
The TyCL compiler internals and preliminary performance analysis

Andres Buss
Otlet Technologies Ltda
aabuss@otlettech.com

Abstract
Performance was the main reason that drove the inception of the TyCL compiler, to have the
possibility to run Tcl programs faster and with an smaller memory footprint. In order to try to
have those possibilities, a series of trade-offs[1] at the syntax and functionality levels had to be
made besides the inclusion of new syntax and features. The question now is: how can TyCL try
to improve the performance of such programs? … or in other words: how it does it? … and: how
well or bad it does it?. This paper describes TyCL's internal processes and data-structures and
provides a basic and preliminary performance analysis of the compiled programs that it
generates, compared against the Tcl VM/Interpreter.

Introduction
Like any other compiler for any other language, TyCL has a large number of ways to try to
improve the performance of the programs that it compiles, from paying close attention to the
types of the data that the program is handling to paying close attention to the processes that the
program is performing on such data, and even taking into account the platform (at the hardware
and software levels) in which the final compiled program is going to be executed. Having the
perfect compiler is obviously a complete myth, but having a compiler that could get better at its
job over time is a very possible concept, it just needs to keep evolving. Right now there are a
few practices/strategies implemented as an starting point from where it can start evolving, they
are not perfect at the time, but they are effective at improving the performance of TyCL's
compiled programs. So, what comes above is the description of such practices/strategies
currently implemented inside the compiler.

Practices/strategies

• Parsing/processing the source code at compile time

This is a big deviation from Tcl's way of doing things, where the source code is parsed and
processed at run-time and by demand. TyCL parses the hole source code completely at the
beginning, including going deep into descriptions of list's elements and the procedure's (procs
from now on) bodies of code. By doing this, it releases the run-time VM of this job,
effectively decreasing the amount of time needed to start running the actual program.

mailto:aabuss@otlettech.com

• Tracking the data-types
Types are the key components of TyCL programs, every data-value has to have a type (even
if the program doesn't explicitly declare one). By knowing the data-types in advance, the
compiler has the chance to think a little bit harder and generate specific targeted code for
each situation in particular, or in other words: it can avoid the time expended by the run-time
VM where it has to figure the type of the data out before it can start processing it and go
directly to the processing part of the program instead, all in all knowing also the platform
where the program is going to be executed.

This is the most important way of increasing the performance of the compiled programs, and
is also the most difficult to achieve, given the dynamic and string-based nature of Tcl. At this
moment, TyCL can identify explicit type declarations but it can't relate those declarations
through the hole program, it can handle local variable's types but can't go any deeper, for
those cases where the compiler is unable to identify the proper types, a generic-discovery
solution is generated as a fallback, thus leaving the “problem” to be solved at run-time.
Again, this is very difficult to achieve in highly dynamic languages, but it could get better
with time.

• Internal memory model of the data-types

As previously stated, every data-value must have a type related to it. TyCL has a
memory-model/structure (see figure 1) that allows each type to have its own internal
description of any form or size (it just grows the structure accordingly) which is known
explicitly by such type in particular, this “additional” description could be composed of
additional sub-type declarations, data-sizes, etc.

Figure 1. The memory description of types

struct:{
integer:flags
@tonum
@getnum
@tostr
@tobool
@set
@get
@cast
@length @size
@exec
@setIndex @getIndex

@refIndex
@setRange

@getRange @refRange
@setMember

@getMember @refMember
@newframe
@namedarg
@setflag
@parmoff
@exec

}

Common
Functions

Internal
Type's

Descriptor

Type Descriptor

Thus every type have a common known and expected part composed of a series of pointers to
functions meant to manipulate data of such type and a unique (possibly non-existent) part that
only each type knows how to handle.

All type descriptions are stored together in memory, composing a type-table where each type
is referenced by an offset into the table.

• Internal memory model of the data-values

A data-value (see figure 2.) is an structure that holds a particular data in conjunction with a
reference to its type, in consequence, all data must be enclosed within a data-value structure
unless the compiler get to know the data's type in advance and then this “additional”
information is handled at compile-time, and at run-time only the reference to the actual data
is needed. Besides the reference to the data's type, this structure provides information about
the way the data could be discarded, if it can be modified, if the data must be of the
referenced type when is modified, or if the data is really at another place in memory
(referenced data), also there is some space reserved to count how many times this data-value
has been referenced by some variable, so the system don’t discard the structure if a reference
to it is still alive.

Figure 2. The data-value's memory model

The current implementation of TyCL follows a policy of no-copy-on-write, which means that
when a value is assigned into a variable (or a member, index, etc) its content is actually
copied/cloned into the variable instead of merely increasing a reference count and sharing a
pointer to the real data (as is the case with Tcl). There is also another policy in place that
suggests that the system have to provide enough space in memory to store every data
whenever possible, all this to try to minimize the usage of dynamically-allocated memory,

DATA
(64-bits)

Flags
(4-bits)

RefCount
(32-bits)

RAW DATA

Type-Offset
(28-bits)

VARIABLEVARIABLE

V
A

L
U

E

Internal variable's
description

which is expensive (in terms of time) to allocate and often to discard.

• Memory model of composed-data types

Not every type of data can be contained inside the data-value structure, which allows a
maximum size of 64-bit, there are types that will need more space, in those cases the data
contained within the data-value structure points to the real data where the real data could be
of any form and size (controlled by its type). For those types which are containers of values
(lists, arrays, structures) there are to possible ways of storing those values: if the value’s
sub-type (the contained value-types) is not defined then the proper data-value structure
should be stored along with the actual data, but if the value-types are defined, those
definitions can be placed in the extra description space within the type descriptor and then
only the actual raw-data is stored (see figure 3), thus reducing the memory requirement to
store the same content.

Figure 3. Suggested memory model of types composed by more than one value

Undefined sub-type

Sub-type

Defined sub-type

Examples:
 type a array {3}
 type b list {3}
 type c hash
 type c dict

Examples:
 type a array {3 i32}
 type b list {3 s}
 type c hash {string}
 type c dict {i8}

 type s struct {
 i32:x
 f64:y
 }

• Function creation

Every time a proc is defined, a new type is created with the description of its parameters as
the internal descriptor of the type, the system keeps track of all created types and in the case
of procs, it only stores a single definition for procs with the same description of parameters.
This process is executed at compile-time thus releasing of such job off the run-time VM.
Additionally, the body of the proc is compiled also and some information is reserved to be
placed inside the data field of the value that is going to hold the processed proc's body,
among this information is the pointer to where the body's code starts, and the size of the
execution frame where the body is going to be executed.

• Function calling

When a function call is going to be executed, the system gets the real address where the
proc's body is located in memory and also gets the size of the execution frame used by the
body to execute and then creates the frame in memory, this frame is used to pass the
arguments of the function being called and to hold its local variables and registers (see figure
4). A proc's body should have anything it needs to execute within the boundaries of its own
frame (without asking for more dynamically allocated memory,.. wich costs time), except for
raw-data related to specific values.

Figure 4. Model of a local frame

Args parm (list)

LOCAL
VARIABLES

Opt. parms

Req. parms

Flags. parms

Named. parms

FRAME
HEADER

REGISTERS

Base pointPoints to
Global frame

Basic performance comparisons

Generally speaking, TyCL produce binary programs that runs between 2 and 25 times faster than
the Tcl VM/Interpreter, without taking into consideration the cases where the types of the
variables/values are being defined inside the source code, in which cases the speed goes up
considerably up to around 50 times faster. So to be fear with Tcl's VM, all the following
numbers were taken using code that both Tcl and TyCL can understand without any modification
whatsoever.

At the global frame execution, TyCL can access and modify variables 20 times faster than Tcl,
and function calling works 22 times faster on average.

At local frame execution (code within a proc), as the Tcl's bytecode compiler kicks in, the
difference is considerable lower: variable access and modifications drops to 4 times faster and
function calling drops to 7 times faster on average.

In any form where a dynamic evaluation of code is required, as could be the case when the Tcl's
VM encounters an expression not surrounded by braces, the TyCL's generated code executes
more than 300 times faster.

Conclusions

Even though TyCL is still in an experimental state, its advantages can be noticed right away, the
fact that it already generates faster versions of programs from plain Tcl code (without declaring
explicit types for example) is a very good starting point. Once one start declaring types inside
the code the performance begins approaching the level of c-compiled code.

There still a big space for improving performance, right now the compiler acts like a naive
compiler, it doesn't modify or optimize the code in any way as other compilers do, thus when the
time for such optimizations come, a new jump in performance could be expected.

References

[1] Andres Buss, “TyCL: an interpreter/compiler of a typed language implementation of Tcl/Tk ”,
18th Annual Tcl/Tk Conference, October 26, 2012

