is
splicing the Class class so that it looks like it is a

subclass of Object. This has to be done especially
because otherwise it is impossible to bootstrap
Class (they circularly depend on each other.)

Demonstrating Object: A List
Collection Class
To illustrate how the features of the Object scheme
work together, here is the full text of a List class
that acts as a collection of objects.

Class define List {
 ### List is a subclass of Object
 inherit Object
 ### Make a spot in the dict to hold
 ### our content list
 property content {}
 ### Constructor hands off to add
 constructor {args} {
 $this add {expand}$args
 # OK, [dict with] isn’t perfect
 set content [$this get content]
 }
 ### A bunch of useful methods that
 ### implement the “List API”
 method add {args} {
 foreach obj $args {
 lappend content [$obj <]
 $obj addRef
 }
 }
 method length {} {
 llength $content
 }
 method index {idx} {
 $this > [lindex $content $idx]
 }
 method find {obj} {
 lsearch -exact $content [$obj <]
 }
 method remove {idx} {
 [$this > [lindex $content $idx]] \
 delRef
 # Tricky reference management!
 $this set content {}
 set content [lreplace \
 $content[set content {}] \
 $idx $idx]
 }
 # This method works by building a
 # command executed in the caller...
 method iterate {var body} {
 set body "set [list $var] \[\
 [list $this] > \
 $[list $var]]$body"
 uplevel 1 [list \
 foreach $var $content $body]
 }
 ### Release our refs on deletion
 destructor {
 foreach ref $content {
 [$this > $ref] delRef
 }
 }
}

Of particular note is the remove method, which
uses the fact that concatenating a value with the
empty string is a no-work operation in Tcl 8.5,
allowing us to read the value out of the variable in
such a way that we hold the only reference to its

 Tcl’2004, New Orleans, USA Using Tcl 8.5 Features to Build an OO System

 Donal K. Fellows Page 5 12th September 2004

Tcl_Obj and can use (behind the scenes) the
efficient in-place version of lreplace.

If we want to produce a variation of the List that
does not permit duplicates, we can do that quite
simply like this:

Class define UniqueList {
 inherit List
 method add {args} {
 foreach obj $args {
 if {[$this find $obj] == -1} {
 lappend content [$obj <]
 $obj addRef
 }
 }
 }
}

To see how constructors and destructors can work
together, here is an example class that uses them to
print a message when an object is created and then
repeat that message when the object is deleted;

Class define Example {
 inherit Object
 constructor {string} {
 puts "Made $this - $string"
 $this set initMsg $string
 }
 destructor {
 puts "Killing $this - $initMsg"
 }
}

Showing Off
Finally, let’s show the output of a short session
using these classes. Here’s the script being
executed:

package require oo

set o1 [Example new foo]
set o2 [Example new bar]
$o1 delete
$o2 delete

set l [List new]
$l add [Example new "Demo #1"]
$l add [Example new "Demo #2"]
$l add [Example new "Demo #3"]
rename [$l index 0] ::evil
$l add [$l index 0]
puts "Have [$l length] items in list"
set ctr 0
$l iterate v {
 puts –nonewline "Item [incr ctr]: $v"
 if {[$v isa Object]} {
 puts " (an object)"
 } else {
 puts " (not an object)"
 }
}
$l delete

This produces the output like the following (though
particular object names are not guaranteed):

Made ::ob1 – foo
Made ::ob2 – bar
Killing ::ob1 – foo
Killing ::ob2 – bar
Made ::ob4 – Demo #1

Made ::ob5 – Demo #2
Made ::ob6 – Demo #3
Have 4 items in list
Item 1: ::evil (an object)
Item 2: ::ob5 (an object)
Item 3: ::ob6 (an object)
Item 4: ::evil (an object)
Killing ::ob5 – Demo #2
Killing ::ob6 – Demo #3
Killing ::evil – Demo #1

As you can see, the renaming of ::ob4 to ::evil did
not disrupt the fact that the List instance (which
incidentally is called ::ob3 of course) contained it.

If we had used a UniqueList instead of a List, the
second half of the output would have been this:

Have 3 items in list
Item 1: ::evil (an object)
Item 2: ::ob5 (an object)
Item 3: ::ob6 (an object)
Killing ::evil – Demo #1
Killing ::ob5 – Demo #2
Killing ::ob6 – Demo #3

Summary
As I have described, several of the features of Tcl
8.5 make doing a simple OO system really
tremendously easy. The particular features that
have been illustrated here are (with their TIP
numbers):

• Dictionaries (TIP#111, draft TIP#212)

• Ensembles (TIP#112)

• Expanding substitutions (TIP#157)

• List membership operator (draft TIP #201)

• lassign command (TIP #57)

Note that some of these features are still in draft
form at the time of writing. There is no guarantee
that they will be in the final release of 8.5, though I
would hope that will actually happen. For details of
particular Tcl Improvement Proposals, see
http://tip.tcl.tk/.

The other “new” feature illustrated here is the fact
that concatenation of an empty string does not
force the creation of the string representation of a
Tcl_Obj value. This means that it is possible to
construct (as shown) a very fast scheme for
extracting an object from a variable and removing
the reference from that variable at the same time.
This represents a significant gain over the previous
“idiom” in use, the K trick (and its pure-bytecode
variants using list and lindex), because it is
possible to do away with both memory allocation
and the initialization of a procedure call-frame; it is
just a peep-hole optimization in the implementation
of INST_CONCAT.

