Appendix B - Installation and Configuration

This chapter explains how to install and configure the CIDLib software, so that you can build it yourself, play with the demo programs, and/or use it as a third party class library system for building your own applications.

Installation

Installing CIDLib is quite easy. You just copy the Zip file to your machine, either from a floppy or via ftp or however you get it, and unzip it. Change to the root directory of the drive that you want to install on and unzip from there. Indicate, if required for your unzipper, that you want to recreate directories or you will have a big mess in your root directory.

You will need to install CIDLib on an NTFS drive because it uses long file names for almost everything. Sorry about any inconvenience, but I’m moving into the future whether the rest of the world wants to come along or not.

The system will install into the \CID_Dev directory. It will include the source code for all of the projects. There will be no binary code, since you can just build it for yourself. The primary subdirectories under \CID_Dev will be:

\CID_Dev\Source - This is the directory that has all of the source code both for C++ code and for class and member documentation source.

\CID_Dev\Source\ClassDocs - This is the main directory of the class and member documentation source code.

\CID_Dev\Source\AllProjects - This is the main directory of the C++ source code. All of the projects are under a main project called AllProjects, which exists in this directory.

\CID_Dev\Source\SceneFiles - This directory contains the ray tracer scene description language files. Some are just demo scenes and some are fundamental library files that are used in almost any ray tracer scene.

\CID_Dev\Source\Cmd - This directory contains some simple command files that I use and which will probably be of use to you.



Setting Up The Environment

The environmental setup is pretty simple. You don’t need a lot of environmental setup to build CIDLib, since most of the required setup is actually in the Visual C++ project settings that come with the distribution. Of course you need to have an installed and working Visual C++ 5.0 environment, and that is all you actually need to build the CIDLib system. However, there are some optional and useful additions to the environment that you can make.

PATH - You will probably want to add the \CID_Dev\DevResult path to your PATH variable so that you can run the programs. The way that CIDLib projects are set up they output to either the DevResult subdirectory (for debug builds) or the ProdResult subdirectory for production builds. All of the DLLs and Exes will be in these directories. You will also want to add the \CID_Dev\Source\Cmd directory if you want to use the convenience batch files I’ve provided.

_NT_SYMBOL_PATH - CIDLib supports a very nice stack dump facility that catches any unhandled C++ or system exceptions and dumps them to a file. For debug builds, it uses the symbolic information from the PDB files to give very readable traces of the stack. This path is used to point at the directory where the PDB files are, which is \CID_Dev\DevResult for the CIDLib debug build. It also seems to get a little info using production build output files, so you can point it to \CID_Dev\ProdResult for the production build.

CIDLOCALLOG - CIDLib supports a very powerful logging mechanism in which applications can log messages to any number of targets. The default mechanism will use this environment variable to find the name of the file to log to. The logging target mechanism is framework based, so there are a couple of predefined logging target objects that you can plug in. Or you can create your own as well and plug them in.

CIDLOGSEM - In order to allow multiple processes to log to the same local log, the default logging mechanism will use this named mutex to serialize access to the log file. Internally all logging is serialized among the threads of a process, but this one is used to serialize logging among multiple processes.

CIDERRDUMPDIR - When a CIDLib process bites the big one, CIDLib will trap these unhandled system or C++ exceptions and create an error dump file, which has lots of information required to diagnose the problem. If this variable is not set, then the file goes into the current directory. If you want them to go to a particular place, then set this variable to point to the desired output path.

There is a batch file, called SetCIDEnv.Cmd, that will set up all of these variables to reasonable values. It only assumes the presence of an environment variable called CIDDRIVE that indicates what drive you installed CIDLib on. This value should include the drive letter and colon, e.g. X:. By default this file sets up for the Debug build. If you want to set up for the production (or release as MS calls it), then pass the parameter Prod or PROD to the command file.

Of course, until you run it, the Cmd directory is not in the PATH so you will have to give the explicit path to it. After it is run, the other batch files are available via the PATH.

If you prefer, you can set these values in the main environment using the control panel. This way they will be set even if you start Visual Studio by way of the GUI. Otherwise, if you use the Cmd file, you should start Visual Studio from the command line so that the programs that you debug and run from within it will inherit these environmental variables.

Building The System

The beta distribution does not come with any prebuilt binaries. This is because of the massive savings in download times and because the same tools you need to use CIDLib are the tools you use to build CIDLib itself, so you can easily build the system yourself.

All of the projects of the CIDLib system are contained under a single main project, named AllProjects. So, in Visual Studio, change to the \CID_Dev\Source\AllProjects and open the AllProjects.Dsp file. Once you’ve opened the project, you can select a configuration (Debug or Release) and build it by selecting the AllProjects project and doing a ‘build all’ operation.

There are a couple of changes you might want to make to the projects before you do the build. As shipped, they are set up to generate code for the Pentium Pro, since that is what I have. You might want to reduce that to regular Pentium code generation if you don’t have a Pro system. This is under the C++ settings.

Another thing you might want to do, at least for your first build, is to enable browser information in the CIDKernel, CIDLib, CIDTracer, CIDCrypto, and CIDWnd, CIDFractal facilities (i.e. the DLL projects that make up CIDLib.) The other projects are utilities or demo programs and don’t really need browser support unless you just want them to. The extra overhead that generating the browser support is more than I can bear for regular development, so I keep it disabled. But, for your initial exploration of the system, having this support enabled could be a significant boon.

The output from all projects go into two directories. The debug configuration outputs into the \CID_Dev\DevResult directory and the release configuration outputs into the \CID_Dev\ProdResult directory. The main files of each project (Dll, Map, Lib, Exe, CIDMsg) go directly into this directory. The temporary files of each project go into a subdirectory underneath these directories, the subdirectories are named after the project. This is different from the default way that Visual Studio works, which is to put output files in directories underneath the project directory. If find this a totally ridiculous thing to do, hence the CIDLib scheme.

All of the project settings are drive independent, so you don’t have to do anything to adjust for the drive that you installed onto.

�


