
CS 291: Software Design Studio

Final Programming Assignment

Part 1 due Monday, November 15th; 2004

Part 2 due Monday, December 29st, 2004

Problem Statement

Learning how to write e�ective test programs is an important skill. The objective of this assign-

ment is to develop a set of C++ classes that enable a tester to check e�ciently whether the sort

routine you wrote for the previous assignment works correctly. This assignment will give you more

experience working with C++, abstract data types (ADTs), program families, and design patterns.

From a high-level, the system will work as follows:

� Two arrays are given as input. One array is the original array that was passed as input to the

sort routine. The is the output of the sort routine (i.e., it is the \potentially" sort array).

� The main purpose of your program is to check that the potentially sorted array is actually

an ordered permutation of the original input array. This is surprisingly tricky since the sort

routine can fail for many reasons (e.g., it may fail to sort correctly or it may accidentally change

values).

The general structure of your program should look something like this (lots of detailed omitted):

int main (int argc, char *argv[])
{
size_t size = atoi (argv[1]);

Array<int> original (size);
Array<int> potentially_sorted (size);

randomly_generate_input_data (original);
sort (original, potentially_sorted);

if (check_sort (original, potentially_sorted, size) == 0)
cout << "array is not sorted!" << endl;

else
cout << "array is sorted correctly" << endl;

return 0;
}

The following are constraints on your solution (i.e., the \forces"):

� Your solution should be time and space e�cient. For example, it should not take more time to

check than to sort in the �rst place!

� Do not assume the existence of a \correct" sorting algorithm. In particular, the algorithm you

select to solve this problem much be as simple or simpler than writing the sort routine in the

�rst place (Quis costodiet ipsos custodes).

� Your solution should work for any type of data, but you can assume you'll only be sorting

integers for the purposes of your test program (this makes certain things easier...).



Observations

Depending on the properties of the data in the original array, you will want to use di�erent

strategies to check whether the array was sorted correctly. For example, if the data values in the

array are \small" integral values (where small relative to the size of the array) you'll use a di�erent

strategy than if the values are large and/or non-integral values. Likewise, if the original array has no

duplicate values you can use a di�erent strategy than if it has duplicates. Thus, once you start to

design your solution you'll �nd that there it forms a \program family." This gives us an opportunity

to use design patterns and C++ classes and templates to reuse as much e�ort as possible across

multiple di�erent strategies.

The key to making an e�cient and exible solution is to develop a \search structure" abstract

base class (ABC) that contains pure virtual methods such as insert and remove. The following is

an example:

template <class T>
class Search_Structure
// TITLE
// Defines an abstract base class for inserting and removing
// elements of type <T> from a collection.
//
// DESCRIPTION
// This class only defines an interface and relies on derived
// classes to supply an implementation.
{
public:
virtual int insert (const T &new_item) = 0;
// Insert <new_item> into the search structure.

virtual int remove (const T &existing_item) = 0;
// Remove <existing_item> from the search structure.
// Return 0 if is there, else -1.

virtual ~Search_Structure (void) = 0;
};

You will implement di�erent subclasses of this search structure ABC, depending on the charac-

teristics of the array data you are checking.

The following are the types of subclasses that you will need:

� Range Vector { This version is useful for sorting \small" ranges of integral values, where small

is de�ned as <= total size. This solution has O(N) time complexity and is space e�cient as

long as the range is reasonable.

class Range_Vector : public Search_Structure<long>
{
/* ... */

};

� Binary Search Nodups (version 1) { This version does works for arrays with arbrary ranges.

However, it not handle duplicates and has O(n lgn) time complexity and is space e�cient.

template <class T>
class Binary_Search_Nodups : public Search_Structure<T>
{
/* ... */

};



� Binary Search Dups (version 2) { This version also works for arrays whose values have arbitrary

ranges. It does handle duplicates and remains O(n lgn) in its time complexity. However, it

maybe somewhat less space e�cient than version 1 (depending on number of duplicates and

how clever you are ;-)).

template <class T>
class Binary_Search_Dups : public Search_Structure<T>
{
/* ... */

};

Part One

For part one of this assignment you'll implement the Range Vector, Binary Search Nodups, and

Binary Search Dups.

Part Two

For part two of this assignment you'll implement the driver program that performs the checksort

strategy.


