
DEVLOAD PROJECT.
© 1992, 1993 David Woodhouse.

CONTENTS.
SECTION. TITLE.

1. Project Writeup.
2. DOS Function Reference.
3. Structure of Internal DOS Tables.
4. DEVLOAD Flowchart.
5. DEVLOAD Source Code.
6. NETLIST Source Code.
7. REDIR Source Code.
8. REDIRSHW Source Code.
9. MYSHELL Source Code.
10. WOMBATS Source Code.
11. SHOWPARM Source Code.

 A.E.B. ‘A’ Level Computing Examination (0643), Summer 1993.

Centre number: 18415. Candidate number: 3205.

DEVLOAD PROJECT. David Woodhouse. Page 1.
Project Writeup.

PROJECT WRITEUP.

1. Definition of problem.

While I was a student at Norwich City College, I wished to use a copy of Adobe Type Manager on
the College computers, as I was spending a lot of time preparing documents for the Diss Venture
Scout Unit, including the South Norfolk District Scout Newsletter, which we had taken
responsibility for. ATM is a piece of software, running under Windows, which allows the user to see
text on screen exactly as it will look on the final printout, which makes desktop publishing very
much easier. There was a copy of ATM somewhere on the College network, but I was not allowed
access to it. I had to bring in my own copy from home, but for copyright reasons, I was not allowed
to leave my copy on the College network drives. I had to find some suitable method of running the
software without breaking the College network rules.

2. Analysis of problem.

The Adobe Type Manager software, along with the fonts I required, occupied a space of roughly
500 Kbytes. I needed this to be accessible at all times when it was in use, as Windows has no
suitable facility for finding missing files, and tends to crash when it encounters such problems.

I could think of three approaches to the problem. All three involved an entire drive being dedicated
to the software. They were:

2.1. Stacker drive.
One possible solution was to have as Stacker drive on the network. This would appear as a single

compressed file unless mounted using the Stacker software, and would not be immediately
recognisable as containing a piece of software.

This was not a suitable solution. Such a volume would have exceeded my data space limitation,
and would not have gone unnoticed by the network managers. Also, the Stacker program comes in
the form of a device driver, which must usually be loaded at boot time.

2.2. Floppy drive.
My first idea was to put the program onto a floppy disc. This worked, but it meant that I could not

easily use the floppy drive for anything else. If I wanted to access any other floppy disc, I had to be
very careful when I swapped discs, and it was safest to exit Windows to do so, which was time-
consuming and irritating. Because I often worked on files at home, at work and at College, keeping
them on a floppy disc all the time, I needed to access floppy discs a lot. This solution was not very
suitable, and I only ran ATM when I really needed it, because of the problems it caused.

2.3. RAM drive.
This seemed like by far the best solution. The workstations I was using were all equipped with

4Mb RAM, so installing a 500Kb RAM drive would cause no memory problems. The software could
be copied onto the RAM drive once when the machine was set up, and would remain in place until I
logged off.

The main problem with this solution was again that the RAM drive software was in the form of a
device driver which needed to be loaded at boot time. This is not easy to achieve on a workstation
which does a remote boot from a server over the Ethernet network.

3. Possible solutions.

DEVLOAD PROJECT. David Woodhouse. Page 2.
Project Writeup.

Having decided that a RAM drive was the best way of solving the problem, I was left with two
possible ways of installing it, both of which involved quite a large amount of low-level work. These
were:

3.1. Load RAM drive at boot time.
I asked a network manager about this, and he said it was not possible to do so. To achieve control

of the machine at boot time, I needed to hack into the network, take copies of all the network drivers
and put them all onto my own boot floppy. The difficult part was, of course, the first part.

3.2. Load RAM drive after boot time.
This solution would involve a lot of in-depth knowledge of the internal working of DOS and the

structure of DOS tables. In the absence of any suitable technical reference manual, I would have to
do all my own research, by taking apart DOS code. This involved even more work than the other
possibility.

4. Solution number 1 - Load at boot time.

The network running on the workstations I was using was RM-NET 3.1. This is MS-NET
compatible, which meant that my technical reference contained details of the DOS function calls
necessary to connect and disconnect network drives.

The first step I took was to write, in C, a program to list the network devices connected to the
system. I soon expanded it to include connection and disconnection of network devices, but it kept
it’s original name, NETLIST.EXE.

Now I had this method of listing connected devices and connecting more, I was more aware of
what was happening within the system. I decided that it was time I found out the passwords for some
of the network drives.

Working on the basis that they had to connected at some point in time by calling the DOS function
to connect network devices, I set up a simple Trojan Horse to take over the DOS function interrupt
(INT 21h). Whenever an INT 21h call was made with the AX register set to 5F02h (the function code
for connecting a network device), the program recorded the drive connected, the shortname and the
password in an internal buffer. The program was written in assembly language, and was called
REDIR.EXE

I originally started by using SYMDEB to examine the program in memory and read the contents of
the buffer, but I soon tired of that and wrote a program to display the copied information
automatically. This was REDIRSHW.EXE, and I wrote it in C. For this I had to amend REDIR.EXE
to include a signature, so that REDIRSHW could be sure the Trojan Horse was installed, and a
pointer to the buffer, so that I wouldn’t have to change REDIRSHW.EXE every time I changed the
size of the Trojan Horse program.

The Trojan Horse worked perfectly, and soon I had found the shortnames and passwords of drives I
hadn’t previously known existed. Every server on the network had a drive named PUBLIC, and they
all had the same password. This applied even to a server they hadn’t told us about, meant for
Computer Services use only. The PUBLIC drive on this contained copies of software not generally
available on the network, for example Excel 4 and Superbase 2. I was encouraged by this discovery,
and continued.

When logging off, the logon program usually just disconnects all network drives and asks for
another user name and password for logon. If a TSR was installed, however, the machine was
automatically rebooted, which meant that my Trojan Horse was lost every time I logged off from the
system, making it difficult to gain access to many drives which I didn’t usually have access to.

DEVLOAD PROJECT. David Woodhouse. Page 3.
Project Writeup.

This problem was soon fixed, however. I used SYMDEB to examine the image of the logon
program, XNETLIST, in memory, found all the checks performed and by-passed them. The program
then didn’t reboot when I logged off, but left my Trojan Horse running while the next user logged
on. This was the point at which I began to enjoy myself.

When I examined the record of device connections after logging off and then back on again, I
found that a connection had been made to a drive X:, and subsequently disconnected. I immediately
reconnected to this drive and examined it. I found it to contain the version of DOS from which the
machines booted, all the network device drivers, the logon program and also the user database
containing all the passwords on the system. This was exactly what I had been looking for.

I examined the startup procedure carefully, to avoid making any mistakes and causing problems
when I made my boot floppy.

 The stations boot from the closest server on the network. and immediately connect drive X: to the
network boot drive. A copy of CONFIG.SYS is then executed, depending on the type of the
workstation. This loads all the device drivers necessary for normal operation of DOS and the
network. NET.EXE is then called as the DOS shell. This connects a network session and then passes
control to XNETLIST.COM, which is basically a loop which does the following:

1. Connect drive X:
2. Run XNETLIST.EXE (see below.)
3. Disconnect all drives, rebooting if can’t
4. Reboot if INT 21h vector changed.
5. Reboot if amount of free memory has changed.
6. Various other checks, rebooting if changes.
7. Loop to part 1.

XNETLIST.EXE is the program which handles to logon procedure, by asking for a user name and
password and looking them up in the user database. If they are correct, the necessary network drives
are connected and a copy of COMMAND.COM is invoked.

Once I was sure of the boot procedure and was confident that I could make a network boot floppy
without making any mistakes that might disrupt the network, I copied all the network drivers to a
DOS 5 boot disc along with the CONFIG.SYS file for the workstations I was using, and attempted
to boot from my own floppy, This worked fine with an exact copy of the CONFIG.SYS, so I added
a RAM drive, and was delighted to find that I had solved the problem.

I soon cut out the network security programs from the boot procedure, after first examining them to
ensure there would be no adverse effects caused by their removal.

My next step was to by-pass the normal logon procedure. I got bored of typing my name and
password, so I wrote MYSHELL.EXE in C to log on automatically. This connected me to both my
own user space and the Student Union user space, in which I occasionally had to work

The only problem with this was that many of the shortnames and passwords were eight-digit
random number which were changed every week. About once a week, I had to log on normally and
catch all the shortnames and passwords again. This only took a couple of minutes, though, and so I
didn’t go back to the normal logon program.

A more important problem with my solution was that all the workstations were set up to remote
boot from the network, and only attempt to boot from a floppy disc if the network was not available.
This meant that I had to unplug my machine from the network every time I booted it. I had,
however, seen that the network managers possessed boot discs which the machines booted from in

DEVLOAD PROJECT. David Woodhouse. Page 4.
Project Writeup.

preference to the network. The discs obviously contained a signature, probably in the boot sector,
marking them as having priority over a network boot. The machines always checked the floppy drive
for this signature before booting from the network.

In order to find out exactly what this signature was, I took home a complete copy of the machine’s
ROM BIOS and started to go through the INT 19h procedure, which is the ROM bootstrap.

Before I completed this, however, I encountered another obstacle. I was asked by the network
managers to refrain from using my own boot floppy.

I explained exactly what I was using it for, and asked the Development Team Manager about the
possibility of loading device drivers from the command line. He replied that he’d tried it once, but
had given up on it.

Naturally, I took this as a challenge, and threw myself into solving the my second possible
solution; loading device drivers from the command line.

5. Solution number 2 - Load from command line.

This involved writing a program to install a RAM drive into the DOS internal tables after boot
time. I decided to take it a step further and make it install all device drivers.

6. Program requirements.

Before I could write a program to install device drivers, I first had to work out how it was done.
My main problem was that I had no knowledge of the internal DOS tables into which I had to enter
all the drive statistics. I was aware that the procedure for loading a device driver went as follows:

1. Load driver file into memory.
2. Pass the driver an INITIALISE command.
3. Examine the amount of memory the driver requires to stay in memory.
4. If this is zero, exit. The driver has completed it’s task and does not need to stay resident.
5. Allocate the correct amount of memory to the driver.
6. Link the driver into the device driver chain.
7. If it is a block device, install all the blocks into the relevant internal tables.

Steps 1-5 are simple operations, the information and procedures necessary being available in any
semi-decent technical reference for DOS.

Step 6 involves the use of an undocumented DOS function, function 52h. This gets a pointer to a
DOS table ‘invar’. Each device driver started with a DWord pointer to the next device driver in the
chain. The first device in the chain is the NUL device, which is located at invar + 0022h. To link the
new driver into the chain, the NUL device must be changed to point to the new device, and the new
device must be made to point to where NUL used to point to. This installs the driver in the same
place in the chain as if it had been installed in CONFIG.SYS.

At this point, I had no idea about how to implement step 7, so I concentrated on getting the rest to
work. This was enough to install character devices.

I started by doing it all by hand in SYMDEB, and once I was sure of the procedure, I wrote the first
version of DEVLOAD. As can be seen from the alteration list, it was very primitive. I soon made
many changes to improve the functionality and user-friendliness of the program, all of which are
listed in the source code.

At this point, I wrote SHOWPARM.SYS to display exactly the command line passed to the driver by
DOS. This showed that when no parameters are given to a device driver, DOS inserts a space after

DEVLOAD PROJECT. David Woodhouse. Page 5.
Project Writeup.

the filename. DOS also converts the whole of the command line to upper case. For compatibility, I
made DEVLOAD do the same. in version 2.1.

Once I had cleaned up the program to a reasonable extent, I decided that it was time to include
block devices.

At this point , I was stuck. I had no idea of how to continue, so I was forced resort to the age-old
principle ‘If you don’t know what you’re doing, copy someone else.’ I realised that there was
already a section of code in the system that installed blocks into the internal tables. It is part of the
SYSINIT module, the section of code which sets up DOS immediately after booting and is
responsible, among other things, for the parsing of CONFIG.SYS and the loading of device drivers.

I wrote a device driver, calling it WOMBATS.SYS in the absence of any better ideas, which grabbed
the entire SYSINIT module from it’s location in high memory into a buffer and reported the return
address (the address which the driver was invoked from.) This allowed me to examine the SYSINIT
code at my own leisure. After a couple of days inspecting the SYSINIT code, I managed to
complete my list of what step 7 in my original flowchart actually entailed:

7.1. Check sector size against maximum in system.
7.2. It too large, don’t install driver.
7.3. Check LASTDRIVE array. Don’t install if the array is not large enough to fit another drive.
7.4. Insert validity flag and pointer to block header into LASTDRIVE array.
7.5. Create new block header for drive.

The first four steps were easy enough to implement, but step five was partially done by another
undocumented DOS function, number 53h. This is used to expand the BPB returned by the device
driver into the block header. Step 7.5 was as follows:

7.5.1.Allocate enough memory for the new block header.
7.5.2 Insert the absolute block number, the block number in the device, and the pointer to the

device driver.
7.5.3. Link the new block header into the chain by making the one that was previously at the end of

the chain point to it and setting the offset of the pointer in the new one to 0FFFFh, signalling the end
of the chain.

7.5.4.Use function 53h to insert the rest of the data into the block header.

I now had a complete flowchart, at least at a greatly simplified level, for the installation of device
drivers. I proceeded to update DEVLOAD to version 2.0, including block device installation. Again, it
was primitive to start with, but I soon updated the program as and when I realised what could be
done to improve it.

Because the program started off as a test for an idea and developed from there, there was no
flowchart and program plan, but it evolved as it went. When I started to write it, I had no idea of the
problems I would encounter, so attempting to write a program plan and flowchart would have been
totally pointless.

As it was, the program stayed reasonably well-structured, in spite of the continual alterations. Even
so, I decided to write out a flowchart, including a few new ideas, and do a complete rewrite, putting
it in .EXE format and calling it version 3.0.

This was fine in theory, but almost as soon as I had finished the rewrite, I finally managed to work
out how to relocate the PSP and save the 60h bytes of memory below the driver that I had always
before had to leave for the PSP. Having done this at last, after about a year, on and off, of

DEVLOAD PROJECT. David Woodhouse. Page 6.
Project Writeup.

experimenting, I made many changes to the memory allocation procedure, as can be seen in the
alteration list for version 3.0.

Having never found a device driver file containing two drivers with blocks to install, I had a few
bugs in the install procedure for block devices which had never shown up. I put together two copies
of DRIVER.SYS into a single file, and this highlighted a few problems which I also fixed..

The only other change which I made after writing version 3.0 was to move the main program entry
point to a location above LASTBYTE. This results in absolutely no change to the program code, it
just means that the code which has already been executed and is no longer required is not relocated
to the top of memory.

The final flowchart for DEVLOAD.EXE is included after the appendices.

7. Testing.

The program has largely been tested as it was developed, with bugs being fixed as they came up.
Usually, each time I got the program working properly or added a new function, I discovered more
bugs which needed to be fixed, or at least I had new ideas about what I could make it do next.

The following is a demonstration of DEVLOAD being used to load an expanded memory driver.
The memory map function, MEM.EXE, is called both before and after loading EMM.SYS to confirm
the addition of the expanded memory function. DEVICES.COM is called last to show the position of
EMM.SYS in the device chain.

C:\ >mem

 655360 bytes total conventional memory
 655360 bytes available to IBM DOS
 495072 largest executable program size

C:\ >devload /v emm.sys
DEVLOAD.EXE v3.0 (C) 1992, 1993 David Woodhouse.
 Loads device drivers from the command line.

Filename : C:\MSDOS\EMM.SYS
Load address : 2718:0000

Expanded Memory Manager Version 4.0S
Size = 384 KB, Page Frame = D000
Port(s) = 0208 0258

Init function return status : 0100
1 character device installed.
Size of driver (paragraphs) : 021A
Interrupt vectors changed : 67h.
Driver staying resident.

C:\ >mem

 655360 bytes total conventional memory
 655360 bytes available to IBM DOS
 486448 largest executable program size

DEVLOAD PROJECT. David Woodhouse. Page 7.
Project Writeup.

 393216 bytes total EMS memory
 393216 bytes free EMS memory

C:\ >devices

DEVICES.COM v2.2 (C) 1991, 1992 David Woodhouse.
 Lists drivers in DOS device chain.

Table invar located at 011C:0026

Device Attr. Str. Int. Address .SYS file
NUL 8004 0DC6 0DCC 011C:0048
EMMXXXX0 8000 0016 0023 2718:0000 EMM
Block:03 0002 0039 004F 1C10:0000 NETUNITS
Block:02 4842 0126 0131 0B61:0000 STACKER
CON 8013 06F5 0700 0070:0023
AUX 8000 06F5 0721 0070:0035
PRN A0C0 06F5 0705 0070:0047
CLOCK$ 8008 06F5 0739 0070:0059
Block:04 08C2 06F5 073E 0070:006B
COM1 8000 06F5 0721 0070:007B
LPT1 A0C0 06F5 070C 0070:008D
LPT2 A0C0 06F5 0713 0070:009F
LPT3 A0C0 06F5 071A 0070:00B8
COM2 8000 06F5 0727 0070:00CA
COM3 8000 06F5 072D 0070:00DC
COM4 8000 06F5 0733 0070:00EE

C:\ >

I have no character device drivers that could easily be demonstrated. I have tested ANSI.SYS and
found it to work when loaded by DEVLOAD, but cannot easily show screen dumps of this. The next
example is of DEVLOAD being used to load the SuperStor compression software which I use to
compress my hard drive. The VOL command is used to show the absence and later the presence of
the specified drive. Whenever I install either SuperStor or Stacker on any system, I always keep a
copy of DEVLOAD in the uncompressed part of the drive, for loading the compression device driver
after booting from a floppy disc.

C:\ >vol d:

Invalid drive specification

C:\ >devload /v sstordrv.sys

DEVLOAD.EXE v3.0 (C) 1992, 1993 David Woodhouse.
 Loads device drivers from the command line.

Filename : C:\SSTORDRV.SYS
Load address : 171B:0000

SuperStor Data Compression Driver (DRI) 1.06
Copyright (C) AddStor Inc. 1991. All rights reserved.

Block header for drive D: at 21EA:0000
Init function return status : 0100

Last drive in use : D:

DEVLOAD PROJECT. David Woodhouse. Page 8.
Project Writeup.

Last drive avail. : Z:
1 block installed.
Size of driver (paragraphs) : 0AD2
Interrupt vectors changed : 21h, 26h.
Driver staying resident.

C:\ >vol d:

 Volume in drive D is SuperStor

C:\ >

The last example presented here is DEVLOAD attempting to load a block device driver when the
LASTDRIVE array is already full. This demonstrates how it asks whether to terminate installation.

C:\ >devload /v driver.sys /d:2

DEVLOAD.EXE v3.0 (C) 1992, 1993 David Woodhouse.
 Loads device drivers from the command line.

Filename : C:\MSDOS\DRIVER.SYS
Load address : 2E32:0000

Loaded External Disk Driver for Drive K

Init function return status : 0103
1 block(s) not installed - LASTDRIVE= parameter in CONFIG.SYS too small.

No blocks or INTs installed - terminate (Y/N) ? y
Size of driver (paragraphs) : 0000

C:\ >

8. Documentation.

User documentation is included within the program. The usage is very simple, and the standard
help command (‘DEVLOAD /?’) will display the available options. Even if DEVLOAD is invoked
with no arguments, it will tell the user how to get help.

There is little need for extensive system documentation in this program.. Any person editing this
program must, because of it’s nature, have an extensive knowledge of 8086 assembly language and
the DOS operating system. To anyone with this capability, much of the program will be self-
explanatory, and only rudimentary comments in the source code are necessary. However, I have
included more documentation than I would usually provide, both because this is performing complex
tasks in machine code and it is easy to lose track of register usage, and because I know it is intended
to be examined by other people than just myself.

9. Critical appraisal.

I have had many criticisms of the operation of the program, but over the past year I have fixed just
about all of them. There are still changes I would like to make, and probably will in the near future
when I have completed enough research to make them possible. I have worked out how to

DEVLOAD PROJECT. David Woodhouse. Page 9.
Project Writeup.

implement support for SETVER.EXE, and am waiting for MS-DOS 6 to arrive so that I can check
it’s compatibility before another update. I have also worked out how to change the size of the
LASTDRIVE array in DOS 4 and higher. This I will incorporate soon as well.

Loading device drivers into UMBs will involve a lot more experimenting and probably
examination of SYSINIT, so will probably not happen in the near future. I’ll get round to it,
though, and by then I’ll have come up with something else to add or change. I might end up trying to
get it to load devices once Windows is running, and make them available to all programs under
Windows. That’d keep me amused for a while.

DEVLOAD PROJECT. David Woodhouse. Page 1.
Appendix 1 - DOS Function Reference.

APPENDIX 1 - DOS FUNCTION REFERENCE.

The DOS function call is INT 21h. The function number is passed in the AH register. This appendix
lists all the DOS functions used in any of the programs included with this project.

Function 02h - Character output.

IN: DL ASCII character to print.
OUT: Nothing.

Prints the character in DL to the standard output device (usually CON: if not redirected.)

Function 08h - Character input without echo.

IN: Nothing.
OUT: AL Character from device.

Gets the next character from the standard input device (usually CON: if not redirected.)

Function 09h - Output character string.

IN: DS:DX --> ASCII$ string to print.
OUT: Nothing.

Prints the dollar-terminated string to the standard output device.

Function 25h - Set INT vector.

IN: AL INT number.
DS:DX INT vector.

OUT: Nothing.

Sets the specified interrupt vector to the value held in DS:DX.

Function 30h - Get version number.

IN: Nothing.
OUT: AL Major version number.
 AH Minor version number.

Used to return the current DOS version number.
NOTE: DOS version 1 returns zero in AL.

DEVLOAD PROJECT. David Woodhouse. Page 2.
Appendix 1 - DOS Function Reference.

Function 31h - Terminate and stay resident (TSR).

IN: AL Program return code.
DX Memory to reserve in paragraphs.

OUT: Nothing.

Terminate program but remain in memory using DX paragraphs.

Function 35h - Get INT vector.

IN: AL INT number.
OUT: ES:BX INT vector.

Sets ES:BX to the value of the specified interrupt vector.

Function 37h - Get / set switch character (undocumented.)

IN: AL 00h Get switch character.
01h Set switch character.

DL Switch character if AL=01h
OUT: DL Switch character if AL=00h

Gets or sets the current character to be used as a switch on the command line (usually ’/’.)

Function 43h - Get / set file attributes.

IN: AL 00h Get file attributes.
01h Set file attributes.

CX New attribute if AL=01.
DS:DX --> ASCIIZ filename.

OUT: CX File attribute if getting attribute.
AX Error code if error.
CARRY Set if error.

Gets or sets attributes for the file whose name is pointed to by DS:DX. Can be used to check for
file’s existence.

Function 48h - Allocate memory.

IN: BX Number of paragraphs required.
OUT: AX Segment of block if successful.

Error code if error.
BX Size of largest available block if error.
CARRY Set if error.

Attempts to allocate memory to the current procedure.

DEVLOAD PROJECT. David Woodhouse. Page 3.
Appendix 1 - DOS Function Reference.

Function 49h - Release memory.

IN: ES Segment of block to be released.
OUT: AX Error code if error.

CARRY Set if error.

Attempts to release the memory block pointed to by ES back to the main pool.

Function 4Ah - Modify memory allocation.

IN: ES Segment of block to be modified.
BX New size in paragraphs.

OUT: AX Error code if error.
BX Size of largest available block if error.
CARRY Set if error.

Attempts to change the size of the specified memory block to the length in BX.

Function 4Bh - Execute program.

IN: AL 00h Load and execute program.
03h Load overlay.

DS:DX --> ASCIIZ filename.
ES:BX --> Parameter block.

For AL=03h, parameter block consists of:
+00 Word Segment address to load overlay.
+02 Word Relocation factor.

Loads program into memory and then executes if AL=00h.

Function 4Ch - Terminate with return code.

IN: AL Program return code.
OUT: Nothing.

Terminate program and return code in AL to parent.

Function 50h - Set current PSP (undocumented.)

IN: BX Segment address of new PSP.

Sets the current PSP to the one specified in BX.

Function 52h - Get ‘invar’ pointer (undocumented.)

IN: Nothing.
OUT: ES:BX --> Invar.

Gets pointer to DOS table ‘invar’. See Appendix 2 for details.

DEVLOAD PROJECT. David Woodhouse. Page 4.
Appendix 1 - DOS Function Reference.

Function 53h - Expand BPB to block header (undocumented.)

IN: DS:SI --> BPB to expand.
ES:BP --> Block header to fill in.

OUT: Nothing.

Fills in block header with information from BPB.

Function 55h - Create child PSP (undocumented.)

IN: DX Segment address of new PSP.
SI Value to put in new PSP:0002 (top of mem segment.)

OUT: Nothing.

Creates a child PSP at the address specified.

Function 58h - Get / set allocation strategy.

IN: AL 00h Get strategy.
01h Set strategy.

BX New strategy code if AL=01h.
OUT: AX Strategy code if AL was 00h

Strategy codes:
0000 - First fit.
0001 - Best fit.
0002 - Last fit.

Gets or sets memory allocation strategy for subsequent memory requests.

Function 5Eh, subfunction 00h - Get machine name.

IN: AL 00h
DS:DX --> Buffer to receive string.

OUT: AX Error code if error.
CH 00h if name not defined.

>00h if name defined.
CL NETBIOS name number if CH>0
CARRY Set if error.

Gets machine name (MS-NET only.)

DEVLOAD PROJECT. David Woodhouse. Page 5.
Appendix 1 - DOS Function Reference.

Function 5Fh, subfunction 02h - Get redirection list entry.

IN: AL 02h
BX Redirection list index.
DS:SI --> Buffer to receive 16-byte device name.
ES:DI --> Buffer to receive 128-byte shortname.

OUT: CARRY Set if error.
AX Error code if error.

If not error:
BH Device status flag.

bit 0 0 device valid.
1 device invalid.

BL Device type.
03h Printer.
04h Drive.

CX Stored parameter value.
DX, BP Destroyed.

Gets entry number BX in the list of redirections.

Function 5Fh, subfunction 03h - Redirect device.

IN: AL 03h
BL Device type.

03h Printer.
04h Drive.

CX Parameter to save for caller.
DS:SI --> ASCIIZ local device name.
ES:DI --> ASCIIZ shortname followed by ASCIIZ password.

OUT: CARRY Set if error.
AX Error code if error.

Attempt to connect device to network shortname, using given password.

Function 5Fh, subfunction 04h - Cancel redirection.

IN: AL 04h
DS:SI --> ASCIIZ local device name.

OUT: CARRY Set if error.
AX Error code if error.

Disconnect device from network.

DEVLOAD PROJECT. David Woodhouse. Page 6.
Appendix 1 - DOS Function Reference.

Function 60h - Expand filename.

IN: DS:SI --> Source pathname.
ES:DI --> Buffer to hold destination pathname.

OUT: CARRY Set if error.
AX Error code if error.

Gives true pathname, taking into account current drive and directory. Gives error if goes above root
(i.e. too many ‘\..\’.)

Function 62h - Get current PSP.

IN: Nothing.
OUT: BX Segment address of current PSP.

Gets the segment address of the PSP of the current process.

DEVLOAD PROJECT. David Woodhouse. Page 1.
Appendix 2 - Structure Of DOS Internal Tables.

APPENDIX 2 - STRUCTURE OF INTERNAL DOS TABLES.

Invar.

Offset Size Item
-02h Word Segment of first memory arena header.
00h DWord --> First block header.
04h DWord --> FILES array.
08h DWord --> CLOCK$ driver.
0Ch DWord --> CON driver.
10h Word Max. bytes per sector.
12h DWord --> First disk buffer.
16h DWord --> LASTDRIVE array.
1Ah DWord --> FCB table.
1Eh Word Size of FCB table.
20h Byte No. of block devices.
21h Byte LASTDRIVE value.
22h NUL device starts here.

Device Driver.

Offset Size Item
00h DWord --> Next driver in chain (x:FFFF means end.)
04h Word Device attributes.
06h Word Device strategy routine offset.
08h Word Device interrupt routine offset.
0Ah 8 Bytes Device name padded with spaces.

Bios Parameter Block (BPB.)

Offset Size Item
00h Word Bytes per sector.
02h Byte Sectors per cluster.
03h Word Reserved sectors.
05h Byte Number of FATs.
06h Word Max. root directory entries.
08h Word Total number of sectors.
0Ah Byte Media descriptor byte.
0Bh Word Sectors per FAT.

DEVLOAD PROJECT. David Woodhouse. Page 2.
Appendix 2 - Structure Of DOS Internal Tables.

Block Header.

Offset Size Item
00h Byte Absolute block number.
01h Byte Block number in device.
02h Word Bytes per sector.
04h Byte Sectors per cluster - 1.
05h Byte Cluster to sector shift (how far to shift left bytes/sector

to get bytes/cluster.)
06h Word Number of reserved sectors.
08h Byte Number of FATs.
09h Word Number of root directory entries.
0Bh Word Sector no. of first data.
0Dh Word No. of clusters + 1.
0Fh Word Sectors per FAT.

NOTE: This is a single byte in DOS 3, so all offsets
from here onwards must have one subtracted from them.

11h Word First sector of root directory.
13h DWord --> Device driver for this block.
17h Byte Media descriptor byte.
18h Byte 0FFh means must rebuild.
19h DWord --> Next block header in chain (x:FFFF means end.)
1Dh Word ?
1Fh Byte ?
20h Byte ?

Arena Header.

Offset Size Item
00h Byte ’Z’ if last block, else ’M’.
01h Word Segment owner.
03h Word Segment size.
05h 3 Bytes Unused.
08h 8 Bytes Owner name (if self owned.) Terminated with NULL

byte if less than eight characters.

DEVLOAD PROJECT. David Woodhouse. Page 3.
Appendix 2 - Structure Of DOS Internal Tables.

Program Segment Prefix (PSP.)

Offset Size Item
00h Word Program exit point (INT 20h.)
02h Word Memory size in paragraphs.
04h Byte Unused.
05h 5 Bytes Far call to DOS function handler.
0Ah DWord Old INT 22h vector.
0Eh DWord Old INT 23h vector.
12h DWord Old INT 24h vector.
16h Word Parent PSP segment.
18h 14h Bytes Open files (0FFh = unused.)
2Ch Word Environment segment.
2Eh DWord Far ptr to SS:SP.
32h Word Max. open files.
34h DWord --> Open files table (usually PSP:0018h.)
38h 8 Bytes ?
40h Word Version number reported to this process (DOS 5+.)
42h 0Eh Bytes ?
50h 3 Bytes DOS function dispatcher (INT 21h, RETF.)
53h Word Unused.
55h FCB #1 extension.
5Ch FCB #1.
6Ch FCB #2.
80h 80h Bytes Command line tail.

DEVLOAD PROJECT. David Woodhouse. Page 1.
Appendix 3 - Devload Flowchart.

APPENDIX 3 - DEVLOAD FLOWCHART.

1. Initialisation.

1.1. Set up segment registers.
1.2. Get PSP segment.
1.3 . Print initial message.
1.4. Check DOS version.

2. Check command line.

2.1 If no parameters given, print error and exit.
2.2. Deal with switches.
2.3. Search for file using PATH if no path specified.
2.4. If file not found, print error and exit.
2.5. Expand filename to full pathname using func. 60h.

3. Relocate.

3.1. Get allocation strategy.
3.2. Reduce main allocation to minimum.
3.3. Set allocation strategy to highest fit.
3.4. Request chunk at top of memory for PSP, program and stack.
3.5. Reset allocation strategy to old value.
3.6. Move PSP to top of memory.
3.7. Move program to top of memory.
3.8. Give ownership of top of memory segment to itself.
3.9. Change stack to top of memory.
3.10. Make top PSP current.
3.11. Transfer execution to top of memory.

4. Allocate lower segment of memory.

4.1. Change stored PSPSeg.
4.2. Release old PSPSeg.
4.3. Release old environment.
4.4. Grab all free memory.
4.5. Store DvcSeg.

5. Load driver.

5.1. Disable break.
5.2. Copy all INT vectors.
5.3. Parse command line.
5.4. Print filename.
5.5. Load driver using func. 4Bh
5.6. Print load address.

DEVLOAD PROJECT. David Woodhouse. Page 2.
Appendix 3 - Devload Flowchart.

5.7. Get invar pointer.
5.8. Get max sector size.
5.9. Get LASTDRIVE, LastDrUsed.

6. Execute driver.

6.1. Set DS:SI --> DvcSeg:0000.
6.2. Set ES:BX --> device after NUL.
6.3. InstallDevice until no more left.
6.4. Print LASTDRIVE error if necessary.

7. Clear up.

7.1 . Calculate size of driver to keep.
7.2. Offer abort if nothing installed.
7.3. Print LASTDRIVE and LastDrUsed.
7.4. Print number of devices installed.
7.5. Insert new LastDrUsed into invar.
7.6. Print driver keep size.
7.7. If keep size is zero, exit.
7.8. Allocate driver memory required.
7.9. Print INT vectors changed.
7.10. Link from NUL device.
7.11. Put ownership and device name into driver’s arena header.
7.12. Exit program.

DEVLOAD PROJECT. David Woodhouse. Page 3.
Appendix 3 - Devload Flowchart.

INSTALLDEVICE ROUTINE.

1. Store driver addresses.

2. Print CrLf.

3. Make request header.

3.1. Insert next block number.
3.2. Insert ‘INIT’ command.
3.3. Insert default break address = DvcSeg:0000.
3.4. Insert default no blocks in device.
3.5. Insert ptr to command line tail.

4. Call device routines.

5. If character device, increase count of said.

6. Check driver length.

6.1. Get driver length.
6.2. If grown and blocks already installed, error.
6.3. Else if grown and blocks not installed, store new value.

7. Install blocks.

7.1. Check number of units in driver.
7.2. If none, goto 8.
7.3. Zero block number count in this device.
7.4. ES:BP --> new block header.
7.5. DS:BX --> BPB pointer array.
7.6. DS:SI --> next BPB from pointer array.
7.7. Check sector size.
7.8. Check LASTDRIVE.
7.9. Store abs. block number, block number in device.
7.10. Make last block header in chain point to the new one.
7.11. Change pointer to ChainEnd.
7.12. Print new block header address.
7.13. Fill in LASTDRIVE array.
7.14. Finish filling in block header.
7.15. Expand BPB to block header using func. 53h.
7.16. Increase ES:BP by size of block header.
7.17. Increase BlocksDone.
7.18. If blocks left in this device, loop to 7.6.

DEVLOAD PROJECT. David Woodhouse. Page 4.
Appendix 3 - Devload Flowchart.

7.19. Print INIT return status.

8. Link driver.

8.1. Push address of next in file.
8.2. Point new driver to old driver.
8.3. Pop address of next in file.
8.4. Convert segment if necessary.
8.5. Set ZERO flag on whether last in file.
8.6. RETURN.

DEVLOAD PROJECT. David Woodhouse. Page 1.
Appendix 4 - DEVLOAD Source Code.

APPENDIX 4 - DEVLOAD SOURCE CODE.

;......................PROGRAM HEADER FOR PROJECT BUILDER....................

; TITLE DEVLOAD to load device drivers from command line.
; FORMAT EXE
; VERSION 3.0
; CODE 80x86
; OPTIONS /ML
; TIME CHECK
; DATE 12/3/92 - 21/4/93
; AUTHOR David Woodhouse
; (C) 1992, 1993 David Woodhouse.

;EXPLANATION...

; The program first relocates itself to the top of the available memory
; and then loads the driver below itself. If the driver loads happily, it
; is then executed. If it asks for memory to be reserved for it, it is
; linked into the device chains and the program TSRs keeping the required
; amount of memory, otherwise a normal exit occurs.

;.............................ALTERATION LIST................................

;Version 1.0 12/3/92
; Basics, not user-friendly, only supports character devices so far.
; 13/2/92
; Change to using EXEC (4Bh) function to load - now loads .EXE files
; Take length to TSR from device return, not file length.
; Don't TSR if not required.

;Version 1.1 17/3/92
; Complete rewrite of initialisation routine.
; Allows for more than one device per file.
; Help message added.
; EXEC failure now explains error codes, rather than just giving no.
; 19/3/92
; Print error message and exit if version < 4.
; Loads device at PSP+6, not PSP+10h (overlay FCBs and command tail).
; Stack moved down by 8 paras, not truncated to 80h bytes.
; 20/3/92
; Release environment block before TSR.

;Version 2.0 21/3/92
; Use INT 21h, function 53h. Can now load block devices.
; Use segment in break address, don't assume same as driver segment.
; Ask whether to terminate if can't install any blocks.
; Disable ctrl-break.
; 22/3/92
; Check sector size before installing block devices.
; Disable break with INT 1Bh, as well as INT 23h - stops ^C appearing.
; (taken out in v2.1) - causes problems if driver changes it.
; Don't use INT 10h - all output via INT 21h - can be redirected.
; Print drive letter with block header address.
; Print LastDrive message after installing block headers, not before.
; Change program name in arena header to device filename (for MEM.EXE).
; Support for DOS 3 added (now works with at least DOS 3.1 onwards).
; Print driver's load address.

;Version 2.1 24/3/92
; Bug fix - drivers requesting memory offset FFF1 - FFFF now works OK.
; 25/3/92

DEVLOAD PROJECT. David Woodhouse. Page 2.
Appendix 4 - DEVLOAD Source Code.

; Now uses func 60h to expand filename before printing it.
; Bug fix - changing INT 1B lost vector if driver altered it, so don't.
; Display INT vectors changed by driver.
; 26/3/92
; Converts params to upper case before passing to driver, like DOS does.
; Also adds space after filename if no parameters given.
; Change data at end to ?? rather than 00 - smaller .COM file.

;Version 2.2 26/10/92
; When no blocks installed, checks whether INT vectors changed before
; asking whether to terminate. Still not foolproof, but better.
; Cosmetic fix - `$' now comes after CR/LF on `None.' for INT vectors.
; Bug fix - Check all INT vectors (200h words, not 200 words!)

;Version 3.0 11/4/93 - 20/4/93
; Complete rewrite from scratch.
; Only relocate if going to try EXEC - saves losing F3.
; Use path to find driver if not in specified directory.
; Convert to .EXE program.
; Relocate PSP to top of memory as well as code and stack.
; Release environment before requesting memory for driver.
; Don't even attempt to load driver if not enough memory available.
; Use highest memory required return.
; Link drivers in correct order.
; Add /Q (quiet mode) option.
; Disperse comments ad nauseum.
; 21/4/93
; Add /V (verbose mode) option.
; Move lastdrive report to end.
; Move abort request to end.
; Add count of character devices installed.
; Put entry point after LASTBYTE - smaller relocated code.

;..............................IMPROVEMENT IDEAS.............................

; Load into Upper Memory Blocks (like 'DEVICEHIGH='.)
; Work from batch files like CONFIG.SYS.
; Change size of LASTDRIVE array by reallocating.
; Add support for SETVER.EXE.

;.................................DEFINES....................................

STACKLEN equ 200h
SMALLESTDRIVER equ 100h
QuietFlag equ 80h
VerboseFlag equ 40h
AutoFlag equ 20h

;.............................CODE (at last).................................

CSeg segment public byte 'CODE'

 org 0

 assume cs:CSeg, ds:CSeg, es:CSeg

;.............CODE TO BE EXECUTED ONCE RELOCATED TO TOP OF MEMORY............

 ;DS:TopCSeg, ES:TopPSPSeg

 ;Get old PSP segment, store new PSP segment.

relocated: push es
 mov es,PSPSeg
 pop PSPSeg

DEVLOAD PROJECT. David Woodhouse. Page 3.
Appendix 4 - DEVLOAD Source Code.

 ;Push segment of environment.

 ;DS:TopCSeg, ES:PSPSeg

 push es:[002Ch]

 ;Release old PSP segment.

 mov ah,49h
 int 21h
 jnc relPSPok

 ;Failed to release PSP - print error.

 mov dx,offset RelPSPErrMsg
 call PrintError
 mov ah,9
 int 21h
 mov dx,offset CrLfMsg
 mov ah,9
 int 21h

 ;Release environment segment.

 ;DS:TopCSeg, ES:CSeg

relPSPok: pop es
 mov ah,49h
 int 21h
 jnc relenvok

 ;Failed to release environment - print error.

 mov dx,offset RelEnvErrMsg
 call PrintError
 mov ah,9
 int 21h
 mov dx,offset CrLfMsg
 mov ah,9
 int 21h

relenvok: push cs
 pop es

 ;Find out how much memory is available by asking for stupid amounts.

 mov ah,48h
 mov bx,0FFFFh
 int 21h

 ;In MS-DOS version 6 and below, this will always fail, but check
 ;the return status just in case it does give what we asked for.

 jnc grablowok

 ;BX now holds the maximum amount of memory available.
 ;Don't install if less than 4K bytes available.

 cmp bx,SMALLESTDRIVER
 ja sizeok
 mov bx,SMALLESTDRIVER

 ;Attempt to grab memory for driver.

sizeok: mov ah,48h
 int 21h
 jnc grablowok

 ;Failed to grab memory - print error and exit.

DEVLOAD PROJECT. David Woodhouse. Page 4.
Appendix 4 - DEVLOAD Source Code.

 mov dx,offset GrabLoErrMsg
 jmp allocerr

 ;Store segment of device.

grablowok: mov DvcSeg,ax
 mov BlockSize,bx

 ;Disable Ctrl-Break.

 mov dx,offset BreakHandler
 mov ax,2523h
 int 21h

 ;Copy interrupt vectors for later comparison.

 ;DS:TopCSeg, ES:TopCSeg
 xor bx,bx
 mov ds,bx
 ;DS:0000, ES:TopCSeg
 mov si,bx
 mov di,offset IntVectors
 mov cx,200h
 rep movsw

 ;Parse parameters in same way as SYSINIT does.

 mov ds,cs:PSPSeg

 ;DS:TopPSPSeg, ES:TopCSeg

 ;Find end of filename in DI.

 mov di,cs:NamePtr
 add di,cs:NameLen

 ;Find end of command line in BX.

 mov bl,byte ptr ds:[80h]
 add bx,81h

 ;Compare them.

 cmp bx,di
 ja parmsgiven

 ;If they are the same, no parameters were given, so add a space.

 mov byte ptr [di],' '
 inc bx

 ;Append CrLf to line.

parmsgiven: mov word ptr [bx],0A0Dh

 ;Print 'Filename: ' if not in Quiet Mode.

 push cs
 pop ds

 test ModeFlag,QuietFlag
 jnz noprintfname

 mov dx,offset FNameMsg
 mov ah,9
 int 21h

 ;Make filename ASCII$ instead of ASCIIZ for printing.

DEVLOAD PROJECT. David Woodhouse. Page 5.
Appendix 4 - DEVLOAD Source Code.

 mov di,offset NameBuffer
 mov dx,di
 mov cx,80h
 xor al,al
 repnz scasb
 dec di
 mov byte ptr [di],'$'

 ;Print filename.

 int 21h

 ;Restore to ASCIIZ.

 mov byte ptr [di],0

 ;Print CrLf after filename.

 mov dx,offset CrLfMsg
 int 21h

 ;Load driver file into memory.

 ;DS:TopCSeg, ES:TopCSeg

noprintfname: mov dx,offset NameBuffer
 mov bx,offset DvcSeg
 mov ax,4B03h
 int 21h
 jnc loadedok

 ;Print 'EXEC failure'.

 mov dx,offset NotLoadMsg

 ;Restore error code.

fileerr: pop ax

 ;Print error message and number, get offset of cause in DX.

allocerr: call PrintError

 ;Print final message.

prexit: mov ah,9
 int 21h

 ;Exit program.

exit: mov ax,4C00h
 int 21h

;..

 ;DS:TopCSeg, ES:TopCSeg

 ;Check whether to print load address.

loadedok: test ModeFlag,VerboseFlag
 jz noprintladdr

 ;Print 'Load address:'

 mov dx,offset LoadAddrMsg
 mov ah,9
 int 21h

 ;Print segment of driver.

DEVLOAD PROJECT. David Woodhouse. Page 6.
Appendix 4 - DEVLOAD Source Code.

 mov ax,DvcSeg
 call PHWord

 ;Print ':0000'

 mov dx,offset Colon0Msg
 mov ah,9
 int 21h

 ;DS:TopCSeg, ES:TopCSeg

 ;Get pointer to 'invar'

noprintladdr: mov ah,52h
 int 21h

 ;Store for later use.

 mov InvarOfs,bx
 mov InvarSeg,es

 ;DS:TopCSeg, ES:InvarSeg

 ;Fetch LastDrUsed and LastDrive from 'invar'

 mov ax,es:[bx+20h]
 mov word ptr LastDrUsed,ax

 ;Fetch max. sector size from 'invar'

 mov ax,es:[bx+10h]
 mov SecSize,ax

 push es
 pop ds

 ;Trace device chain from 'invar'.

 ;Point DS:DI to first block header.

 mov si,bx

 ;Point to next block header.

notlast: lds si,[si]

 ;Point to pointer within block header to the next one.

 add si,cs:word ptr NextBlHOfs

 ;Loop while not at the end of the chain.

 cmp [si],0FFFFh
 jnz notlast

 ;Point back at beginning of last block header in chain.

 sub si,cs:word ptr NextBlHOfs

 ;Store for later use.

 mov cs:ChainEndOfs,si
 mov cs:ChainEndSeg,ds

 ;DS:DvcSeg, ES:InvarSeg

 ;Point ES:BX to device after NUL device.

 les bx,es:[bx+22h]

DEVLOAD PROJECT. David Woodhouse. Page 7.
Appendix 4 - DEVLOAD Source Code.

 ;Point DS:SI to new device (DvcSeg:0000).

 mov ds,cs:DvcSeg
 xor si,si

 ;DS:DvcSeg, ES:OldDvcSeg

 ;Install all devices in chain.

anoth_dvc: call InstallDevice
 jnz anoth_dvc

 ;Print LASTDRIVE error message if necessary.

 push cs
 pop ds

 cmp [LDrErrMsg],'0'
 jz noldrerr
 mov dx,offset LDrErrMsg
 mov ah,9
 int 21h

 ;Calculate size of driver to keep.

noldrerr: mov ax,BlHEndOfs
 add ax,0Fh
 rcr ax,1
 mov cl,3
 shr ax,cl

 add ax,EndSeg

 sub ax,DvcSeg

 ;Store size of driver to keep.

 push ax

 ;Check whether anything installed, offer abortion if not.

 mov ax,word ptr BlocksDone
 or ax,ax
 jnz somedone

 ;Nothing installed - check whether Auto Mode.

 test ModeFlag,AutoFlag
 jnz somedone

 ;If it didn't want to stay anyway, don't ask.

 pop cx
 push cx
 jcxz somedone

 ;Check whether any INT vectors changed.

 xor di,di
 mov es,di

 ;DS:TopCSeg, ES:0000

 mov si,offset IntVectors
 mov cx,200h
 rep cmpsw
 jnz somedone

 ;Nothing installed, so give option of aborting.

DEVLOAD PROJECT. David Woodhouse. Page 8.
Appendix 4 - DEVLOAD Source Code.

 mov dx,offset AskEndMsg
 mov ah,9
 int 21h

 ;Get response from keyboard.

 mov ah,8
badkey: int 21h

 ;If it's an extended character code, get the second byte and try again.

 or al,al
 jnz realchar
 int 21h
 jmp badkey

 ;If it's valid, act upon it, else loop for another.

realchar: cmp al,'N'
 jz nokill
 cmp al,'n'
 jz nokill
 cmp al,'Y'
 jz kill
 cmp al,'y'
 jnz badkey

 ;Response was yes, so set length required to zero.

kill: pop bx
 xor bx,bx
 push bx

 ;mov bx,DvcSeg
 ;mov EndSeg,bx
 ;xor bx,bx
 ;mov BlHEndOfs,bx

 ;Print the key pressed.

nokill: mov ah,02h
 mov dl,al
 int 21h

 ;Print CrLf afterwards.

 mov dx,offset CrLfMsg
 mov ah,9
 int 21h

 ;Print Lastdrive and LastDrUsed if blocks done and Verbose Mode.

somedone: push cs
 pop ds

 test BlocksDone,0FFh
 jz noprintldrmsg

 test ModeFlag,VerboseFlag
 jz noprintldrmsg

 mov ax,word ptr LastDrUsed

 mov LDMsgA,'A'-1
 mov LDMsgB,'A'-1

 add byte ptr LDMsgA,al
 add byte ptr LDMsgB,ah

DEVLOAD PROJECT. David Woodhouse. Page 9.
Appendix 4 - DEVLOAD Source Code.

 mov dx,offset LastDrMsg
 mov ah,9
 int 21h

 ;If not Quiet Mode, print number of devices installed.

noprintldrmsg: test ModeFlag,QuietFlag
 jnz noprintnuminst

 ;Get driver keep size into CX, don't print installed message if zero.

 pop cx
 push cx
 jcxz noprintnuminst

 ;Print number of blocks installed, if any.

 mov bl,BlocksDone
 or bl,bl
 jz noblocks

 add NumBlInstMsg,bl
 mov dx,offset NumBlInstMsg
 mov ah,9
 int 21h

 mov dx,offset NumInstMsgA
 cmp bl,1
 jnz blnoplural
 inc dx
blnoplural: int 21h

 ;Print number of character devices installed, if any.

noblocks: mov bl,CharsDone
 or bl,bl
 jz noprintnuminst

 add NumChInstMsg,bl
 mov dx,offset NumChInstMsg
 mov ah,9
 int 21h

 mov dx,offset NumInstMsgA
 cmp bl,1
 jnz chnoplural
 inc dx
chnoplural: int 21h

 ;Insert new LastDrUsed into 'invar'.

noprintnuminst: les bx,Invar

 mov al,LastDrUsed
 mov byte ptr es:[bx+20h],al

 ;Restore driver size in paragraphs.

 pop bx

 ;Test whether to print driver size.

 test ModeFlag,VerboseFlag
 jz noprintsize

 ;Print 'Size of driver in paras:'.

 mov dx,offset SizeMsg
 mov ah,9
 int 21h

DEVLOAD PROJECT. David Woodhouse. Page 10.
Appendix 4 - DEVLOAD Source Code.

 mov ax,bx
 call PHWord

 mov dx,offset CrLfMsg
 mov ah,9
 int 21h

noprintsize: or bx,bx
 jnz lengthnotzero

 ;Length of driver is zero, so exit now.

 jmp exit

 ;Check whether it fits in the allocated block.

lengthnotzero: cmp ax,BlockSize
 jna drvrfits
 mov dx,offset TooBigMsg
 mov ah,9
 int 21h

 ;Change memory allocation on lowest block in memory.

drvrfits: mov es,DvcSeg
 mov ah,4Ah
 int 21h
 jnc allocok

 ;Print 'allocation error'.

 mov dx,offset Reduce2ErrMsg
 call PrintError
 mov ah,9
 int 21h
 mov dx,offset Reduce2ErrMsga
 mov ah,9
 int 21h

 ;Check whether to print INT vectors changed.

allocok: test ModeFlag,VerboseFlag
 jz noprintints

 ;Print 'Interrupt vectors changed:'

 mov dx,offset IntChangeMsg
 mov ah,9
 int 21h

 ;Print all INTs changed.

 xor bx,bx
 mov es,bx
 mov di,bx
 mov si,offset IntVectors
 mov cx,200h

 ;Print no comma before the first INT number.

 mov dx,offset CommaMsg-1

 ;Compare INT vectors with copy taken earlier.

loopints: rep cmpsw

 ;If we stopped at the end, leave the loop.

 jcxz lastdiff

DEVLOAD PROJECT. David Woodhouse. Page 11.
Appendix 4 - DEVLOAD Source Code.

 ;Flag that at least one was changed.

 or bl,1

 ;Print 'h, ' between INT numbers.

 mov ah,9
 int 21h

 ;Check whether it was offset or segment that was different.

 mov ax,di
 dec ax
 test ax,2
 jnz notofs

 ;If was the offset, so don't bother checking the segment.

 add di,2
 add si,2
 dec cx

 ;Print interrupt number.

notofs: shr ax,1
 shr ax,1
 call PHByte

 ;After the first one, print 'h, ' before the rest.

 mov dx,offset CommaMsg
 jmp loopints

 ;Print either full stop or 'None.'

lastdiff: mov dx,offset FullStopMsg

 ;Test flag to see whether any were changed.

 or bl,bl
 jnz notnochanges

 ;None were changed, so print 'None.' instead of a full stop.

 mov dx,offset NoneMsg

notnochanges: mov ah,9
 int 21h

 ;DS:TopCSeg, ES:0000

 ;Link from NUL device.

noprintints: les bx,Invar
 add bx,0022h
 mov ax,NewDrvOfs
 mov es:[bx],ax
 mov ax,NewDrvSeg
 mov es:[bx+2],ax

 push cs
 pop es

 ;DS:TopCSeg, ES:TopCSeg

 ;Find last backslash in filename.

 mov di,offset NameBuffer+80h
 mov al,'\'

DEVLOAD PROJECT. David Woodhouse. Page 12.
Appendix 4 - DEVLOAD Source Code.

 std
 mov cx,0080h

 repnz scasb
 cld
 add di,2

 ;Point to arena header of driver segment.

 mov ax,DvcSeg
 dec ax
 mov es,ax

 ;Set driver segment to self-ownership.

 inc ax
 mov word ptr es:[1],ax

 ;DS:TopCSeg, ES:DvcSeg-1

 ;Move name into arena header.

 mov si,di
 mov di,8
 mov cx,8
movname: lodsb
 cmp al,2eh
 jz fill0s
 cmp al,0
 jz fill0s
 stosb
 loop movname
 jmp stayexit

fill0s: xor al,al
 rep stosb

stayexit: mov dx,offset StayingMsg
 jmp prexit

;......................break handler......................................

BreakHandler: iret ;well, that didn't take long!

;.....................PHWord...........................

; IN: AX word to be printed
; OUT: nothing
; LOST: nothing

PHWord: push ax
 xchg al,ah
 call PHByte
 mov al,ah
 call PHByte
 pop ax
 ret

;................PHByte...........

; IN AL byte to printed
; OUT: nothing
; LOST: nothing

PHByte: push ax
 mov ah,al

DEVLOAD PROJECT. David Woodhouse. Page 13.
Appendix 4 - DEVLOAD Source Code.

 shr al,1
 shr al,1
 shr al,1
 shr al,1
 call PHNibble
 mov al,ah
 call PHNibble
 pop ax
 ret

;..............PHNibble................

; IN: AL nibble to be printed
; OUT: nothing
; LOST: nothing

PHNibble: push dx
 push ax
 and al,0Fh
 add al,'0'
 cmp al,'9'
 jna ph1
 add al,'A'-'9'-1
ph1: mov ah,02h
 mov dl,al
 int 21h
 pop ax
 pop dx
 ret

;........................PrintError..

; IN: AX Error message to explain.
; DX Offset of error message.
; DS CSeg
; OUT: DX Offset of error cause message.
; LOST: AX
; BX

 ;Print first message.

PrintError: push ax
 mov ah,9
 int 21h
 pop ax

 ;Print error number.

 call PHWord

 ;If over 0Bh, zero it - (unknown).

 cmp ax,000Bh
 jb notoverB
 xor ax,ax

 ;Look up offset of error message.

notoverB: mov bx,offset ErrTable
 shl ax,1
 add bx,ax
 mov dx,[bx]
 ret

;.............................InstallDevice..................................

; IN: DS:SI address of new driver header
; ES:BX address of old driver header

DEVLOAD PROJECT. David Woodhouse. Page 14.
Appendix 4 - DEVLOAD Source Code.

; OUT: DS:SI address of next driver header
; ES:BX address of new driver header
; ZERO set if last driver in file

 ;Store device addresses.

InstallDevice: mov cs:NewDrvOfs,si
 mov cs:NewDrvSeg,ds
 mov cs:OldDrvOfs,bx
 mov cs:OldDrvSeg,es

 push cs
 pop ds

 ;Print CrLf to keep display tidy.

 ;DS:TopCSeg, ES:OldDvcSeg

 mov dx,offset CrLfMsg
 mov ah,9
 int 21h

 ;Set up request header.

 ;Insert next block device number.

 mov al,LastDrUsed
 mov byte ptr [RqHdr+16h],al

 ;Insert command number zero - INIT.

 mov byte ptr [RqHdr+2],0

 ;Insert default end of driver address = start of driver.

 mov ax,DvcSeg
 mov word ptr [RqHdr+10h],ax
 mov word ptr [RqHdr+0Eh],0

 ;Insert default no blocks in driver.

 mov byte ptr [RqHdr+0Dh],0

 ;Insert pointer to copy of command line.

 mov ax,PSPSeg
 mov word ptr [RqHdr+14h],ax
 mov ax,NamePtr
 mov word ptr [RqHdr+12h],ax

 push cs
 pop es

 ;DS:TopCSeg, ES:TopCSeg

 ;Store registers (don't count on driver to keep them).

 push si

 ;Set ES:BX to point to RqHdr (for DvcStrat call.)

 mov bx,offset RqHdr

 ;Set up return addresses on stack.

 mov ds,cs:NewDrvSeg

 ;DS:NewDrvSeg, ES:TopCSeg

DEVLOAD PROJECT. David Woodhouse. Page 15.
Appendix 4 - DEVLOAD Source Code.

 ;Push far address of DEVLOAD.

 push cs
 mov ax,offset after_int
 push ax

 ;Push far address of dvc_int.

 push ds
 push word ptr ds:[si+8]

 ;Push far address of dvc_strat

 push ds
 push word ptr ds:[si+6]

 ;Pass control to dvc_strat, which RETFs to dvc_int, which
 ;in turn RETFs to after_int.

BREAKPOINT2: retf

 ;Restore registers.

after_int: pop si

 ;Increase count of character devices if it is one.

 test byte ptr ds:[si+5],80h
 push cs
 pop ds
 jz notchardev
 inc CharsDone

 ;Print CrLf after driver.

notchardev: mov dx,offset CrLfMsg
 mov ah,9
 int 21h

 ;Get offset of end of driver.

 mov ax,word ptr ds:[RqHdr+0Eh]

 ;Convert to paragraphs (rounded up.)

 add ax,0Fh
 rcr ax,1
 mov cl,3
 shr ax,cl

 ;Add segment of end of driver.

 add ax,word ptr ds:[RqHdr+10h]

 ;Compare with previous value of EndSeg

 cmp ax,EndSeg
 jb endset

 ;EndSeg has increased - this is only a problem if blocks are
 ;already installed.

 test BlocksDone,0FFh
 jz oktogrow

 ;Some block headers are already at EndSeg - can't change it now.

 mov dx,offset BadIncMsg
 mov ah,9

DEVLOAD PROJECT. David Woodhouse. Page 16.
Appendix 4 - DEVLOAD Source Code.

 int 21h
 jmp endset

 ;No block headers done yet - change EndSeg.

oktogrow: mov EndSeg,ax

 ;DS:TopCSeg

 ;Check number of units in driver. Skip if none.

endset: mov ch,[RqHdr+0Dh]
 or ch,ch
 jnz yesunits

 ;No units in this device, so skip the next section.

 jmp nounits

 ;Zero count of block number in this device.

yesunits: xor cl,cl

 ;Point ES:BP to new block header location.

 les bp,BlHEnd

 ;Point DS:BX to BPB pointer array from driver.

 lds bx,dword ptr [RqHdr+12h]

 ;Point DS:SI to next BPB and increase pointer.

nextblk: mov si,[bx]
 inc bx
 inc bx

 ;Check sector size.

 mov ax,[si]
 cmp ax,cs:[SecSize]
 jna secsizeok
 jmp secsizeerr

secsizeok: mov al,cs:LastDrUsed
 mov cs:[BlHdrMsgA],'A'
 add cs:[BlHdrMsgA],al

 ;Check lastdrive.

 cmp al,cs:LastDrive
 jnz ldrok
 jmp ldrerr

 ;Increase LastDrUsed.

ldrok: inc cs:LastDrUsed

 ;Store absolute block no. and block no. in device.

 mov ah,cl
 inc cl
 mov es:[bp],ax

 ;Store pointer to BPB ptr array.

 push ds
 push bx

 ;Point DS:BX to last block header in chain.

DEVLOAD PROJECT. David Woodhouse. Page 17.
Appendix 4 - DEVLOAD Source Code.

 lds bx,cs:ChainEnd

 ;Make it point to the new one.

 add bx,cs:word ptr NextBlHOfs
 mov [bx],bp
 mov [bx+2],es
 sub bx,cs:word ptr NextBlHOfs

 push cs
 pop ds

 ;Store new pointer to end of block header chain.

 mov ChainEndOfs,bp
 mov ChainEndSeg,es

 ;Print address of new block header if Verbose Mode.

 test ModeFlag,VerboseFlag
 jz noprintblhmsg

 mov dx,offset BlHdrMsg
 mov ah,9
 int 21h

 mov ax,es
 call PHWord
 mov ah,02h
 mov dl,3ah
 int 21h
 mov ax,bp
 call PHWord

 mov dx,offset CrLfMsg
 mov ah,9
 int 21h

 ;Get pointer to LASTDRIVE array.

noprintblhmsg: lds bx,Invar
 lds bx,[bx+16h]

 ;Calculate offset in array of entry for this drive.

 mov al,cs:LastDrUsed
 dec al
 mov ah,cs:LDrSize
 mul ah
 add bx,ax

 ;Insert 'valid' flag.

 mov byte ptr [bx+44h],40h

 ;Insert pointer to block header for this drive.

 mov word ptr [bx+45h],bp
 mov word ptr [bx+47h],es

 ;Restore pointer to BPB pointer array.

 pop bx
 pop ds

 ;Insert pointer to device into block header.

 mov ax,cs:NewDrvOfs
 add bp,cs:word ptr NextBlHOfs

DEVLOAD PROJECT. David Woodhouse. Page 18.
Appendix 4 - DEVLOAD Source Code.

 mov es:[bp-6],ax
 mov ax,cs:NewDrvSeg
 mov es:[bp-4],ax

 ;Insert 'BPB needs rebuilding' flag into block header.

 mov byte ptr es:[bp-1],0FFh

 ;Insert 'End of chain' into block header.

 mov es:[bp],0FFFFh
 sub bp,cs:word ptr NextBlHOfs

 ;Expand BPB into block header.

 mov ah,53h ;hello woody y doesnt this work
 int 21h

 ;Point ES:BP to location of next block header.

 add bp,cs:BlHSize

 ;Store location of next block header.

 mov cs:BlHEndOfs,bp

 ;Increase count of blocks installed.

 inc cs:BlocksDone

 ;Loop if more blocks in this device to install.

nxtblkchk: cmp cl,ch
 jz nounits
 jmp nextblk

 ;Sector size too big - print error and fail to install this block.

secsizeerr: push cs
 pop ds
 mov dx,offset SSizeErrMsg
 mov ah,9
 int 21h
 inc cl
 jmp nxtblkchk

 ;Lastdrive too small - signal error and don't install any more.

ldrerr: push cs
 pop ds
 sub ch,cl
 add [LDrErrMsg],ch

 ;Finished installing units, or was none to install.

nounits: push cs
 pop ds

 ;Print init return status if not Verbose Mode.

 test ModeFlag,VerboseFlag
 jz noprintinitret

 mov dx,offset InitRetMsg
 mov ah,9
 int 21h
 mov ax,word ptr [RqHdr+3]
 call PHWord

 mov dx,offset CrLfMsg

DEVLOAD PROJECT. David Woodhouse. Page 19.
Appendix 4 - DEVLOAD Source Code.

 mov ah,9
 int 21h

 ;DS:TopCSeg

 ;Set up pointers.

noprintinitret: les bx,OldDrv
 lds si,NewDrv

 ;DS:NewDvcSeg, ES:OldDvcSeg

 ;Find location of next driver in file.

 mov ax,ds:[si+2]
 push ax

 mov ax,ds:[si]
 push ax

 ;Link NewDrv to OldDrv.

 mov ds:[si],bx
 mov ds:[si+2],es

 ;Restore next driver in file address to AX:SI

 pop si
 pop ax

 ;Point ES:BX to just installed driver.

 les bx,cs:NewDrv

 ;Check whether to change segment or use same seg for next driver.

 cmp ax,0FFFFh
 jz nosegchange

 ;Segment is different - add value onto old segment and put into DS.

 mov cx,ds
 add cx,ax
 mov ds,cx

 ;Set zero flag on whether this is the last driver in the file.

nosegchange: cmp si,0FFFFh
 ret

;.............................TEXT MESSAGES..................................

StayingMsg db 'Driver staying resident.',13,10,24h
FNameMsg db 'Filename : $'
LoadAddrMsg db 'Load address : $'
InitRetMsg db 'Init function return status : $'
SizeMsg db 'Size of driver (paragraphs) : $'
IntChangeMsg db 'Interrupt vectors changed : $'
NoneMsg db 'None.',13,10,24h
CommaMsg db 'h, $'
FullStopMsg db 'h.',13,10,24h
Colon0Msg db ':'
NotStayMsg db '0000'
CrLfMsg db 13,10,24h
LastDrMsg db 13,10,'Last drive in use : '
LDMsgA db 'A:',13,10,'Last drive avail. : '
LDMsgB db 'A:',13,10,24h
BlHdrMsg db 'Block header for drive '
BlHdrMsgA db 'A: at $'
NumBlInstMsg db '0 block$'

DEVLOAD PROJECT. David Woodhouse. Page 20.
Appendix 4 - DEVLOAD Source Code.

NumChInstMsg db '0 character device$'
NumInstMsgA db 's installed.',13,10,24h
LDrErrMsg db '0 block(s) not installed - '
 db 'LASTDRIVE= parameter in CONFIG.SYS too small.',13,10,24h
AskEndMsg db 13,10,'No blocks or INTs installed - terminate (Y/N) ? $'
SSizeErrMsg db 'Block not installed - sector size too large.',13,10,24h

 ;Error messages.

ReduceErrMsg db "Error: Can't reduce memory allocation ($"
RelEnvErrMsg db "Error: Can't release environment ($"
RelPSPErrMsg db "Error: Can't release original segment ($"
GrabHiErrMsg db "Error: Can't grab enough memory to relocate ($"
GrabLoErrMsg db "Error: Can't grab memory to load driver ($"
Reduce2ErrMsg db 13,10,"Error: Can't change final memory allocation ($"
Reduce2ErrMsga db " Have installed driver; continuing anyway.",13,10
 db " Rebooting your system is recommended.",13,10,10,24h
BadIncMsg db 'Error: End of driver address returned has increased after'
 db 13,10,' block header(s) installed.',13,10
 db ' Increased request will be ignored.',13,10,24h
NotLoadMsg db 13,10,'Error: EXEC failed ($'
TooBigMsg db 13,10,'Error: Driver requested more memory than is '
 db 'available.',13,10,24h

 ;Error cause messages.

Err2 db 'h - File not found)',13,10,24h
Err3 db "h - Directory doesn't exist)",13,10,24h
Err5 db 'h - Access denied)',13,10,24h
Err7 db 'h - Arena header corrupted)',13,10,24h
Err8 db 'h - Out of memory)',13,10,24h
Err9 db 'h - Wrong segment passed!)',13,10
 db ' PLEASE INFORM THE AUTHOR!',13,10,24h
ErrB db 'h - Format invalid)',13,10,24h
ErrUnknown db 'h'
BadSwitchMsg2 db ')',13,10,24h

ErrTable dw ErrUnknown
 dw ErrUnknown
 dw Err2
 dw Err3
 dw ErrUnknown
 dw Err5
 dw ErrUnknown
 dw Err7
 dw Err8
 dw Err9
 dw ErrUnknown
 dw ErrB

;.............................PROGRAM DATA...................................

LDrSize db 58h,0 ;size of block in LastDrive array.
BlHSize dw 0021h ;size in paras of parameter block.
NextBlHOfs db 19h,0 ;offset in parameter block of ptr to next one.

BlocksDone db 00 ;no. of blocks installed.
CharsDone db 00 ;no. of character devices installed.

DvcSeg dw ? ;parameter block for EXEC function.
 dw 0000 ;i.e. segment, relocation factor.

ModeFlag db 00

BlHEnd label dword
BlHEndOfs dw 0000
EndSeg dw ? ;segment, end of required memory.

PSPSeg dw ?

DEVLOAD PROJECT. David Woodhouse. Page 21.
Appendix 4 - DEVLOAD Source Code.

PathPtr dd 0

NameBuffer db 80h dup(?)

LastDrUsed db ?
LastDrive db ?

OldAllocStrat dw ?
BlockSize dw ?

NamePtr dw ? ;pointer to start of name.
NameLen dw ?

Invar label dword
InvarOfs dw ?
InvarSeg dw ?

ChainEnd label dword
ChainEndOfs dw ? ;last device parameter block in chain.
ChainEndSeg dw ?

SecSize dw ?

NewDrv label dword
NewDrvOfs dw ? ;storage for InstallDevice routine.
NewDrvSeg dw ?

OldDrv label dword
OldDrvOfs dw ?
OldDrvSeg dw ?

RqHdr db 20h dup (?)

IntVectors dw 200h dup (?) ;storage for interrupt vectors,
 ;for checking whether they've changed.

 ;Marker to signal last byte that needs relocation.

LASTBYTE equ $

;.................DATA WHICH ISN'T NEEDED AFTER RELOCATION...................

SignOnMsg db 'DEVLOAD.EXE v3.0 (C) 1992, 1993 David Woodhouse.',13,10
 db ' Loads device drivers from the command line.',13,10,10,24h

HelpMsg1 db 'Usage: DEVLOAD [<switches>] <filename> [<params>]',13,10
 db 'Emulates device=<filename> [<params>] in CONFIG.SYS',13,10
 db 10,'Switches:',13,10
 db ' /A - automatic mode (no abortion).',13,10
 db ' /? /H - display this help message.',13,10
 db ' /Q - quiet mode.',13,10
 db ' /V - verbose mode.',13,10
 db 10,'Not supported by DR-DOS or MS-DOS before 3.00',13,10,10
 db 'Breakpoints for debugging drivers -',13,10
 db 'Relocation RETF : $'
HelpMsg2 db 13,10,'Execution RETF : $'

BadSwitchMsg db 'Error: Bad switch ($'
NoFileMsg db 'Error: No filename given. Use DEVLOAD /? for instructions.'
 db 13,10,24h
FileNoExistMsg db "Error: Can't find file ($"
BadVerMsg db 'Error: This program uses version-specific information, and'
 db 13,10,' only supports MS-DOS versions 3 to 6.'
 db 13,10,24h

;.........MAIN PROGRAM ENTRY POINT - SITUATE ABOVE LASTBYTE BECAUSE..........
;......IT DOESN'T NEED TO BE KEPT WHEN RELOCATING TO THE TOP OF MEMORY.......

DEVLOAD PROJECT. David Woodhouse. Page 22.
Appendix 4 - DEVLOAD Source Code.

 ;Set up segment registers.

Main: push cs
 pop ds
 push cs
 pop es
 cld

 ;Get PSP segment.

 mov ah,62h
 int 21h
 mov cs:PSPSeg,bx

 ;Print sign on message.

 mov dx,offset SignOnMsg
 mov ah,9
 int 21h

 ;Check DOS version.

 mov ax,3000h
 int 21h
 cmp al,3
 ja okver
 jz ver3

 ;Version before 3.0, so print error and exit.

 mov dx,offset BadVerMsg
 jmp prexit

 ;Version 3.x, so change variables to correct values.

ver3: mov LDrSize,51h
 mov byte ptr BlHSize,20h
 mov NextBlHOfs,18h

 ;Check command line.

okver: mov ds,PSPSeg
 xor bh,bh
 mov bl,byte ptr ds:[80h]
 or bx,bx
 jnz cmdlineexists

 ;No parameters given - print error and exit.

nofilename: mov dx,offset NoFileMsg
 push cs
 pop ds
 jmp prexit

 ;Command line exists - convert to all upper case.

cmdlineexists: mov si,0081h
 mov cx,bx
toupperloop: lodsb
 cmp al,'a'
 jb notlower
 cmp al,'z'
 ja notlower
 xor al,20h
 mov [si-1],al
notlower: loop toupperloop

 ;Check whether filename present.

DEVLOAD PROJECT. David Woodhouse. Page 23.
Appendix 4 - DEVLOAD Source Code.

 mov si,0081h
 add bx,si

 ;DS:SI--> Start of command line.
 ;DS:BX--> End of command line.

getloop1: lodsb

 ;If passed end of command line, exit loop.

 cmp si,bx
 ja nofilename

 ;Loop while whitespace.

 cmp al,' '
 jz getloop1
 cmp al,9
 jz getloop1

 ;Found non-whitespace, point back at it.

 dec si

 ;DS:SI --> first non-whitespace char on command line.

 ;Get current switch char (usually '/').

 mov ax,3700h
 int 21h

 ;Check whether first char on command line is a switch.

 cmp [si],dl
 jz isswitch
 jmp noswitch

 ;Load switch and check it.

isswitch: lodsw
 cmp ah,'?'
 jz help
 cmp ah,'H'
 jz help
 cmp ah,'Q'
 jz quiet
 cmp ah,'A'
 jz auto
 cmp ah,'V'
 jz verbose

 ;Unrecognised switch - print error and exit.

unknownswitch: push ax

 push cs
 pop ds

 mov dx,offset BadSwitchMsg
 mov ah,9
 int 21h

 pop dx
 mov ah,2
 int 21h
 mov dl,dh
 int 21h

 mov dx,offset BadSwitchMsg2
 jmp prexit

DEVLOAD PROJECT. David Woodhouse. Page 24.
Appendix 4 - DEVLOAD Source Code.

 ;Print help message.

help: push cs
 pop ds

 mov dx,offset HelpMsg1
 mov ah,9
 int 21h
 mov ax,offset BREAKPOINT1
 call PHWord
 mov dx,offset HelpMsg2
 mov ah,9
 int 21h
 mov ax,offset BREAKPOINT2
 call PHWord
 mov dx,offset CrLfMsg
 jmp prexit

 ;Set verbose mode flag.

verbose: or cs:ModeFlag,VerboseFlag
 and cs:ModeFlag,not QuietFlag
 jmp switchloop

 ;Set automatic mode flag.

auto: or cs:ModeFlag,AutoFlag
 jmp switchloop

 ;Set quiet mode flag.

quiet: or cs:ModeFlag,QuietFlag
 and cs:ModeFlag,not VerboseFlag

 ;Skip to next space.

switchloop: lodsb
 cmp si,bx
 jna switchloop1
 jmp nofilename

switchloop1: cmp al,9
 jz outswitchloop
 cmp al,' '
 jnz switchloop

 ;Point back at first space and go back to getloop1 to skip
 ;to either next switch or to filename.

outswitchloop: dec si
 jmp getloop1

 ;Store pointer to start of pathname.

noswitch: push si
 mov bp,si

 ;Find pointer to actual 8-char filename and end of pathname.

getloop2: lodsb
 cmp al,'\'
 jz backsl
 cmp al,'/'
 jnz nobacksl

 ;Move pointer to after backslash into BP.

backsl: mov bp,si

DEVLOAD PROJECT. David Woodhouse. Page 25.
Appendix 4 - DEVLOAD Source Code.

 ;Break out of loop if space, tab, CR or LF found.

nobacksl: cmp al,' '
 jz outloop2
 cmp al,9
 jz outloop2
 cmp al,13
 jz outloop2
 cmp al,10
 jz outloop2

 ;Check whether end of command line reached. Loop if not.

 cmp si,bx
 jna getloop2

 ;DS:SI-2 --> last char of pathname.
 ;DS:BP --> first char in filename.

 ;Calculate length of filename.

outloop2: mov es:NamePtr,bp
 dec si
 mov cx,si
 sub si,bp
 mov es:NameLen,si

 ;Restore pointer to start of pathname.

 pop si

 ;Check whether file specified contains path.

 cmp si,bp
 jz notpathname

 ;Set PathPtr to point to zero - simulate no PATHs left.

 mov word ptr es:PathPtr,offset DvcSeg+2
 mov word ptr es:PathPtr+2,cs

 ;Start with default directory.

notpathname: sub cx,si
 mov di,offset NameBuffer

 ;Use default directory or one specified first time, not PATH.

 jmp entrypoint

;..

 ;Filename doesn't exist as specified - try using PATH.

 ;Check whether we've already got a pointer to PATH.

allpathloop: lds si,PathPtr
 or si,si
 jnz pathfound

 ;Not yet, so find PATH segment.

 mov ds,cs:PSPSeg
 mov bx,word ptr ds:[002Ch]

 ;Check whether it exists.

 or bx,bx
 jnz envsegexists

DEVLOAD PROJECT. David Woodhouse. Page 26.
Appendix 4 - DEVLOAD Source Code.

 ;No more PATH items or no PATH segment, so print error and exit.

filenoexist: push cs
 pop ds
 mov dx,offset FileNoExistMsg
 jmp fileerr

 ;Store PATH segment in local pointer.

envsegexists: mov ds,bx
 mov word ptr cs:PathPtr+2,bx

 ;Scan environment for 'PATH='

envloop1: lodsb
 cmp al,0
 jz filenoexist
 cmp al,'P'
 jnz nextenvvar1
 lodsb
 cmp al,'A'
 jnz nextenvvar1
 lodsb
 cmp al,'T'
 jnz nextenvvar1
 lodsb
 cmp al,'H'
 jnz nextenvvar1
 lodsb
 cmp al,'='
 jnz nextenvvar1
 jmp pathfound

 ;Not 'PATH=', so skip to next environment variable.

nextenvvar: lodsb
nextenvvar1: or al,al
 jnz nextenvvar
 jmp envloop1

 ;Store file error message.

pathfound: push ax

 ;Skip spaces at start of this PATH item.

pathfoundloop: lodsb
 cmp al,' '
 jz pathfoundloop
 cmp al,9
 jz pathfoundloop

 ;DS:SI-1 --> first non-whitespace in PATH item.

 ;If we've reached the end of the PATH statement, error and exit.

 cmp al,0
 jz filenoexist

 ;Forget file error message - we'll try again.

 add sp,2

 ;Store start of this PATH item + 1.

 push si

 ;Find end of this PATH item.

pathloop1: lodsb

DEVLOAD PROJECT. David Woodhouse. Page 27.
Appendix 4 - DEVLOAD Source Code.

 cmp al,0
 jz endpath
 cmp al,';'
 jnz pathloop1

 ;Store start of next PATH item.

endpath: mov word ptr cs:PathPtr,si

 ;If last one, point back at the terminating NULL.

 or al,al
 jnz ismorepaths
 dec word ptr cs:PathPtr

 ;Calculate length of this PATH item.

ismorepaths: mov cx,si
 pop si
 sub cx,si
 dec si

 ;Copy PATH item to NameBuffer.

 mov di,offset NameBuffer
 rep movsb

 ;Add backslash if necessary.

 push cs
 pop ds

 cmp byte ptr [di-1],'\'
 jz alreadybacksl
 mov al,'\'
 stosb

 ;Copy filename after PATH item.

alreadybacksl: mov si,NamePtr
 mov cx,NameLen

 mov ds,PSPSeg

entrypoint: rep movsb

 ;Store terminating NULL.

 xor al,al
 stosb

 ;Check whether file exists by attempting to get attributes.

 push cs
 pop ds

 mov dx,offset NameBuffer
 mov ax,4300h
 int 21h
 jnc okfilename
 jmp allpathloop

 ;File exists - expand filename using function 60h.

okfilename: mov si,offset NameBuffer
 mov di,si
 mov ah,60h
 int 21h

 ;Get old allocation strategy.

DEVLOAD PROJECT. David Woodhouse. Page 28.
Appendix 4 - DEVLOAD Source Code.

 mov ax,5800h
 int 21h
 mov OldAllocStrat,ax

 ;Reduce main allocation.

 ;DS:CSeg, ES:CSeg

 mov bx,offset LASTBYTE+10Fh
 add bx,offset STACKLEN
 mov cl,4
 shr bx,cl
 mov cx,bx
 mov es,PSPSeg
 mov ah,4ah
 int 21h
 jnc reduceok

 ;Failed to reduce memory allocation, so print error and exit.

 mov dx,offset ReduceErrMsg
 jmp allocerr

 ;Set allocation strategy to highest fit.

reduceok: mov ax,5801h
 mov bx,2
 int 21h

 ;Request enough at top of mem for PSP + DEVLOAD + STACK.

 mov bx,cx
 mov ah,48h
 int 21h
 pushf
 mov es,ax

 ;Reset allocation strategy to old value.

 ;DS:CSeg, ES:TopPSPSeg

 mov ax,5801h
 mov bx,OldAllocStrat
 int 21h

 ;Check whether grabbed memory OK.

 popf
 jnc nograbhierr

 ;Failed to grab memory, so print error and exit.

 mov dx,offset GrabHiErrMsg
 jmp allocerr

 ;Make new PSP at top of memory.

 ;DS:CSeg, ES:TopPSPSeg

nograbhierr: mov ds,PSPSeg
 mov si,word ptr [2]
 mov dx,es
 mov ah,55h
 int 21h

 ;Fix parent PSP record in new PSP.

 mov ax,ds:[16h]
 mov es:[16h],ax

DEVLOAD PROJECT. David Woodhouse. Page 29.
Appendix 4 - DEVLOAD Source Code.

 ;Move program to top of memory.

 mov cx,offset LASTBYTE+8Fh
 and cx,0FFF0h
 shr cx,1
 mov di,80h
 mov si,di
 rep movsw

 ;Make segment at top of memory self-owned.

 push cs
 pop ds

 mov ax,es
 dec ax
 mov ds,ax
 mov word ptr ds:[1],es

 push cs
 pop ds

 ;Calculate location of stack at top of memory.

 mov bx,offset LASTBYTE+10Fh
 mov cl,4
 shr bx,cl
 mov ax,es
 add ax,bx

 ;Change to stack at top of memory.

 mov ss,ax

 ;Make PSP at top of memory current.

 mov bx,es
 mov ah,50h
 int 21h

 ;Transfer control to top of memory via RETF.

 mov ax,es
 add ax,10h
 mov ds,ax
 push ax
 mov ax,offset relocated
 push ax
BREAKPOINT1: retf

CSeg ends

SSeg segment stack para 'STACK'

 org 0

 db STACKLEN dup (?)

SSeg ends

 end Main

DEVLOAD PROJECT. David Woodhouse. Page 1.
Appendix 5 - NETLIST Source Code.

APPENDIX 5 - NETLIST SOURCE CODE.

#include <stdio.h>
#include <string.h>
#include <dos.h>

void Disconnect (char *devname);
void ShowConnections();
void ShowUse();
void Connect (char *devname, char *extname, char *password);

struct REGPACK regs;
char localname[16];
char netname[128];

void main(int argc, char **argv)
 {

 printf ("NETLIST.EXE v1.2 (C) 1992 David Woodhouse.\n\n");

 regs.r_ax=0x5e00; /* get local machine name */
 regs.r_dx=(unsigned)netname;
 regs.r_ds=FP_SEG(netname);

 intr (0x21,®s);

 if (regs.r_flags&1) /* if carry set */
 printf ("\007Error: MS-Net not running on this system.\n");
 else
 {
 if (argc<2)
 ShowConnections();
 else
 if (argc<3 || !strcmp (argv[1],"/?"))
 {
 ShowUse();
 ShowConnections();
 }
 else
 if (!stricmp (argv[2],"/d"))
 Disconnect (argv[1]);
 else
 if (!stricmp (argv[1],"/d"))
 Disconnect (argv[2]);
 else
 Connect (argv[1],argv[2],argv[3]);

 }

 }

/* ShowConnections() - Show all net redirections */

void ShowConnections()
 {
 int count=0;

 printf ("Local machine name: %s\n\n"
 "Network connections:\n Local name Network name\n"
 ,netname);

 regs.r_ax=0x5f02; /* get redirection entry #BX */
 regs.r_es=FP_SEG(netname);
 regs.r_di=(unsigned)netname;
 regs.r_si=(unsigned)localname;
 regs.r_bx=0;

DEVLOAD PROJECT. David Woodhouse. Page 2.
Appendix 5 - NETLIST Source Code.

 intr (0x21,®s);

 do
 {
 printf ("%16s %s\n",localname,netname);
 regs.r_ax=0x5f02;
 regs.r_bx=++count;
 intr (0x21, ®s);
 }
 while (!(regs.r_flags&1)); /* while carry not set */

 }

void ShowUse()
 {
 printf (
 "Use: NETLIST <localname> /D Disconnect device\n"
 " NETLIST <localname> <netname> [<password>] Attach device\n"
 " NETLIST List net devices\n"
 " NETLIST /? Display this list\n\n");
 }

void Disconnect(char *devname)
 {
 regs.r_ax=0x5f04;
 regs.r_si=(unsigned)devname;
 regs.r_ds=FP_SEG(devname);

 strupr (devname);

 intr (0x21,®s);
 if (regs.r_flags&1)
 {
 /* carry set - error */
 printf (" Error disconnecting %s ",devname);

 switch (regs.r_ax) /* holds error code */
 {
 case 15:
 printf ("Device not connected.\n");
 break;

 default:
 printf ("No. %2X\n",regs.r_ax);
 }
 }
 else
 {
 if (devname[1]==':')
 printf ("Drive");
 else
 printf ("Device");
 printf(" %s disconnected.\n",devname);
 }
 }

void Connect (char *devname, char *extname, char *password)
 {
 strupr (devname);
 strupr (extname);

 if (password==NULL)
 password="\0";
 else
 strupr (password);

 regs.r_bx=(devname[1]==':')?4:3; /* set printer/drive flag in BL */

DEVLOAD PROJECT. David Woodhouse. Page 3.
Appendix 5 - NETLIST Source Code.

 regs.r_cx=3; /* arbitrary parameter - why not 3? */
 regs.r_ax=0x5f03;
 regs.r_ds=FP_SEG(devname);
 regs.r_si=(unsigned)devname;
 regs.r_es=FP_SEG(netname);
 regs.r_di=(unsigned)netname;

 sprintf(netname, "%s%c%s",extname, '\0', password);

 intr (0x21, ®s);
 if (regs.r_flags&1)
 {
 /* carry set - error */
 printf (" Error connecting %s to %s -\n",devname, extname);

 switch (regs.r_ax)
 {
 case 0x35:
 printf ("Network path not found.\n");
 break;

 case 0x56:
 printf ("Access denied.\n");
 break;

 case 0x47:
 printf ("Server closed.\n");
 break;

 case 0x55:
 if (devname[1]==':')
 printf ("Drive");
 else
 printf ("Device");
 printf (" in use.\n");
 break;

 default:
 printf ("No. %.2X\n",regs.r_ax);
 }
 }
 else
 {
 if (regs.r_bx==3)
 printf ("Device");
 else
 printf ("Drive");

 printf (" %s connected to %s\n",devname,extname);
 }
 }

DEVLOAD PROJECT. David Woodhouse. Page 1.
Appendix 6 - REDIR Source Code.

APPENDIX 6 - REDIR SOURCE CODE.

; Catch network redirection.
;AMENDMENTS:
;v1.0 Early Feb. '92
; Quickly knocked up to see whether it works or not.

;v1.1 20/2/92
; Pointer to data buffer included behind INT 21h vector so that REDIRSHW
; can read it, rather than having to use SYMDEB. Message added.

;v1.2 11/3/92
; General cleanup, i.e. exit via INT 21h function 31h, improved buffer
; control, etc.

cseg segment para public 'code'

 assume cs:cseg, ds:cseg, es:cseg, ss:nothing

 mov ax,3521h
 int 21h ; get int 21 vector
 push cs
 pop ds
 mov dx,offset Message
 mov ah,9 ; print message
 int 21h
 mov word ptr oldvectseg,es
 mov word ptr oldvect,bx ; store at JMPF instruction
 mov dx,offset newhandler
 mov ax,2521h ; set int 21 vector
 cli
 int 21h
 sti
 mov dx,offset LASTBYTE
 shr dx,1 ;convert to paragraphs
 shr dx,1
 shr dx,1
 shr dx,1
 add dx,1 ;don't lose fraction
 mov ax,3100h
 int 21h ; tsr

Message: db 'REDIR.EXE v1.2 (C) 1992 David Woodhouse',13,10
 db 'Catches network redirections.',13,10
 db 'Now installed. Use REDIRSHW to list redirections.',13,10,'$'

 dw buffer ; data for REDIRSHW
bufptr: dw buffer
idmsg: db '(C)DW',0
newhandler: pushf
 cmp ax,5f03h
 jnz goback ; not a redirect command

 push ax
 push cx
 push si
 push ds
 push di
 push es

 push cs
 pop es
 mov di,word ptr cs:bufptr ; point to buffer

 cmp di,offset buffer+0f80h
 ja bufferfull

DEVLOAD PROJECT. David Woodhouse. Page 2.
Appendix 6 - REDIR Source Code.

loop1: lodsb ; store localname
 stosb
 or al,al
 jnz loop1

 pop ds
 pop si
 push si
 push ds

loop2: lodsb
 stosb
 or al,al
 jnz loop2

loop3: lodsb
 stosb
 or al,al
 jnz loop3 ; store netname+password

 mov word ptr cs:bufptr,di

bufferfull: pop es
 pop di
 pop ds
 pop si
 pop cx
 pop ax

goback: popf

 db 0eah ; JMPF
oldvect: dw 0
oldvectseg: dw 0

buffer: db 1000h dup (0) ;Shouldn't actually do this -
LASTBYTE db 0 ;LASTBYTE equ $+1000h would be
 ;better, but I can't be
 ;bothered to check whether it
 ;would actually work.
 ; DW v1.2
cseg ends
 end

DEVLOAD PROJECT. David Woodhouse. Page 1.
Appendix 7 - REDIRSHW Source Code.

APPENDIX 7 - REDIRSHW SOURCE CODE.

#include <string.h>
#include <dos.h>
#include <stdio.h>

int main ()
 {
 char far *int21;
 char far *bufend;
 unsigned seg,ofs;

 printf ("REDIRSHW.EXE (C) 1992 David Woodhouse\n"
 "Shows redirections caught by REDIR.EXE\n");

 int21=(char far *)getvect(0x21);

 if (strcmp(int21-6,(char far *)"(C)DW"))
 {
 printf ("Error: REDIR.EXE not first in INT 21 chain.\n");
 exit (1);
 }
 else
 {
 seg=FP_SEG(int21);
 ofs=*(unsigned far *)(int21-10);
 bufend=(char far *)MK_FP(seg,*(int far *)(int21-8));
 int21=MK_FP(seg,ofs);

 while (int21<bufend)
 {
 int21+=printf("%Fs ",int21);
 int21+=printf("%Fs ",int21);
 int21+=printf("%Fs\n",int21);
 }
 }
 }

DEVLOAD PROJECT. David Woodhouse. Page 1.
Appendix 8 - MYSHELL Source Code.

APPENDIX 8 - MYSHELL SOURCE CODE.

#include <process.h>
#include <stdio.h>
#include <string.h>
#include <dos.h>

struct REGPACK regs;

void Connect (char *devname, char *netname);

void main()
 {
 int tries=0;

 printf ("\n\nNetwork entry for David Woodhouse. (C) 1992\n");
 printf ("Fixed 21/2/92.\n");
 while (tries++<3 &&
 stricmp(getpass("This grants access to my own directories. Type password:"),"WOODY"))
 {
 printf ("Sorry - Access Denied. Try again.\n\n");
 }
 if (tries==3) __emit__(0xea,0x00,0x00,0xff,0xff); /* boot */

 Connect ("N:","\\\\SERVERA\\49133088""\0""43201990");
 Connect ("P:","\\\\SERVERA\\PUBLIC""\0""OBLONGAT");
 Connect ("Q:","\\\\SERVERA\\PUBX\0");
 Connect ("R:","\\\\SERVERA\\38609157""\0""34705118");
 Connect ("Z:","\\\\SERVERZ\\PUBLIC""\0""OBLONGAT");
 Connect ("LPT1","\\\\SERVERA\\LQ850\0");
 Connect ("LPT2","\\\\SERVERJ\\LQ850\0");
 Connect ("LPT3","\\\\SERVERZ\\PSTSCR\0");

 while (execl ("A:\\COMMAND.COM", "", "/p", NULL)==-1)
 {
 printf ("\007Error - A:\\COMMAND.COM not found. Insert disk and press a key.\n\n");
 getch();
 }

 }

void Connect (char *devname, char *netname)
 {
 regs.r_bx=(devname[1]==':')?4:3; /* set printer/drive flag in BL */

 regs.r_cx=3; /* arbitrary parameter - why not 3? */
 regs.r_ax=0x5f03;
 regs.r_ds=FP_SEG(devname);
 regs.r_si=(unsigned)devname;
 regs.r_es=FP_SEG(netname);
 regs.r_di=(unsigned)netname;

 intr (0x21, ®s);
 if (regs.r_flags&1)
 {
 /* carry set - error */
 printf (" Error connecting %s to %s\n",devname, netname);

 switch (regs.r_ax)
 {
 case 0x35:
 printf ("Network path not found.\n");
 break;

 case 0x56:
 printf ("Access denied.\n");
 break;

DEVLOAD PROJECT. David Woodhouse. Page 2.
Appendix 8 - MYSHELL Source Code.

 case 0x55:
 if (devname[1]==':')
 printf ("Drive");
 else
 printf ("Device");
 printf (" in use.\n");
 break;

 default:
 printf ("No. %.2X",regs.r_ax);
 }
 }
 else
 {
 if (regs.r_bx==3)
 printf ("Device");
 else
 printf ("Drive");

 printf (" %s connected to %s\n",devname,netname);
 }
 }

DEVLOAD PROJECT. David Woodhouse. Page 1.
Appendix 9 - WOMBATS Source Code.

APPENDIX 9 - WOMBATS SOURCE CODE.

; TITLE WOMBATS.SYS to grab SYSINIT module from top of mem
; VERSION 1.0
; DATE 20/3/92
; (C) 1992 David Woodhouse

cseg SEGMENT para public 'code'

 org 0

 assume cs:cseg,ds:cseg,es:nothing,ss:cseg

main: dw 0ffffh ;next dvc
 dw 0ffffh
 dw 8000h ;attr.
 dw dvcstrat ;device strategy
 dw dvcint ;device interrupt
 db "GSysInit" ;mfg name/unit

msg0 db 0Dh,0Ah,"WOMBATS.SYS",0Dh,0Ah,00

jmptable equ $

 dw INIT ;init
 dw noop ;media check
 dw noop ;build bpb
 dw noop ;ioctl input
 dw noop ;input
 dw noop ;input, non-destruct
 dw noop ;input status
 dw noop ;input flush
 dw noop ;output
 dw noop ;output, verify
 dw noop ;output status
 dw noop ;output flush
 dw noop ;ioctl output

rqheadr dd 0 ;request header ptr

;page

 ;device strategy
dvcstrat proc far

 mov cs:word ptr rqheadr,bx ;save request header ptr
 mov cs:word ptr rqheadr+2,es
 ret

dvcstrat endp

 ;device interrupt
dvcint proc far

 push ax ;save all regs
 push bx
 push cx
 push dx
 push di
 push si
 push bp
 push ds
 push es

DEVLOAD PROJECT. David Woodhouse. Page 2.
Appendix 9 - WOMBATS Source Code.

 mov bx,cs
 mov ds,bx
 les di,cs:rqheadr ;es:di --> req. header
 xor bx,bx
 mov es:[di+3],bx ;status word = 0
 mov bl,es:[di+2] ;get command
 cmp bl,13 ;make sure in range
 cmc
 mov al,3 ;assume unknown command error
 jc cont1 ;if bad command -->
 shl bx,1 ;bx = index to jmp address
 cld
 call word ptr cs:[jmptable+bx] ;do command

 ;commands all return here

cont1:
 les di,cs:rqheadr ;es:di --> req. header
 mov ah,2 ;set done bit
 rcr ah,1 ;rotate in cy flag for error bit
 or es:[di+3],ax ;or in error condition
 pop es ;restore all regs
 pop ds
 pop bp
 pop si
 pop di
 pop dx
 pop cx
 pop bx
 pop ax
 ret

dvcint endp

;page

master proc near

;........................... INIT: ..

Init:
 push cs
 pop es
 mov ax,9000h
 mov ds,ax
 mov cx,1000h
 mov di,offset buffer
 mov si,0
 cld
 repz movsb ;grab sysinit code
 mov si,sp

 mov ax,ss:[si+16h]
 call phword
 mov ax,0e3ah
 int 10h
 mov ax,ss:[si+14h]
 call phword
 mov ax,0e0dh
 int 10h
 mov ax,0e0ah
 int 10h
 mov ax,ss
 call phword
 mov ax,0e3ah
 int 10h
 mov ax,sp
 call phword

DEVLOAD PROJECT. David Woodhouse. Page 3.
Appendix 9 - WOMBATS Source Code.

 les di,cs:rqheadr ;point to request header
 mov word ptr es:[di+14],offset LASTBYTE ;set last byte needed
 mov es:[di+16],cs

i2:
 ret

;page
;........................... No Operation:

noop:
 mov ax,3 ;unknown command
 stc
 ret

;.....................phword...........................

; IN: AX word to be printed
; OUT: nothing
; LOST: nothing

phword: push ax
xchg al,ah
call phbyte
mov al,ah
call phbyte
pop ax
ret

;................phbyte...........

; IN: AL byte to printed
; OUT: nothing
; LOST: nothing

phbyte: push ax
mov ah,al
shr al,1
shr al,1
shr al,1
shr al,1
call phnibble
mov al,ah
call phnibble
pop ax
ret

;..............phnibble................

; IN: AL nibble to be printed
; OUT: nothing
; LOST: nothing

phnibble: push ax
and al,0Fh
add al,'0'
cmp al,'9'
jna ph1
add al,'A'-'9'-1

ph1: mov ah,0Eh
int 10h
pop ax

DEVLOAD PROJECT. David Woodhouse. Page 4.
Appendix 9 - WOMBATS Source Code.

ret

;........................... Get setup parameters

db ' BUFFER STARTS HERE:'
buffer equ $
LASTBYTE equ $+1000h
master endp

cseg ends
 end main

DEVLOAD PROJECT. David Woodhouse. Page 1.
Appendix 10 - SHOWPARM Source Code.

APPENDIX 10 - SHOWPARM SOURCE CODE.

; TITLE SHOWPARM.SYS to grab SYSINIT module from top of mem
; VERSION 1.0
; DATE 20/3/92
; (C) 1992 David Woodhouse

cseg SEGMENT para public 'code'

 org 0

 assume cs:cseg,ds:cseg,es:nothing,ss:cseg

main: dw 0ffffh ;next dvc
 dw 0ffffh
 dw 8000h ;attr.
 dw dvcstrat ;device strategy
 dw dvcint ;device interrupt
 db "GSysInit" ;mfg name/unit

msg0 db 0Dh,0Ah,"SHOWPARM.SYS",0Dh,0Ah,24h

rqhdr dd 0 ;request header ptr

 ;device strategy
dvcstrat proc far

 mov cs:word ptr rqhdr,bx ;save request header ptr
 mov cs:word ptr rqhdr+2,es
 ret

dvcstrat endp

 ;device interrupt
dvcint proc far

 push ax ;save all regs
 push bx
 push cx
 push dx
 push di
 push si
 push bp
 push ds
 push es

 les di,cs:rqhdr ;es:di --> req. header
 mov es:[di+3],0100h ;status word = done
 cmp byte ptr es:[di+2],0 ;is it INIT command?
 jnz cont1 ;no -->
 call init
 ;commands all return here

cont1:
 pop es ;restore all regs
 pop ds
 pop bp
 pop si
 pop di
 pop dx
 pop cx
 pop bx
 pop ax
 ret

DEVLOAD PROJECT. David Woodhouse. Page 2.
Appendix 10 - SHOWPARM Source Code.

dvcint endp

;........................... INIT: ..

Init:
push cs
pop ds
mov dx,offset msg0
mov ah,9
int 21h ;print signon msg

lds si,es:[di+12h] ;load pointer to command line
loop: mov ax,0e20h

int 10h ;print space
lodsb
call phbyte
cmp al,0ah
jnz loop
mov word ptr es:[di+0eh],0000 ;set last byte needed
mov es:[di+10h],cs
ret

;.....................phword...........................

; IN: AX word to be printed
; OUT: nothing
; LOST: nothing

phword: push ax
xchg al,ah
call phbyte
mov al,ah
call phbyte
pop ax
ret

;................phbyte...........

; IN: AL byte to printed
; OUT: nothing
; LOST: nothing

phbyte: push ax
mov ah,al
shr al,1
shr al,1
shr al,1
shr al,1
call phnibble
mov al,ah
call phnibble
pop ax
ret

;..............phnibble................

; IN: AL nibble to be printed
; OUT: nothing
; LOST: nothing

phnibble: push ax
and al,0Fh
add al,'0'
cmp al,'9'
jna ph1
add al,'A'-'9'-1

ph1: mov ah,0Eh
int 10h

DEVLOAD PROJECT. David Woodhouse. Page 3.
Appendix 10 - SHOWPARM Source Code.

pop ax
ret

;........................... Get setup parameters

cseg ends
 end main

