Distributed Multihead X design
Kevin E. Martin, David H. Dawes, and Rickard E. Faith
29 June 2004 (created 25 July 2001)

Abstract

This document covers the motivation, background, design, and implementation of
the distributed multihead X (DMX) system. It is a living document and describes the
current design and implementation details of the DMX system. As the project pro-
gresses, this document will be continually updated to reflect the changes in the code
and/or design. Copyright 2001 by VA Linux Systems, Inc., Fremont, California. Copyright
2001-2004 by Red Hat, Inc., Raleigh, North Carolina

1. Introduction
1.1 The Distributed Multihead X Server

Current Open Source multihead solutions are limited to a single physical machine. A single X
server controls multiple display devices, which can be arranged as independent heads or unified
into a single desktop (with Xinerama). These solutions are limited to the number of physical
devices that can co-exist in a single machine (e.g., due to the number of AGP/PCI slots available
for graphics cards). Thus, large tiled displays are not currently possible. The work described in
this paper will eliminate the requirement that the display devices reside in the same physical
machine. This will be accomplished by developing a front-end proxy X server that will control
multiple back-end X servers that make up the large display.

The overall structure of the distributed multihead X (DMX) project is as follows: A single front-
end X server will act as a proxy to a set of back-end X servers, which handle all of the visible ren-
dering. X clients will connect to the front-end server just as they normally would to a regular X
server. The front-end server will present an abstracted view to the client of a single large display.
This will ensure that all standard X clients will continue to operate without modification (limited,
as always, by the visuals and extensions provided by the X server). Clients that are DMX-aware
will be able to use an extension to obtain information about the back-end servers (e.g., for place-
ment of pop-up windows, window alignments by the window manager, etc.).

The architecture of the DMX server is divided into two main sections: input (e.g., mouse and key-
board events) and output (e.g., rendering and windowing requests). Each of these are describe
briefly below, and the rest of this design document will describe them in greater detail.

The DMX server can receive input from three general types of input devices: "local" devices that
are physically attached to the machine on which DMX is running, "backend" devices that are
physically attached to one or more of the back-end X servers (and that generate events via the X
protocol stream from the backend), and "console" devices that can be abstracted from any non-
back-end X server. Backend and console devices are treated differently because the pointer

Distributed Multihead X design 1

Distributed Multihead X design 2

device on the back-end X server also controls the location of the hardware X cursor. Full support
for XInput extension devices is provided.

Rendering requests will be accepted by the front-end server; however, rendering to visible win-
dows will be broken down as needed and sent to the appropriate back-end server(s) via X11
library calls for actual rendering. The basic framework will follow a Xnest-style approach. GC
state will be managed in the front-end server and sent to the appropriate back-end server(s) as
required. Pixmap rendering will (at least initially) be handled by the front-end X server. Win-
dowing requests (e.g., ordering, mapping, moving, etc.) will handled in the front-end server. If
the request requires a visible change, the windowing operation will be translated into requests for
the appropriate back-end server(s). Window state will be mirrored in the back-end server(s) as
needed.

1.2 Layout of Paper

The next section describes the general development plan that was actually used for implementa-
tion. The final section discusses outstanding issues at the conclusion of development. The first
appendix provides low-level technical detail that may be of interest to those intimately familiar
with the X server architecture. The final appendix describes the four phases of development that
were performed during the first two years of development.

The final year of work was divided into 9 tasks that are not described in specific sections of this
document. The major tasks during that time were the enhancement of the reconfiguration ability
added in Phase IV, addition of support for a dynamic number of back-end displays (instead of a
hard-coded limit), and the support for back-end display and input removal and addition. This
work is mentioned in this paper, but is not covered in detail.

2. Development plan
This section describes the development plan from approximately June 2001 through July 2003.

2.1 Bootstrap code

To allow for rapid development of the DMX server by multiple developers during the first devel-
opment stage, the problem will be broken down into three tasks: the overall DMX framework,
back-end rendering services and input device handling services. However, before the work
begins on these tasks, a simple framework that each developer could use was implemented to
bootstrap the development effort. This framework renders to a single back-end server and pro-
vides dummy input devices (i.e., the keyboard and mouse). The simple back-end rendering ser-
vice was implemented using the shadow framebuffer support currently available in the XFree86
environment.

Using this bootstrapping framework, each developer has been able to work on each of the tasks
listed above independently as follows: the framework will be extended to handle arbitrary back-
end server configurations; the back-end rendering services will be transitioned to the more effi-
cient Xnest-style implementation; and, an input device framework to handle various input
devices via the input extension will be developed.

Status: The boot strap code is complete.

2.2 Input device handling

An X server (including the front-end X server) requires two core input devices -- a keyboard and
a pointer (mouse). These core devices are handled and required by the core X11 protocol. Addi-
tional types of input devices may be attached and utilized via the XInput extension. These are
usually referred to as “XInput extension devices”,

There are some options as to how the front-end X server gets its core input devices:

Distributed Multihead X design 3

1. Local Input. The physical input devices (e.g., keyboard and mouse) can be attached
directly to the front-end X server. In this case, the keyboard and mouse on the machine
running the front-end X server will be used. The front-end will have drivers to read the
raw input from those devices and convert it into the required X input events (e.g., key
press/release, pointer button press/release, pointer motion). The front-end keyboard
driver will keep track of keyboard properties such as key and modifier mappings, autore-
peat state, keyboard sound and led state. Similarly the front-end pointer driver will keep
track if pointer properties such as the button mapping and movement acceleration param-
eters. With this option, input is handled fully in the front-end X server, and the back-end X
servers are used in a display-only mode. This option was implemented and works for a
limited number of Linux-specific devices. Adding additional local input devices for other
architectures is expected to be relatively simple.

The following options are available for implementing local input devices:

1. The XFree86 X server has modular input drivers that could be adapted for this pur-
pose. The mouse driver supports a wide range of mouse types and interfaces, as
well as a range of Operating System platforms. The keyboard driver in XFree86 is
not currently as modular as the mouse driver, but could be made so. The XFree86 X
server also has a range of other input drivers for extended input devices such as
tablets and touch screens. Unfortunately, the XFree86 drivers are generally com-
plex, often simultaneously providing support for multiple devices across multiple
architectures; and rely so heavily on XFree86-specific helper-functions, that this
option was not pursued.

2. The TinyX X server in XFree86 has built-in drivers that support PS/2 mice and key-
board under Linux. The mouse driver can indirectly handle other mouse types if
the Linux utility gpm is used as to translate the native mouse protocol into PS/2
mouse format. These drivers could be adapted and built in to the front-end X
server if this range of hardware and OS support is sufficient. While much simpler
than the XFree86 drivers, the TinyX drivers were not used for the DMX implemen-
tation.

3. Reimplementation of keyboard and mouse drivers from scratch for the DMX frame-
work. Because keyboard and mouse drivers are relatively trivial to implement, this
pathway was selected. Other drivers in the X source tree were referenced, and sig-
nificant contributions from other drivers are noted in the DMX source code.

2. Backend Input. The front-end can make use of the core input devices attached to one or
more of the back-end X servers. Core input events from multiple back-ends are merged
into a single input event stream. This can work sanely when only a single set of input
devices is used at any given time. The keyboard and pointer state will be handled in the
front-end, with changes propagated to the back-end servers as needed. This option was
implemented and works well. Because the core pointer on a back-end controls the hard-
ware mouse on that back-end, core pointers cannot be treated as XInput extension devices.
However, all back-end XInput extensions devices can be mapped to either DMX core or
DMX XInput extension devices.

3. Console Input. The front-end server could create a console window that is displayed on
an X server independent of the back-end X servers. This console window could display
things like the physical screen layout, and the front-end could get its core input events
from events delivered to the console window. This option was implemented and works
well. To help the human navigate, window outlines are also displayed in the console win-
dow. Further, console windows can be used as either core or XInput extension devices.

Distributed Multihead X design 4

4. Other options were initially explored, but they were all partial subsets of the options listed
above and, hence, are irrelevant.

Although extended input devices are not specifically mentioned in the Distributed X require-
ments, the options above were all implemented so that XInput extension devices were supported.

The bootstrap code (Xdmx) had dummy input devices, and these are still supported in the final
version. These do the necessary initialization to satisfy the X server’s requirements for core
pointer and keyboard devices, but no input events are ever generated.

Status: The input code is complete. Because of the complexity of the XFree86 input device drivers
(and their heavy reliance on XFree86 infrastructure), separate low-level device drivers were
implemented for Xdmx. The following kinds of drivers are supported (in general, the devices can
be treated arbitrarily as "core" input devices or as XInput "extension" devices; and multiple
instances of different kinds of devices can be simultaneously available):

1. A'"dummy" device drive that never generates events.

2. "Local" input is from the low-level hardware on which the Xdmx binary is running. This
is the only area where using the XFree86 driver infrastructure would have been helpful,
and then only partially, since good support for generic USB devices does not yet exist in
XFree86 (in any case, XFree86 and TinyX driver code was used where possible). Currently,
the following local devices are supported under Linux (porting to other operating systems
should be fairly straightforward):

+ Linux keyboard
e Linux serial mouse (MS)
Linux PS/2 mouse

USB keyboard

o USB mouse

» USB generic device (e.g., joystick, gamepad, etc.)

3. "Backend" input is taken from one or more of the back-end displays. In this case, events
are taken from the back-end X server and are converted to Xdmx events. Care must be
taken so that the sprite moves properly on the display from which input is being taken.

4. "Console" input is taken from an X window that Xdmx creates on the operator’s display
(i.e., on the machine running the Xdmx binary). When the operator’s mouse is inside the
console window, then those events are converted to Xdmx events. Several special features
are available: the console can display outlines of windows that are on the Xdmx display (to
facilitate navigation), the cursor can be confined to the console, and a "fine" mode can be
activated to allow very precise cursor positioning.

2.3 Output device handling

The output of the DMX system displays rendering and windowing requests across multiple
screens. The screens are typically arranged in a grid such that together they represent a single
large display.

The output section of the DMX code consists of two parts. The first is in the front-end proxy X
server (Xdmx), which accepts client connections, manages the windows, and potentially renders
primitives but does not actually display any of the drawing primitives. The second part is the
back-end X server(s), which accept commands from the front-end server and display the results
on their screens.

Distributed Multihead X design 5

2.3.1 Initialization

The DMX front-end must first initialize its screens by connecting to each of the back-end X
servers and collecting information about each of these screens. However, the information col-
lected from the back-end X servers might be inconsistent. Handling these cases can be difficult
and/or inefficient. For example, a two screen system has one back-end X server running at
16bpp while the second is running at 32bpp. Converting rendering requests (e.g., XPutlmage() or
XGetlmage() requests) to the appropriate bit depth can be very time consuming. Analyzing these
cases to determine how or even if it is possible to handle them is required. The current Xinerama
code handles many of these cases (e.g., in PanoramiXConsolidate()) and will be used as a starting
point. In general, the best solution is to use homogeneous X servers and display devices. Using
back-end servers with the same depth is a requirement of the final DMX implementation.

Once this screen consolidation is finished, the relative position of each back-end X server’s screen
in the unified screen is initialized. A full-screen window is opened on each of the back-end X
servers, and the cursor on each screen is turned off. The final DMX implementation can also
make use of a partial-screen window, or multiple windows per back-end screen.

2.3.2 Handling rendering requests

After initialization, X applications connect to the front-end server. There are two possible imple-
mentations of how rendering and windowing requests are handled in the DMX system:

1. A shadow framebuffer is used in the front-end server as the render target. In this option,
all protocol requests are completely handled in the front-end server. All state and
resources are maintained in the front-end including a shadow copy of the entire frame-
buffer. The framebuffers attached to the back-end servers are updated by XPutlmage()
calls with data taken directly from the shadow framebuffer.

This solution suffers from two main problems. First, it does not take advantage of any
accelerated hardware available in the system. Second, the size of the XPutlmage() calls can
be quite large and thus will be limited by the bandwidth available.

The initial DMX implementation used a shadow framebuffer by default.

2. Rendering requests are sent to each back-end server for handling (as is done in the Xnest
server described above). In this option, certain protocol requests are handled in the front-
end server and certain requests are repackaged and then sent to the back-end servers. The
framebuffer is distributed across the multiple back-end servers. Rendering to the frame-
buffer is handled on each back-end and can take advantage of any acceleration available
on the back-end servers’ graphics display device. State is maintained both in the front and
back-end servers.

This solution suffers from two main drawbacks. First, protocol requests are sent to all
back-end servers -- even those that will completely clip the rendering primitive -- which
wastes bandwidth and processing time. Second, state is maintained both in the front- and
back-end servers. These drawbacks are not as severe as in option 1 (above) and can either
be overcome through optimizations or are acceptable. Therefore, this option will be used
in the final implementation.

The final DMX implementation defaults to this mechanism, but also supports the shadow
framebuffer mechanism. Several optimizations were implemented to eliminate the draw-
backs of the default mechanism. These optimizations are described the section below and
in Phase II of the Development Results (see appendix).

Status: Both the shadow framebuffer and Xnest-style code is complete.

Distributed Multihead X design 6

2.4 Optimizing DMX

Initially, the Xnest-style solution’s performance will be measured and analyzed to determine
where the performance bottlenecks exist. There are four main areas that will be addressed.

First, to obtain reasonable interactivity with the first development phase, XSync() was called after
each protocol request. The XSync() function flushes any pending protocol requests. It then waits
for the back-end to process the request and send a reply that the request has completed. This
happens with each back-end server and performance greatly suffers. As a result of the way
XSync() is called in the first development phase, the batching that the X11 library performs is
effectively defeated. The XSync() call usage will be analyzed and optimized by batching calls and
performing them at regular intervals, except where interactivity will suffer (e.g., on cursor move-
ments).

Second, the initial Xnest-style solution described above sends the repackaged protocol requests to
all back-end servers regardless of whether or not they would be completely clipped out. The
requests that are trivially rejected on the back-end server wastes the limited bandwidth available.
By tracking clipping changes in the DMX X server’s windowing code (e.g., by opening, closing,
moving or resizing windows), we can determine whether or not back-end windows are visible so
that trivial tests in the front-end server’s GC ops drawing functions can eliminate these unneces-
sary protocol requests.

Third, each protocol request will be analyzed to determine if it is possible to break the request
into smaller pieces at display boundaries. The initial ones to be analyzed are put and get image
requests since they will require the greatest bandwidth to transmit data between the front and
back-end servers. Other protocol requests will be analyzed and those that will benefit from
breaking them into smaller requests will be implemented.

Fourth, an extension is being considered that will allow font glyphs to be transferred from the
front-end DMX X server to each back-end server. This extension will permit the front-end to han-
dle all font requests and eliminate the requirement that all back-end X servers share the exact
same fonts as the front-end server. We are investigating the feasibility of this extension during
this development phase.

Other potential optimizations will be determined from the performance analysis.

Please note that in our initial design, we proposed optimizing BLT operations (e.g., XCopyArea()
and window moves) by developing an extension that would allow individual back-end servers to
directly copy pixel data to other back-end servers. This potential optimization was in response to
the simple image movement implementation that required potentially many calls to GetImage()
and Putlmage(). However, the current Xinerama implementation handles these BLT operations
differently. Instead of copying data to and from screens, they generate expose events -- just as
happens in the case when a window is moved from off a screen to on screen. This approach
saves the limited bandwidth available between front and back-end servers and is being standard-
ized with Xinerama. It also eliminates the potential setup problems and security issues resulting
from having each back-end server open connections to all other back-end servers. Therefore, we
suggest accepting Xinerama'’s expose event solution.

Also note that the approach proposed in the second and third optimizations might cause backing
store algorithms in the back-end to be defeated, so a DMX X server configuration flag will be
added to disable these optimizations.

Status: The optimizations proposed above are complete. It was determined that the using the xfs
font server was sufficient and creating a new mechanism to pass glyphs was redundant; there-
fore, the fourth optimization proposed above was not included in DMX.

Distributed Multihead X design 7

2.5 DMX X extension support

The DMX X server keeps track of all the windowing information on the back-end X servers, but
does not currently export this information to any client applications. An extension will be devel-
oped to pass the screen information and back-end window IDs to DMX-aware clients. These
clients can then use this information to directly connect to and render to the back-end windows.
Bypassing the DMX X server allows DMX-aware clients to break up complex rendering requests
on their own and send them directly to the windows on the back-end server’s screens. An exam-
ple of a client that can make effective use of this extension is Chromium.

Status: The extension, as implemented, is fully documented in "Client-to-Server DMX Extension
to the X Protocol". Future changes might be required based on feedback and other proposed
enhancements to DMX. Currently, the following facilities are supported:

1. Screen information (clipping rectangle for each screen relative to the virtual screen)

2. Window information (window IDs and clipping information for each back-end window
that corresponds to each DMX window)

3. Input device information (mappings from DMX device IDs to back-end device IDs)

4. Force window creation (so that a client can override the server-side lazy window creation
optimization)

5. Reconfiguration (so that a client can request that a screen position be changed)

6. Addition and removal of back-end servers and back-end and console inputs.

2.6 Common X extension support

The XInput, XKeyboard and Shape extensions are commonly used extensions to the base X11 pro-
tocol. XInput allows multiple and non-standard input devices to be accessed simultaneously.
These input devices can be connected to either the front-end or back-end servers. XKeyboard
allows much better keyboard mappings control. Shape adds support for arbitrarily shaped win-
dows and is used by various window managers. Nearly all potential back-end X servers make
these extensions available, and support for each one will be added to the DMX system.

In addition to the extensions listed above, support for the X Rendering extension (Render) is
being developed. Render adds digital image composition to the rendering model used by the X
Window System. While this extension is still under development by Keith Packard of HP, sup-
port for the current version will be added to the DMX system.

Support for the XTest extension was added during the first development phase.

Status: The following extensions are supported and are discussed in more detail in Phase IV of
the Development Results (see appendix): BIG-REQUESTS, DEC-XTRAP, DMX, DPMS, Extended-
Visual-Information, GLX, LBX, RECORD, RENDER, SECURITY, SHAPE, SYNC, X-Resource, XC-
APPGROUP, XC-MISC, XFree86-Bigfont, XINERAMA, XInputExtension, XKEYBOARD, and
XTEST.

2.7 OpenGL support

OpenGL support using the Mesa code base exists in XFree86 release 4 and later. Currently, the
direct rendering infrastructure (DRI) provides accelerated OpenGL support for local clients and
unaccelerated OpenGL support (i.e., software rendering) is provided for non-local clients.

The single head OpenGL support in XFree86 4.x will be extended to use the DMX system. When
the front and back-end servers are on the same physical hardware, it is possible to use the DRI to
directly render to the back-end servers. First, the existing DRI will be extended to support multi-
ple display heads, and then to support the DMX system. OpenGL rendering requests will be
direct rendering to each back-end X server. The DRI will request the screen layout (either from

Distributed Multihead X design 8

the existing Xinerama extension or a DMX-specific extension). Support for synchronized swap
buffers will also be added (on hardware that supports it). Note that a single front-end server
with a single back-end server on the same physical machine can emulate accelerated indirect ren-
dering.

When the front and back-end servers are on different physical hardware or are using non-XFree86
4.x X servers, a mechanism to render primitives across the back-end servers will be provided.
There are several options as to how this can be implemented.

1. The existing OpenGL support in each back-end server can be used by repackaging render-
ing primitives and sending them to each back-end server. This option is similar to the
unoptimized Xnest-style approach mentioned above. Optimization of this solution is
beyond the scope of this project and is better suited to other distributed rendering systems.

2. Rendering to a pixmap in the front-end server using the current XFree86 4.x code, and then
displaying to the back-ends via calls to XPutlmage() is another option. This option is simi-
lar to the shadow frame buffer approach mentioned above. It is slower and bandwidth
intensive, but has the advantage that the back-end servers are not required to have
OpenGL support.

These, and other, options will be investigated in this phase of the work.

Work by others have made Chromium DMX-aware. Chromium will use the DMX X protocol
extension to obtain information about the back-end servers and will render directly to those
servers, bypassing DMX.

Status: OpenGL support by the glxProxy extension was implemented by SGI and has been inte-
grated into the DMX code base.

3. Current issues

In this sections the current issues are outlined that require further investigation.

3.1 Fonts

The font path and glyphs need to be the same for the front-end and each of the back-end servers.
Font glyphs could be sent to the back-end servers as necessary but this would consume a signifi-
cant amount of available bandwidth during font rendering for clients that use many different
fonts (e.g., Netscape). Initially, the font server (xfs) will be used to provide the fonts to both the
front-end and back-end servers. Other possibilities will be investigated during development.

3.2 Zero width rendering primitives

To allow pixmap and on-screen rendering to be pixel perfect, all back-end servers must render
zero width primitives exactly the same as the front-end renders the primitives to pixmaps. For
those back-end servers that do not exactly match, zero width primitives will be automatically
converted to one width primitives. This can be handled in the front-end server via the GC state.

3.3 Output scaling

With very large tiled displays, it might be difficult to read the information on the standard X
desktop. In particular, the cursor can be easily lost and fonts could be difficult to read. Auto-
matic primitive scaling might prove to be very useful. We will investigate the possibility of scal-
ing the cursor and providing a set of alternate pre-scaled fonts to replace the standard fonts that
many applications use (e.g., fixed). Other options for automatic scaling will also be investigated.

3.4 Per-screen colormaps

Each screen’s default colormap in the set of back-end X servers should be able to be adjusted via a
configuration utility. This support is would allow the back-end screens to be calibrated via

Distributed Multihead X design 9

custom gamma tables. On 24-bit systems that support a DirectColor visual, this type of correc-
tion can be accommodated. One possible implementation would be to advertise to X client of the
DMX server a TrueColor visual while using DirectColor visuals on the back-end servers to imple-
ment this type of color correction. Other options will be investigated.

A. Background

This section describes the existing Open Source architectures that can be used to handle multiple
screens and upon which this development project is based. This section was written before the
implementation was finished, and may not reflect actual details of the implementation. It is left
for historical interest only.

A.1 Core input device handling

The following is a description of how core input devices are handled by an X server.

A.1.1 Initinput()

InitInput() is a DDX function that is called at the start of each server generation from the X
server’s main() function. Its purpose is to determine what input devices are connected to the X
server, register them with the DIX and MI layers, and initialize the input event queue. Initlnput()
does not have a return value, but the X server will abort if either a core keyboard device or a core
pointer device are not registered. Extended input (XInput) devices can also be registered in Init-
Input().

InitInput() usually has implementation specific code to determine which input devices are avail-
able. For each input device it will be using, it calls AddInputDevice():

AddInputDevice()
This DIX function allocates the device structure, registers a callback function (which
handles device init, close, on and off), and returns the input handle, which can be
treated as opaque. It is called once for each input device.

Once input handles for core keyboard and core pointer devices have been obtained from AddIn-
putDevice(), they are registered as core devices by calling RegisterPointerDevice() and Regis-
terKeyboardDevice(). Each of these should be called once. If both core devices are not registered,
then the X server will exit with a fatal error when it attempts to start the input devices in InitAnd-
StartDevices(), which is called directly after InitInput() (see below).

Register{Pointer,Keyboard}Device()
These DIX functions take a handle returned from AddInputDevice() and initialize
the core input device fields in inputInfo, and initialize the input processing and
grab functions for each core input device.

The core pointer device is then registered with the miPointer code (which does the high level cur-
sor handling). While this registration is not necessary for correct miPointer operation in the cur-
rent XFree86 code, it is still done mostly for compatibility reasons.

miRegisterPointerDevice()
This MI function registers the core pointer’s input handle with with the miPointer
code.

The final part of InitInput() is the initialization of the input event queue handling. In most cases,
the event queue handling provided in the MI layer is used. The primary XFree86 X server uses its
own event queue handling to support some special cases related to the XInput extension and the
XFree86-specific DGA extension. For our purposes, the MI event queue handling should be suit-
able. It is initialized by calling mieqInit():

Distributed Multihead X design 10

mieqInit()
This MI function initializes the MI event queue for the core devices, and is passed
the public component of the input handles for the two core devices.

If a wakeup handler is required to deliver synchronous input events, it can be registered here by
calling the DIX function RegisterBlockAndWakeupHandlers(). (See the devReadInput() descrip-
tion below.)

A.1.2 InitAndStartDevices()

InitAndStartDevices() is a DIX function that is called immediately after InitInput() from the X
server’s main() function. Its purpose is to initialize each input device that was registered with
AddInputDevice(), enable each input device that was successfully initialized, and create the list
of enabled input devices. Once each registered device is processed in this way, the list of enabled
input devices is checked to make sure that both a core keyboard device and core pointer device
were registered and successfully enabled. If not, InitAndStartDevices() returns failure, and
results in the the X server exiting with a fatal error.

Each registered device is initialized by calling its callback (dev->deviceProc) with the
DEVICE_INIT argument:

(*dev->deviceProc)(dev, DEVICE_INIT)
This function initializes the device structs with core information relevant to the
device.

For pointer devices, this means specifying the number of buttons, default button
mapping, the function used to get motion events (usually miPointerGetMotion-
Events()), the function used to change/control the core pointer motion parameters
(acceleration and threshold), and the motion buffer size.

For keyboard devices, this means specifying the keycode range, default keycode to
keysym mapping, default modifier mapping, and the functions used to sound the
keyboard bell and modify/control the keyboard parameters (LEDs, bell pitch and
duration, key click, which keys are auto-repeating, etc).

Each initialized device is enabled by calling EnableDevice():

EnableDevice()
EnableDevice() calls the device callback with DEVICE_ON:

(*dev->deviceProc)(dev, DEVICE_ON)
This typically opens and initializes the relevant physical device, and
when appropriate, registers the device’s file descriptor (or equivalent)
as a valid input source.

EnableDevice() then adds the device handle to the X server’s global list of enabled
devices.

InitAndStartDevices() then verifies that a valid core keyboard and pointer has been initialized
and enabled. It returns failure if either are missing.

A.1.3 devReadinput()

Each device will have some function that gets called to read its physical input. These may be
called in a number of different ways. In the case of synchronous I/0O, they will be called from a
DDX wakeup-handler that gets called after the server detects that new input is available. In the
case of asynchronous I/0O, they will be called from a (SIGIO) signal handler triggered when new
input is available. This function should do at least two things: make sure that input events get
enqueued, and make sure that the cursor gets moved for motion events (except if these are han-
dled later by the driver’s own event queue processing function, which cannot be done when
using the MI event queue handling).

Distributed Multihead X design 11

Events are queued by calling mieqEnqueue():

mieqEnqueue()
This MI function is used to add input events to the event queue. It is simply passed
the event to be queued.

The cursor position should be updated when motion events are enqueued, by calling either
miPointer AbsoluteCursor() or miPointerDeltaCursor():

miPointer AbsoluteCursor()
This MI function is used to move the cursor to the absolute coordinates provided.

miPointerDeltaCursor()
This MI function is used to move the cursor relative to its current position.

A.1.4 ProcessinputEvents()

ProcessInputEvents() is a DDX function that is called from the X server’s main dispatch loop
when new events are available in the input event queue. It typically processes the enqueued
events, and updates the cursor/pointer position. It may also do other DDX-specific event pro-
cessing.

Enqueued events are processed by mieqProcessInputEvents() and passed to the DIX layer for
transmission to clients:

mieqProcessInputEvents()
This function processes each event in the event queue, and passes it to the device’s
input processing function. The DIX layer provides default functions to do this pro-
cessing, and they handle the task of getting the events passed back to the relevant
clients.

miPointerUpdate()
This function resynchronized the cursor position with the new pointer position. It
also takes care of moving the cursor between screens when needed in multi-head
configurations.

A.1.5 DisableDevice()

DisableDevice is a DIX function that removes an input device from the list of enabled devices.
The result of this is that the device no longer generates input events. The device’s data structures
are kept in place, and disabling a device like this can be reversed by calling EnableDevice(). Dis-
ableDevice() may be called from the DDX when it is desirable to do so (e.g., the XFree86 server
does this when VT switching). Except for special cases, this is not normally called for core input
devices.

DisableDevice() calls the device’s callback function with DEVICE_OFF:

(*dev->deviceProc)(dev, DEVICE_OFF)
This typically closes the relevant physical device, and when appropriate, unregis-
ters the device’s file descriptor (or equivalent) as a valid input source.

DisableDevice() then removes the device handle from the X server’s global list of enabled devices.

A.1.6 CloseDevice()

CloseDevice is a DIX function that removes an input device from the list of available devices. It
disables input from the device and frees all data structures associated with the device. This func-
tion is usually called from CloseDownDevices(), which is called from main() at the end of each
server generation to close all input devices.

CloseDevice() calls the device’s callback function with DEVICE_CLOSE:

Distributed Multihead X design 12

(*dev->deviceProc)(dev, DEVICE_CLOSE)
This typically closes the relevant physical device, and when appropriate, unregis-
ters the device’s file descriptor (or equivalent) as a valid input source. If any device
specific data structures were allocated when the device was initialized, they are
freed here.

CloseDevice() then frees the data structures that were allocated for the device when it was regis-
tered/initialized.

A.1.7 LegalModifier()

LegalModifier() is a required DDX function that can be used to restrict which keys may be modi-
fier keys. This seems to be present for historical reasons, so this function should simply return
TRUE unconditionally.

A.2 Output handling

The following sections describe the main functions required to initialize, use and close the output
device(s) for each screen in the X server.

A.2.1 InitOutput()

This DDX function is called near the start of each server generation from the X server’s main()
function. InitOutput()’s main purpose is to initialize each screen and fill in the global screenInfo
structure for each screen. It is passed three arguments: a pointer to the screenlnfo struct, which it
is to initialize, and argc and argv from main(), which can be used to determine additional config-
uration information.

The primary tasks for this function are outlined below:

1. Parse configuration info: The first task of InitOutput() is to parses any configuration infor-
mation from the configuration file. In addition to the XF86Config file, other configuration
information can be taken from the command line. The command line options can be gath-
ered either in InitOutput() or earlier in the ddxProcessArgument() function, which is called
by ProcessCommandLine(). The configuration information determines the characteristics
of the screen(s). For example, in the XFree86 X server, the XF86Config file specifies the
monitor information, the screen resolution, the graphics devices and slots in which they
are located, and, for Xinerama, the screens’ layout.

2. Initialize screen info: The next task is to initialize the screen-dependent internal data
structures. For example, part of what the XFree86 X server does is to allocate its screen
and pixmap private indices, probe for graphics devices, compare the probed devices to the
ones listed in the XF86Config file, and add the ones that match to the internal xf86Screens]
structure.

3. Set pixmap formats: The next task is to initialize the screenInfo’s image byte order, bitmap
bit order and bitmap scanline unit/pad. The screenInfo’s pixmap format’s depth, bits per
pixel and scanline padding is also initialized at this stage.

4. Unify screen info: An optional task that might be done at this stage is to compare all of the
information from the various screens and determines if they are compatible (i.e., if the set
of screens can be unified into a single desktop). This task has potential to be useful to the
DMX front-end server, if Xinerama’s PanoramiXConsolidate() function is not sufficient.

Once these tasks are complete, the valid screens are known and each of these screens can be ini-
tialized by calling AddScreen().

A