:: BVFUNC10 semantic presentation
theorem Th1: :: BVFUNC10:1
Lemma32:
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN holds ((a '&' ('not' b)) 'or' (b '&' ('not' c))) 'or' (c '&' ('not' a)) '<' ((b '&' ('not' a)) 'or' (c '&' ('not' b))) 'or' (a '&' ('not' c))
theorem Th2: :: BVFUNC10:2
Lemma33:
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN holds ((a 'or' ('not' b)) '&' (b 'or' ('not' c))) '&' (c 'or' ('not' a)) '<' ((b 'or' ('not' a)) '&' (c 'or' ('not' b))) '&' (a 'or' ('not' c))
theorem Th3: :: BVFUNC10:3
theorem Th4: :: BVFUNC10:4
theorem Th5: :: BVFUNC10:5
theorem Th6: :: BVFUNC10:6
Lemma42:
for Y being non empty set
for a1, a2, b1, b2 being Element of Funcs Y,BOOLEAN holds (((a1 'imp' b1) '&' (a2 'imp' b2)) '&' (a1 'or' a2)) '&' ('not' (b1 '&' b2)) '<' (((b1 'imp' a1) '&' (b2 'imp' a2)) '&' (b1 'or' b2)) '&' ('not' (a1 '&' a2))
theorem Th7: :: BVFUNC10:7
theorem Th8: :: BVFUNC10:8
theorem Th9: :: BVFUNC10:9
theorem Th10: :: BVFUNC10:10
theorem Th11: :: BVFUNC10:11
theorem Th12: :: BVFUNC10:12
theorem Th13: :: BVFUNC10:13
theorem Th14: :: BVFUNC10:14
theorem Th15: :: BVFUNC10:15
Lemma58:
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN holds (((('not' a) '&' b) '&' c) 'or' ((a '&' ('not' b)) '&' c)) 'or' ((a '&' b) '&' ('not' c)) '<' (a 'or' b) '&' ('not' ((a '&' b) '&' c))
theorem Th16: :: BVFUNC10:16
theorem Th17: :: BVFUNC10:17
theorem Th18: :: BVFUNC10:18
theorem Th19: :: BVFUNC10:19
theorem Th20: :: BVFUNC10:20
theorem Th21: :: BVFUNC10:21
theorem Th22: :: BVFUNC10:22
theorem Th23: :: BVFUNC10:23
theorem Th24: :: BVFUNC10:24
theorem Th25: :: BVFUNC10:25
theorem Th26: :: BVFUNC10:26
theorem Th27: :: BVFUNC10:27