X Session Management Library
Version 1.0
X Consortium Standard

X Version 11, Release 6.4

Ralph Mor

X Consortium

Copyright © 1993, 1994 X Consortium

Permission is hereby granted, free of charge, yparson obtaining a cepof this software and associated
documentation files (théSoftware’), to deal in the Software without restriction, including without limita-
tion the rights to use, cgpmodify, merge, publish, distribte, sublicense, and/or sell copies of the Soft-
ware, and to permit persons to whom the Saftis furnished to do so, subject to the following conditions:

The abee cpyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PRVIDED "AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANRBILITY, FIT-
NESS FOR A RRTICULAR PURPOSE AND NONINFRINGEMENTIN NO EVENT SHALL THE X
CONSOR'IUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FFROM, OUT OF OR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or other
wise to promote the sale, use or other dealings in this Software without prior written authorization from the
X Consortium.

X Window System is a trademark of X Consortium, Inc.

1. Overview of Session M anagement

The purpose of the X Session Management Protocol (XSMP) is to provide a uniform mechanism for users
to save and restore their sessioné. session is a group of clients, each of which has a particular siEte.

session is controlled by a network service calledsdsson manager. The session manager issues com-
mands to its clients on behalf of the uséhese commands may cause clients e $zeir state or to termi-

nate. Itis expected that the client will\gits state in such a way that the client can be restarted at a later
time and resume its operation as if it hadendeen terminatedA client’s date might include information

about the file currently being edited, the current position of the insertion point within the file, or the start of
an uncommitted transaction. The means by which clients are restarted is unspecified by this protocol.

For purposes of this protocol,dcient of the session manager is defined as a connection to the session man-
ager A client is typically though not necessarijlg rocess running an application program connected to
an X display Howeve, a dient may be connected to more than one X display or not be connectgdXo an
displays at all.

2. The Session Management Library

The Session Management Library (SMlib) is e-evel "C" language interface to XSMRt is expected
that higher leel toolkits, such as Xt, will hide mgnof the details of session management from clients.
Higher level toolkits might also be deloped for session managers to usd, fio such effort is currently
under way.

SMlib has tvo parts to it:
. One set of functions for clients that want to be part of a session
. One set of functions for session managers to call

Some applications will use both sets of functions and awtshes] session managers. That is, thg will be

both a session manager and a client of another session. An example is a mail program that could start a te
editor for editing the text of a mail message. The mail program is part glilereession and, at the same
time, is also acting as a session manager to the editor.

Clients initialize by connecting to the session manager and obtairthgn&lD that uniquely identifies
them in the sessionThe session manager maintains a list of properties for each client in the s@ésise.
properties describe the cliemtnvironment and, most importantlgescribe ha the client can be restarted
(via anSmRestartCommand). Clientsare expected to ga teir state in such a way as to allmultiple
instantiations of themselves to be managed independdtaiyexample, clients may use their client-ID as
part of a filename in which to store the state for a particular instantiation. The client-ID shoulddbassa
part of theSmRestartCommand so that the client will retain the same ID after it is restarted.

Once the client initializes itself with the session mandgeust be ready to respond to messages from the
session manageiFor example, it might be asked toveaits state or to terminate. In the case of a shut-
down, the session manager mightegieach client a chance to interact with the user and cancel the shut-
down.

3. Understanding SMlib’s Dependence on ICE

The X Session Management Protocol is layered on top of the Inter-Client Exchange (ICE) Pifitecol.
ICE protocol is designed to multiplseveal protocols wer a sngle connection. As a result, working with
SMlib requires a little knowledge of twahe ICE library works.

The ICE library utilizes callbacks to process messages. When a client detects that there is data to read on
an ICE connection, it should call tHheeProcessM essages function. |ceProcessM essages will read the

message header and look at the major opcode in order to determine which protocol the message w
intended for The appropriate protocol library will then be triggered to unpack the message and hénd it of

to the client via a callback.

The main point to beveare of is that an application using SMlib mustéame code that detects when
there is data to read on an ICE connectidhis can be done viaselect call on the file descriptor for the
ICE connection, bt more typically XtAppAddinput will be used to register a callback that wilzake

| ceProcessM essages each time there is data to read on the ICE connection.

X Session Management Library X11, Release 6.4

To further complicate things, kming which file descriptors to caielect on requires an understanding of
how ICE connections are create@n the client side, a call must be madeStacOpenConnection in

order to open a connection with a session managacOpenConnection will internally male a all into

I ceOpenConnection, which will, in turn, determine if an ICE connection already exists between the client
and session managekost likely, a connection will not already exist and amnECE connection will be
created. Themain point to beware of is that, on the client side, it is not obvious when ICE connections
get created or destroyed, because connections are shared when pdesibk. with this, the ICE library

lets the application register watch procedures that will \xekaa each time an ICE connection is opened or
closed. Thesavatch procedures could be used to add or kemiCE file descriptors from the list of
descriptors to cakelect on.

On the session manager side, things work a birdifitly The session manager has complete contrel o
the creation of ICE connection§he session manager has to first tedl_istenFor Connections in order
to start listening for connections from clien®®nce a connection attempt is detectiembAcceptConnec-
tion must be called, and the session manager can simply addwheCiefile descriptor to the list of
descriptors to cakelect on.

For further information on the library functions related to ICE connections, sdatéheClient Exchange
Library standard.

4. Header Filesand Library Name

Applications (both session managers and clients) should include the head¥1fil&M/SMlib.h>. This
header file defines all of the SMIlib data structures and function prototgdékb.h includes the header
file <X11/SM/SM.h>, which defines all of the SMlib constants.

Because SMlib is dependent on ICE, applications should link against SMlib and ICElib by-I&ihg
-lICE.

5. Session Management Client (Smc) Functions
This section discusseswdGession Management clients:

. Connect to the Session Manager

. Close the connection

. Modify callbacks

. Set, delete, and retie Session Manager properties
. Interact with the user

. Request a “See Yourself’
. Request a “See Yourself Phase 2”

. Complete a “Sae Yourself’
. Use Smc informational functions
. Handle Errors

5.1. Connecting to the Session M anager
To gpen a connection with a session managgr SmcOpenConnection.

X Session Management Library X11, Release 6.4

SmcConn SmcOpenConnectioefwork ids list, context, xsmp_major_rev, Xsmp_minor_rev,
mask, callbacks, previous id, client_id_ret, error_length, error_string_ret)
char *network ids list;
SmPointeicontext;
int Xxsmp_major_rev;
int Xsmp_minor_rev;
unsigned longnask;
SmcCallbacks ¢allbacks;
char *previous _id;
char **client_id _ret;
int error_length;
char *error_string_ret;

network_ids list
context

XSmp_major_rev
XSmp_minor_rev

mask
callbacks

previous id
client_id ret
error_length
error_string_ret

Specifies the network ID(s) of the session manager.

A pointer to an opaque object or NULL. Used to determine if an ICE connection can be
shared (see below).

The highest major version of the XSMP the application supports.

The highest minor ersion of the XSMP the application supports (for the specified
XSmp_major_rev).

A mask indicating which callbacks to register.

The callbacks to gister These callbacks are used to respond to messages from the ses-
sion manager.

The client ID from the previous session.
The client ID for the current session is returned.
Length of the error_string_ret argument passed in.

Returns a null-terminated error message, ¥t afhe error_string_ret argument points to
user supplied memaryNo more than error_length bytes are used.

The network_ids_list argument is a null-terminated string containing a list obrketl@s for the session
managerseparated by commas. If network_ids_list is NULL, the value ofSEESION_MANAGER
environment variable will be used. Each network ID has the following format:

tcp/<hostname>:<portnumber> or
decnet/<hostname>::<objname> or
local/<hostname>:<path>

An attempt will be made to use the first network ID. If that fails, an attempt will be made using the second
network 1D, and so on.

After the connection is establishe®ncOpenConnection registers the client with the session manadér

the client is being restarted from a previous session, previous_id should contain a null terminated string rep-
resenting the client ID from the previous sessitinthe client is first joining the session, pi@us_id

should be set to NULLIf previous_id is specified but is determined to balid by the session manager

SMlib will re-register the client with previous_id set to NULL.

If SmcOpenConnection succeeds, it returns an opaque connection pointer of $gpeConn and the
client_id_ret argument contains the client ID to be used for this sesBmenclient_id_ret should be freed
with a call tofree when no longer needed. Oailfire, SmcOpenConnection returns NULL, and the rea-
son for failure is returned in error_string_ret.

Note that SMlib uses the ICE protocol to establish a connection with the session méinagéCE con-
nection already»asts between the client and session manageright be possible for the same ICE con-
nection to be used for session management.

X Session Management Library X11, Release 6.4

The context argument indicateswhwilling the client is to share the ICE connection with other protocols.
If context is NULL, then the caller is alys willing to share the connection. If context is not NULL, then
the caller is not willing to use a previously opened ICE connection that hderamiinon-NULL contet
associated with it.

As previously discussed (section ®Jriderstanding SMIits Dependence on ICE”"), the client will a o
keep track of when ICE connections are created or destr@usingl ceAddConnectionWatch and | ceRe-
moveConnectionWatch), and will hare © call | ceProcessM essages each time aselect shavs that there is
data to read on an ICE connectidfor further information, see thieter-Client Exchange Library stan-
dard.

The callbacks argument contains a set of callbacks used to respond to session naemagerteemask
argument specifies which callbacks are safl of the callbacks specified in this version of SMlib are
mandatory The mask argument is necessary in order to maintain backwards compatibility in frture v
sions of the library.

The following values may be ORed together to obtain a mask value:

SmcSaveYour selfProcM ask
SmcDieProcM ask
SmcSaveCompleteProcM ask
SmcShutdownCancelledProcM ask

For each callback, the client can register a pointer to client dMfaen SMlib irvokes the callback, it will
pass the client data pointer.

'* typedef struct {

struct {
SmcSaeYourselfProc callback;
SmPointer client_data;

} save yourself;

struct {
SmcDieProc callback;
SmPointer client_data;
} die;

struct {
SmcSaeCompleteProc callback;
SmPointer client_data;

} save complete;

struct {
SmcShutdownCancelledProc callback;
SmPointer client_data;

} shutdown_cancelled;

} SmcCallbacks;

5.1.1. The Save Yourself Callback

X Session Management Library X11, Release 6.4

The Sae Yourself callback is of typ&mcSaveYour selfProc.

typedef void (*SmcSaeYourselfProc)();

void SaveYourselfProcémc_conn, client_data, save_type, shutdown, interact_style, fast)
SmcConrsmc_conn;
SmPointerlient_data;
int save_type;
Bool shutdown;
int interact_style;

Bool fast;
smc_conn The session management connection object.
client_data Client data specified when the callback was registered.
save _type Specifies the type of information that should beeda
shutdown Specifies if a shutdown is taking place.

interact_style The type of interaction allowed with the user.
fast If True, the client should se its state as quickly as possible.

The session manager send§Save Yourself’ message to a client either to checkpoint it or just before ter
mination so that it can ga its state. The client responds with zero or more calBnoSetProperties to
update the properties indicatingvhto restart the client. When all the propertiesé&een set, the client
calls SmcSaveYour selfDone.

If interact_style isSminteractStyleNone, the client must not interact with the user while saving sttite.
interact_style isSminteractStyleErrors, the client may interact with the user only if an error condition
arises. lfinteract_style isSmlnteractStyleAny, then the client may interact with the user foy parpose.
Because only one client can interact with the user at a time, the client mu&mnchiiter actRequest and
wait for an ‘Interact’” message from the session managé&then the client is done interacting with the
user it calls SmcinteractDone. The client may only calBmcl nteractRequest after it receres a ‘Save
Yourself” message and before it cafisncSaveYour selfDone.

If save type isSmSavel ocal, the client must update the properties to reflect its current Satecifically,

it should s&e enough information to restore the state as seen by the user of this client. It shoufdatot af
the state as seen by other users. Jesiype isSmSaveGlobal, the user wants the client to commit all of
its data to permanent, globally accessible storage.véf §gpe isSmSaveBoth, the client should do both

of these (it should first commit the data to permanent storage before updating its properties).

Some examples are as follows:

. If a word processor were sent'&ave Yourself’ with a type ofSmSavel ocal, it could create a tem-
porary file that included the current contents of the file, the location of the ,candasther aspects
of the current editing sessiont would then update its SmRestartCommand property with enough
information to find this temporary file.

. If a word processor were sent‘&ave Yourself’ with a type of SmSaveGlobal, it would simply
save the currently edited file.

. If a word processor were sent'8ave Yourself’ with a type ofSmSaveBoth, it would first sae the
currently edited file. It would then create a temporary file with information such as the current posi-
tion of the cursor and what file is being editdgéinally, it would update its SmRestartCommand
property with enough information to find the temporary file.

The shutdown gument specifies whether the system is being shah.ddrheinteraction is diferent
depending on whether or not shutdown is set. If not shutting down, the client shaulid state and ait
for a “Save Complete’ message. IEhutting down, the client mustv&date and then pvent interaction
until it receves dther a “Die” or a “Shutdown Cancellet.

X Session Management Library X11, Release 6.4

The fast agument specifies that the client shouldesits state as quickly as possibleor example, if the
session manager knows that power is about to fail, it would set fastiéo

5.1.2. The Die Callback
The Die callback is of typ&mcDieProc.

typedef void (*SmcDieProc)();

void DieProcémc_conn, client_data)

SmcConrsmc_conn;

SmPointerlient_data;
smc_conn The session management connection object.
client_data Client data specified when the callback was registered.

The session manager send9@e’’ message to a client when it wants it to die. The client should respond
by calling SmcCloseConnection. A session manager that bebs properly will send a‘'Save Yourself’
message before the “Diehessage.

5.1.3. The Save Complete Callback
The Sae Complete callback is of typSmcSaveCompleteProc.

typedef void (*SmcSaCompleteProc)();

void SaveCompleteProcgmc_conn, client_data)

SmcConrsmc_conn;

SmPointerlient_data;
smc_conn The session management connection object.
client_data Client data specified when the callback was registered.

When the session manager is done with a checkpoint, it will send each of the cli8at® &Complete”
message. Thelient is then free to change its state.

5.1.4. The Shutdown Cancelled Callback
The Shutdown Cancelled callback is of tygacShutdownCancelledProc.

typedef void (*SmcShutdownCancelledProc)();

void ShutdevnCancelledProcnc_conn, client_data)
SmcConrsmc_conn;
SmPointeclient_data;

smc_conn The session management connection object.
client_data Client data specified when the callback was registered.

The session manager sendsSautdovn Cancelled’'message when the user cancelled the shutdown during
an interaction (see section 5.5, “Interacting With the UseThe client can nw continue as if the shut-
down had neer happened. Ithe client has not calleBmcSaveYour selfDone yet, it can either abort the
sare and then callSmcSaveYour selfDone with the success argument setRalse, or it can continue with

the s&e and then callSmcSaveYour selfDone with the success argument set to reflect the outcome of the
save.

X Session Management Library X11, Release 6.4

5.2. Closing the Connection
To dose a connection with a session managgr SmcCloseConnection.

SmcCloseStatus SmcCloseConnectsong_conn, count, reason_msgs)
SmcConrsmc_conn;
int count;
char **reason_msgs;

smc_conn The session management connection object.
count The number of reason messages.
reason_msgs The reasons for closing the connection.

The reason_msgs argument will most likely be NULL if resignatiompe&ed by the client. Otherwise, it
contains a list of null-terminated CompouneTstrings representing the reason for termination. The ses-
sion manager should display these reason messages to the user.

Note that SMlib used the ICE protocol to establish a connection with the session marchgarious pro-
tocols other than session management may beeaxtithe ICE connectionWhen SmcCloseConnection

is called, the ICE connection will be closed only if all protocoleehieen shutdown on the connection.
Check the ICElib standard féceAddConnectionWatch and | ceRemoveConnectionWatch to learn hav

to set up a callback to bevisked each time an ICE connection is opened or closBghically this callback
adds/remues the ICE file descriptor from the list of aai descriptors to calkelect on (or callsXtAp-
pAddlnput or XtRemovel nput).

SmcCloseConnection returns one of the following values:

. SmcClosedNow — the ICE connection was closed at this time, tla¢ctv procedures werevioked,
and the connection was freed.

. SmcClosedASAP - an IO aror had occurred on the connectiont BmcCloseConnection is being
called within a nestetlceProcessM essages. The watch procedures Ve been ivoked at this time,
but the connection will be freed as soon as possible (when the nesthgekches zero anatePro-
cessM essages returns a status dtePr ocessM essagesConnectionClosed).

. SmcConnectionlnUse — the connection @s not closed at this time, because it is being used by other
active protocols.

5.3. Modifying Callbacks
To modify callbacks set up iBmcOpenConnection, use SmcM odifyCallbacks.

void SmcModifyCallbacksgmc_conn, mask, callbacks)
SmcConrsmc_conn;

unsigned longnask;
SmcCallbacks ¢allbacks;

smc_conn The session management connection object.
mask A mask indicating which callbacks to modify.
callbacks The nev callbacks.

When specifying a value for the mask argument, the following values may be ORed together:

SmcSaveYour selfProcM ask
SmcDieProcM ask
SmcSaveCompleteProcM ask
SmcShutdownCancelledProcM ask

X Session Management Library X11, Release 6.4

5.4. Setting, Deleting, and Retrieving Session M anagement Properties
To st session management properties for this clientSoseSet Properties.

void SmcSetPropertiesfic_conn, num_props, props)
SmcConrsmc_conn;
int num_props;
SmProp *props;

smc_conn The session management connection object.
num_props The number of properties.
props The list of properties to set.

The properties are specified as an array of property poirfeegiously set property values may beec
written using theSmcSetProperties function. Notethat the session manager is nepected to restore
property values when the session is restarBetause of this, clients should not try to use the session man-
ager as a database for storing application specific state.

For a description of session management properties andsthiérop structure, see section 7Séssion
Management Propertiés.

To delete properties previously set by the client, 8iseDeleteProperties.

void SmcDeletePropertiesiic_conn, num_props, prop_names)
SmcConrsmc_conn;
int num_props;
char **prop_names;

smc_conn The session management connection object.
num_props The number of properties.
prop_names The list of properties to delete.

To get properties previously stored by the client, 8seGetProperties.

Status SmcGetPropertiessfc_conn, prop_reply _proc, client_data)
SmcConrsmc_conn;
SmcPropReplyProprop_reply proc;
SmPointerlient_data;

smc_conn The session management connection object.

prop_reply proc The callback to be uoked when the properties reply comes back.

client_data This pointer to client data will be passed to 8mecPropReplyProc callback.

The return value oBmcGetProperties is zero for failure and a posié value for success.

Note that the library does not block until the properties reply comes Rather a allback of type
SmcPropReplyProc is invoked when the data is ready.

X Session Management Library X11, Release 6.4

typedef void (*SmcPropReplyProc)();

void PropReplyProcgmc_conn, client_data, num_props, props)
SmcConrsmc_conn;
SmPointerlient_data;
int num_props;
SmProp *props;

smc_conn The session management connection object.
client_data Client data specified when the callback was registered.
num_props The number of properties returned.

props The list of properties returned.

To free each propertyise SmFreeProperty (see section 8, “Freeing Dafg’ To free the actual array of
pointers, usdree.

5.5. Interacting With the User

After receiving a‘Save Yourself’ message with an interact_style $&hlinteractStyleErrors or Sminter-
actStyleAny, the client may choose to interact with the udggcause only one client can interact with the
user at a time, the client must c8thclnteractRequest and wait for an‘Interact” message from the ses-
sion managetr.

Status SmcinteractRequestc_conn, dialog_type, interact_proc, client_data)
SmcConrsmc_conn;
int dialog_type;
SmclinteractProimteract_proc;
SmPointerlient_data;

smc_conn The session management connection object.

dialog_type The type of dialog the client wishes to present to the user.

interact proc ~ The callback to be woked when the ‘Interact” message awes from the session man-
ager.

client_data This pointer to client data will be passed to BaclnteractProc callback when the
“ Interact’ message amwes.

The return value oSmcl nteractRequest is zero for failure and a posié value for success.

The dialog_type argument specifies eitBarDialogError , indicating that the client wants to start an error
dialog, orSmDialogNormal, meaning that the client wishes to start a nonerror dialog.

Note that if a shutdown is in progress, the user mag @ option of cancelling the shuten. If the shut-
down is cancelled, the clients thatvearot interacted yet with the user will reeeia ‘Shutdovn Can-
celled’ message instead of the “Interactiessage.

The SmclnteractProc callback will be ivoked when the ‘Interact” message awes from the session
manager.

typedef void (*SmcinteractProc)();

void InteractProcgmc_conn, client_data)
SmcConrsmc_conn;
SmPointerlient_data;

X Session Management Library X11, Release 6.4

smc_conn The session management connection object.
client_data Client data specified when the callback was registered.

After interacting with the user (in response to an “Interacgssage), you should c&inclnteractDone.

void SmcinteractDonesmc_conn, cancel_shutdown)
SmcConrsmc_conn;
Bool cancel_shutdown;

smc_conn The session management connection object.

cancel _shutdown
If True, indicates that the user requests that the entire shutdown be cancelled.

The cancel_shutden argument may only b&rue if the correspondingSave Yourself’ specified True
for shutdown andmlinteractStyleErrors or SminteractStyleAny for the interact_style.

5.6. Requesting a Save Your self
To request a checkpoint from the session manageiSmcRequestSaveYour self.

void SmcRequestSaYourself(smc_conn, save_type, shutdown, interact_style, fast, global)
SmcConrsmc_conn;
int save_type;
Bool shutdown;
int interact_style;

Bool fast;

Bool global;
smc_conn The session management connection object.
save _type Specifies the type of information that should beeda
shutdown Specifies if a shutdown is taking place.
interact_style The type of interaction allowed with the user.
fast If True, the client should se its state as quickly as possible.
global Controls who gets the “Sa Yourself:

The sae _type, shutdown, interact_style, and fast arguments are discussed in more detail in section 5.1.1,
“ The Sae Yourself Callback.

If global is set toTrue, then the resultingSave Yourself’ should be sent to all clients in the sessiéior
example, a vendor of a Uninterruptible Power Supply (UPS) might include a Session Management client
that would monitor the status of the UPS and generate a fast shutdown if the power is about to be lost.

If global is set toFalse, then the “Sae Yourself’ should only be sent to the client that requested it.

5.7. Requesting a Save Your self Phase 2

In response to aSave Yourself, the client may request to be informed when all the other clients are quies-
cent so that it can ga their state.To do 0, useSmcRequestSaveYour selfPhase2.

Status SmcRequest&¥ourselfPhaseXmc_conn, save yourself phase? proc, client_data)
SmcConrsmc_conn;
SmcSaeYourselfPhase2Pragave yourself phase? proc;
SmPointerclient_data;

-10 -

X Session Management Library X11, Release 6.4

smc_conn The session management connection object.

save yourself phase? proc
The callback to be ioked when the ‘Save Yourself Phase 2message awes from the
session manager.

client_data This pointer to client data will be passed to SracSaveYour selfPhase?Proc callback
when the “Sae Yourself Phase 2message awes.

The return value oBmcRequestSaveYour selfPhase? is zero for failure and a posié value for success.

This request is needed by clients that manage other clients (for examplewwathagers, wrkspace
managers, and so on). The manager musemaalk that all of the clients that are being managed are in an
idle state so that their state can beeda

5.8. Completing a Save Your self
After saving state in response to a V8avourself’ message, you should c&incSaveYour selfDone.

void SmcSaeYourselfDone §mc_conn, success)
SmcConrsmc_conn;

Bool success;
smc_conn The session management connection object.
success If True, the “Save Yourself’ operation was completed successfully.

Before callingSmcSaveYourselfDone, the client must ha st each required property at least once since
the client registered with the session manager.

5.9. Using Smc Informational Functions

int SmcProtocol¥rsion Emc_conn)
SmcConrsmc_conn;

SmcProtocolVersion returns the major version of the session management protocol associated with this
session.
int SmcProtocolRésion (smc_conn)

SmcConrsmc_conn;
SmcProtocolRevision returns the minor version of the session management protocol associated with this
session.
char *Smc\éndor 6mc_conn)

SmcConrsmc_conn;

SmcVendor returns a string that provides some identification of tleen of the session managérhe
string should be freed with a call toee.

-11 -

X Session Management Library X11, Release 6.4

char *SmcReleasaific_conn)
SmcConrsmc_conn;

SmcRelease returns a string that provides the release number of the session maregstring should be
freed with a call tdree.

char *SmcClientID émc_conn)
SmcConrsmc_conn;

SmcClientI D returns a null-terminated string for the client ID associated with this connection. This infor
mation was also returned BmcOpenConnection (it is provided here for corenience). Callfree on this
pointer when the client ID is no longer needed.

IceConn SmcGetlceConnectiamfc_conn)
SmcConrsmc_conn;

SmcGetl ceConnection returns the ICE connection object associated with this session management con-
nection object. The ICE connection object can be used to get some additional information about the con-
nection. Somef the more useful functions which can be used on the IceConitaennectionNum-

ber, IceConnectionString, |cel astSentSequenceNumber, |cel astReceivedSequenceNumber, and

IcePing. For further information, see thater-Client Exchange Library standard.

5.10. Error Handling

If the client recaies an mexpected protocol error from the session manageeror handler is imoked by
SMlib. A default error handleneasts that simply prints the error messagettierr and exits if the serity
of the error isdtal. Theclient can change this error handler by calling 8necSetErrorHandler func-
tion.

SmcErrorHandler SmcSetErrorHandlleadler)
SmcErrorHandlehandler;

handler The error handlerYou should pass NULL to restore the default handler.

SmcSetErrorHandler returns the previous error handler.
The SmcErrorHandler has the following type:

typedef void (*SmcErrorHandler)();

void ErrorHandlerémc_conn, swap, offending_minor_opcode, offending_sequence_num, error_class, severity, values)
SmcConrsmc_conn;
Bool swap;
int offending_minor_opcode;
unsigned longffending_sequence _num;
int error_class;
int severity;
IcePointevalues;

smc_conn The session management connection object.

-12 -

X Session Management Library X11, Release 6.4

swap A flag that indicates if the specified values need byte swapping.

offending_minor_opcode
The minor opcode of the offending message.

offending_segquence_num
The sequence number of the offending message.

error_class The error class of the offending message.
severity IceCanContinue, | ceFatal ToProtocol, or | ceFatal ToConnection.
values Any additional error values specific to the minor opcode and class.

Note that this error handler isvisked for protocol related errorsTo install an error handler to beviked
when an IO error occurs, udeeSetlOErrorHandler. For further information, see thinter-Client
Exchange Library standard.

6. Session Management Server (Sms) Functions
This section discusseswdGession Management servers:

. Initialize the library

. Regster the client

. Send a “Sae Yourself’ message

. Send a “Sae Yourself Phase 2message
. Send an “Interact'message

. Send a “Sae Complete’ message

. Send a “Die’ message

. Cancel a shutdown

. Return properties

. Ping a client

. Clean up after a client disconnects
. Use Sms informational functions

. Handle errors

6.1. InitializingtheLibrary

Smslnitialize is the first SMlib function that should be called by a session manlgeovides informa-
tion about the session manager and registers a callback that wilbkedirach time a n& client connects
to the session manager.

Status Smesinitializefendor, release, new_client_proc, manager_data, host_based auth proc,
error_length, error_string_ret)
char *vendor;
char ¥elease;
SmsNewClientProoew_client_proc;
SmPointemanager_data;
IceHostBasedAuthPrdwost_based auth proc;
int error_length;
char *error_string_ret;

vendor A string specifying the session manager vendor.
release A string specifying the session manager release number.
new_client_proc Callback to be imoked each time a ne client connects to the session manager.

-13 -

X Session Management Library X11, Release 6.4

manager_data When theSmsNewClientProc callback is iwoked, this pointer to manager data will be
passed.

host_based_auth_proc
Host based authentication callback.

error_length Length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, ¥ arhe error_string_ret points to user sup-
plied memory No more than error_length bytes are used.

After the Smslnitialize function is called, the session manager should call ¢beistenFor Connections
function to listen for n& connections. Aftenards, each time a client connects, the session manager should
call 1ceAcceptConnection.

See section 9A uthentication of Clientsf or more details on authentication (including host based authen-
tication). Alsosee thelnter-Client Exchange Library standard for further details on listening for and
accepting ICE connections.

Each time a ng client connects to the session manater SmsNewClientProc callback is inoked. The
session manager obtains av@paque connection object that it should use for all future interaction with the
client. Atthis time, the session manager must also register a set of callbacks to respond terém dif
messages that the client might send.

typedef Status (*SmsNewClientProc)();

Status Ne/ClientProc 6ms_conn, manager_data, mask_ret, callbacks ret, failure_reason ret)
SmsConrsms_conn;
SmPointemanager_data;
unsigned long fask_ret;
SmsCallbackscallbacks ret;
char **failure_reason_ret;

Sms_conn A new @paque connection object.

manager_data Manager data specified when the callback was registered.

mask_ret On return, indicates which callbacks were set by the session manager.
callbacks ret On return, contains the callbacks registered by the session manager.

failure reason_ret
Falure reason returned.

If a failure occurs, th&msNewClientProc should return a zero status as well as allocate and retarkh a f
ure reason string iraflure_reason_ret. SMIiill be responsible for freeing this memory.

The session manager must register a set of callbacks to respond toveliesit @hemask_ret ayjument
specifies which callbacks are sé&ll of the callbacks specified in this version of SMlib are mandatory
The mask_ret argument is necessary in order to maintain bedkwompatibility in future versions of the
library.

The following values may be ORed together to obtain a mask value:

SmsRegister ClientProcM ask

Smsl nter actRequestProcM ask

Smsl nter actDoneProcM ask
SmsSaveYour selfRequestProcM ask
SmsSaveYour selfP2Request ProcM ask
SmsSaveYour selfDoneProcM ask
SmsCloseConnectionProcM ask
SmsSetProper tiesProcM ask

- 14 -

X Session Management Library X11, Release 6.4

SmsDel etePr oper tiesProcM ask
SmsGetPropertiesProcM ask

For each callback, the session manager can register a pointer to manager data specific to thatdaitback.
pointer will be passed to the callback when it i©ked by Svilib.

typedef struct {
struct {
SmsRegisterClientProc callback;
SmPointer manager_data;
} regster_client;

struct {
SmsinteractRequestProc callback;
SmPointer manager_data;
}interact_request;

struct {
SmslinteractDoneProc callback;
SmPointer manager_data;
}interact_done;

struct {
SmsSaeYourselfRequestProc callback;
SmPointer manager_data;

} save yourself_request;

struct {
SmsSaeYourselfPhase2RequestProc callback;
SmPointer manager_data;

} save yourself_phase2_request;

struct {
SmsSaeYourselfDoneProc callback;
SmPointer manager_data;

} save yourself_done;

struct {
SmsCloseConnectionProc callback;
SmPointer manager_data;

} close_connection;

struct {
SmsSetPropertiesProc callback;
SmPointer manager_data;

} set_properties;

struct {
SmsDeletePropertiesProc callback;
SmPointer manager_data;

} delete_properties;

struct {
SmsGetPropertiesProc callback;

- 15 -

X Session Management Library X11, Release 6.4

SmPointer manager_data;
} get_properties;

} SmsCallbacks;

6.1.1. TheRegister Client Callback

The Rgister Client callback is the first callback that will bedlked after the client connects to the session
manager Its type isSmsRegister ClientProc.

typedef Status (*SmsRegisterClientProc();

Status RgisterClientProcgms_conn, manager_data, previous id)
SmsConrsms_conn;
SmPointemanager_data;
char *previous _id;
Sms_conn The session management connection object.
manager_data Manager data specified when the callback was registered.

previous id The client ID from the previous session.

Before ay further interaction takes place with the client, the client must disteeed with the session
manager.

If the client is being restarted from a previous session, previous_id will contain a null-terminated string rep-
resenting the client ID from the previous sessiGall free on the previous_id pointer when it is no longer
needed. Ithe client is first joining the session, previous_id will be NULL.

If previous_id is imalid, the session manager should not register the client at this fiims. callback
should return a status of zero, which will cause an error message to be sent to the client. The client should
re-register with previous_id set to NULL.

Otherwise, the session manager shoudister the client with a unique client ID by calling tBesRegis-
ter ClientReply function (to be discussed shortly), and BrasRegister ClientProc callback should return
a datus of one.

6.1.2. Thelnteract Request Callback
The Interact Request callback is of typmsl nteractRequestProc.

typedef void (*SmsinteractRequestProc)();

void InteractRequestProsfis_conn, manager_data, dialog_type)
SmsConrsms_conn;
SmPointemanager_data;
int dialog_type;

Sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.
dialog_type The type of dialog the client wishes to present to the user.

When a client recees a ‘Save Yourself’ message with an interact_style &ilnteractStyleErrors or

SminteractStyleAny, the client may choose to interact with the udggcause only one client can interact
with the user at a time, the client must request to interact with the Tiseisession manager should keep a
gueue of all clients wishing to interadt. should send arilhteract” message to one client at a time and

-16 -

X Session Management Library X11, Release 6.4

wait for an “Interact Doné’'message before continuing with the next client.

The dialog_type argument specifies eitBarDialogError, indicating that the client ants to start an error
dialog, orSmDialogNormal, meaning that the client wishes to start a nonerror dialog.

If a shutdown is in progress, the user mayehtae option of cancelling the shutdo. If the shutdown is
cancelled (specified in th8rteract Done’ message), the session manager should sefthatdovn Can-
celled’ message to each client that requested to interact.

6.1.3. Thelnteract Done Callback
When the client is done interacting with the yiee Smsl nteractDoneProc callback will be ivoked.

typedef void (*SmsinteractDoneProc)();

void InteractDoneProcns_conn, manager_data, cancel_shutdown)
SmsConrsms_conn;
SmPointemanager_data;
Bool cancel_shutdown;

Sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

cancel _shutdown
Specifies if the user requests that the entire shutdown be cancelled.

Note that the shutdown can be cancelled only if the correspori@iag ‘Yourself’ specified True for
shutdown andmlnteractStyleErrors or SminteractStyleAny for the interact_style.

6.1.4. The Save Yourself Request Callback
The Sae Yourself Request callback is of ty@ensSaveYour selfRequestProc.

typedef void (*SmsSeeYourselfRequestProc)();

void SaveYourselfRequestProsifns_conn, manager_data, save_type, shutdown, interact_style, fast, global)
SmsConrsms_conn;
SmPointemanager_data;
int save_type;
Bool shutdown;
int interact_style;

Bool fast;

Bool global;
Sms_conn The session management connection object.
manager_data Manager data specified when the callback was registered.
save _type Specifies the type of information that should beeda
shutdown Specifies if a shutdown is taking place.
interact_style The type of interaction allowed with the user.
fast If True, the client should se its state as quickly as possible.
global Controls who gets the “Sa Yourself:

The Sae Yourself Request prompts the session