
20’th Annual Tcl Association
Tcl/Tk Conference

Proceedings
New Orleans, LA

September 23-26, 2013

©Copyright 2013 Tcl Association

All Rights Reserved

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form, or by any means electronic, mechanical, photo-
copying, recording or otherwise without the prior consent of the publisher.

Individual authors retain full re-distribution rights for their contributions to
these proceedings.

Proceedings of the 20’th Annual Tcl/Tk Conference
ISBN: To be assigned

Special thanks to Dawson Cowals for designing
the Tcl Association logo.
For graphic design or web development consult-
ing please visit him on the web at
 http://www.dawsoncowals.com/

Cover art by Darryl Downie

Table Of Contents

iii

SML A simpler shorter representation of XML data inspired by Tcl
Jean-François Larvoire………………………………………………………….. 3

Web(-like) Protocols for the Internet of Things
Dr. Emmanuel Frécon……………………………………………………………. 15

A State-Driven, Service-Oriented Dynamic Web Development Framework
Stephen E. Huntley……………………………………………………………….. 26

Integrated Tcl/C Performance Profiling
Brian Griffin, Chuck Pahlmeyer………………………………………………… 39

Characterizing and Back-Porting Performance Improvement
Clif Flynt, Phil Brooks……………………………………………………………. 53

TAO/TK A TclOO Based Toolkit for GUI Design
Sean Deely Woods………………………………………………………………… 65

Scintilla Tk Porting Project
Brian S. Griffin…………………………………………………………………… 87

Dynaforms and Dynaviews A Declarative Language for User
 Dialogs in Tcl/Tk
William H. Duquette…………………………………………………………….. 99

A 1GHz Digital Oscilloscope in (mostly) Tcl
Ronald Fox……………………………………………………………………… 121

Cmdr
Andreas Kupries………………………………………………………………. 133

Public Key Infrastructure and the Tool Command Language
Roy S. Keene, Jemimiah Ruhala……………………………………………. 148

Optimizing Tcl Bytecode
Donal Fellows…………………………………………………………………… 159

Tcl, The Glue for a New Generation of Nuclear Physics Experiments
Ronald Fox………………………………………………………………………… 185

A Plague of Gofers: Generlized Rule-Based Data Entry
 With Lazy Retrieval
William H. Duquette…………………………………………………………… 198

Tcl Fast Track: From a Novel Concept to Global Launch in Eleven Months
Clif Flynt, Bruce Ross…………………………………………………………. 211

Tcl Beans: Persistent Storage of TclOO Objects With Minimal
 Implementation Overhead
William H. Duquette…………………………………………………………… 224

iv

Tcl 2013
New Orleans, LA

September 23-27, 2013

Session I
Wednesday September 25, 2013

10:45am-12:15

20th Annual Tcl Conference 1 New Orleans, LA Sept. 23-27, 2013

20th Annual Tcl Conference 2 New Orleans, LA Sept. 23-27, 2013

���

����	
��
��������
��
�
�

��������������������������
�
���������

���������	
��
����
����

�
������
���
��������
�����
�����
�������
��

�����
����!�

"#$����
���%#���$#�

&�'������'

����
���
��������	
���
��	����	����������������	���
��
�
��������������
�����������
���

�
����
����
�������������
��
���������������
��	�
�	������	���������
������	������
����
�����	��
�������
��������������
�����

 	�����
����������	��
��������	��
�����!
���	�	�
�����
�����!
���	������"	�
���
����

���
��
����
�����	��������
���� �

�	�
��	

����� ��
� � # � ����$� ��
�%�
��������� ��
��	���� � �
��
�
���� �	� ���!��������
�� ��
�������������
�����	��	������ �

������
��������������	���

�������
�

�$�
��
��	���������
����#��
	�����
��	����
����	���	�	�
��������
�����!
����	�������
�

���������	
�

 �������
����	�	�
������
�����"�������
���
��
�
�����	��	�����������&"����	����	��'��������
�������
� ������������������ �

���������
(��!��
����	����������"�����������
����
������
������������
���
���	�
	�$�
��������
�
��������

)� ��������������
����������!������
��	���	�!
���������
�����$������	�����
�

����
���������"����	������

 �
�	����������
��
����	���
��������������	���	�!
�������������
�����	������"����	����*��
�����
��	��
������
��������������� �

�
���
���	�*������	�!
�����
�����$��	�����

����	��
����
��
��
���
�
��������
�	���	�������"�������
�������
��
�
�����	���

+�"������
����
��	���
����������
��������������
���,�����������	��������
������	����	���
�	�������������
����	�	�	���
	��� �

��!
�����
�	���
�
	�$�����
�����

+�,�����"����	��������
�����-���	�����
���
���	�
	�$�
���������
���������
���
������
+��		�������
��	������������
�����		�� �

�����$�	
�	����	�������)����������
�"����	���������	��
�����
������#������
����������������
�����!
�	�������	�����	��������
 �

�����
�
����		���#�
�	�
������	��������������
������.�"	�
�	��
��������
���	���
��
����������������	�	��
���		�����!��� �

�	�$�	
�
��
���	���"���

+�"�����������
��	������	���
!�

�������������
�����
����

���	��
������	��
�����
���
�������/��	�/�����

��

���
��������
(�
��!������)�*
����
�

����
+���
,-�
#����$

.
�������
����/��)
�0
��
�����������
���+�
���

,-�
#����
0�!����

#
�
1���
���
��!�2
.
������
�

��1������*
�+��/

�
!
�1��3
,-�
!
�#�)�����
�
#���
#
�
�
����3
�����0���
!������
��
���
��0$
4

5 5�
������0��$
4

�1�!����6��

,-�
����
��
���������

�
����
��!����$
7�����)
���
#���
����)
�
1����
��3�
����
�
+��
1���#��
����*
����$

(�*
���
��
�

0�
�
8
,-�
��
�
��3�
#
����
����
+��
��11
���
�

0�
����)���
#
�
���*
������
�����
�
0*
������$

9��
,-�
1�
1
�����
�!�����*
����
����
#������
��
��
�������)�

#
,-�$
:��
,-�
��)�
���
�

���0
��
����
��
��
�

1���
�

�������*
�����+
���
����
��*����)
0��
�������
,-�
#����$
 ��
�����
��
,-�
����
��
������0��
���
�

�����#�
0��
�

�
�
���
���
���
#����������
1�
0���

#
,-�
���0
���*
+���
��
!
���
�

���1�*
������)
���
#���$

;9!�����*
.
����/
�����
���*
�3�����!�
��
1�

#
����
,-�
���
�
1�
0���<=

.�
���
�0���!�

#
�
�
����
��
.
��
����
����)
,-�
#
�
�*

+�
1�
"�!��
��
��!�
��
.
!
����
���
/�1�
�

/��)
��

�������������
��
���
�
1�
����

��

#
����
+
���
���������*
��1��!�
,-�
��
���
��+
����
�3!���)�
��������$

20th Annual Tcl Conference 3 New Orleans, LA Sept. 23-27, 2013

��������	
����
����
-��*

����
1�
1��
����
!
�1������
�0
��
,-�
��#������*
�*���3
�

�
���
���*
����
1�
1
���
������������$

���1�*
����!�
>,-�
������������?

#
���
(�0
���
*
�@��
#���
1����*<

;A��

#
+��!�
+��
�!�����*
!�����
�-�
�

<
4

�����0���!�
�

����

��=$

9
#�+
��1
�����

���
���2

� 9�4$'
,7B
;,-�
7�!
���)
B����=
C&D
E�
2
E
+��#��
;�
��
����
,-�=$
,7B
�
!������
!
�1���0��
+���
,-�
�
!�����
�
���$
�
�2
9�
���1����
�

#
9�4$'
!
�1���0��
+���
9�4$'
��3�
#
�����
0��
�
�
+���
,-�
��3�
#
����$
�$�$

!
������
�
0�!/
�

,-�
!���
�
*����
������!��
#����$

� ��A4
�����!��1�
A0"�!�
4
����
�
C�D
E�
2
E
+��#��
;�
��
����
,-�=
���
���1��$
7��*
�

����
+���
.FA
��0������
������0��
#
�
�
��
���)��)��$

 ��
�
��
1
1����

#
���
������������
�
+�
0*
#��$
�
�2
�
�1�����*
��!
�1���0��
+���
,-�$

� �

)��
E�
�
!
�
G�##���
C�D
E�
2
���1��
�*���3$
�
�1����
#
�
)��������)
!
�1�!�
���
#���
0����*
��!
���)�
#
�
+���
�����#���$
�
�2
7���
�

)��
�����
�

1��#��
��A4
#
�
��������
9E.�$

�
��

�����
����
���

�����1���
�

>#�3?
,-�
0*
/��1��)

��*
�
��0���

#
,-��
#
�
�3��1��
0*
�0���
���)

�����0����
;732
���1��
,-�
C'&D=$
9���
�)�
����
�
��
��/�
���
����
����!����
���1����
����
��#������*
�
��
�
�

��/�
���
�
!�����
�
��
�����0��$
7���
���
(��
���
����
�
1�
1
���
�

���1��#*
�����

+�
0�0*�
���

!�����

���1��
,-�
C''D�
����
�)�
��
�
��
�
�
)

��
#��
��
���
1����
��

���$

9��
��
���
!����
0�!/+����
!
�1���0����*
��
�
��$

������*�
�����
+���
����
�
#�+
1�
1
����
����

�
���
�!�$�/
+�/�2

� ,��)��
C'�D
A��*
����)���
�

��/�
��
���1��
�

)�������
,-��
�
�
��
��
�����������$

� 5�
C'HD
I��*
�������
�

�-�
��
���*
���1�!��$

E�
2
��
���
�

���
 !�
�*���3
����
+���
.
1�
1
���
���
������
�

1����
��
1���
 !�$
�
�2
4
�
0����*
!
�1���0��J
����
�����
#������*
�*���3
#
�
��3��
!�����
!
�������
��!$

��������	
��
	����
�����
9�
���
����
�����
.
+��
+�����)
 !�
�!��1��
#
�
����)��)
������
#���
�*�����

�
����
!������$
 ��
������!��

#
�*

�!��1��

�
����*
�
��
+���
�3!���)��)
��!������)�*
0�)
 !�
����!�����
;9�
�����)��
��0�����
��
���+
�/
1�!/���=�

#
�
�*�!��
��6��)
�����
�!��
�$
9��
.
/�1�
#�����)
����
0
��
!
���������
���
���*
�

1�
)���
���
��0�)$
;��$

B����+
���
����!�����
�3!���)��
+���
�
������)
)
��
+�
�)<=

9��
����
.
0�)��
�

����/
����
���
�+

1�
0����
+���
���/��2
,-�
��
�
����)
�
��
����
�
��3����
1���������
�

#

�
����!�����
����

#
����$
9
 !�
1�
)���

�
�
 !�
����
����!����
��
���

�
��3����
1���������
�

#
�
����!�����
����

#

����$
9��
���
�����!�

#
,-�
��
�
�
���
K��))��LK0�
!/�L�
0��
������
���
�
)�!��
����!����
+���
�
����

#
���������

�����0�����
���
!
�����
0�
!/�
+���

����
��0�����
��������
������$
.�

����
+
���
���
5A-
;5
!�����
A0"�!�

-
���=$

9��
1�
)����
+������
��
��
�����
 !��
E�E�
��!�
�����
�
!
��
�
���1��
�*���3
#
�
��1��������)
1�
)���
�����

M0����

�
M������
0�
!/�N
 ����
�����
0*
1����������N�
+��!�
 ��
��!�
 ������
 �

 ����
0*
������
 ����
 ���

K��))��LK0�
!/�L
����
0*
,-�KF0�
!/�LKF��))��L$
 ��
 !�
���)��)�
���
���
���1����
�*���3

#
����
����
+���

�
)������
+���
"���
�
�
6��
�����$
 ���
��/��
��
1����!�����*
���*
�

����
���
1����$
9��
���

���������!��
��1���
����
��������
��
�
�������
���!�
�

���
�
����
,-�
#����
+���

��
�������
1��
����$

20th Annual Tcl Conference 4 New Orleans, LA Sept. 23-27, 2013

.������

#
����������)
�
��+
����
����!����
1���������
�
���)��)��
��
��
���
0�
1
���0��
�

!
�����
,-�
���

��

�O��������
 !����/�
#
�����
+����
1��������)
���
���
���������
�����0�����
���
����
����!�����$

 ���
��#����
�
��+
1�
0���2
����
�
��3�
#
����
���1����
0*
 !��
+��!�
��
���1���
����
,-��
*��
��
����!��*

�O��������
�

��$
7O��������
��
���
���������!��
�����
����
��*
,-�
#���
!��
0�
!
�������
�

����
���1���
#
�����

����
0�!/
���

,-�
+���
�

!���)�
+����
����$

4
��)
���2
(�
�

�
�
��*
�

)�������
�
�����
 !�
����

#
�����$

������� ��
���	
�
P��1
���
,-�
����
����
�
���
+���
��������
����

#
�
��)�

1��
���
�����0�����
���
��

1��
���
����
0�
!/�
0��

���
�
���1���
��3�
��1���������
�
0����

�
���
�*���3

#
����*��
���)��)��$

 ��
0���!
����
��
����
,-�
���
�-�
��������
!
����1
��
�

��!�

����
��/�
����2

• ,-�
��������2
K��)
�����0���QR�����R
$$$L!
������KF��)L

• �-�
��������2
��)
�����0���QR�����R
$$$
M!
������N

G��
���
�����
����
��
���
��������
���
��
�

/
�
+����
�

#���
�
���

#
�����
����
+
���
!
���
���
,-�
�*���3
!�����

���
+
#���*
�������0��
!
������
���

1����6�
���
�����0����*

#
�����+
���
#�����
���
������
����
��0�*
���1��$
9#���
�31���������)
+���
�
���0��

#
�������������
.
�������
��
���
���

#
�����
��#����
#������
�
+��
+��!�
)���

)

�
�������

�
�����+
���
�
!������$
73��1��
�3���!���
#�
�
�
�

)��
7����
#���2

�������	
����		
�����������
������� �����
�����������������
���������

�������	
��
��������	��
��������������

��������������� !""	#
����

��	��
�"���"$����

����
��	
�

������#�	��#�	�
%%�&
�	�������	�'� ��"�#�	�

�����
 	����"
 	��

������
��	
�

��������#�	�(

�	�"�#�	�

�����������)����*���"����)����*�

�������+�#�	�#
��

����������	��
� ��
���#�	�
%%�"�	��
� ��
��

����������#�	�,
���-#��#��"�#�	�

���������.

�'��

������������
����/�	�0����1111112�"�
����/�	�

������������#���/�	�33��400�"�#���/�	�

�����������
#��	�3����"
#��	�

����������������30�"�����

������������	#�������"�	#�����

���������".

�'��

�������"+�#�	�#
��

�����"�
��	
�

���"�
��	
�

�"����

������	
��
��������	��
������������

�������������� !""	#
����

��	��
�"���"$����5

���
��	
�5

�����#�	���#�	�
%%�&
�	�������	�'� ��

����
 	���

�����
��	
�5

�������#�	�(

�	

����������)����*��

������+�#�	�#
��5

���������	��
� ��
����#�	�
%%�

���������#�	��,
���-#��#��

��������.

�'��5

�����������
����/�	�0����1111112

�����������#���/�	�33��400

����������
#��	�3���

���������������30

�����������	#������

��������6

������6

����6

��6

6

 ��
��##����!�
��
�����0����*
��
���
0�
����������*

0��
��<

20th Annual Tcl Conference 5 New Orleans, LA Sept. 23-27, 2013

�����������
����

��������
• 7�������
�
�����*
���
��
���
���

#
���
����$

• ��*
!
������

�
���
��3�
����
�#
�����S�
�
�������)
STS$

• ��*
���

!
������
�#
�����S�
��
�����!���
RO�
���R

�
M1����������N
0�
!/$

• -����1��
��������

�
���
����
����
����
0�
��1������
0*
�
SJS$

����	�����

• ��
�*���3
#
�
�����0����
��
���
����
��
#
�
,-�$
.�!�����)
���
�����
#
�
����)
O�
���
���
��!�1�
!����$
;9��
�

��
��##�����
#�
�
 !�@�
�����)
O�
���)
�����$=

• ����
����
0�
��
�����

��
�1�!�
0��+���
���
����
�����0���
���
���
0�)�����)

#
���
!
�����
����$

�
����������

• ��
!
�����
����
���
�
�����*
������
�
M1����������N
0�
!/$
E����������
��
���
!
�����
��3�
����
0�

��!�1��
0*
�
STS$

• .#
�����
���
�

#������
!����
��������
��0�����
��
!
������
;�$�$

��*
��3�=�
�
RO�
���R
0�
!/
��
���
0�

����
�������$
.�
����
!����
1����������
��
���
��3�
����
�
�
0�
��!�1���
0��
���
STS
���
SRS
��
���
0�
�������$

• ��
O�
���
��
���
��3�
!��
0�

������
�#
���
��3�
�
��
�
�
!
�����
0���/��
SRS�
SQS�
SJS�
SUS�
SMS�
SNS�
SKS�
SLS�
�
�
�

�������)
STS�
���
�#
�����
���
�

����
��������
��
���
����
����
��1��$

;��$
.�
!���
�
0�
!
�#����
+���
��

�����0���

�
�
!
�����

�
��*
/���

#
�-�
���/�1$=

������������
��������
9��
���
���
����
�����
��
���
��������
#
�
"�3��1
����
�
���
!
��������
�$

• ���
��
�
��������	
��	
�
���
	�

$
; ��
#����
S8S
��
,-�
��
���
���
��
�-�$=

• ���
��
�
��������
	�

$
;732
�
<�
!�*1�
��#�����
�=

• ���
��
�
���������

���������
�	
���	
��
������������
$

• ���1��#���
!���
#
�
�
���
���	
�������

�$

• ���
��
�
�������
�����
	�
� !�$

 ���	��	!���
�����"#$��� �!
�
���	
�
• �1�!��F��0�F��+
�����
���
1��������$

• ��
���
1�
)���
����

��
�1�!�
�#���
���
���

#
���
�������
��#�����
�
;��$
�#���
���
����
�����0���
���

1��
���
�������)
�1�!��
������
���
�������
����=�
0�#
��
���
0�)�����)

#
���
����
0�
!/$

20th Annual Tcl Conference 6 New Orleans, LA Sept. 23-27, 2013

 ���
!
�������0�*
��1�
���
���
�����0����*

#
���
���

��1��$
 ���
��
���
���
��
+���
!
�������)
�-�
0�!/
�

,-�$
9�
�-�
#���
��
�������
+���
��
����
�1�!�
��*+�*$

• 7�1�*
����
0�
!/�
;�$�$
G�
!/�
!
�������)
"���
�1�!��=
��!
���)2
V��
MN
#
�
���������
0�
!/��
���
RR
#
�

���)�������

���$

• V�O�
���
�����0���
������
���
�!!�1����
��
��
�����1�
�

0�
!
�1���0��
+���
� -����*��
�����0�����
+��!�

�

!!��
��
1

��*�+������
,-�
#����$

�����%��������	�!���	
�
73!�1�
#

,� -��
����
+
���
,-�
#����
������*
!
�����
�
������!�*

#

����
���������
+���
�

�
�
��
�����

���������
0��
�

��3�$
 ���
���
��������
��������
;���
�������
��
��������=
!
�����
"���
��3�$

• "���
�
�
�����	�������
��������
�
���	����
����
$
9
�������
���!�
#
�
�
��
�
����
,-�
#�����
+��!�
������*
����

��
,-�
��������
�������
1��
����$

• �
���	�����
�	����
��
������
������
�
0�������������010�

����
����
��
#
�
 !��
���
���*

����
1�
)������)
���)��)��$

• �
�����	��	�����
������
�
0������������
��2(�	�
�2�	��3���
���
���4���	�$$
 ���
��
�
��"
�
�������)�

#
���
 !�
�*���3�
���
+��)
�

������6�
���
�*���!��!
)���
!����!����$

• �������
�
�
�
����	����
����
����
�������
��
�����
�������0*0�

9)����
���
����
��
 !�$

• �
���������	����������
�������
����
�����	������
����QR�����R
,-�
�����0���
����
22Q
;������
W
SXS
W
S2S=
;������
W
5�)��
W
S$S
W
S�S
W
SXS
W
S2S
W
�
�0����)����
W
73������=Y
,-�
�����0���
�����
22Q
;SRS
;CZK[RD
W
B�#����!�=Y
SRS
=
W
;RSR
;CZK[SD
W
B�#����!�=Y
RSR=
V��
��#����!��
��/�
[��1J
�
[��J
�
[)�J
�
[�1
�J
�
[O�
�J
�

O�
��
���
�1�!���
!����!����
��
������$
.
!
��������
����)
 !�@�
O�
���)
�����
�������$
G��
����
����
���
!
������
�
1�
)���
�
��
!
�1��3�
���

���
�
�
��/�
���
�-�
�
��
�����0��$
;9!�����*
��
����
��
����
�����0���
��/��)
��
�
��
��##�!���
�

����

�
�)
�����

#
�����0����$=
-
��
�����+
���
�����0���
������
+���
�

/
�3�!��*
���
����
��
���
�O��������
 !�
�����)
��*+�*$
QL
.@�

1��
�

!���)��)
����
����
#
�
!
�1���0����*
+���
 !�
O�
���)$
9��

 5�
C'HD
1�
1
���
��
����������)
�����������2
(����
�����0����
���
 !�
#��!��
��

1��
��
+���
�
����2
�����
�����
E�
2
7�����
�

1����
��
�
 !�
����$
�
�2
����
���������
�

1�
1��
+�

�
�@�
/�
+
 !�$

�
�2
-�/��
��
�
��
��##�!���
�

����
+���
� -����/�
�����0����
����
����
�

�����$

• �
��	��
����������
��	������������
���3���
���
���4���	�$��5��
���
���������
��	��
����
���������
�

����
�������010�

����
��
 !�
M0�
!/�N$
(
�/�
+���
#
�
,-�

����
��������
!
�������)
�����
��������$

• #����
�
���
��	������
��������
�
�
����
��
��
������	��
����&��
��	�����
��'����2(�	�
�2���	�$���	�����
 �

��
������
����#����������
�����
���
���������
��
����

���	���
�
����
���������
�010�����020���	�����
�����
���

(
�/�
+���
+���
��������
��������
!
�������)
"���
��3�$

• �
�(�	�
����	�����
��������
�	����
�������
��
����	
���	���	����������$���020��060��0*0��070��030��040��080��090���	��

�����������010�����������
�
���
��	�	��
��
�
�
���������
����
���

��
�����&�
��#������	���
��	����
��
�������

��������
�	�����	��
���	������$����	��"������$���'

-�3���6��
�����0����*
0*
���
���)
���
�3���
!����!����
��
���
���1��
������$

E
���0��
�����������2
.�
���
!����
+����
��3�
���
��������
���
��3��
��
���
����
����
��1��
;�����
�3!�1�
��

,� -�=�
���
�
1����

�������
��)
��/�
<��3�

�
"���
%
;G��
�
�
U��3�
+��!�
+
���
�

/
��/�
�
!
�����=

20th Annual Tcl Conference 7 New Orleans, LA Sept. 23-27, 2013

�

#��)
��$
 ���
+
���
���
+
�3������)
���
�-�
�*���3
�

��11
��
�������
�����
+���
�1�!��$
���
���

>��
+
�!��1�?
!��1���
0��
+
#
�
�
���#��
�11��!���
�

#
����$

• ���������8E�
!�����)
������!��
�
$
 ���������<5�!������
�
$
;732
9
<�
!�*1�
��#�����
�=
G
��
���
�������
��/�
,-�
��1�*
���������
+���
�
����
0�)�����)
+���
��
S8S

�
�
S<S$
9��
!
������
���
1���������
�3!�1�
#
�
���
#����
8L
���
L
���1�!�����*$
9��
�
STS
��
���
���

#
�����
�#
���
�������
!
�������

�
���
#
��
+��)
�����$

• "�������
�����
��	����U
A�������
!
�����
$
����
��
#
�
 !��
���
���*

����
�!��1���)
���)��)��$

• ���������U��
�
�����
0�
!/
��
$
.
!
��������
����)
�3�����)
�*���3���
��/�
KU
-��������
!
�����
UL
��
E
+�������$
G��
����
+��
0����*

�
��
!
�!����
���
����
!������
1�
0����
�

����
+���
���
��
��O���!�
��
�-�
;�
�
�����
��
��
,-�

!
�����=�

�
���
UL
��O���!�
��
,-�
;�
�
�����
��
��
�-�
!
�����
��
����
!���=
.�
#����
���
���1����
+��
�

���!/
�

���
��
����������
��/�
��
,-�$

• ���������KCC
�����
��!��
�
DDL
��/�
#
�
!
�����
0�
!/��
���!/��)
�

���
,-�
���������
�
��O���!�
1�
���
�

0�
���
�������

1��
�$
�

0*
�*�����*�
.
����
�77
#
�
���

1����)
��O���!�$

4
��
����
���
�����
88�
���
���/���
!���
�
0�
!
�#����
+���
���
88�
���
���/���
��
���
���

#

!
�1��3
<��!������
���
0�!����
��
��

���
0�!
��
88
�#���
���
#����
SLS
��
���
���
��
�-�$

E
���0��
�����������2
.
�31���������
+���
���1���
������������
��

����
1�
)����$
A��
��
���
��������
0�
!/�
����
��
���
>��
+?
1�
)���
���!��0��
#������
�
+�2
��5

����������#��#� �	�9('�'�:����#��;,.���#��

6

�����
���
����
��
����
���
�����
0�
!/
!
������
���
��������
0*
�+

�
��
�1�!��
����
���

1����)
Q
��)�$
 ��
#����
SNS
��
���
����
���������
�
��
���

1����)
SQS
��)�
����
���
�59 9$
E�
�2
-
��
��)��+��)��
�*���3�
�
��
��
���
�1����

#
 !�$
�
�2
9���
�����
��
�1�!���
���
��/��
���
�59 9
0�
!/
+��)��
�
��
��
0*���$
�
�2
 ����
����
0�
�
+�*
�

����
+���
���
�59 9
0�
!/�
����
�
�@�
���
+���
�
��+
����$

-�*0�
���
+���
>�N?
8
;
�
>��N?
�

���
��
�
�B
��
��
(���
+�8=
�
�2
-���
���
���
!
������
�
1�
)���
�
��
!
�1��3
��
��
+��$

�����	����
�
�
9
+
�/��)
1�

#

#
!
�!�1�
1�
)����
!�����
���$�!��
��
������0��
��
VB�2
���12FF"#$����
���$#���$#�F1�
)�F���$�!�

.�
+
�/�
��
��*
�*����
+���
�
 !�
�����1�����$
;��������
��
����3$
9
#���
�����
�
#
�
(���
+�
��
������0��
��

���12FF+++$�!���������$!
�F�!�����!�=

.@��
������
��

�
�
���0��

#
���1��
,-�
#����
#�
�
����
��
�
��!���
�
�����)
�0
��
'
-G$

.�
��
�0��
�

!
�����
����
���
�

�-��
����
0�!/
���

,-��
+���
���
#����
,-�
#����
0����*
�O���
�

���

��)�����$

9
���1��
)���!�
��
���
!
������

#
���
�-�
#����
+���
��
+�
��
��
���
�3��1��
�0
���
����
���
>���#��?
��#
�����
�

��
��!�
������
�

#���$
 ��
�*�
��
�
�
������!���
��*�
��
0*
���
�
���

#
�������
���
��)�
���
0��!/���$

20th Annual Tcl Conference 8 New Orleans, LA Sept. 23-27, 2013

��������������
 ��
1�

#

#
!
�!�1�
��
+������
��
 !��
���
+
�/�
#���

�
�*
���1��
#����$
.@��
0���
����)
��
��)�����*
#
�
�������

*����$

 ��
#���
���
�0
��
&\��
�����

#
!
���
���#

#
+��!�
���
��
����1������
��0�))��)
��0���*$

 ��

��*
�����
��
1��#
����!�2
.�
!
������
�0
��
'�
PGF�

#
����

�
�
&
��6
��!����$
B�+�����)
��
��
�
���

1����6��)
���
�
+���
.FA
�
������
��
���
0�
�0��
�

��!�����
1��#
����!�
0*
�������

�����

#
��)������$

9!�����*
���
0���
0��
+
���
0�
�

�����
+���
��
,-�
1�����)
��0���*�
���
�
��#*
��
�

1����

�
)�������
������

,-�

�
�-�$
 ���
��
���
0�
���*
���!�
���

��*
��##����!�
��
���
����
��1���������
��
�
�
���
5A-$

.@��
�
�
�����1���
�

���
 !�@�

+�
,-�
1�����)
��0�������
��/�
 !�5A-

�
�5A-�
�
���*
#
�
��!/

#
�����
���

0�!����
���
1��#
����!�

�
�����
�

������
,-�
#����
��
���O����
#
�
��$
9��

.@�
�
0��
!
�!�����
�0
��
���

+�*
�1�!��
���
�������
0*
�����
��0������$
 ��*
����
0�
1��������
���
1�
�����
�

���
!�����
#
�
�������0����*$
G��

��*0�
���*
���
������*8

P�
+�
��������
�2
 ��
���
�!��1�

��*
�������
#����
��!
���
��
9��..

�
��0���
!����!����$
��11
��
#
�
V ���

�

V ��'�
��
���
0�
���*
�

���
;911�*
���
��������!�
�

��!
)��6�
���
��!
���)�
��
��!
�������
��
���
,-�
�1�!�

����
!���)�
���
 !�
#���
.FA
��!
���)=�
0��
.
�����
���
���
����$

�	������������
9�
����������)
����
0���#��

#
���
!
������
�
��
����
���
�
���
��6�

#
���
!
�������
#����
��
'&]
�������
����
���

��)����
,-�
#����$
9�
�)
0�)
#�����
����
����!��
�
)
��
#�
�
H]
#
�
�
#���
+���
�
��

#
���)�
�59 9
���������

�

'^]
#
�
�
#���
+���
���1�*
������
��������$

7���
�#���
6�11��)
���
�+

#���
����

#
���1����
���
�-�
#����
��!����
��
&]
�������
����
���
,-�
#����
��!����$

4
�
��!�
.
������
0��
����
��*
���1
-�!�
�
#�
���������
���
��+
A##�!�
�
!������
0�
��$
�

9�
#
�
,-�
!
�1�����
��
���*
����!����
!
�1����
��
���
������0��
;73
CHD�
C\D=$
A0��
���*
���*
)���
0�����

�������
����
�-�$
G��
"���
��

0��
���*
���
!
�1������
#����
���
�������0��
0*
������<

B���!��
��
���
��!�
0�����

�
3��
�
!������
����)
����
�1�!��$
�
�
�3��1��

�
���
���1��
�A9E
�����
1�

#�
�
���
�A9E
'$&
�1�!�#�!���
��
���
)���
��
��]$
 ����1
����)
�A9E
�����)��
��
�����
�-�
#
��
�������

#

,-�
+
���
*����
��)�
���+
�/
0���+����
)����<
;.�
!���
�
��0
�*
�����
����
�A9E<
�=

�����������
�
�
 ���
�!��1�
���
+�
���1��*��)
�
#���
����
��
�31���������
�-�$

9�����0��
��
VB�2
���12FF"#$����
���$#���$#�F1�
)�F��
+$�!�

 ��
1���!�1��
��
����
��!�
#���

�
����!�
�*
��
��
�-�
�������$
5���!�
����
!
�����
�����
��������
����
��1������

#����
���
��0����!�
����$
����
!
������
���
���1��*��
��
��3�
�#
1
���0���
����
���
���1��
��
��3���!����$

.�
���

���

1��
��
#
�
)��������)
�������
�����������
�31���������
�-�
#
������
+��!�
����
���1��
!
����!�
��

+��!�
+��
���
�
��
�����0��
�
����
�$

 ��
��
+
�!��1�
���
�+

��"
�
�
���

#

1�����
�2

• 9
���1��#���
�
���
+��!�
��
�
�
#���*
�-��!
�1���0���
0��
1�
��!��
���
��
�����

��1���
�������
�

����$

; ���
��
���
��#����
�
��

#

1�����
�=

• 9
����!�
�
���
+��!�
1�
��!��
�
#���*
�-��!
�1���0��

��1���
��
���
!
��

#
�
�������

��1��$

20th Annual Tcl Conference 9 New Orleans, LA Sept. 23-27, 2013

�����	������	���������������������	
�
• ��
��)
����
��
���
#���

�
����!�
�*
����$
; ���
��
+���
��
�
�
,-�
!
�1���0��$
,-�
��O�����
��)

�����
 �

 0�)��
 0*
 �
 ������
 ���
 !
�����

��*
 ��1��������!
 !����!����
 1���
 S_S
 ���
 SXS$
4����
!
�������)
�1�!���

�
�-�
���/�1
!����!����
��/�
�
 SUS
��
���
#����
1��!��
����
0�
RO�
���R`

(��!�
���
���
�!��1�
+
���
!
������
��
���
0�)�����)

#
��3�
!
������
�
�
��
�������$=

• 5���!�
�*
�����
���
+���
�
SFS$

• ��
#���
��6��
����F�����

+����
��!�
���
�-�
�����0�����
�
�
��
+�
0*
��#����$

• �����
!
������
���
��
+�
��������$
;G*
��#�����

��*
���
#����
'�
�����
���
��
+�$=

• �3�
#����
���
��
+�
��
���*
����
�3!�1�
#
�
���
������$
G����*
#����
���
��
+�
��
��
��3���!����
���1$

73��1��
�����
����32

7

�<�	�#��=8>�"�"�

��"��
:�����"

�"%�"��%�

"

�"%�"��%�"�5

����%��?@��

��()/�(#�#�5

����(�� �#*�@��	
�#��9@�A�(#�#�A�
/��/
	��%

�()/�����

���

����9@�A�B	
��
����1�

����'����	�B�A�-	C/	���!��

����A	
�	
�!

�����D�E#�	!�����1��4��$0��(
�#��!�.'F���	�!���GA!�H���
:��A	
�	
�$����-$�

I��	

��	�21���A	
���	�+#����

��������EGA!�H���
:��A	
�	
�$����-$�I��	

��	�1��������9# #)����*!����	4%�

��������A,F��	���
����#�/�!������9+���#�/�!��

��������.
�#����	
���
�A	
�	
!���A	�,
�	!���4�-	C�G��H�
	!��

��������A�#
	�!

��6����

��.��/�I��	���
��I�#)�	���

��.

�/ 9#��	I�#)�	���

��,/���/�	
,
/����

��G �
��I�#)�	���

��A	�/
��*��#�����2

��A�#���5

����-	�
/
�	�����/�	

����9@�A�A	���
�!�$

����A�#
	�J/��C/	��
/����#
�	��D!�$

����A,F�-	C/	��"-	�
��	�F/%%	
!�$�+

����&	!�1

����A,F�A�#���-	C"-	� �F/%%	
!�$�+

����&	!�4�

����G 	
#��
���J,@(�D!��

����K��	���
������#
	�
	�
��	���

�����
�#���%��
 	
#��
��!��$0$1����#���/��#��
�	����	!�$

��6����

���
#�	A,F��

6

7

�<�	�#��=8>

20th Annual Tcl Conference 10 New Orleans, LA Sept. 23-27, 2013

�������	!���	���������������������	
�

• ��
��)
����
��
���

0"�!�
�*1�
;732
R#���R

�
R����!�
�*R

�
R�*����/R�
��!$=

• ��
����
��
��
�-�
�����0���
!�����
����$
;732
#���
����QR�-�
�1�!�#�!���
�$1�#R=

• 9��

����
#���
1�
1�������
��/�
����F�����
�
����

+����
�!!���
!
���
�
������
��!�
���
�-�
�����0����$

 ���

��
��
#���*
�-�
���
,-�
!
�1���0��$
9��
���
��3����

��1��
!��
0�
;��
���
�*=
����
�

��!�����
���

!
�1����
#���
�*����$

�����
������
�
�
 ���
�!��1�
�
��
�
�
�3����
0��
����
!��1���
��
�
��
�)��
�31�������
����
)����
�
��
����)��

�
���
1
+��

#
���

�-�
!
�!�1�2

.
���
����
��
����
�!��1�
!�����
31���$�!��
+��!�
��/��
��
���*
�

���
,E9 �
�

���+
���
!
������

#
,-�
#�����

�
�3���!�
����
#�
�
����$
 ���
�!��1�
�
��
�
����)
#��!*$
9��
��
�
��
��
�

1������
���
,-�
#���
��1�������
�
#���

�*�����
���
���
+
�!!�����)
���
!
������
����)
V��3���*��
!
������
��/�
!��

�
��$
,-�
��������
���
!
��������

��
����!�
�����
���
�����0����
��
#����$
 ��
!
�����
����
#
�
�
��������
�������
��
!
��������
��
��
�������
#���$

73��1���2

� #������	�����������"���"�
��	
"�
��	

�����
���
�����
��������
��
����!�
�����
���
�����0����
��
#����$

� #������	���������#��"���"�
��	
"�
��	
"�#�	

5��1��*�
�����0���
�������

�
���
��3�
!
�����
#
�
��������$
����
��

��1���
>5�
��?$

 ��
����
����
��
�

+����
��
�1���$�!�
�!��1�
����
�
��
���
����
#
�
�-�
����
�������

#
,-�$

��11
����)
���
#�������

#
,E9 �
+
���
0�
��##�!����
��
31���$�!�
����
 !�@�
 !�5A-
1�!/�)�
�

�

���
����

+
�/$
G��
��
���
��
��
�����
��@�
1
���0��
�

)��
���
����
#��!��
�����*
����)
�

�������
�����
�!��1�2

����L�� #���MN ;A�
aY
#
�
V��3=

'=
 ���
�3��1��
��
+�
���
1
+��

#
�����)
�
����
#
����
����
��
�O��������
�

,-�$

&=
4
��!�
�
+
����
+
�/�
��!��*
+���
���

��1��

#
���
��
+
�!��1�
���!��0��
��
���
1����
��
!��1���2
��
+$�!�

!�1�����
���
!
������

#
�
����
#���
�*�����
+����
#����
���
�
�����*
���1��*��
+���
���
�#�� #��
 !
�����$

 ���
�1���$0��
���
+�
�3���!���)
���
!
������

#
����������
#����
#�
�
����
���
#���
����)
���#�� #��$
 ��

 #��
��
���
����$
�
�!��2
V�#
��������*
����
�
��
�
�
+
�/
+���
#���
�����
����
���
�
�
,-�
��)
!
�1������
#
�

�3��1��
�#
���*
!
�����
�1�!���

�
0�)��
+���
�
��)���
��!$
9
1
���0��
������
�
�

,-�
&$�
��*0�8
�

��
�
��� ���������
 ��
�-�
����
#
����
+
���
0�
�
�������
#
����
#
�
�31
����)
��*
/���

#
 !�
����2
�
�-�
�

/�
�
�
�
��/�
 !�
�����#$
;E����!�����*
+���
�
�
����)
�����0����$=
�
.�
���1��
!����
;+���
��
�����0����=�
�-�
!��
������*
0�
1�����
0*
���
 !�
�����1�����
����!��*
��
 !�
�����

#
�����$
�
:
�
)��
#
�
#���
���
!
�1���0����*
+���
��*

������
�

�
����

��*
��11
���
,-�$

�	����
�����
����!����������!��
 ��
!
����)��!�

#
,-�
�������
������
#���
�*����
������
���
�����0��
����
�1�!���
�����
��
�

����/
����
���

�������
�*���3
#
�
����
�1�!��
��
���
0�
F�����1�!�F��0�1�!�F�����0���
�
�
22�����1�!�22��0�1�!�22�����0��$

20th Annual Tcl Conference 11 New Orleans, LA Sept. 23-27, 2013

����	��� �	�������
�
���

������ �����	�&��	�����'
.
�����
���
�

+����

��`

�
.�
���1��
!����
;
#���=
�-�
"���
�

/�
��/�
�!�
������
+��!�
���
�!�
�����1�����
!��
��)���
����!��*$

�
.�
!
�1��3
!����
;�����*=�
��
+��
�

���*
�

���
���
���
�!��1�
�

)�������
,-��
����
���
 !�5A-
1�!/�)�
�

1����
��$
�

.
�����
�

/
���
����
�

+����
�
#����#���)��
1�����)
��0���*$

A#
!
�����
#
�
���
��/�

#
���
���
#
�
1��#
����!�
����
���
��
+
���
0�
��!�
�

+����

��
��
�

�
�bb�
����)
9E.�

�������
�

,-�
1�����)
��0�$

������ �&������	
���	�����'
.
�����
���
�����
����
��O�����
�
#����#���)��
��0���*
��/�
+���
 !�5A-

�
�5A-
���
+�
�

�

#
�
,-�$

�
�
�*
���1��
������
.
������*
)��������
���

��1��
��!�������*�
+���
���
��������
��������
#�����
����
�
!���
�

�

���*
���1��
.����������)
�
�����
�

������
�
0�
!/�
+��!�
0�!
���
���
!
�����
0�
!/

#
��

����
��������
��!$
 ���
+
�/�
+���
��
�)�
#
�
�����

��1��
#����$
�
�
0�))��

����
+���
���1
�������
���������
�
�������
����
+���
�
�

�!���
+����
��
���
�����
��������
����
�

0�
��������

���
���

���
�)���$

����
���*
���
0���
�-�
)�������
�
�
������
.
����
���
+������
��
E
+�������$
 ����
�
������
���
*��
��
����
#���

�*����
1�����)�
�������
��
+���
��!�
���)
��������
��
�)��

#
��
����!�
�����
���
��������
��������
��
�)��

#
��

#����$
9��

���*
!��
)�������
������
,-�

�
�-�
��
���
#��1

#
�
)�
0��
;�����

�
��=
�+��!�2

E���5��
�������
C�����0����D
C�!��1�X0�
!/D G�)���
��
��������
���

1���
��
��������
0�
!/$
.#
���
�!��1�
0�
!/
��
1�������
���

��1��
+���
0�
��������

��
���
!
�����
0�
!/�
����
����
0�
!/
+���
0�
!�
���

����������*
�#���+����$

E���7��5��
������� ��
���
�
!
�����
0�
!/$
;4
�
��!�����*
+���
����)
�

�!��1�
0�
!/
+���
E���5��$=
 ��
�������
��)�����
��

��*
��!�����*
#
�
)��������)

,-��
���
����
����
.
!
���
)��
���

#
��
+���
�
������

�
��
+
�/�
0*
��!
����)
�����
��
�
���!/$

E���I����
����
�����
C�����0����D
C
1��
��D A�1���
�
��������
�������$
A1��
��
��!����2

�����(����
4

�
�!�
���
+����

#
���
�������

����$
9��
+�

���)���)
�������

����F�����
1�����

��/��)
����

������
�

����$

20th Annual Tcl Conference 12 New Orleans, LA Sept. 23-27, 2013

B�+�����)
�����
�
������
��
 !�
+
���
0�
���*$
;.�
1���
���
�

���
���������*

#
 !�
���
E
+�������
#
�
1�����)

�!��1�
 0�
!/�
��
 ��)������$=
 .�
E
+��������
 ���
�����0����
 ���
1�����
 ��
 �
 ������0��$
 .�
 !�
 ���*@�
0�
 ��
�

��!��
���*$

!�������
�
� ���
1�
1��
�31�������
+���
���
�

���
���
)���
#���0�!/
�0
��
���
�*���3�
���
���
1
���0��
������������$

.�
�����
��*
���
�

�
��!
�������!*
����
��������
1��������)
#���
,-�
!
�1���0����*
��
�
��
!���8

� .#
��������
)�
+��
+
�/
+���
����������
1�
1��
�

#���6�
�
���������
���
!�����
�
���1��
�-�
)�������
�

���
1�����)
��0���*$

� .#
��������
)�
+�
����
#�������
+
�/
+���
���
 !�5A-
���
�5A-
�����
1���
�

���
�#
����
!
���
0�
�����

�

�����
��0������
��
��
�����������
,-�
��!
���)
#
�����
#
�
0
��
��1��
���

��1��$

� 9�*
1�
"�!�
+��!�
��
���
����
��
,-�
#�����
����
6�11��
��/�
 ��
-�
A##�!��
+
���
����
�1�!�
���

��!�����
����

#
���
0*
����)
���
�-�
#
����
�������$

� ��
�����)�
1
�������
��
����
0�����
��
,-��0����
���+
�/
1�
�
!
���
��!�
��
�A9E$
9��1���)
�3�����)

,-��0����
1�
�
!
��
�

���
�-�
�������
+
���
0�
���*
���*�
���
��!�����
0���+����
!
�������0�*$

�������)
��+
����
!
�-��0����
1�
�
!
��
+
���
0�
���*
�

�
���
1�!/��
����*���
+
���
0�
��!�
������<

� 9�*
��+
1�
"�!�
+��!�
�
��
�
�
/�
+
+���
����
#
����
�

����
!
���
)��
��
���*��
����
#
����
0*

��
1���)
����
�-�
#
�����
+����
�������)
!
�1���0����*
+���
,-��!
�1���0���
��*
�

���
��
���
���

����
�����$

"���
�����
C'D
,-�
�1�!�#�!���
�2
���12FF+++$+�$
�)F BF3��F

C&D
9�4$'
,7B
;,-�
7�!
���)
B����=2
���12FF���'$���0��$��$#�F3��F3��$���

���12FF+++$���$���F. V� F����*)�
�1�F!
�'^F���)��)��F,$�����''&$1�#

C�D
��A4
�����!��1�
A0"�!�
4
����
�2
���12FF+++$!�
!/#
��$!
�F��A4F

CHD
A1��
-
0���
9�����!�
(G,-�
;(�������
G����*
,-�
7�!
���)=
�1�!�#�!���
�

���12FF+++$
1���
0���������!�$
�)F��!�F�##�������F+�1F+�1�'�&�+03���&��'�^&\��$1�#

C\D
�
�1������)
,-�
+���
-����1��3��
������!��!��
EE-
-
����

���12FF3��11�$�
��!�#
�)�$���F1�1��F1�1��$����

C�D
9
����

#
,-�
������������
1�
1
����2
���12FF+++$1����$!
�F3��������������$����

C^D
,-�
!
�1�����
�
0�0��
)��1�*2
���12FF3��11�$�
��!�#
�)�$���F1�1��F�
���$����

C�D
�

)��
E�
�
!
�
G�##���2
���1�2FF!
��$)

)��$!
�F1F1�
�
0�#F

���12FF)

)���
1���
��!�$0�
)�1
�$#�F&���F�^F1�
�
!
��0�##����)

)��������$����

C�D
,-�
���!����
��

�
 !�@�
+�/�2
���12FF+�/�$�!�$�/F'^H�

C'�D
 5�
1�
1
���

�
 !�@�
+�/�2
���12FF+�/�$�!�$�/F&\��'

C''D
���1��
,-�2
���12FF+++$+�$
�)F,-�F���1���,-�$����

C'&D
���1��
,-�
;���������
�

���
1����
��

��=2
���12FF��$+�/�1����$
�)F+�/�F���1��X,-�

C'�D
,��)��
1���������
�

�
 !�@�
+�/�2
���12FF+�/�$�!�$�/F\�^�8�����Q�&'�

20th Annual Tcl Conference 13 New Orleans, LA Sept. 23-27, 2013

C'HD
 5�
1�
1
���

�
 !�@�
+�/�2
���12FF+�/�$�!�$�/F&\��'

20th Annual Tcl Conference 14 New Orleans, LA Sept. 23-27, 2013

Web(-like) Protocols for the Internet of Things
Dr. Emmanuel Frécon

ICE - Interactive Collaborative Environments Laboratory

SICS Swedish ICT

emmanuel@sics.se

Abstract

This paper describes the motivation for and implementation of two

Web-oriented protocols for the Internet of Things. While building upon the

ubiquity and flexibility of the Web, WebSockets and STOMP minimise

headers to the benefit of payload, thus adapting to the scarce resources

available in IPv6 mesh networks. The websocket library provides a

high-level interface to open client connections and further exchange data,

along with the building blocks necessary to upgrade incoming connections

to a WebSocket in servers. The STOMP library offers a near-complete

implementation of the latest STOMP specification, together with a simple

broker for integration in existing applications.

1. Introduction
The Internet of Things promises a near future where domestic and work environments, but

also cities and factories, are augmented with sensors and actuators that all are Internet

entities. The deployment of IPv6 together with mesh networks is key to this evolution by

enabling each sensor or actuator to be accessed from any Internet enabled application or

user, thus from almost anywhere. Given the widespread deployment of Web technologies,

extending their reach to sensors and actuators would facilitate their integration in the fabric of

our lives.

Being “everywhere” imposes a number of technological and economical constraints on

sensor networks, leading to few radio, storage and computing resources available at each

sensor. In particular, keeping protocol-relevant state to ensure the reliability of TCP imposes

challenges to mesh networks since transmitting a packet reliably will require the resources of

several sensors in the mesh. In addition, radio constraints impose small packet sizes,

leaving little space to application data and protocol headers.

This paper describes the implementation of two Web(-like) protocols: WebSockets [1] and

STOMP [2], targeting their integration in applications based on IPv6 mesh networks [3]. While

being based on TCP, both protocols exhibit features making them suitable for low-level

communication within a whole application deployment: from tiny sensors to users, via cloud

20th Annual Tcl Conference 15 New Orleans, LA Sept. 23-27, 2013

services. WebSockets is merely a way to upgrade a regular Web connection to a lightweight

and symmetrical communication channel, making possible data flows in both directions

between the server and client. Within a WebSocket connection, individual packets are led by

small binary headers. STOMP is also a bidirectional protocol, but with textual headers

following rules similar to regular HTTP, and kept to a minimum.

2. Motivation
Most currently available sensor networks technologies use solutions for the “last mile” that

are unlike the remaining of the Internet. Z-Wave , ZigBee , BTLE (bluetooth low energy) ,1 2 3

EnOcean are a few examples of these standardised radio and network technologies that4

have reached penetration in consumer and industrial applications. Being different from the

transport protocols over which the Internet is built requires that information flowing from and

to the sensors and actuators needs to be translated within bridges connected to both

incompatible “worlds”. This transition adds complexity to application development and

deployment while introducing possible points of failure. There exists a number of middleware

platforms [4] [5] [6] that attempt to hide the variety of sensor and actuator technologies.

However, using these also introduces some complexity or at least programming and

architectural models that are not always suitable for the final application at hand [7].

The motivation for this work is to experiment with ways to run the IP-family of protocols all the

way from the clients to the sensors, via the server architecture. Both of the protocols which

implementations are described in this paper are directly related to HTTP, the application

protocol that forms a large part of the Internet today. WebSockets upgrade a regular web

connection to a duplex, binary communication channel, while STOMP is a duplex mainly

textual protocol sharing a lot of similarities with HTTP. Implementing both of these protocols

has been used to understand the low-level technicalities and details involved. In itself, this

implementation provides an assessment as to whether WebSockets and STOMP are

suitable for an implementation on top of the constrained resources that are common place at

the edges of sensor networks.

Finally, both protocols share a number of similarities with stream protocols in the sense that

they sustain a long-lived duplex connection between the initial client and the server. While

maintaining the state of this connection poses requirements on the underlying radio

infrastructure, and especially on intermediate nodes in mesh networks, it also avoids the

1 Information about Z-Wave can be obtained from the Z-Wave Alliance home page at

http://www.z-wavealliance.com/ or from wikipedia at http://en.wikipedia.org/wiki/Z-Wave.
2 Specifications for the ZigBee standards are available from the ZigBee Alliance home page at

http://www.zigbee.org/, more information is available at http://en.wikipedia.org/wiki/ZigBee.
3 BTLE is part of the specifications for Bluetooth 4.0 available at

https://www.bluetooth.org/en-us/specification/adopted-specifications, more information is also available at

http://en.wikipedia.org/wiki/Bluetooth_low_energy
4 The full title of the EnOcean standard is: ISO/IEC 14543-3-10 Information technology -- Home Electronic

Systems (HES) -- Part 3-10: Wireless Short-Packet (WSP) protocol optimized for energy harvesting --

Architecture and lower layer protocols, more information available at the EnOcean home page at

http://www.enocean-alliance.org/en/home/.

20th Annual Tcl Conference 16 New Orleans, LA Sept. 23-27, 2013

bursts involves in (re)creating the connections between sensors whenever information has to

reach the edges while ensuring a higher level of interactivity.

3. Background and Related Work
As described in the previous section, there exist a number of communication protocols

targeting or suitable for the Internet of Things. IEEE 802.15.4 based protocols such as ZigBee

and 6LoWPAN, Z-Wave, EnOcean, ANT , BTLE or even the IEEE 802.11 family of protocols5

(wifi) are all wireless protocols, operating either in the sub-gigahertz frequency ranges or the

crowded 2.4GHz radio spectrum. Given the heterogeneity of the offering, the IEEE is pushing

IPv6 and 6LoWPAN, a standard that would allow running IP, the Internet Protocol at all levels.

In this context, CoAP [8] is a proposed standard over UDP that specifically addresses the

requirements of the constrained nodes carrying sensors and actuators in many deployments.

These nodes usually run specialised operating systems such as Contiki [9] or TinyOS [10].

CoAP focuses on a binary HTTP-inspired open protocol for the implementation of RESTful

environments, providing features such as discovery of resources and subscription for a

resource (resulting in push notifications). In a similar fashion, MQTT-S is a cutdown version

of the MQTT (Message Queuing Telemetry Transport) protocol geared towards lossy radio6

protocols. MQTT is a protocol proposing a unified publish-subscribe approach for M2M

communication. MQTT is a lightweight messaging protocol, designed for constrained devices

and low-bandwidth, high-latency or reliable networks.

Apart from MQTT, there exist a number of more generic protocols implementing

publish-subscribe patterns, STOMP and AMQP [11] (Advanced Message Queuing Protocol)

being two well-known examples. Generic broker services such as RabbitMQ or ActiveMQ

use these protocols to ease and scale the deployment of modern cloud services. Some of

them make use of WebSockets to make it possible to use queuing protocols such as

STOMP or AMQP directly from the web browsers. The combination of all these protocols

allows for a unified approach to application development and deployment: from tiny sensors

and actuators to clients, via scalable and elastic cloud services.

WebSockets will upgrade a regular HTTP connection, as initiated from the client, to a duplex

binary long-lived connection. As such, WebSockets will typically present an initial textual

header of “subsequent” size following the rules of the HTTP specification, together with the

handshaking specified in RFC 6455. Consequently, initiating a WebSocket connection will

typically represent a burden on an existing sensor network, while later packets will allow

applications to use most of the network packet size for their data. As WebSocket technically

upgrade an existing web connection, they are typically suitable for passing through firewalls

whenever needed. In addition, the specification requires a heartbeat facility that will keep the

connection alive through, for example, network equipment implementing NAT solutions. The

5 ANT is a wireless protocol mostly targeting the sports and outdoor activity domain. More information is

available at http://www.thisisant.com/.
6 MQTT has been proposed as an OASIS standard, the specifications are openly published and made

available at the following web site: http://mqtt.org/.

20th Annual Tcl Conference 17 New Orleans, LA Sept. 23-27, 2013

work described in this paper is partly based on a server-side implementation of the

WebSocket protocol that was made available as part of the Tcl web server wibble .7

STOMP stands for the Simple (or Streaming) Text Oriented Messaging Protocol. The

protocol provides an interoperable wire format so that STOMP clients can communicate with

any STOMP message broker to provide easy and widespread messaging interoperability

among many languages, platforms and brokers. STOMP is loosely modeled after the HTTP

protocol: messages will typically start with an uppercase command (like GET in HTTP),

followed by a number of textual headers in a format similar to HTTP and possibly followed by

a body. Connections are client initiated, but messages can flow in both directions. STOMP,

similarly to WebSocket specifying heartbeating mechanisms to keep connections opened at

all time. However, heartbeating is handshaked at connection time, allowing for all types of

situations, including applications where no heartbeating is required. The core of STOMP

specifies publish-subscribe mechanisms where clients subscribe to topics (compare to a

path in HTTP) and will be notified whenever messages have been sent to that topic. STOMP

specifies a number of delivery mechanisms in order to implement different degrees of

reliability. In the context of sensor networks, the shortness of commands and headers leaves

enough room to application data. Together with implementations in, for example, JavaScript

this opens for the use of STOMP at all levels of an architecture, including at the edges

formed by the browser or the sensors. tStomp [12] is a SNIT-based client library partially

implementing v 1.1 of the specification in Tcl. tStomp provides a basic level implementation,

leaving aside some features such as authentication, virtual hosting, receipts, message

acknowledgements or heart-beating.

4. WebSockets
The websocket library is a pure Tcl implementation of the WebSocket specification

covering the needs of both clients and servers. The library offers a high-level interface to

receive and send data as specified in RFC 6455, relieving callers from all necessary protocol

framing and reassembly. It implements the ping facility specified by the standard, together

with levers to control it. Pings are server-driven and ensure the liveness of the connection

across home (NAT) networks. The library has a number of introspection facilities to inquire

about the current state of the connection, but also to receive notifications of incoming pings, if

necessary. Finally, the library contains a number of helper procedures to facilitate the

upgrading handshaking in existing web servers.

Central to the library is a procedure that will “take over” a regular socket and treat it as a

WebSocket, thus performing all necessary protocol framing, packetisation and reassembly in

servers and clients. The procedure also takes a handler, a command that will be called back

each time a (possibly reassembled) packet from the remote end is ready for delivery at the

original caller. Another procedure allows callers to send data to the remote end in transparent

ways. The procedures can be used from both servers and clients, even though the protocol

is not entirely symmetric. A great deal of the implementation of these procedures originates

7 Original wibble code is available on the wiki at http://wiki.tcl.tk/26556.

20th Annual Tcl Conference 18 New Orleans, LA Sept. 23-27, 2013

from the initial wibble implementation.

Even though these procedures form the core of the library, they will seldom be used as

clients and servers can benefit from a second layer of API at a higher level. Typically, clients

will open a connection to a remote server by providing a WebSocket URL (ws: or wss:

schemes, wss: being, as https:, encrypted) and the handler described above. The

opening procedure is a wrapper around the latest http::geturl implementations: it

arranges to keep the socket created within the http library opened for reuse, but confiscates

it from its (internal) map of known sockets for its own use. Therefore, it will only work with the

versions of the http library that have support for version 1.1 of the HTTP specification.

The following example arranges to connect to the echo server, send a simple text message

and to finally close the connection and exit on reception of the message that it had sent to the

echo server. The code also exhibits some of the introspection facilities that are built in the

websocket library.

package require websocket

Maximise loglevel to get detailed information on the console.

::websocket::loglevel debug

Handler procedure registered as a receiver of all information

from the server and internal state changes of the library.

proc handler { sock type msg } {

 switch -glob -nocase -- $type {

co* {

 # Once connected, arrange to show off introspection

 # facilities and to send a simple text message to the

 # echo server.

 puts "Connected on $sock"

 test $sock

}

te* {

 # On reception of the text message that we have sent,

 # print it out and disconnect.

 puts "RECEIVED: $msg"

 ::websocket::close $sock

}

cl* -

dis* {

 # Exit on disconnection, i.e. as soon as we've received

 # the message that we had sent to the echo server.

 exit

}

 }

}

20th Annual Tcl Conference 19 New Orleans, LA Sept. 23-27, 2013

Send a single message to the echo server after having printed

out information about the current websocket connection.

proc test { sock } {

 # Print connection info

 puts "[::websocket::conninfo $sock type]:\

 [::websocket::conninfo $sock sockname] ->\

 [::websocket::conninfo $sock peername]"

 # Send message to echo server.

 ::websocket::send $sock text "Testing, testing..."

}

Open connection to the echo server and arrange for the handler

procedure to be called whenever receiving information from the

server or about the connection.

set sock [::websocket::open ws://echo.websocket.org/ handler]

Arrange for the event loop to kick-off

vwait forever

For servers, the process is slightly more involved in order to account for the differences of

their inner workings. Indeed, as the library wishes to take over the socket, it needs to

interface with the remaining of the server code to know at which point of the transaction the

overtaking should occur. Servers will start by registering themselves and especially their

handlers (see central procedure above) to the library. Then for each incoming client

connection, they should test the incoming request to detect if it is an upgrade request by

providing the path and HTTP headers to a testing procedure. Finally, a server will perform the

final handshake to place the socket connection under the control of the websocket library

and its central procedure. This is exemplified in the following pseudo-code.

Assuming the server is listening on connections on srvSock,

create a handler for the webserver socket

set srvHandler [::websocket::server $srvSock]

Provide matching between paths and handlers, this would match

any path to be handled by the handler command, but there can

be any number of such declarations, for different paths at

the server.

::websocket::live $srvSock * handler

...

At a later time, when a client has connected at sock and all headers

for the incoming connection have been parsed and are made

available in the headers dictionary, test if this is a websocket

upgrade request. If it is, upgrade the socket to a websocket.

20th Annual Tcl Conference 20 New Orleans, LA Sept. 23-27, 2013

if { [::websocket::test $srvSock $sock $url $headers] } {

...

Upgrading the socket will arrange to call the handler

depending on the path and place the whole socket under

the control of the library. This also means that the

library will send back some handshaking data on the

client socket.

::websocket::upgrade $sock

}

The websocket library is, since a few months back, part of tcllib. The mini web server

that is part of the efr-tools is able to hosts websockets and can serve as a more8

elaborate example of how servers and the library should interface in order to provide support

for WebSockets.

5. STOMP
The STOMP library provides both a client side implementation and a minimal server broker in

pure Tcl. Coding constructs are constrained so as to be able to run under jTcl [13] if

necessary. The library is composed of a three sub-packages: a messaging package

provides core facilities for creating, parsing and sending STOMP messages; the client

package is a near-complete implementation of all versions of the protocol and the server

package provides a minimal broker implementation in pure Tcl, ready for integration in any

existing application.

The messaging package provides procedures to create messages, set and get their various

parameters and components. STOMP Messages are composed of a command, a set of

headers (loosely similar to HTTP headers) and a body. The library makes it possible to

strictly follow the message constraints as imposed by the protocol, i.e. control which header

are mandatory and optional for a given command. The messaging package also offers

procedures to send and receive messages to and from a STOMP server. Reception is

implemented via a "reader" context as messages can arrive at any time from a server on a

socket. The reader context contains a handler that will be called once incoming messages

have been parsed and validated. Finally, the messaging package can keep alive a connection

by sending (almost) empty data at regular intervals. It watches that a remote end

continuously sends heartbeats, and provides a callback whenever the remote is deemed to

have disconnected, i.e. when no heartbeats have been received for a given time period.

The client package encapsulates all traffic to a remote server into a single object. The layer

provides an implementation that follows the v1.2 of the specification, except that it does not

provide a high-level support for transactions. The library is able to open connections to

remote servers, while respecting the initial connection handshake that will establish how

8 efr-tools is a google code project hosting both a number of libraries, but also the context manager [14], a

cloud service for IoT applications. The project is available at https://code.google.com/p/efr-tools/ and it contains

an experimental copy of the websocket library.

20th Annual Tcl Conference 21 New Orleans, LA Sept. 23-27, 2013

heartbeats will be exchanged between the client and the server. It also implements facilities

to keep the connection alive at all times, continuously attempting to reconnect whenever the

connection has been lost. The client library provides callbacks to follow the current state of

the connection (in progress, connected, disconnecting, etc.), but also to be notified of the

reception of any message. Sending messages to the remote end is a high-level wrapper

around the messaging package, a wrapper that will take care of reconnections, header

assignments, etc. The client package offers a procedure to subscribe to data coming from

the server and to arrange for callbacks to be delivered each time a message matching the

subscription is received from the server. Subscriptions are represented by a context and can

be ended at all time, in cooperation with the server. Finally, the client library is able to request

for receipts, to be called back on reception of the receipt and to perform graceful

disconnections from the server, i.e. disconnections in cooperation with the server. A basic

level of security is ensured by supporting authorisation, but also by some basic security

mechanisms against packets that would be too long.

The following code exercise the library by connecting to a remote server, subscribing to a

topic, sending messages and verifying that even binary messages can transit between

clients and servers.

package require stomp::client

This code supposes that the global variable dta contains the

binary content of a Windows .ico file (anything else would do)

and will check that what has been sent to the server is also

receive, even when sending larger binary messages.

Print out reception acknowledgment

proc received { cid rid } {

 puts "Server has received message, id: $rid"

}

Handler called on reception, print the command and headers

contained in the message, and if it was an icon, compare it

to what we had sent. This provides examples for how to use

the messaging package part of the library.

proc incoming { msg } {

 global dta

 puts "Incoming message: [::stomp::message::getCommand $msg]"

 set type [::stomp::message::getHeader $msg content-type]

 if { $type eq "image/x-icon" } {

 puts "Comparing: [string eq $dta [::stomp::message::getBody $msg]]"

 }

}

Unsubscribe from the only topic that we’ve ever subscribed to,

which demonstrates how to look for existing subscriptions if any

20th Annual Tcl Conference 22 New Orleans, LA Sept. 23-27, 2013

proc stop {} {

 global s

 set sub [lindex [::stomp::client::subscriptions $s /queue/a] 0]

 ::stomp::client::unsubscribe $sub

}

Connect to a STOMP server, these credentials are the default one

on the Apache Apollo implementation of STOMP

set s [::stomp::client::connect -user admin -password password]

Arrange to stepwise in the near-future, subscribe to a queue,

send a text message, send a binary message, unsubscribe from the

topic, verify we’ve stopped listening for that topic and finally

to disconnect.

set ops [list \

 1000 [list ::stomp::client::subscribe $s /queue/a \

 -handler incoming] \

 2000 [list ::stomp::client::send $s /queue/a -body "Hello world" \

 -receipt received] \

 4000 [list ::stomp::client::send $s /queue/a \

 -type image/x-icon \

 -body $dta] \

 6000 stop \

 7000 [list ::stomp::client::send $s /queue/a -body "Gone away?"] \

 30000 [list ::stomp::client::disconnect $s] \

]

foreach { when what } $ops {

 after $when $what

}

vwait forever

Similarly to the client library, the server broker implements heart-beating and simple

message receipts. The broker will fan out incoming messages to all clients that have

expressed interest via a subscription. It implements basic security mechanisms to discard

messages from non-connected clients, to discard messages that would be too long or to

check for user authorisation. Finally, the server supports virtual hosting.

6. Conclusion and Future Work
This paper has described the design and implementation of two Tcl libraries targeting the use

of Web(-like) protocols in sensor networks applications. The implementation served as a an

assessment of the suitability of the protocols to the few resources available on sensors. As

most sensor networks use 16-bits microcontrollers, running Tcl on top of these hardware

constrained devices is difficult . However, the implementations discussed in this paper have9

9 Running Tcl(-like) languages on small hardware platforms can however be achieved through languages

20th Annual Tcl Conference 23 New Orleans, LA Sept. 23-27, 2013

been tested for longer active sessions on small hardware platforms such as the

BeagleBoard-XM or the Raspberry Pi , both as servers and clients. Given the low price tag10 11

and the presence of GPIOs on the Raspberry Pi, this opens up for the use of Tcl at all levels

of sensor applications, i.e. not only in the cloud services and clients, but also within sensors.

Stepping away from Tcl, C-based WebSocket client code has already been integrated into

the Contiki OS and is part of Thingsquare Mist, thus demonstrating the suitability of

WebSockets as a low-level protocol down to the sensors. WebSockets exhibit a larger

header at connection establishment, while keeping protocol overhead to a minimum in

subsequent message exchanges. STOMP uses plaintext headers, though keeping them to a

minimum which makes it a possible alternative to WebSockets if ever needed. At the time of

writing, the STOMP library is in the half-bakery on the wiki and integration to the context12

engine [14] is in progress.

This work has been sponsored by the ARTEMIS project me3gas and the Swedish project

Intelligent Energy Services. Many thanks to all colleagues at SICS and especially Joakim

Eriksson for lively and interesting discussions along the development of these libraries and

their purpose. Finally, hats off to Andy Goth for the initial version of the WebSocket

implementation.

7. References
[1] “The WebSocket Protocol”, I. Fette and A. Melnikov, RFC 6455, IETF.

[2] “STOMP Protocol Specification”, available at

http://stomp.github.io/stomp-specification-1.2.html.

[3] “IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview,
Assumptions, Problem Statement, and Goals”, N. Kushalnagar, G. Montenegro, C.
Schumacher, RFC 4919, IETF.

[4] “A Development Platform for Integrating Wireless Devices and Sensors into Ambient
Intelligence Systems”, M. Eisenhauer, P. Rosengren, P. Antolin, Proceedings of the 6th
Annual IEEE Communication Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks Workshops, June 2009.

[5] “Ad-hoc Composition of Pervasive Services in the PalCom Architecture. In
Proceedings of International Conference on Pervasive Service” D. Svensson Fors, B.
Magnusson, S. Gestegård Robertz, G. Hedin and E. Nilsson-Nyman, Proceedings of
ACM CPS09, London July 2009.

[6] “Zero-programming Sensor Network Deployment”, K. Aberer, M. Hauswirth, A. Salehi,
Proceedings of the IEEE Service Platforms for Future Mobile Systems (SAINT 2007),
Japan, 2007.

[7] “Role of Middleware for Internet of Things: A Study”, S. Bandyopadhyay, M. Sengupta,
S. Maiti, S. Dutta, International Journal of Computer Science & Engineering Survey
(IJCSES), Vol. 2, no. 3, August 2011.

[8] “Constrained Application Protocol (CoAP)”, Z. Shelby, K. Hartke, C. Bormann,

such as Jim [15] or Hecl (see http://www.hecl.org/).
10 BeagleBoards are a family of low-cost, fan-less single-board open source computers featuring an ARM

cortex core and expansion facilities. More information about the boards is available at http://beagleboard.org/.
11 The Raspberry Pi is comparable to BeagleBoards, but packages a less powerful ARM core to an ever lower

price. More information available at http://www.raspberrypi.org/.
12 More information about the various stomp implementations can be found at http://wiki.tcl.tk/38103.

20th Annual Tcl Conference 24 New Orleans, LA Sept. 23-27, 2013

draft-ietf-core-coap-18, June 2013.
[9] “Contiki - a lightweight and flexible operating system for tiny networked sensors”, A.

Dunkels, B. Grönvall, T. Voigt, Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks, Nov. 2004.

[10] “The Emergence of Networking Abstractions and Techniques in TinyOS”, P. Levis, S.
Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E. Brewer, D. Culler, Proceedings
of the 1st USENIX/ACM Symposium on Network Systems Design and Implementation
(NSDI), 2004.

[11] “Advanced Message Queuing Protocol”, S. Vinoski, IEEE Internet Computing, Vol. 10,
no. 6, Nov/Dec 2006, pp 87-89.

[12] “New Siemens Open Source Contribution for TCL: tStomp Messaging library. Why and
how to use TCL in a very large scale Software Development”, D. Münchhausen, Talk at
EuroTcl’2012.

[13] “JTcl and Swank: What’s new with Tcl and Tk on the JVM”, B. Johson, T. Pointdexter,
D. Bodoh, Proceedings of the 18th Tcl/Tk conference, Manassas, 2011.

[14] “Bringing Context To the Internet of Things”, Emmanuel Frécon, Proceedings of the 19th

Tcl/Tk Conference, Chicago, Sept. 2012.
[15] “Jim Tcl - A Small Footprint Tcl Implementation”, S. Bennett, Proceedings of the 18th

Tcl/Tk Conference, Manassas, 2011.

20th Annual Tcl Conference 25 New Orleans, LA Sept. 23-27, 2013

��������	
���
����
������
��
����	�
���������	��������
��
�
�����
�

��������	
�����
��
�������
����
����
��
���
���

����
���

�������	
���
������
��	���
�����������	��������������	��
��������������������
����������

��
��
��������������
�
���������������������	�����	������������
�
	������������
���

�
�������
���	����	�����������
	�
��
������
��	��
���������������������
������������	�������
�����
������������������
���
����
�
��� ��
���
������
�����
���
����
��� ���	
����
��	�

�
��
����
�
�������
�	��!���������
�����
����������������"������	�����������	��
�
����
��������������
����	��
����������������������������
�#$� ��������	������������

�������	������
�������������
���

�����
�
�� ����

���������������������������������

������������
�
�������� � �������� � �� � ���� � �������� � �� � ��
����
�������
����������
����������������� �
���������

��������������������������������������
�� � ��������� ���� ���
�!����� �� �������� �����
�����������
���!���������
�"���
�������
����
��������
�����������������������#������������������
�� ���

$ ��������!�
��������������
����������
�������

��� �
��� � ������ � ��� � ���� � � � �����������
�������� � �� � ����
�"��� � �� � ������������

������%��� � ���� � �� � ��� � ���� � ����
�� � ����
���
������������������
�����������
�������!��
��
����� � �� � ������&�������� � �������������
����
&!���&������

�� � ������ � �������� � ����
������&��
������
����������������������������
�

����'�������'��
���������������������
������
���������&�����
������������������������������
���

�� � (�!� � ��� �)��� � ��� � *���+������ � �� � ,�,�
������ � ����
�� � ���������� � ��� � ���������
����
���
�!�
���������������������������

���������
������������������������������������
����� � ����������� � ��� � ���� � ��
�!��� � ���
��������&���!�� � ��� � ����� � �����!��
� � ���
�����������������
���!�
��
���
���"��������

��� ������� ����������� ���� ����������� ������
�������������������������������!������������
���������� � ��� � ��������� � �� � ������������
��
���� � ���� � + � ��!� � ����������� � ��������

����������� � ��� � ��!� � �"������� � ���������
��
����������!���������!��
�

��

��%�����
����������� � ��� � ���� � ���
� � ����
�� � ��� � �����
������ � ���� � ������������ � �� � ���������
��

������&��&
��� � ���� � ������ � �� � �����

20th Annual Tcl Conference 26 New Orleans, LA Sept. 23-27, 2013

����������� � �����
���� � �������� � ����
���
���
���
� �-�������������"����������������!��

�� � �� � ��������� � �� � ��� � ����
�"��� � �� � ����
�����������������
!������������������
��!����
������ � ��� � ���"��������� � ����������� � ����
���������� � ���� � �������

� � �������� � ���
�����
 � ��
 � � �.�������������!�
�����������
���� � �� � ������
� � ��� � ����������� � �
�� � ���
���������� � ������������ � ������������ � �������
���� � ��� � %���� � ��� � ���������� � ����������
�"�������� � ���� � ����������� � ������ � �� � ����

������&�����������&�����
���
����������������
�����������
���

-� �� � ������ � �� � ����� � ������
��� ������ ���!��
���� � ��������� � ��� � ���� � ����� � �� � ����
��������� � �� � /012 � � � ������ � �� � �������������
����������
����������������������������������
��� �'��� ��� �'��
� � ���������1
 ������ ������
���������
������!��� �����������!������������
����������������!��

��������������������
� �����
��!��
����
����������������
������������������
���� � ���� � ���� � �������� � �� � ���� � �"�����
�����!��� � �� � ����
� � � � ���
� � ��� � �
��� � ���
���� ���������!�������������������
��������
������ ����� ��������� � �� ������ � ���� ������ � ���
��������������������
�����!�
������
������ � ���
���
��� � ������&��������� � ������&��
������
�
������������
 � �������� � #��� � ���� � �
������
��
����������
�$
��

-

��

���

������ �
��� � ��������� � �� � �� � �!�
���������
��������
� �-�����
 ��������������������������

���

 � �� � ������&��3�� � ������� � ����������
��������������!���������
�����������
������
�������������������������������������
������
���������������������������

���� � ������� � �� � � � ������������� � ����
� � ���
��������� �����
!���������������������������
�������������
�!��������
�������������������

��������������

���!��������������!���
������
�
����� � ����
��� � ��
��� � �� � ������ � �� � �����
���
�������������������������������
�&������
������ � �� � ���������� � �����
�� � ����
��

���������
 � � .������ � ��� � �������������
����
�"��� � �� � ��� � ���������� � ���
��������
���
����
���� � ����� � ������ ���� � ����
� � ������ � �� � ����
������&������*������

��� � ���� � �������� � �� �
�!����� ���
4� � ������
�
���������5 � ��� � �����������
 � ����������� � ����
������ � ������� � ���������� � ��������� � ����
������&�������� ����� ����������� ���������� � ����
�!��� �
��� � ��� � ��� � ��

 � ����� � ��������������
��������� � �

 � ��� � �"��������

� � ��

 � �� � ����
����
�� � ������ � ��������� � �� � ��� � ���,�
�������
 � ��� � ��� � �����
���� � �����������

�&
����"��� � ������&����� ������������
 � ����� � ����
�������������
�������������������
������������
���

&
�������������������������������
������������
�������
������������

������������������

-��������
� ���� ��������������������������� � ����
������������������������� ������� ������� � +�
����������
����������������������������������
��

����!����������������!�!�
����������
�������
���������������������������

!��	���"
����
���#��$���
�����
�
��
�����
��
��%��
�
�#������
��&�
"

��� � ���� � ��
��� � �� � � � ����
� � ������
 � �������

�"���5�����6'+��������%��������������"�����
�
�
�����������������!����������������������

��
�� � ��� � ���!�� � �� � � � ������ � ����" � �� � ������
�

������ � �� � ��� � ����� � �� � ��������������
����������� � ������� � � � ��� � ��������� � ���
����� � �"������ � �� � ������ � ��� � ���������� � ���
��
��

������"�����
���%����

��������
�����"���
���������������������,�
%����4� � 6'+ � �� � � � ��
 � ���������� � ����� � ���

20th Annual Tcl Conference 27 New Orleans, LA Sept. 23-27, 2013

���������� � �� � ������ � ��� � ������� � ��������
��������
��+����������������������������������
����� �����
�����4� �7���
���������������6'89�
�������/
����������������

����������!�
��������
���������6'+���������������������������������
!�
����������
���
������
��:���������������%�����
���� � � � �������� � 6'+� � ��� � �������������
��
������ � ��������� � �� � ��

��
 � � ��
������
���������

��������������%����4��������!�
����
��� � ��

� � ��� � ��������� � ���� � ��� � !�
����
�����������������������������������

���
6'+��
���!���������������3���������������
�����������
���������������������������������

��� � ��� � ���� � ���� � � � ����
�� � ������� � ���
6'+���
�������������������������������&!�
��������� �
����� � �� � �� � ���� � �� � ���� � ��� � ��� � ���������
�������������� � �� � �

 � && � �� � ������� � ����
��

�!���������
4�������������
�������������������
��� � ���� � ��� � ����� � �� � ��� � 6'+ � �� � ��
��������������� �����������������������"����
������
�����
����������������������
�
��8����
��
������ � �� � �
�� �������� �%���� � ������� � #����
'	��&�������!�
���������

$����������������
�� � � � ����� � ����&��� � ������� � �� � ��� �
�� � ���
�������������������

���������������������������������
����������
���������� � �� � ��� � ������� � �� � 6'+ � ���
���������
 � � +� � ����� � �� � ���!��� � ����!�������
���������� � ������ � �� � ����� � �� � ������� � ���

��%����� � ������������� � �� � � � ��������� � �����
�����" �������������� � ��������� ��� ��

����
��
������������������
��+����%�������"�����������

�������� � ���������� � #!�� � ��� � ;����������
�"����<��������$�����������%�����������������
��

��������������������
�����������7���
��
9�
+� � �
�� � ������� � ������� � ��� � ������� � ���
�����������

�&����"�� � ������ � �� � ���!���� � ���

���������������
���������
�������������
���

�� � ��� � ����
� � ��
������� � ���� � ����� � �� � ��
����������������
����������������������
������

������������������������

���������!�����

��������������������
�������!��
�� � ��� � �������� � ��� � �
���� � ������&���������
������ � ��������� � ���� � ������� �
���� � ����
����������� � �� � �������� � ���������� � ���� � ����
�������� � ����� � �� � 7���!���&���������
�����������
9 � � � ���!���&���������
����������� � �� � ������

� � ���� � �� �
�����
����������� � � �� � ������� � �� � 7���!���&���������
�������������9 � ����� � ���� � �� � ���������� � ��

���� � ������ � �� � ��������� � ��������������
��������� � �������� � ��������� � �� � ������
��
���������������������
���������������������!���
������
������������������-,+�������

�� � %���� � =��������25 � 7+� � �:, � ;���!���&
�������� � �����������<

 � �������� � ����
���
����������
���������
���������������

&��������
���!����������������������������"�����
�3�����&
������ � �� � ��� � ���!��� � ����������
9 � � +��
��������5�7�����!�����������������������������
����������!���������������������
�������
9

=��
��������������������������������������
�������
 � ����������� � �� � �������
�� � ��� � �����
�������� � �� � ��

�� � ��� � ���!���&���������
����������������������
�������������
������
��� � ��
� � �� � ��� � �������������� � 7���������
����
���9 � ���� � ���������� � ��� � �"�������
�����������������������������
����������7��

&

�����������!��������������
9

+� � ������
�3�� � ���� � ���� � ��� � �����������
����������� � �������� � ���!���&���������
��

�� � ��� � 76��" � ��� 9>� ���� � ��� � � � ����� � ���
��
��

�������������������
��������������

�
���� � ����� � ���� � �� � ����� � �������� � ����
��

����� ���

 � ��� � ��������� ����� � ��� ������� �!���
����
� � ��"�&����� � ����������
 � � ���� � ��������
��3����

20th Annual Tcl Conference 28 New Orleans, LA Sept. 23-27, 2013

��������������!��4����������������!�
!��������
����������������������������

����������!�������
���
��� � ���!���&�������� � �������� � �� � ���
����
��
���
�"�!�
�����������������!��4���"�����
���
�����
� � ��
��

�� � �� � ����������� � ��%����� � �� � ��
���������3����
���
�������������������������
���������4� � �������
 � ���� � ������
����
���

�����
�

?���������������������������������������!�����
����������������������������������!���������
�

�
�!���������������
��������

���!��
��
������
��������������
���������������������
������
������������� � �������� � �����

�����
 � � ����
��%���� � 6'+ � ���� � �� � � � ��������� � ��

&
�������
���� � �� � � � �����������
 � ���������
�
��� � ���������� � ��������� � �"���� � �� � ��
������� � ����� � �� � ������ � �� � � � ��
 � ��������
����
� � ��
� � ����� � ���� � �� � ���!�������
���
���� � ��� � ��������� � ����
 � ���� � ��������
����
�������������������
�����������������������
���������������������
������
��

����������������������������
�����������

�
����� � �
�!�
� � �� � ������ � �� � ��� � ������������
���!��� � ������� � ���� � ��

 � ��
��

 � ��� � ����
�
����4� � ��%����
 � � ���� � ��� � ������� � ���
��������������������������������
����������
��������������
�%�����������
���������"����������
��
 � ����������5 � �������� � �����������
�������� � ���������� � ���
��
�&���
�����
���������� � �� � �"������ � ����������
 � � ����

��!�
������������
���������������������������
�������������������
�����������������������
��

��

�������!����-,+
� ���������������������������
�

���������5����������������������!��
���
�����

������ � ������� � ����
��� � ��������
���������� � ��� ���������� � �� � ������� �6'+���
�"������� � ��� � ���������� � ��� � ����������

����
��

'���������
�������������

��� � ���� � �� � ��������� � �� � � � ��

������ � ���
��������
����������������
�������
����������������
��������������
�!����������������������������
��
������� � ���� � ���&�������� � ���
���� � �� � ���
�������
 �
������ � ��������� � ��� �
����� � ���
��������������������������
����
���������������
��� ������������������������ ������ � ��
� �������
����������������
�

+��
������� � ��������&��
��������!�� �=���
���
��� � ��� � �� � ������� � �� � � � �����&�
��� � ����
���!��
 � �:�� � �� � ��� ��� ��������� �!�� ���������
�������
����������*@+�����*@+�������������&
�������������!��
�

'���(����"�$����
��

-� � ������� � ��� � ������� � �� � � � ��

������ � ���
��������� � ��� � ��� � ��������� � ��� � �� � �����
�"�
����� � �� � ���� � �����
 � �� � �
�����
�"���������������������!����
���������5

��� �������� ������ � ����!�� ������������ �����
������
� � ��� ������ ���������
 � � +� ���������� � ���
���������������������������������������
� �A��
�����������!������!��������
�������������������
�
��������
��������������!���&����������������
��������������������������������������
��6�
����
��
�������������������������������������!�
����
�� � �
���
 � !�����
�� � ��� � ��� � � � ����
�"�
��������� ��������
 � �� � ��� ���!�
���� ������ � ���
�������������!����������������������������
��������������!��4����������������!�������������
��
�������������� ������

��!���&
�!�
���������������
������������!���4����

������

�����������������������������
���
��
��������
��
���������� � �� � �� � ��� � ��� �
�������� � �����
����
���
� � ��������� � �������������� � ���
�������������������
����

20th Annual Tcl Conference 29 New Orleans, LA Sept. 23-27, 2013

��������!��������������������!���&
�!�
�������
������!������7������9�����7������9������������
����� � ��� � ��

 � �����&�����
 � � ��� � �������
������������������������!��&
�!�
������ ������
��� �������

��� ����������
 � ���� � ������ � �����
����;����������<�����������������������������
��

 � ����� � �� � �������� � �� � ��� � �!���&
����
��������������������������������������!�
���������
�
������������������������

������4�������
��:����
����

������&
�!�
�!�
����������������������������
��

��
�����������!�������!�
�����!���������������
� � ���!��&
�!�
 � !�
�� � ���� � ��� � ���� � ����
�
���� ����� ��"������ � �� � �������� � �� � � �%�����
�����������3��������

������4������� ���!�������
�� � ����������� � ���!���� � ��� � ���������� � ���
���
������������������

����

��������������������
��������� � �� � ��� � �!���&
�!�
 � ����� � ���� � ��
��������

'�!�(����"�$�������

��������!������������������������ ��������&
��
 ��������!�����������=���
�B� ������������
-����@���
� �����!����������������������3���
�� � �
������� � ��� � �� � ���������� � �� � ����� � ���
�

�� � ���&��
 � !������ � C
D � ��� � ��� � ����
�����������������������������3������

���� � ��� � ������� � ��� � �� � ���� � �� � � � �����&
�
��� � ��� � ���!��� � �� � ��� � �� � ���������� � ���
������ ��������� � ��������� � ������������ ����!���
�� � ��!���� � ���"� � ������� � ���������
�
����������
�������������
��������������=���
��

�����

&�������
�����!���������������������������
�������
���������������������������������������
=���
� � ���� � ����� � ������ � ��������� � ������
�������
�� � ����
� � �� � ������������ � � � �������
��%���� � ����� ����������� ����� ��������� � �� � �����

����=���
��������
��
��E����"���
�������*@+�
��������������������������

=���
���������������������

��F���������������
�������� � %���� � 6'+� � �� � ����������
 � � +��

���
�3��������
�����73��������
����9������� ���
3��� � �� � � � 6'+ � �����" � ��� � ��� � ����
�� � �� � ��
���������� � ���� � �������
 � ������ � ������
!�����
�� � ����� � �� � ��� � ��%���� � �����������
������ � ��������
 � � ��� � ��������� � ����
��=���
��
3��������
���������

�����������������������������
��� � ������ � �� � ��� � �� � ���� � ��������� � 6'+�
�����"��

��� � 3��� � ����
�� � ���
� � �� � ��� � �� �=���
�4��
���� � ����!���!� � ��� � �����
 � ��������
 � � +� � ���
����������

��
������
�����4�����
���������������
6'8���������#�������������!�$ ���� � ��������
�� � �� � ����� � �� � ���� � ��� � !�
���� � ���� � ����
������������������� �=���
�4������������������
���� � ��� � ���
� � ���
� � ��� � ��

� � �!����
��������� � ����� � ���������� � 6'+ � �����"�
������� � ��� � �������� � %����
 � � �����
������������� � �� � ��� � ���
� � ������ � ������!��
������������� � ��� � ��
���
� � ���& � ��� � ����&
���������������������������
������������������
���������������������
���
������������
� �����
���� � ����
��� � ��������� � ��
�������
� � ���� � ����
�������������!���&����
�������������������

�
����
����������������������
��

'�'�(����"�$���")
��

��� � ������� � ����� � ������� � ���!���� � ����
������

��������������������������������������
���!� � �� � ������� � /� � �� � ��

 � �� � ���
����� � ����

�������������������������
�����������������
�������!��������

���
��� ���
 �������������
�������������!���� ����

�
������������������������������������5������
����&���������� � ��
������� ���������� �
�������
�
#?
A
 � ��� � 7������� � ����
�9 � ������� � ���
�������������������
��������������������������
�����!���������� ��
�
� ����������������������

���������+���"
��
���
��������������������������
��������� � ����� � �� �
����� � �� � ��� � �
���
�

20th Annual Tcl Conference 30 New Orleans, LA Sept. 23-27, 2013

����G�����!�����
�
$��

����������"���
����������
����
��������������
��"����
55�������!�������0
H
1�������������������
������ � �� � � � ������� �
������ � ��������� � �
����
����������+���"
��
 ���
� � ���������
������� � ���
�������� � �� � ������ � �� � � � ������������ � �� � ��
����
��������������������������������������
���� ��
�
��I��JF��"����
F������&0
H
1
��

��� � ���#���$ � ������� � ����
� � ��������
���!���� � � � ���!������ � ��� � !����

��
���������
��������������3���������!���-,+�
����� � ����� � ��� �������� ����������� � ��������
���� � ��� � ��������� �
����� � �� � ��� � ����������
����
�������
��������������������!�
���6'+��
����������!��4��-,+

����� � ��� � �"���
�� � �� � ��� � ���������� � ���
������
�3�������������������������"�7-,+9�����
�����!�����%����������������5

#���$**�&���������*��� ��
�*����������*��
��
�
�+���,� ��
�����&�

���� � �� � ��

 � ��� � ��� � ;��������� � �����<�
�������������������������������5

$$�(�$$��� ��
�$$����������$$��
���
��

�"����
��+������������������������������
���������
�����������5

�(�$$��� ��
�$$����������

����
�������
� ��������������������������������
��� � ��������� � 7���������9 � �"���� � �� � ����
�������� � ��� � ���������

� � ������ � �� � ����
��������� � �� � �"������
 � � +� � ��� � ��� � ����

��������������������������������7���9�������
��� � ��������� � �� � ��

�� � ���� � ��� � ���������
�����������
�����
��

��� ������������ ��� ���������� ��� � ��� ������"�
#7-,+9$� � ��� � ��� � �"������ � ���������� � ��
���

������� � ���� � ��
� � ���������� � ��� � ��!�
�����
���������������!��
��
��������

��
��

����� � '	��&���� � ��

� � ��� � ����������
�����������
�� � �� � ��� � 6'8� ��� � ���� � �� � ����
����5

#���$**�&���������*��� ��
�*����������*��
��
�
�*� ��
�����&�

������������������������
����!���������������
������������

����� � ����
����� � �

 � ����� �������� ����� � ����
��!�
�����������������������"���������-,+ �
�����"���
�������������������

5

#���$**�&���������*��� ��
�*�
�
�-�
��*�
�

�����+���,� ��
�����&�.��
","�
��

���� � ��� � ��!�
���� � ���
� � ����
� � ������ � ��
������������
����

��5

�(�$$��� ��
�$$�
�
�-�
��

����������������"�����������������7�����
���9�
��� � ���� � ��� � ����
� � ��
� � �� � ��� �
��������
I��JF-,+F��������F����������&0
1
��
��:����
���������
���"���� � ��������-,+���

 � �� �
�!���
���������������������������������
�����������
�"������� � ��� � �� � ���!�� � �������� � �� � ��
�����
���������

+��
����������������������������������6'+����
�������"�������������������!������������������

������� � �
�� � �������� � ��� � ����������
7��������9
��������������������������

�������
-,+��������������������!�����������
������������
��
������� � ������� � ��!��� � �� � ������� � ���
�"�
�������������
�

��������������������������������
�3������������

������� ��� � � ���������� �
��� ���� � �� � � ��������

�������������-,+�������������
����������� �

�����������������&�����������������������������

20th Annual Tcl Conference 31 New Orleans, LA Sept. 23-27, 2013

6'+�������������������-,+
� �+���������������
���������������

�������������-,+������������
�� � ���� � ������������� � �� � �����!�� � ����
��������������������������������������

����
��� � ������!�� � ��� � �������� � �� � ��� � ������ � ��
��

������ � �� � ��� � �������� � ����������
������������� � �� � ��� � 6'+ � ����
 � � +� � ����
������!�����
���������������
�������������������
��

�����"�������������������
�����
����������
�

����������%����������������5

�#���$**�&���������*����
�*�������
��#���

����������!�����������������5

�$$�(�$$����
�$$�������
��#����

���
� � �� � ��

��
 � � +� � ���� � ��������� � �����
����
� � �� � ������� � � � ��

 � �� � ��� � ����������

$$��")
��$$
���
��� � ���� � ��� � ��
��

/
���
��0*����
�*�������
��#���� ���
� � ���
������!��
 � ����� � ��
� � ���
� � ������� � ����
����
��������������������������3������������������
��� � ��

��� � ����� � ��� � �������� � ����������
���
����������"�������
��

1��2��
"��
�����
������
������	
����
��������3��#�
�

-� � ��!������ � �� � ������� � 6'+� � ���
���������� � �� � ���� � ��� � ������� � �������4��
�����������������������;��������������<�����

;��������� ������< � �������� � �� �����������
%����
� � ����� � ���������� � ��� � !����
� � ����
�"������
�
 � � ���� � �������� � ������������

�����������
�����������������������������������

�����
��
�����������������

E�� � ��� � ���� � �� � ��������� � ��� � ��������
�����������������������������������%���������

���� � �� � �� � ������
�3�� � ���� � � � ��

 � �� � ����
;��������� � ����< � ������� � �� � ����
����������4� � ��������� � �� � ��� � � � ����������

!�
������������������������"
������!�
����������
����;��������������<���������������
������
�������,-�����!���������!�����
�������6?+K�
������������������������������������!�����
����
���������������������,-���!�
��������������
��� � !�����
��� � �� � �"������
� � ��
��
 � ����� � ���
���������� ���� ������4� ������ � ��� �;����������
����<������"���

������

��
���������������������
�� � �� � �� � ��������
� � ��� ���
������ �������� � ���
��������� � � � 6'8 � ���� � ���
� � ����
� � ���
�"��
�������������������!���-,+
��

-
�����������������������
��������������
�������
�����
������%����
����������!�����
�����������
�����������������������������"����������������
���� � ��� � �� � ���� � �� � ��� � ���� � !�
�� � && � ����
;��������������<������������������

������
��� � ���� � �� � ��� � ��� � !�����
��� � �� � �����
��������

�� � ��� � �� � ��� � ����� ��� � �������
��
���������� � ��� � �� � �������3�� � �� � � � ���&
����������������

@�!��������������������4����������������!������
��� � ��������
��� � �� � ��������� � ����������� � ��
!������4����������������-,+������
���������������
����������������!�
����������
�
��+�4�����������
�� � ���� � ��� � ���������� � ������� � �� � �� � -,+�
������ � ����4� � ���������� � ���� �
�����
�
������������!����
����������������
�����������
������� � ����
� � ����� � ����� � �� � ��������
����������������

-

�����4����������������
���������������������
���
�������������������� � �� �� ����� ���� � �� ��
����

��� � ��������������� � ��� � ���� � ��� � ����� � ���
�������������������
����������3����������

+���!����������������������
������������=���
��
3��� �����
�� � ������� � �� � ��� � ������� � ���
 � ����
������� � ���&���������� � ���!�� � �����
 � � +� � �����
�

��� � ������!� � ������������� � ������� � ����
������� � ��� � ������������ ���������� � ��� � �����

20th Annual Tcl Conference 32 New Orleans, LA Sept. 23-27, 2013

���������� � �� � ����������� � �� � �������������
�
-������������!�� � ����3��������
��� ���
������
������� ���
���
� � ������� � ���� ������ �� � ����
��
6'+������������������������
����������������
��

�� � �� � ���������� � ��
��� � ��� � ����
 � ��
��������� � ���������

� � ��

� � �� � ����������
����������������������������������

���
��
����
�� � ���������4� � ���� � �� � ������� � ����
�������� ���� �������!�� � ��������� �������������
���� � ��� � �� � ���������
 � � ���� � �� � �� � �����
���!��

� � ����
� � �� � ��������� � ��������&
!�
�������� � �����&�������� � ��� � ��������&
�����
��� � ���������� � �� � �������� � 3����
����
���

-������������������������"�������������������
��5 � �� � ������
 � 3��� � ����
�� � ��� � !�
������
����������������������������!�
�������������+.�
������ ��� � ��� ������ � �������� ������
 � �����
����
�� � ��� � ��� � ��� � ����!�� � �������4� � ���&
���������� � ����� � ������� � �������� � �� � ��� � ���
���������!�����
�
� �-��������3��������
�������
��
������ � ���� � ����������� � ��� � !�����
��� � �� �-,+�
���������� � �� � ��� � ������� � ������� � �� � ��
��������������
���������������������������������
��� ���������������
�!����������������� � ���
����������������������!���������������������

&
�������������
���������
��E���

�����������3����
����
�� � ��� � �����

� � ��

 � ��� � ��������
����������� � ����� � ��

 � ��
� � �"����� � ����

��%�������-,+���������������������������������
��������������������!�������;���������������<�
�������

@�!����������
��������������������������������

�"�������� ����������������������������
�3���
��������������������������
�&������������������
���
��� � ��� � �� � ����� � ������� � �� � ��������� � ��

������������� � ���� ��������� ������� �!�����
 � �E���
�"���
�� � � � �
���� � ����������� � ���� � ��%������
��%������
���

��������������������������������

��� ����������

�� ��������� ������&�����������
3��������
�������������������!������4������������
��� �������� � ������� � ���� ������� � ��� �� � ����&
���������������
�����������������������������
��������
��������������

���������������������
��
������"��!�������������
����
������������
�������
����
����
�������������������������
�������
�������������������
�

+� � ���� � ���� � � � ���!�� � ���
� � ������ � �����
�������������������������������
�������������
�������� � ���� � ��� �-,+ � ��������� � ���������
��� � ����
 � ����� � ������ � ��� � 3��� � ����
����
������

��� � ����� � ������������ � ���!��� � !��������
������� �� � ������������ � ���&����� ��� �� ����&
�������������
��

-��
��
��
���� � ��!� � ���� � �������
� � �� � ��������
� � �����
����� � ����������� � ���� � �� � �����
���
������������ � ������������� � ��

����������
���������� � ��� �����������
� �!�����
 � ���!����
�����������������������������

1�� � �������
�� � ����� � 4�
-�"
����
�
�����
���

��� � ���!� � ������� � �������� � ��� � �����
���
�������� � ��� � ������

��� � ������ � �� � ���!���
���������
��A�������������!�����

���!����������

����������� � ������ � ��� � �� � ����
��
��
����������
��

-� � ������� � ��� � ����!�� � ������� � �

����
������������� � �� � ���!�� � ����� � �� � � � ���&

����������������
� ���������
����������"���
��
��� � !�
�� � �� � ��� � 7��������9 � ��� � �����
��

������� � ��� � ������ � ��
��
 � � +������ � �� � �����
����
�" � ��� � �����&����� � ���
� � �� � ���������
��
�������������������������!����������
��!�
���

�� � � � ��������� � ���������� � ��
� � ���
��
��
��������
����
����������
�����������������������

20th Annual Tcl Conference 33 New Orleans, LA Sept. 23-27, 2013

�� � ���� � �������!� � ��
�� � ����� � ���������
!�
�������
 � � ����� � �� � ���� � �� � ������ � ���
�������������������������
��������������������
�������������
�����������������������������
�������
����
� � ��!����
� � �� � ��� � ���!�� � ����
 � ����
!�
������������

��� � ������ � !������ � �� � ��� � =���
� � ���!���
���������
������
����������������

����������
���
���������
���������������3��������
������
��
��� � ������� � ���������� � �� � ����
���
 � � �����
���
� � ���������� � �� � �������� � �� � ����
�"�
�����
���������������
���3������������������
�� � ����� � ��� � ����
�� � ���
��� � ��� �
����� � ���
������

5��4�
�� ���

����������� ���� ������� ��� ���&��
�
� �E����� � ���
��������� � ���� � ��� � ��������� � ��� � ����
������������
 � � ������� � �� � ����������� � ����
�����!����������� �����"����������������������
���� �������������� �� ��
��� ������������ �����
��
4� � ������� � ��� ������ � �� � �������
��
� ���

&
������ � �� � ����������� � ���� � ��� � =��
� � =����
=����������!������������������� �������,�
�������

 � � ��� � ���
��� � �� � ������&���������
������ ���������� � �� ���
�!�� � ��
���
����
�������

��!���
�����������
� � ��� � ���� � �� � ������� � ��
���
��
����������
���������+�������
� ���
������!������
��������������
����
�!������� ����������� �����
���������������������
&���������������������
�

���� ���������
 � ��� ����
�������� �� � ��� �===��
��� � �� � ��� �
������� � ��� � ��!�������� � �����
������ � �� � ��
�!����� � �� � ��� � ����� � ���
� � ���

��������������!�
�����������������

20th Annual Tcl Conference 34 New Orleans, LA Sept. 23-27, 2013

6�-�
�
���$

;1<�����5FF���
��
3�����
���F/012F01F21F����&���&���
�&��������&�����&�����&���&����&�������F

;/< ����5FF��

����!������
���F��������F��
�����FL��!�����

;2< ����5FF��
���������
���F����F���!���&��������G�����������

;>< ����5FF�/
���F���F����M6��"=��

;B< ����5FF����
��

��F/2D/D

20th Annual Tcl Conference 35 New Orleans, LA Sept. 23-27, 2013

20th Annual Tcl Conference 36 New Orleans, LA Sept. 23-27, 2013

Tcl 2013
New Orleans, LA

September 23-27, 2013

Session II
September 25, 2013

1:15-2:45pm

20th Annual Tcl Conference 37 New Orleans, LA Sept. 23-27, 2013

20th Annual Tcl Conference 38 New Orleans, LA Sept. 23-27, 2013

Integrated Tcl/C Performance Profiling

Brian Griffin and Chuck Pahlmeyer
Mentor Graphics

8005 SW Boeckman Road
Wilsonville, OR 97070

brian_griffin@mentor.com
chuck_pahlmeyer@mentor.com

ABSTRACT

We present an approach to combine compiled (C) and interpreted (Tcl) call stack information for
profiling purposes. We have integrated Tcl proc and C function calls into combined call stack
information to provide a more complete picture of program state at profile sample times.

1. Introduction and Motivation.

According to mathematician Richard Hamming, “The purpose of computing is insight, not
numbers.” (Hamming, 1962). In that light, we use performance profiling to gain insight into
where our program is spending time. The goal is to provide that “Ah ha!” that leads to finding
and correcting a performance problem. To that end, we have devised a method to provide
greater insight in our profiling results.

What is the problem?

Adequate performance is an important attribute for many software applications. Profiling is a
useful tool to provide insight into where a program is spending time. A statistical profiler
records the program call stack at regular intervals and collates information to provide statistics
on number of samples encountered in various parts of the program. Examples of statistical
profilers include Zoom, Oprofile, gprof, google-perftools and Intel® VTune™. Even gstack and
gdb can be used as crude statistical profilers; simply do “gstack <pid>” a number of times during
program execution or interrupt execution and retrieve the call stack periodically in gdb.
Additionally there exist instrumenting profilers which work by modifying function entry and
exit. These events are recorded during program runtime and later collated into reports of time
and function call count. Examples of this include callgrind, DTrace and gprof (gprof uses both
statistical as well as instrumented approaches).

There are also Tcl-specific performance profilers. Although the authors are unaware of any
statistical Tcl performance profiler, the ActiveState® Tcl Dev Kit includes a Tcl profiler.
DTrace can also be used for Tcl profiling. These profilers instrument the code and record
information about every call. This information is summarized into various profile reports.

20th Annual Tcl Conference 39 New Orleans, LA Sept. 23-27, 2013

However, Tcl applications often have a combination of C and Tcl. A section of call stack of C
code representing execution of Tcl code shows up in a standard profiler as shown in Figure 1.
This provides very little insight into the Tcl language calls that were being executed.

Tcl_Eval
 Tcl_EvalEx
 TclEvalObjvInternal
 Tcl_IfObjCmd
 Tcl_EvalObjEx
 TclCompEvalObj
 TclExecuteByteCode
 TclEvalObjvInternal
 Tcl_CatchObjCmd
 Tcl_EvalObjEx

Figure 1 Sample call stack representing Tcl code evaluation

Why is it interesting and important?

To understand what portion of a program is involved in time consuming activities, it is essential
that the profile results provide reference to the original source code, whether that code was
compiled (e.g. C) or interpreted (e.g. Tcl). Existing profilers provide information for either the
compiled or interpreted code, but not both together.

Why is it hard?

The Tcl interpreter is a collection of C functions that execute Tcl command. Tcl command
execution shows up in a standard call stack as a series of C function calls with names like

TclExecuteByteCode and TclEvalObjvInternal. The difficulty in providing an

integrated call stack is in knowing which C functions in the call stack are executing which Tcl
procs. The C call stack alone provides insufficient information for this.

What are the key components of this approach and results?
 In order to provide integrated C and Tcl call stack information, it is necessary to reference
auxiliary information about the state of the Tcl call stack. Our approach uses a standard
statistical profiler which collects and processes program call stacks at intervals during program
execution. In addition, we maintain a representation of the Tcl call stack as Tcl calls are being
made. When a C call stack is processed to include Tcl command entries, the Tcl call stack
information is used to replace entries on the C call stack with the appropriate Tcl commands.
We correlate position in the C call stack with position in the Tcl call stack by tracking how many

TclEvalObjvInternal calls have been encountered in processing the call stack. This

allows us to present profile results with a combination of C functions and Tcl procs.

20th Annual Tcl Conference 40 New Orleans, LA Sept. 23-27, 2013

2. Integrating Tcl procs into call stacks

Mentor Graphics' Questa® simulator has a built-in statistical performance profiler. It uses a
timer-driven mechanism to collect call stack information at regular intervals. It provides a user
interface to allow interactive exploration of profile results. However, prior to this work, it
reported only C-language call stacks, providing limited usefulness for our application which is
written in Tcl and C. To get better insight into program hotspots, we sought to integrate Tcl
procs into C call stacks.

2.1 Overview

To collect and store Tcl call stacks, we utilize Tcl_CreateObjTrace to set up a trace

function for Tcl command execution. For each Tcl command that is executed, a call to our
specific trace function is made. In the trace function, we store a textual version of the command
at the level-th location in a static array. When we process a C call stack, we can replace every

TclEvalObjvInternal call with the corresponding Tcl command. We maintain

correlation between the C and Tcl call stacks by matching on each TclEvalObjvInternal
call—that is, each TclEvalObjvInternal call maps to an entry in the tcl_stack. A

counter is incremented for each TclEvalObjvInternal call—the counter value is used to

address into the static array of Tcl procs. Figure 2 provides an overview of the processing
involved. Simplified code segments in Section 2.2 below provide more detail.

20th Annual Tcl Conference 41 New Orleans, LA Sept. 23-27, 2013

2.2 Implementation

The Tcl call stack (tcl_stack) is stored in this compact structure (Figure 3); it consumes only a
few tens of KB.
typedef struct t_tcl_stack {
 char command[80];
} s_tcl_stack, *p_tcl_stack;
s_tcl_stack tcl_stack[300];
Figure 3 Storage for Tcl stack

tcl_stack

Tcl Core

ProcessCallStack:
integrates Tcl procs
into C call stack

C call stack

Combined C and
Tcl call stack

SaveCmd called for
each Tcl command;
this continually
updates tcl_stack.

C call stack retrieved
on interrupt for
ProcessCallStack

Timer
interrupt

Tcl_CreateObjTrace(… SaveCmd, …)

Figure 2 Flowchart indicating overview of profiling operation

20th Annual Tcl Conference 42 New Orleans, LA Sept. 23-27, 2013

A simplified version of the trace function is shown below in Figure 4. tcl_stack_max_loc
is a global variable indicating the maximum depth of the Tcl call stack at any moment. This

variable is used in the call stack processing routine (ProcessCallStack). Note that the

processing required in the trace function is small; this is essential since this function is called for
each Tcl command that is evaluated. In the example in Section 3 below, about 2,800 profile

samples were collected. During this process, SaveCmd was called about 21,000,000 times. The

vast majority of entries that SaveCmd made into tcl_stack were unused. The calls to

SaveCmd were necessary, though, to keep tcl_stack current because a profile sample could

be taken at any time.

int SaveCmd(
 ClientData clientData,
 Tcl_Interp* interp,
 int level,
 const char *command,
 Tcl_Command commandToken,
 int objc,
 Tcl_Obj *const objv[])
{
 /* There are cases where Tcl trace skips levels in the call stack
 * callback. Fill any intermediate levels with entries that will be
 * skipped in ProcessCallStack(). */
 for (i=tcl_stack_max_loc+1; i<level && i<300 ; ++i) {
 strcpy(tcl_stack[i].command, "SkippedTclStackEntry");
 }

 if (level < 300) {
 strcpy(tcl_stack[level].command, command);
 }
 tcl_stack_max_loc = level;
 return TCL_OK;
}
Figure 4 SaveCmd trace function implementation

A simplified version of the call stack processing routine is presented in Figure 5 below. This
function is executed for each call stack that is collected and processed. Processing of the call
stack starts from the root (e.g. “main” (or “vish_inner_loop” for Questa)) and proceeds toward

the leaf function call. The while loop processes each entry of the call stack. Each entry is

handled in one of three ways:

� We replace TclEvalObjvInternal with the corresponding Tcl proc name. We do

some manipulation of the reported text depending on the Tcl command being processed.

For example, if a string command is being processed, we add one or two arguments to

make a more informative entry. Also, some Tcl commands like if and foreach are

ignored because we felt that they didn’t add useful information to the call stack.

� Items on the call stack that match “Tcl*”, “Itcl*”, etc. are ignored as they don’t add to our
understanding of the processing.

� Other C function name entries are taken as-is.

20th Annual Tcl Conference 43 New Orleans, LA Sept. 23-27, 2013

static int ProcessCallStack()
{
 int tcl_stack_loc = 1;
 char *name, *proc;

 while (more entries in call stack) {
 name = name of call stack entry;
 if (name == "TclEvalObjvInternal") {
 char *cmd[4] = { 0 }, lcmd[80];
 strcpy(lcmd, tcl_stack[tcl_stack_loc].command);
 ++tcl_stack_loc;

 cmd[0-3] = first 4 tokens of lcmd

 if ((cmd[0]==0) || (cmd[0][0]==0) ||
 (strcmp (cmd[0], "::")==0) ||
 (strcmp (cmd[0], "if")==0) ||
 ...
 (strncmp(cmd[0], "Transcript::ReturnKey", 21)==0)) {
 proc = NULL; /* Ignore these Tcl commands */
 } else {
 /* Manipulate names for better info in displayed callstack */
 if (cmd[1] &&
 ((strcmp ("add" , cmd[0])==0) ||
 ...
 (strncmp("." , cmd[0],1)==0))) {
 proc = dstrPrintf(&ds, "%s++%s", cmd[0], cmd[1]);
 } else if ((strcmp ("string", cmd[0])==0) ||
 (strcmp ("switch", cmd[0])==0)) {
 if ((cmd[1][0]=='-')) {
 dstrPrintf(&ds, "%s++%s++%s", cmd[0], cmd[1], cmd[2]);
 } else {
 dstrPrintf(&ds, "%s++%s", cmd[0], cmd[1]);
 }
 proc = dstrValue(&ds);
 ...
 } else {
 proc = cmd[0];
 }
 }
 } else if ((strncmp(name, "Tcl", 3) == 0) ||
 (strncmp(name, "Itcl", 4) == 0) ||
 ...
 (strcmp (name, "WindowEventProc") == 0)) {

 proc = NULL; /* Ignore these functions in callstack */
 } else {
 proc = name; /* Save other non-Tcl C-level code addresses */
 }
 if (proc) addToDisplayedCallStack(proc);
 }
}

Figure 5 ProcessCallStack implementation

20th Annual Tcl Conference 44 New Orleans, LA Sept. 23-27, 2013

3. Results

We can compare results using standard C call stacks versus ones with Tcl commands substituted.

The Tcl code in Figure 6 was used as a simple test case. It exercises the tok2column proc –
code built into the Questa simulator. tok2column is designed to tokenize a string. The rules

for tokenizing are different depending on the HDL language in use; in this case we specify
“Verilog” as the language.

proc doWork { howMany } {
 set l [list]
 for {set i 0 } { $i<$howMany } { incr i } {
 set l [doWork2 $i]
 }
 puts $l
}
proc doWork2 { i } {
 set line "The quick brown fox jumps over the lazy dog."
 set l [tok2column Verilog 23 $line]
 return $l
}
time { doWork 1000000 }

Figure 6 Test Tcl code

tok2column is a small routine that runs quickly (less than 50 microseconds). Calling it many

times allows us to collect profile statistics and analyze it. In this case we call tok2column
1,000,000 times in 44 seconds collecting about 2,800 samples in the process.

3.1 Profile Results

The contents of the table below (Figure 7) show the ProcessCallStack processing for a

portion of a representative call stack. The three columns in the table are:

� The C call stack entries. The TclEvalObjvInternal entries are shown in red; these

are the items on which we base our C function to Tcl proc mappings.

� The processing done for each entry:

o “-->” means that the C function was taken verbatim.

o “X” means that the entry was filtered out.

o “map to …” means that the entry was mapped to a Tcl command. Note that two

Tcl commands (time and for) were suppressed though.

� The entries in the combined C and Tcl call stack.

Note the difference in length of the two call stacks. The combined C and Tcl call stack is much
more compact.

20th Annual Tcl Conference 45 New Orleans, LA Sept. 23-27, 2013

C function only

call stack entry

ProcessCallStack
action

Combined C and Tcl

call stack entry

vish_inner_loop --> vish_inner_loop
Tk_MainEx --> Tk_MainEx

Tk_MainLoop --> Tk_MainLoop
Tcl_DoOneEvent X

Tcl_ServiceEvent X
WindowEventProc X
Tk_HandleEvent X

TkBindEventProc X
Tk_BindEvent X

Tcl_EvalEx X
(lines of Tcl*) X

TclEvalObjvInternal map to Tcl command .vcop++Action
(lines of Tcl*) X
Tcl_CatchObjCmd X

TclEvalObjEx X
TclCompEvalObj X

TclExecuteByteCode X
TclEvalObjvInternal map to Tcl command EvalUserCmd

tclprim_UserEval --> tclprim_UserEval
Tcl_EvalObjEx X
TclEvalObjEx X

TclCompEvalObj X
TclExecuteByteCode X

TclEvalObjvInternal map to “time”, but suppress
Tcl_TimeObjCmd X
Tcl_EvalObjEx X
TclEvalObjEx X

TclCompEvalObj X
TclExecuteByteCode X

TclEvalObjvInternal map to Tcl command doWork
TclObjInterpProc X

TclObjInterpProcCore X
TclExecuteByteCode X

TclEvalObjvInternal map to “for”, but suppress
Tcl_ForObjCmd X
TclEvalObjEx X

TclCompEvalObj X
TclExecuteByteCode X

TclEvalObjvInternal map to Tcl command doWork2
TclObjInterpProc X

TclObjInterpProcCore X
TclExecuteByteCode X

TclEvalObjvInternal map to Tcl command tok2column
TclInvokeStringCommand X

tclprim_tok2column --> tclprim_tok2column
lang2lang_type --> lang2lang_type

Tcl_Eval X

Figure 7 Processing of example C call stack to combined C and Tcl call stack

20th Annual Tcl Conference 46 New Orleans, LA Sept. 23-27, 2013

The outputs in Figures 8 and 9 are profile results from the Questa simulator. The contents
consist of

1) function name,
2) number of samples in and beneath the function (Under column), and
3) number of samples in the function (In column).

The indentation of the function names indicates calling hierarchy. For example, if function A
called function B, B would be shown indented one space with respect to A. The number of
samples is used to understand the cost of that function, with and without its children.

This output in Figure 8 shows the depth of a standard C call tree report; multiple call stacks
collated together form a call tree. The items hand-annotated with “>>>” prefix and in larger font
are Questa-supplied C routines. Note that 110 and 50 lines of “Tcl*” entries were suppressed
for readability. Without that substitution, the report would be 224 lines long.

20th Annual Tcl Conference 47 New Orleans, LA Sept. 23-27, 2013

Name Under(raw) In(raw)
---- ---------- -------
vish_inner_loop 2795 0
 Tk_MainEx 2795 0
 Tk_MainLoop 2795 0
 Tcl_DoOneEvent 2795 0
 Tcl_ServiceEvent 2795 0
 WindowEventProc 2795 0
 Tk_HandleEvent 2795 0
 TkBindEventProc 2795 0
 Tk_BindEvent 2795 0
 Tcl_EvalEx 2795 0

 (110 lines of Tcl* suppressed)
 Tcl_CatchObjCmd 2787 0
 TclEvalObjEx 2787 0
 TclCompEvalObj 2787 0
 TclExecuteByteCode 2787 0
 TclEvalObjvInternal 2787 0

>>>>>>>>>> tclprim_UserEval 2787 0
 Tcl_EvalObjEx 2787 0
 TclEvalObjEx 2787 0
 TclCompEvalObj 2787 0
 TclExecuteByteCode 2787 0
 TclEvalObjvInternal 2787 0
 Tcl_TimeObjCmd 2787 0
 Tcl_EvalObjEx 2787 0
 TclEvalObjEx 2787 0
 TclCompEvalObj 2787 0
 TclExecuteByteCode 2787 0
 TclEvalObjvInternal 2787 0
 TclObjInterpProc 2787 0
 TclObjInterpProcCore 2787 0
 TclExecuteByteCode 2787 0
 TclEvalObjvInternal 2787 0
 Tcl_ForObjCmd 2787 3
 TclEvalObjEx 2747 4
 TclCompEvalObj 2743 7
 TclExecuteByteCode 2712 20
 TclEvalObjvInternal 2679 10
 TclObjInterpProc 2442 0
 TclObjInterpProcCore 2436 3
 TclExecuteByteCode 2399 17
 TclEvalObjvInternal 2381 13
 TclInvokeStringCommand 2082 2

>>>>>>>>>>>>>>>>>>>>>>>>>>>> tclprim_tok2column 2072 1
>>>>>>>>>>>>>>>>>>>>>>>>>>>>> lang2lang_type 1843 4
 Tcl_Eval 1750 3

 (50 lines of Tcl* suppressed)
 sprintf 28 0
 _IO_vsprintf 28 2

>>>>>>>>>>>>>>>>>>>>>>>>>>>>> HDLTextTok2Col 221 3
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> yylex 173 39
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> is_keyword 96 54
 TclCheckInterpTraces 163 10
 Tcl_Release 41 41
 Tcl_Preserve 37 37
 GetCommandSource 41 2
 Tcl_ReturnObjCmd 28 0
 TclCheckInterpTraces 125 8
 Tcl_Release 38 38
 Tcl_Preserve 34 34
 Tcl_ExprBooleanObj 34 0
 Tcl_ExprObj 34 2
 TclExecuteByteCode 32 15

Figure 8 Profile results with C call stack entries only

20th Annual Tcl Conference 48 New Orleans, LA Sept. 23-27, 2013

The profile report in Figure 9 below is one in which our approach has been used to replace
“Tcl*” entries with the actual Tcl procs that were being evaluated. This is a screen shot of one of
the profile windows in the Questa user interface; the profiler windows allow user interaction with
profile data to better manage what is viewed. In this figure, C functions and Tcl commands can
be distinguished by the different icons associated with each. The same six entries of Questa
supplied C-code can be easily found. Note the interleaving of C functions and Tcl procs. For

example, doWork, doWork2 and tok2column are implemented in Tcl,

tclprim_tok2column and lang2lang_type are C functions, lang2lang_type
calls Tcl proc ::MtiFS::IsVerilogLanguage, etc.

Figure 9 Call tree with Tcl and C entries

20th Annual Tcl Conference 49 New Orleans, LA Sept. 23-27, 2013

3.2 Using Profile Results to Analyze Performance

We can use this profile data to analyze performance of the tok2column proc. In looking at the

children of Tcl proc tok2column, we see that C function tclprim_tok2column takes the

majority of tok2column’s time. We see that tclprim_tok2column spends time in two

child routines: lang2lang_type and HDLTextTok2Col. The lang2lang_type routine

is designed to determine the language type of the incoming language argument;

HDLTextTok2Col does the actual tokenizing. We can see that lang2lang_type takes

1901 samples while HDLTextTok2Col takes only 228 - tclprim_tok2column is

spending 8 times as much time to interpret the language argument as doing the actual tokenizing

that the routine nominally does! We look further at the components of lang2lang_type:
MtiFS::IsVerilogLanguage and MtiFS::IsVHDLLanguage and see their costs. We

can examine the source code of these functions and procs to understand if unneeded work is
being done or if necessary work could be done more efficiently; see Figure 10.

static int lang2lang_type (Tcl_Interp *interp,const char *lang)
{
 char buf[256];
 sprintf(buf, "::MtiFS::IsVHDLLanguage %s", lang);
 if (Tcl_Eval(interp, buf) == TCL_OK) {
 if (Tcl_GetIntResult(interp)) {
 Tcl_ResetResult(interp);
 return LANGVHDL;
 }
 }

 sprintf(buf, "::MtiFS::IsVerilogLanguage %s", lang);
 if (Tcl_Eval(interp, buf) == TCL_OK) {
 if (Tcl_GetIntResult(interp)) {
 Tcl_ResetResult(interp);
 return LANGVERILOG;
 }
 }
 . . .

proc MtiFS::IsVerilogLanguage { type } {
 if {[string compare -nocase $type [VerilogLanguage]] == 0 } {return 1}
 return 0
}
proc MtiFS::VerilogLanguage {} { return "verilog" }
Figure 10 Source code for C function and Tcl procs used by test case

Since we specify “Verilog” as an argument to tok2column, we expect lang2lang_type
to return LANGVERILOG. We can inspect lang2lang_type and see why

IsVHDLLanguage and IsVerilogLanguage both show up with about the same costs.

20th Annual Tcl Conference 50 New Orleans, LA Sept. 23-27, 2013

The invocation of Tcl procs from C code to determine language type is time-consuming. With

this insight into where time is spent in tok2column, we can easily reimplement

lang2lang_type() as a strictly C function to speed tok2column considerably.

This example demonstrates the utility of combining Tcl and C routines into a single call tree for

performance analysis. Note that tclprim_tok2column, lang2lang_type and

HDLTextTok2Col do show up in the first (C function only) profile output (Figure 8). Without

the context of the surrounding Tcl procs, though, it is more difficult to understand their role in
the overall performance picture.

We have used this profiling feature to track a number of issues in the Questa simulator. For
example:

� Tracking GUI sluggishness at a remote customer site. The developer initially suspected the
message viewer was involved due to a high number of messages being processed. However,
the profiler showed that code that scans simulation events was actually consuming the
majority of the time. With this information, the developer was able to understand and
address the real problem.

� We’ve recently integrated the Scintilla editor. Certain of our regression tests ran quite slowly
using this editor. The profiler was able to point to the portion of the code that was
consuming excess time.

4. Limitations and Notes

Our approach required a few small changes to the Tcl core code in order to get a consistent value

for numLevels that could be matched to depth of TclEvalObjvInternal on the call

stack. However, these changes weren't completely compatible with other uses of the notion of

numLevels in the Tcl library. We’re using these modifications in the Questa simulator version

of Tcl, but they haven’t been propagated to the public Tcl version.

We found that if TCL_ALLOW_INLINE_COMPILATION was specified in the flags argument

to Tcl_CreateObjTrace(), the alignment assumptions made for this process were violated.

That is, the assumption of number of times that TclEvalObjvInternal appeared in a call

stack didn’t match the depth of the Tcl call stack.

In our testing, doing profiling in this way caused a doubling to tripling of overall execution time.
This is due to two primary factors:

� The cost of maintaining the Tcl call stack at all times via the trace functionality. The
trace call is somewhat expensive due to internal overhead.

� Deoptimization of the Tcl code due to not specifying

TCL_ALLOW_INLINE_COMPILATION to Tcl_CreateObjTrace().

Although this is a non-trivial performance cost, the information it provides is generally
worthwhile.

20th Annual Tcl Conference 51 New Orleans, LA Sept. 23-27, 2013

The filtering done in ProcessCallStack works well for our needs. Different rules could be

used to support profiling in a different application or with interest in aspects of the Tcl library
itself.

There were places where the trace function SaveCmd didn’t appear to be called for every level
of Tcl command that was executed. For example, the trace function might be called with

level=12 followed by a call with level=15. In this case, we’d enter the value
SkippedTclStackEntry into the entries 13 and 14 of the Tcl call stack (tcl_stack) so

that a known value is present on the stack all the way to tcl_stack_max_loc, the deepest

level of the Tcl call stack. This didn’t occur frequently, but did require the handling we
provided.

Certain techniques described in this paper are patent-pending as a patent application has been
submitted to the US Patent Office.

5. Future work

In the Tcl 8.5 environment, it could be useful to have a lighter-weight function to record Tcl

command calls. The Tcl_CreateObjTrace approach had a large overhead due to mutex

locks that were used around each trace call.

In the Tcl 8.6 environment, "stackless evaluation" has been introduced. This will require a
different mechanism to record location in Tcl command call stack for correlation with C call
stack.

Acknowledgements

We would like to thank Mark Young of Mentor Graphics for engaging discussions when
developing this functionality. We would also like to thank the Questa GUI development team
for testing this functionality.

Bibliography
Hamming, R. (1962). Numerical Methods for Scientists and Engineers. McGraw-Hill Education.
Tcl Library. (n.d.). Retrieved August 2013, from Tcl Developer Xchange!:
http://www.tcl.tk/man/tcl8.5/TclLib/contents.htm

20th Annual Tcl Conference 52 New Orleans, LA Sept. 23-27, 2013

Characterizing and Back-Porting
Performance Improvement

Clif Flynt
Noumena Corporation
clif@noucorp.com

Phil Brooks
Mentor Graphics Corporation
phil brooks@mentor.com

Don Porter
NIST

donald.porter@nist.gov

September 4, 2013

Abstract

The Tcl interpreter is constantly being modified and improved. Im-
provements include new features and performance boosts.

Everyone wants to use the latest releases with the newest improve-
ments, but corporate users with large code bases may not be able to do this.
Reworking an extremely large code base can take longer than the interval
between Tcl releases. These users may need a change to be back-ported to
the version of Tcl that they are using.

A Tcl release includes many changes and identifying the modification
that caused a particular performance boost isn’t always simple, particu-
larly if the performance boost of interest was a side-effect of other improve-
ments.

This paper describes the discovery of a thread-performance issue in Tcl
8.4 which was fixed in 8.5, a semi-automated technique for tracking down
the code modification that improved the performance, and a discussion
back-porting the improvement.

1 Introduction

The first rule for carpenters and seamstresses is ”Measure twice, cut once”. For
software engineers the rule for optimization is just ”Measure First”.

Work reported at the Tcl Conference in 2005 and 2012 identified an area
where Tcl performance was not living up to expectations and provided the crit-
ical benchmark to measure the interpreter performance behavior with multiple
threads.

20th Annual Tcl Conference 53 New Orleans, LA Sept. 23-27, 2013

1.1 Tcl-2005: ’Pulling Out All the Stops’

Phil Brook’s 2005 Tcl conference paper discussed implementation of Calibre
LVS’s Device TVF feature, in which a highly efficient, though quite limited,
calculation engine is given the ability to make calls to a Tcl program allowing
for more sophisticated programming capabilities.

1.2 Tcl-2012: ’Pulling Out All the Stops - Part II’

The follow up 2012 paper discussed implementation of threading capabilities
on the 2005 calculation engine and identified a bottleneck that is present es-
pecially when the calculation engine is creating many strings and formatting
numbers into strings. The behavior in the application was reproduced in a
stand alone C++/Tcl test program that similarly created many strings from
numbers. The application behavior and that of the stand alone benchmark
bore telltale signs of a locking problem:

• Real time execution scaling tapers off and even gets worse with addi-
tional threads.

• System time required escalates with the number of threads as additional
kernel intervention is required to resolve lock contention.

The following graph compares MT scaling across Tcl versions 8.4.19, and
8.5.14:

20th Annual Tcl Conference 54 New Orleans, LA Sept. 23-27, 2013

0

20

40

60

80

100

120

140

160

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

8.4.19

8.5.14

8.6.0

Tcl MT String Formatting Benchmark

Figure 1: Application run time vs threads for Tcl 8.4, 8.5 and 8.6

When the stand alone test program was run against Tcl 8.5 and Tcl 8.6, the
contention issue was not observed. That led to the question: What changed
in Tcl that improved multi threading execution time? One other observation
between Tcl versions 8.4, 8.5 and 8.6 was that the simple use of expr in a for
loop was significantly slower in Tcl 8.5 and again slower in Tcl 8.6. This fact,
along with the difficulty of porting a major application with over 1 million lines
of Tcl code onto Tcl 8.5 or 8.6 led us to investigate finding the optimization and
looking at the possibility of porting it back to Tcl 8.4.

2 Procedure

The benchmark program developed by Phil Brooks was used to characterize
several Tcl check-ins. This benchmark performs a number of float-to-string
conversions and allows the user to select the number of threads to use to per-
form the conversions.

The basic flow for performing the benchmarks was

For revision in List_Of_Fossil_Identifiers
Checkout revision
Build Tcl libraries
Link benchmark with new libraries

20th Annual Tcl Conference 55 New Orleans, LA Sept. 23-27, 2013

Run benchmark and record results

The fossil finfo command will return a list of check-ins in which a file
has been modified. Since we were investigating threading behavior, it made
sense to collect a set of fossil check-ins related to changes in the generic/tclThreadAlloc.c
module with this command.

> mkdir tcl
> cd tcl
> fossil open ../tcl.fos
> fossil finfo generic/tclThreadAlloc.c >../ThreadFiles.fo

The output of the fossil finfo command resembles this:

2012-11-26 [1d357d342e] Merge (selected bits of) novem (user: dgp, artifact:
[2314c6d7b8])

2012-11-26 [45a2eb8ff0] merge 8.5 (user: dgp, artifact: [58f949bc42])
2012-11-26 [ab9713b5f1] merge novem (user: dkf, artifact: [1b8015a219])
2012-11-26 [cdc837ae05] merge trunk (user: mig, artifact: [59ce13b7e5])
2012-11-26 [6b2cf92413] Removed functions marked deprecated or obsolete for a

long time: Tcl_Backslash, Tcl_EvalFile, Tcl_GlobalEvalObj,
Tcl_GlobalEval, Tcl_EvalTokens. Remove Tcl_FindExecutable from
...

The useful lines are the ones that start with a date stamp. The numbers
inside square braces are the identifier for this check-in. This set of numbers
can be used with fossil checkout to check out a specific version of the Tcl
source code.

This set of code examines the finfo output and checks out Tcl revisions in
the order that they were checked into fossil.

set top $pwd
foreach l [split $d \n] {
cd $top

extract first 10 characters
set dt [string range $l 0 10]

Sudden death tests - if not date, or no values, skip
if {[catch {clock scan $dt}]} {continue}
if {[string trim $dt] eq ""} {continue}

If the line starts with a date, get the ID number
set num [string range $l 12 21]

Clean up a folder for new checkout
catch {exec rm -rf tcl}
file mkdir tcl
cd tcl

20th Annual Tcl Conference 56 New Orleans, LA Sept. 23-27, 2013

Checkout
exec fossil open ../tcl.fos
exec fossil checkout $num

Tcl development is a continuous process on all of the active releases and
branches. The chronology of check-ins does not reflect the release or position
within a release.

This code snippet opens the tcl.h file in the newly checked out sources to
find the version number associated with this code.

cd tcl
set if [open generic/tcl.h r]
set tclh [read $if]
close $if

regexp {TCL_VERSION[ˆ"]*"([ˆ"]+)} $tclh all rev

Once the code is extracted, it needs to be compiled. This is trivial with the
TEA based make system and is easily automated.

While Tcl releases are very stable, not every check-in is guaranteed to work,
or even compile, so the make is executed within a catch command.

cd unix
exec ./configure --enable-threads -enable-shared=0
set fail [catch {exec make} rtn]

The fail value is used to determine whether or not to build the bench-
mark. An application is not guaranteed to be linkable after the components
have been successfully compiled, and an application that links doens’t neces-
sarily run. The catch command gets a lot of use in the sections of the script
that make and run the benchmark.

cd $benchFolder

Modify Makefile for current release
exec sed s/REL/$id/g <Makefile.in >Makefile

Clean and rebuild benchmark
catch {exec make clean}
set fail [catch {exec make}]

for {set ii 0} {$ii < $runCount} {incr ii} {
set t1 [clock seconds]
set fail [catch {exec ./mt_example_$id -tcl -s $count1} rtn]
regexp {.*REAL TIME=([ˆ]+) .*} $rtn aa measure

Calculate average
}

20th Annual Tcl Conference 57 New Orleans, LA Sept. 23-27, 2013

The Tcl time command was used to evaluate the run time for the bench-
mark. To protect from system inconsistencies, the benchmark was run multi-
ple times and the average time was used to calculate the ratio between 2 and 6
threads.

The process of checkout, compile and test is time consuming, but will com-
plete in a single night. Once the results were collected, they were graphed as
shown below, demonstrating the dramatic performance improvement.

Figure 2: Runtime Ratio vs Tcl Release

The graph is nice for visualization, but does not show where the change
occurred.

The raw data, however makes it fairly obvious:

...
3af2919289 8.5 RATIO 2.0
7ff2693241 8.5 RATIO 2.0
1cc2336920 8.5 RATIO 2.0
751ccc1989 8.5 RATIO 0.7
edf99c3880 8.5 RATIO 0.8
83aa957ebe 8.5 RATIO 0.8
...

In an ideal world, using 6 threads instead of using 2 threads would be result
in a runtime reduced by a third, and the ratio would be 3. In the real world
there are issues involved with making sure the threads don’t collide, switching
overhead, etc. The best improvement seen in this set of testing was a bit over
2.

20th Annual Tcl Conference 58 New Orleans, LA Sept. 23-27, 2013

However it’s obvious that between the 751ccc1989 check-in and the 1cc2336920
the performance was improved. Examining the code changes, it turned out
that the improved thread performance did not come from an improvement in
the thread management code, but was a benefit from the merge of a large nu-
merics reform branch.

2.1 Back-port

At this point, the search could easily continue by iterating the automated per-
formance testing script on the merged numerics reform branch to find the pre-
cise change responsible. However, having narrowed the matter down to the
changes in number handling was sufficient. For someone familiar with the
structure and history of that portion of the Tcl source code, it is clear that the
problem lies with the treatment of the ::tcl precision variable, and the
improvement came with a strong move away from using that variable. Search-
ing tools are a great assistant, but knowing the code-base is a key contributor
as well.

The ::tcl precision variable has a long history in Tcl. It arrived in Tcl
7.0. Setting the variable to an integer value between 1 and 17 specified how
many decimal digits of precision should be used when the routine Tcl PrintDouble
generates the string form of a floating point value. It had some value as a
means to tune performance, with sprintf() presumably taking less time to
generate shorter strings (and in the days when every value truly was a string,
that could matter). However, its greater purpose is to shield unsophisticated
Tcl programmers from some of the harsher realities of floating point arithmetic.

% expr {1.0/10}
0.10000000000000001

The aim is not unreasonable, but the error was in placing this feature in
the heart of the value stream of Tcl, and not on the periphery where it would
govern display matters only. The consequence over time was a large number of
bug reports rooted in the fact that the operation of ::tcl precision was at
odds with Tcl’s value model that “Everything Is A String” (EIAS). An extreme
example serves to demonstrate.

% set tcl_precision 1
1
% set third [expr {1.0/3}]
0.3
% set compare "0.3"
0.3
% string equal $third $compare
1
% expr {$third == $compare}
0

20th Annual Tcl Conference 59 New Orleans, LA Sept. 23-27, 2013

Two equal string values get treated as unequal by some Tcl commands. This
is contrary to Tcl’s value model that the string representation holds all the value
there is to hold.

In the development of Tcl 8.5, one of the goals set and achieved was to
make numeric values in Tcl properly conform to EIAS. Strictly speaking this
is impossible to fully achieve while the ::tcl precision variable still exists
and Tcl continues to follow the documented response to its value for sake of
compatibility with existing scripts making use of it. (The example above uses
a Tcl 8.6.0 interpreter.) However, the continued use of ::tcl precision is
discouraged in the strongest terms, and the default setting is one that upholds
EIAS and also avoids most of the shocking results that motivated its preserva-
tion through many earlier calls for its elimination.

% set tcl_precision
0
% expr {1.0/10}
0.1

Starting in Tcl 8, Tcl values are stored in a Tcl Obj struct, and the Tcl PrintDouble
routine is normally only called for producing the string representation of a
value of the double Tcl ObjType. In this context, there is no Tcl Interp to re-
fer to, and so no way to pull a value out of any particular ::tcl precision
variable. Consequently, in the Tcl 7 to Tcl 8 transition, the actual value control-
ling precision came to be stored outside of any interp, as one common static
variable shared by the entire application. All the ::tcl precision variables
in all the interps became ways to read and write that common global value
through the magic of traces.

Then in Tcl 8.1, as the source code was revised to support multi-threaded
operations, the common static variable holding an application wide value for
controlling precision came to be shared among all threads, with mutex locking
added to guarantee that all writes and reads of that value are serialized.

At this point the reader seasoned in multi-threaded programming is think-
ing “Aha! Of course multi-threaded performance collapses when every thread
has significant amounts of double to string conversions to do!” The whole
double to string machinery funnels through a serialization bottleneck. Relief
came only in the development of Tcl 8.5, when two things happened. First, the
entire subsystem for generating the decimal string representation of a floating
point value was rewritten, changing the patterns of locking in a way that re-
duced the scaling problem. Second, an additional design change replaced the
application-wide global value for controlling precision with a set of values, one
for each thread. This eliminated any need for locking altogether.

Having identified the cause of the performance bottleneck, and the reasons
that Tcl 8.5 and later avoid it, the next issue is what can be done in Tcl 8.4 to
correct the problem. The solution came into 8.5 as part of a major subsystem
rewrite. Forcing that into a patch release of Tcl 8.4 is contrary to the practice of
making such major rewrites only with new minor versions. A simpler solution
would be to back-port the shift from a single global value to a set of preci-

20th Annual Tcl Conference 60 New Orleans, LA Sept. 23-27, 2013

sion control values, one for each thread. However, this solution was avoided
because it represents a level of compatibility change that exceeds the normal
practice for patch level releases. The amount of incompatibility involved is just
too great for those scripts that would notice.

Instead, a new solution was crafted, preserving the global precision control
value, and improving performance by replacing the expensive simple-minded
serialization scheme with a somewhat more complex scheme, but one far better
matched to the actual needs and resulting in far better performance. In prac-
tice, the reads from the global precision control value are far more frequent than
writes. A locking scheme that reduces the need for locking when only read-
ing the value is highly effective in improving performance. The machinery to
make this happen is an adapted back-port of the ProcessGlobalValue util-
ity already used in Tcl 8.5 to manage other application-wide values like [info
hostname] and [info nameofexecutable].

A ProcessGlobalValue maintains a master string value, and also keeps
a cached copy of that value in a Tcl Obj for each thread. A master integer epoch
value is also maintained, and a cached value of that epoch in each thread as
well. When the master value is written, full mutex locks are used to serialize
writes. The new master value is stored, and the master epoch is incremented.
When there is a need to read the value, however, a scheme of epoch check-
ing avoids the need for locks most of the time. The cached epoch value is
compared with the master epoch value and so long as they are the same, the
cached Tcl Obj value is still valid, and the thread proceeds making use of it.
Only when an epoch mismatch indicates that the master string value has been
written since the last epoch check in a thread does the expense of a lock and
a recopy from the master value to the thread cache take place, along with an
update of the thread epoch value. This mechanism preserves the single global
value that is a feature of Tcl 8.4, while bringing the cost of it down significantly.
The patch to make this change was added, tested, and released as part of Tcl
8.4.20.

The change was incorporated into the original Calibre application and the
resulting application performance clearly shows an improvement in scaling
and continues to scale incrementally even with 32 threads running on a 32 way
system as shown in the following graph:

20th Annual Tcl Conference 61 New Orleans, LA Sept. 23-27, 2013

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35

RE
AL

 T
im

e
(S

ec
on

ds
)

Concurrent Threads

Calibre Device Application Threaded Performance

Before

After

Figure 3: Application run time vs threads

2.2 Conclusion

Keeping Tcl users happy and improving the performance of the kernel is al-
ways good. What is interesting in this particular case is the techniques used to
identify the time when a performance change occurred using a scripted set of
checkouts and builds, and the cooperation of three entities (the three authors)
in identifying the problem, reducing the problem set, and fixing the issue.

The technique of using a set of scripts to checkout, configure, build, test
is fairly obvious and is applicable to any performance study. The scripts that
checked out versions of the Tcl interpreter and built multiple copies are rela-
tively simple.

2.3 Future Work

The scripts used to run this set of benchmarks have been modified and ex-
tended in a larger study of the behavior of Tcl with the tclbench suite to
characterize Tcl behavior over a larger number of subsystems.

20th Annual Tcl Conference 62 New Orleans, LA Sept. 23-27, 2013

Tcl 2013
New Orleans, LA

September 23-27, 2013

Session III
September 25, 2013

3:00-4:30pm

20th Annual Tcl Conference 63 New Orleans, LA Sept. 23-27, 2013

20th Annual Tcl Conference 64 New Orleans, LA Sept. 23-27, 2013

Presented at the 20th Annual Tcl Developer’s Conference (Tcl’2013)
New Orleans, LA

September 23-27, 2013

Sean Deely Woods
Senior Developer
Test and Evaluations Solutions, LLC
400 Holiday Court
Suite 204
Warrenton, VA 20185

TAO/TK
A TclOO Based Toolkit for GUI

Design

20th Annual Tcl Conference 65 New Orleans, LA Sept. 23-27, 2013

�������	�
������
�
Table of Contents2�
Introduction ..2�

Interoperability with TclOO2�
TAO Parser..3�

Operation of the Tao Parser..................3�
Properties ..3�

Inheritance...4�
Property Types4�

Method Ensembles................................5�
Method Ensemble Implementation .5�
Method Ensemble Argument

Handling...6�
Class Methods...6�
The DB Backend7�

Class Regeneration.............................7�
The Variable keyword8�

The Mother of all Classes8�
Default Constructor8�

Constructor Option Syntax8�
Option Handling9�

Option Properties9�
Option Substitution............................9�
Option Classes9�
Option Event Processing.................10�

Forwarding and Grafting....................10�
Locks, Signals, and Notifications11�

Locks ..11�
Signals ..11�
Signal_Pipeline12�
Notifications......................................12�

Setup, Cleanup and Renaming12�
[namespace code {}]12�

TAO/TK ..14�
Meta Classes..14�
User Widgets...14�
Dynamic Widgets.................................15�

Property Inferences..........................16�
Building Custom Dynamic Widgets

..16�
Conclusion...17�

Acknowledgements17�
Appendix...17�

TAO Parser Keywords17�
The Mother of all Classes18�

Static Methods18�
Method Ensembles...........................19�
Dynamic Methods............................20�

TAO DB Schema...................................21�

�������������
In this paper, I will describe TAO/TK, a

comprehensive architecture for
implementing user interfaces, control
systems, and machine learning. TAO is a
dialect of TclOO. TAO builds on TclOO and
adds its own notations and policies in a way
that allows it to interact with other TclOO
code.

TAO adds features that are required to
make complex systems of related classes
easier. TAO’s main feature is passing data
through inheritance as well as code.
TAO/TK extends TAO into a more familiar
set of widget and megawidgets.

TAO/TK requires Sqlite and Tcl 8.6.

����������������������������
Behind the scenes, TAO classes are really

TclOO classes. They just have a few extra
methods, and additional introspection via
the TAO internal database. It is perfectly
reasonable to have a TAO object list a
TclOO object as a superclass, and vice versa.

oo::class create foo {
}
::tao::class bar {
 superclass foo
 method someop args {
 return some
 }
}
oo::class create baz {
 superclass bar
}

All of the TclOO introspection tools are
usable on TAO objects and classes:

info class definition bar someop
> args {
> return some
>}

In short, TAO is intended to be an
additive extension to TclOO. It does not
break or otherwise force the user to alter
his/her way of doing things if they are
already familiar with TclOO.

20th Annual Tcl Conference 66 New Orleans, LA Sept. 23-27, 2013

�������
���
Some of you may remember my paper

from 2006 on my concept of TAO. TAO,
then, was my answer to problems I had
encountered with [Incr Tcl], and was
essentially Pure-Tcl code, with a syntactic
sugar parser, and held together with Sqlite.

And aside from the name and the fact
that, yet again I seem to have invented a
syntactic sugar parser held together with
Sqlite, there aren’t many similarities
between the two projects.

The code that can be implemented is not
the real code, after all. ;-)

TAO has been reinvented using TclOO at
it’s core. To introduce new keywords and
design patterns all TAO code passes
through the TAO Parser. The TAO Parser
borrows heavily from the TclOO parser.
Several TclOO keywords are intercepted
and their contents logged into an in-
memory sqlite database. Wholly new
keywords string together a series of TclOO
calls and sql queries to produce TAO code.

The TAO parser operates in it’s own
namespace: ::tao. The ::tao::class command
works like a combination of ::oo::class create
and ::oo::define. It will either create a new
class, or modify an existing one.

::tao::class foo {
 # Works just like TclOO class
 # definitions
 method noop args {
 return {}
 }
}
::tao::class bar {
 superclass foo
 method someop args {
 return some
 }
}

Unlike in TclOO, the command tao::class
is not actually an object. It’s a procedure
that implements the parser. If you didn’t
know already, in TclOO the very keyword
used to create a class is itself a class, thus
why you have to give it a method to work
on. (Either create or new.)

�����������	������������
���
The TAO parser operates in 3 main

phases:

Parse the incoming class

Code submitted to the tao::class
command is passed to the ::tao::parser
namespace for digestion. Each keyword is
read, and a picture of the new class is
developed. At the same time, the raw
TclOO form of the new class is being built
using oo::define.

Apply dynamically generated methods.

Once the picture of the new class is
developed, the parser adds dynamically
generated methods. These methods include
the property method and method
ensembles.

Update affected classes

After the class is parsed, built, and the
dynamic methods area applied, the parser
looks to see if the new definition of the class
will affect any already existing decedents of
this class. It then regenerates the dynamic
methods for all of those descendents.

���������
�

::tao::class animal {
 property tkingdom Animalia
 property has_spine 0
}
::tao::class vertebrate {
 superclass animal
 property torder Chordata
 property has_spine 1
}
::tao::class mammal {
 superclass vertebrate
 property tclass Mammalia
 property has_fur 1
}
::tao::class carnivore {
 superclass mammal
 property torder Canivora
}
::tao::class feline {
 superclass carnivore
 property tfamily Felidae
}
::tao::class felis {
 superclass feline
 property tgenus Felis
}

In a complex system where a rule has to
be written to handle a range of different

20th Annual Tcl Conference 67 New Orleans, LA Sept. 23-27, 2013

classes of objects, it is often useful to be able
to refer to some meta-information within
the object. It is also helpful to have that
meta-information inherited along with the
methods.

In this above example, we are creating
the taxonomic classification of the common
housecat. In that classification, we are
seeding some useful traits that will be
passed along to descendents of the class
above.

The idea being that by the time we get
down to putting together the final leaf
classes, the code is simply:

::tao::class housecat {
 superclass felis
 property tspecies domesticus
}

And should a question arise, all objects
of that class can answer based in
information inherited by ancestral classes.

housecat create Thomas
Thomas property torder
> Chordata
Thomas property has_fur
> 1
Thomas property has_backbone
> 1

������������
The inheritance mechanism for TAO

mimics the behavior of inheritend in TclOO.
Under TclOO, when searching for a method
implementation, the last method defined is
the method that is used. Because the parser
runs outside of TclOO, TAO must recreate
that process for database queries.

The routine essentially calls [info class
superclasses] on the subject of inquiry.
Because [info class ancestors] returns only
the immediate heritage specified by the
superclass keyword, TAO must repeat the
process on every ancestor, and ancestor’s
ancestor.

Every class we have scanned is added to
our result, but only the first time it is
encountered. If an ancestor is inherited
through multiple paths, subsequent
references it is ignored.

The result is a list starting from the most
advanced, and stepping back to the most
primitive of every class that has had an
impact on the present class.

The implementation is here:

proc ::tao::class_ancestors {
 class {stackvar {}}
} {
 if { $stackvar ne {} } {
 upvar 1 $stackvar stack
 } else {
 set stack {}
 }
 if { $class in $stack } {
 return {}
 }
 stack push stack $class
 if {![catch {
 ::info class superclasses $class
 } ancestors]} {
 foreach ancestor $ancestors {
 class_ancestors $ancestor stack
 }
 }
 if {![catch {
 ::info class mixins $class
 } ancestors]} {
 foreach ancestor $ancestors {
 class_ancestors $ancestor stack
 }
 }
 return $stack
}

TAO performs a database query on every
property defined for each ancestor, in the
order given by tao::class_ancestors. A new
property is added to a data structure for the
class we are parsing if no such property was
defined before:

proc ::tao::dynamic_methods_property {
 class ancestors
} {
 set info {}
 foreach ancestor $ancestors {
 ::tao::db eval {
SELECT property,type,dict FROM property
WHERE class=:ancestor and defined=:ancestor
} {
 if {
 [dict exists $info $type $property]
 } continue
 dict set info $type $property $dict
 } ; # End of query
 } ; # End of foreach
 # At this point $info contains the complete
 # picture

�������������
�
Constant properties, being the most

common, have the simplest notation.
However, constant properties are just one
type that TAO supports. To use one of the
other property types, specify an additional
argument. When the property keyword sees
4 arguments, the third is interpreted as the
type of property.

20th Annual Tcl Conference 68 New Orleans, LA Sept. 23-27, 2013

::tao::class housecat {
 property dob option {
 storage date
 }
 property age eval {my Age}

 method Age {} {
 set dob [date_to_julian [my cget dob]]
 set now [today_julian]
 return [expr {($now-$dob)/365}]
 }
}
Thomas configure –dob 2010/01/01
Assuming we ask on 2013/09/01
Thomas property age
> 3

A complete table of supported types is as
follows:
Type Description
const A property that always returns a

constant
eval A property whose value is generated

by evaluating a command run within
the object’s namespace.

subst A property whose value is generated
by evaluating an expression run
through subst.

variable A property whose value is retrieved
from an internal variable of the same
name.

option A property which is treated as an
option. See Option Handling.

signal A property which is treated as a
signal. See Signals.

����������
�����
�
For large projects, it is often useful to be

able to clump similar functions together. At
the same time, it’s nice to be able to pop and
swap chunks of that ensemble to handle the
intricacies of your class system.

TAO has a method ensemble system. If
the parser detects a method with a “::” in
the name, it assumes the portion before the
“::” is the ensemble, and after the “::” is the
submethod. Method ensembles submethods
are inherited by descendents, and
descendents can override or extend the
ensemble with their own submethods.

::tao::class vertebrate {
 superclass animal
 method has::spine {} {
 return 1
 }
}
::tao::class human {
 superclass vertebrate
}
::tao::class politician {
 superclass human
 # ^ Though that may be debatable
 method has::spine {} {
 error {Define ”spine”}
 }
}

Because Method Ensembles are
dynamically generated, a method ensemble
will trump a normal method. Any attempt
to implement “has” as a bare method in a
descendent will simply be ignored:

::tao::class lawyer.honest {
 superclass lawyer
 method has {field value} {
 if { $value eq “spine” } { return 1 }
 …
 }
}
layer.honest create mrsmith
mrsmith has spine
> ERROR: Define “spine”

���������
���������������������
Ensemble submethods are tracked and

catalogued by the TAO database. After the
class is parsed, TAO builds a series of
dynamically generated methods. Method
ensembles are built during this stage.

Structurally, method ensembles are
really a switch statement. Each body of the
switch statement is the version of the
submethod from the most recent ancestor
that defined one.

The default for an ensemble is to throw
an error when given an unknown
submethod. This can be overridden by
providing a default submethod. The
default submethod is guaranteed to be the
last evaluated. The method that was given
on the command line is preserved as the
$method variable.

20th Annual Tcl Conference 69 New Orleans, LA Sept. 23-27, 2013

An example catch-all for the has method
::tao::class moac {
 method has::default {} {
 return [string is true –strict \
 [my property $method]]
 }
}

If we peer inside the has method, we can
see how it works:

iinfo class definition politician has
{method args} {
switch $method {
 <list> { return {spine} }
 spine {
::tao::dynamic_arguments {} {*}$args
 error {Define ”spine”}
 }
 default {
 return [string is true –strict \
 [my property $method]]
 }
}

As you can see, in addition to the
submethods we have defined in the parser
and default, our ensemble includes an
additional submethod <list>. <list>
provides a list of all of the valid
submethods for the ensemble for this
particular class.

���������
������������������������
From our code listing above, you well

see a call to tao::dynamic_arguments.
tao::dynamic_arguments is a routine that
reads the arguments beyond the method
name given to the ensemble, and converts
them into the local variables. The intent is to
mimic the argument handling behavior of
the proc command. If too many arguments,
or not enough arguments are given,
tao::dynamic_arguments will throw an
error.

If the arglist ends with args, any number
of arguments beyond the mandatory ones
will be added to a list called args. If the
arglist ends with dictargs, any arguments
beyond the mandatory ones are placed into
a key/value list called dictargs. If one
argument is given to dictargs, that argument
is assumed to be a key/value list.

The following example demonstrates the
various ways Method Ensembles will accept
input via dictargs. The ::character::bio
method parrots back the input it is given.

::tao::class show {
 method character::bio {who dictargs} {
 if {[dict exists $dictargs phrase]} {
 set phrase [dict get $dictargs phrase]
 } else {
 set phrase {}
 }
 puts [list $subject says $phrase]
 }
}
Not enough arguments
show create addams
addams character bio
> ERROR: Usage: who ?dictargs?

Arguments given after the mandatory.
addams character bio fester \
 phrase {Light Bulb}
> fester says {Light Bulb}

Arguments packed into a key/value list as
the first args
addams character bio lurch \
 {phrase {Good Evening}}
> lurch says {Good Evening}

And it even does dashes!
adama character bio mortisha \
 -subject {Mon Cher}
> mortisha says {Mon Cher}

��

�������
�
The class_method keyword creates a

method which operates only on the class
object itself. It’s like calling oo::objdefine,
and defining an instance method for the
class object. But unlike oo::objdefine,
class_method is passed on to descendents
of the class.

A modified version of the property
method is included with all TAO classes. It
provides the meta-data and constant value
properties of the object version. It doesn’t,
however, supply any of the properties that
require gazing into the state of the object.

The most immediate example if a class
method I have is in taotk’s user widgets. We
trap the unknown handler, and detect if the
first argument, instead of being create or
new is a tkpath:

Example
taotk::frame .foo

20th Annual Tcl Conference 70 New Orleans, LA Sept. 23-27, 2013

tao::class taotk::frame {
 class_method unknown args {
 set tkpath [lindex $args 0]
 if {[string index $tkpath 0] eq "."} {
 if {[winfo exists $tkpath]} {
 error "Bad path name $tkpath"
 }
 set obj [my new $tkpath \
 {*}[lrange $args 1 end]]
 if {![winfo exists $tkpath]} {
 catch {$obj destroy}
 return {}
 }
 $obj tkalias $tkpath
 return $tkpath
 }
 }
}

This could also work if we did it such:

oo::class create Frame {
}
oo::define Frame method unknown args {
 method unknown args {
 set tkpath [lindex $args 0]
 if {[string index $tkpath 0] eq "."} {
 if {[winfo exists $tkpath]} {
 error "Bad path name $tkpath"
 }
 set obj [my new $tkpath \
 {*}[lrange $args 1 end]]
 if {![winfo exists $tkpath]} {
 catch {$obj destroy}
 return {}
 }
 $obj tkalias $tkpath
 return $tkpath
 }
 }
}

The idea being that with either case, the
class behaves like a Tk command:

taotk::frame .foo
Frame .bar

The difference comes in when we
assume this behavior is inherited by
descendents:

tao::class create taotk::customFrame {
 superclass ::taotk::frame
}
oo::class create CustomFrame {
 superclass Frame
}

taotk::customframe .baz
CustomFrame .bang
> ERROR. Uknown command .baz.
> Valid: create new

Like properties and method ensembles,
Class Methods are tracked in the database
and applied with the other dynamically
generated methods.

���� !�!��"����
TAO uses an in-memory database to

index classes and track classes, methods
and properties. The database uses sqlite,
and can be accessed directly via the ::tao::db
command. A complete schema is available
in Appendix, under TAO DB Schema.

If we combine class properties with
database backend, we can do some useful
searches throughout our library of classes.

Example, find all animals that are
carnivores
set result {}
tao::db eval {select name from class} {
 if {
 [$name property torder]
 eq “Canivora”
 } {
 lappend result $name
 }
}

You may be asking, “Why didn’t you just
pull the property from the database
directly?” Ok:

Select class from property where
property=’torder’ and dict=’Carnivora’;
> carnivore
-- We only get back the one class where the
-- property was defined
select property,dict from property where
class=’carnivore’;
> torder|Carnovora
-- We only defined the one property for
-- that class

Now, if we ask the property method:

carnivore property const dict
> tkingdom Animalia torder Chordata
> has_spine 1 tclass Mammalia has_fur 1
> torder Carnivora

We see that the property method’s
picture includes the most recent ancestor’s
copy of every property that has been
inherited.

��

�#������������
Every ancestor of every class is indexed

in the ancestry table, along with which
order. That index makes looking up all of
the descendents of a class quite simple.

Included with the class table is a simple
flag regenerate. When the flag is true, the
class needs to be regenerated. In the
example above, at the conclusion of the
tao::class command, every class that listed
carnivore as an ancestors was marked

20th Annual Tcl Conference 71 New Orleans, LA Sept. 23-27, 2013

regenerate=1. After the affected classes are
marked, a search is run, and the regenerate
flag is rippled out to all descendents of
descendents, and so on. When that is
complete, the parser re-creates all of the
dynamic methods for all classes with the
regenerate flag. And the process of
regenerating the dynamic methods marks
each class as regenerate=0 once more.

Modifications to a class are seemingly
instant as far as the Tcl environment is
concerned. If we add a property of has_teeth
to carnivores:

tao::class carnivore {
property has_teeth 1
}
carnivore property const dict
> tkingdom Animalia torder Chordata
> has_spine 1 tclass Mammalia has_fur 1
> torder Carnivora has_teeth 1

Thomas, our housecat several examples,
now has teeth:

Thomas property has_teeth
> 1

If we had asked that before we defined
has_teeth, the property method would have
returned a null.

����$��������"�������

TAO also provides a keyword variable
that works differently than the variable
keyword in TclOO. In TclOO, variable
allows a variable to magically appear in
every method of that class (but not
descendents.) In TAO variable declares a
variable and sets it’s default. That
declaration and default will carry through
to descendents. To access that variable, one
still needs to use the my variable command
in methods.

tao::class animal {
 variable hungry 0
 method is::hungry {} {
 my variable hungry
 return $hungry
 }
}
Thomas is hungry
> 0

������������	�����
��

�
�
All TAO objects descend from a single

class: moac, the Mother of All Classes. The
moac provides methods which enforce TAO
policies and design patterns. This next
section is intended as an overview of the
key features. A complete reference is
located in the Appendix.

 �	�����
��
��������
The Default constructor for the moac is

as follows:

constructor args {
 my InitializePublic
 my configurelist \
 [::tao::args_to_options {*}$args]
 my initialize
}

The InitializePublic method initializes
all of the variables declared in the class
definition as well as provides default values
for all options. The next step is to run
configurelist on the options fed in through
args. Finally, the initialize method is called.
initialize is intended to be a place for
developers to be able to insert their code
and know that all of the variables have been
initialized and the object has been
configured, and configurations applied
without having to recreate all of the steps in
their own constructor or figure out the right
incantations of [next] to call an ancestral
constructor.

��
���������������%����&�
The ::tao::args_to_options procedure

uses the following rules to allow it to work
with this range of inputs:
1. Arguments, beyond the mandatory

arguments, are considered options.
2. All options must be given in the form of

key/value pairs
3. If a single argument for args is given,

that argument is assumed to be a
key/value list of options.

4. Leading dashes (-) are stripped from
keys

20th Annual Tcl Conference 72 New Orleans, LA Sept. 23-27, 2013

����������������
Options are tracked as a special kind of

property. The “value” for Options are
specified in Dict format, because we need to
track a lot more than a constant value. For
convenience, the option keyword was
added to the TAO parser as a shortcut.

::tao::class housecat {
 superclass felis
 property gender option {
 widget select storage string default {}
 values {{} male female}
 }
 option weight {
 widget scale units kg range {0 10}
 }
}

With the modification above, we can
specify the animal’s weight and gender at
creation time:

housecat create Thomasina \
 -gender female –weight 8

And we can modify an existing object via
the configure command:

housecat configure Thomas \
 –gender male –weight 10

Because in large systems one may need
to perform a dump of information from a
database or some other source, TAO is
pretty flexible about the format of options.

housecat create Thomas {
 gender male weight 10
}
housecat create Thomasina \
 gender female weight 8
After a year of snacking
Thomas configure weight 11
Showing off
db eval {select * from animals where
species=’cat’} {
 housecat create ::cat#$uuid [db eval {
 select key,value from attributes where
 uuid=:uuid
 }]
}

����������������
�
The TAO parser specifies the following

rules for elements given within an option-
dict:

OOption Description
class Reference to another option or option

class to clone
default The default value for the option
default-script A script to use to generate the default

value. If both default and default-

script are present, default-script is
used. See: Option Substitution.

description A human readable comment.
get-command Script to retrieve the value in lieu of

storing the value internally: See:
Option Substitution.

set-command Script to set the value externally in
lieu of storing the value internally.
See: Option Substitution.

storage Storage type for C, sql, etc.
validate-command Script used to validate incoming

values before they are incorporated
into the state of the object.

values Specifies a finite list of possible values
for the option.

values-command Specified a command to generate the
list of finite values. If both values and
values-command are specified,
values-command is used. See:
Option Substitution.

widget Widget to use when generating an
automated GUI. See Dynamic
Widgets

�������%��
���������
In Tk what information is sent along

with a –command option is often widget
specific. Many handlers for options need to
work over a range of options. Some need to
specify an elaborate path that includes the
name of the field, the object, and/or the
new value. Rather than force the developer
to follow a template, TAO allows the
developer to specify how information is
sent to scripts in the option dict. It works in
a mechanism similar to the substitution
used by the Tk bind command:

Field Substitution
%self% The object’s name
%field% The field that triggered the script
%value% The value being input (when appropriate)

::tao::class housecat {
 option favorite_food {
 set-command {
 puts {%self%’s favorite %field% is %value%}
 }
 }
}
Thomas configure favorite_food tuna
> ::Thomas’s favorite food is tuna

�������
��

�
�
Developers often find that options follow

a certain template. TAO provides for option
templates with the class property of
options. class can specify the name of
another option. To create an option which is
simply a prototype, use the option_class
keyword.

20th Annual Tcl Conference 73 New Orleans, LA Sept. 23-27, 2013

::tao::class animal {
 option_class variable {
 default {}
 set-command {
 my variable %field% ; set %field% %value%
 puts “%field% is now %value%”
 }
 get-command {
 my variable %field% ;return [set %field%]
 }
 }
}
tao::class housecat {
 option color {
 class variable default black
 }
 method color {} {
 my variable color ; return $color
 }
}
Thomas configure color orange
> color is now orange
Thomas color
> orange

��������'���������

����
To keep the outcome of events tied to

modifying an option consistent, TAO
enforces the following order of operations:
1. validate-command is run for all
incoming values with the property
specified. If an error is thrown, the process
is aborted without modifying the object. If
the problem is encountered in the
constructor, the object is destroyed and an
error thrown.
2. The set-command is run for all incoming
values with the property specified. No local
value for the option is kept.
3. For values for which the set-command
property is null, the new value is saved as a
dict element in a local variable config.

For calls to the configure command, but
not during the constructor, the Option_set
ensemble is called for all incoming values.

If we want an event to fire off after we
set the weight for instance:

::tao::class housecat {
 method Option_set::weight newvalue {
 if {$newvalue > 10 } {
 puts “This cat is fat!”
 }
 }
}
Thomas configure –weight 12
> This cat is fat!

By default, normal descendents of moac
will accept unknown options. Descendents
of ::taotk::meta::widget will throw an error
on unknown options. The developer can

control the behavior of their class with the
options_strict property.

::tao::class housecat {
 property options_strict 1
}
Thomas configure unknownoption 10
> Error unknown option –unknownoption.
Valid: gender weight color favorite_food
::tao::class housecat {
 property options_strict 0
}
Thomas configure unknownoption 10
No error, and we can retrieve the value
Thomas cget unknownoption
> 10

���(��������������)��	�����
The moac also provides a set of functions

to manage forwarding methods. The
simplest is forward. Forward is just a
simple call to ::oo::objectdefine forward.

Thomas forward puts ::puts
Thomas puts “Hello World”
> Hello World

Often times, though, we need to recall
what it is we are forwarding to. While
TclOO will tell you that a method is a
forward vs. any other type of method, it
won’t tell you where the call is going.

TAO provides the graft method, which
forwards a command while at the same
time recording where it’s going. The
destination can be retrieved later via the
organ method.

tao::class supertextbox {
 constructor {tkpath} {
 toplevel $tkpath
 my graft toplevel $tkpath
 text $tkpath.text
 my graft text $tkpath.text
 }
 method title newtitle {
 set tl [my organ toplevel]
 wm $tl title $newtitle
 }
 method replacetext {newtext} {
 my <text> delete 0.0 end
 my <text> insert end $newtext
 }
}

In the above example, we graft both the
toplevel window and the text widget. In the
newtitle method, we need to pass the path
to the window to wm. we use the organ
method to retrieve the value for toplevel. In
replacetext we need to manipulate the text
widget. We use the grafted name to address

20th Annual Tcl Conference 74 New Orleans, LA Sept. 23-27, 2013

the text widget as though it were one of our
own methods.

The replacetext method could also have
been written:

tao::class supertextbox {
 method replacetext {newtext} {
 my text delete 0.0 end
 my text insert end $newtext
 }
}

Graft creates two forwarded methods,
the original name, and the <original name>.
I find marking which methods are going out
to a forward somewhat useful. However,
we also need the plaintext version because
TclOO will not allow a method to be
accessed from the public interface if it does
not start with a lower case letter.

*��"
+�%�����
+�����,���	�������
�
The moac defines several methods, and

parser keywords to manage locks, signals,
and notifications.

*��"
�
Locks were designed as a guard against

an object recursively calling pipeline
routines. lock create can behave like the
classic “up” operator in a semaphore. When
you call the lock the first time, the operation
returns false. If the lock was already
present, it returns true.

::tao::class foo {
 method lock_demo {} {
 # Lock create only returns 1 if the
 # lock is already engaged
 if {[my lock create [self method]]} {
 # I must already be running
 return
 }
 … (Some elaborate action)
 my lock remove [self method]
 }
}

Because lock is a public method, other
objects and system calls can lock and unlock
an object.

After the last lock is removed, the object
looks to see if it was passed any signals.

Internally, locks are simply a list stored
in a variable ActiveLocks. The lock create
method ensures that only one copy of a lock
is present in the list at any given time.

%�����
�
Signals break a menagerie of tasks into

discrete pieces that can be received
piecemeal and assembled together into a
single pipeline of operations.

The signal keyword in a class declares a
signal. Like options, signals have a
descriptor key/value list. Signals are also
inherited just like properties and options.
Signals have the following properties:
OOption Description
apply_action Action to perform reflexively when

the signal is passed to the object
action Command to be performed during

this stage in the pipeline.
aliases List of names that this signal will

respond to
description Human readable comment.
excludes List of signals that this signal

prevents from running in the current
pipeline.

preceeds List of signals that this signal must
preceed in the pipeline

follows List of signals that this signal must
come after in the pipeline

triggers List of signals that this signal triggers

For a simple example, let’s have an object

either fish or cut bait.

::tao::class fisherman {
 signal fish {
 follows cut_bait
 triggers cut_bait
 action {my action fish}
 }
 signal cut_bait {
 action {my action cut_bait}
 }
 variable has_bait 0
 }

As we can see, the fisherman can either
be fishing, or he/she can be cutting bait. To
fish, the cut_bait signal must be satisfied.

To see our cunning plan in action:

::tao::class fisherman {
 variable has_bait 0
 method action::fish {
 my variable has_bait
 if { $has_bait == 0 } {
 error “I have no bait”
 }
 puts “Fishing”
 # Do the fishing
 set has_bait 0
 }
 method action::cut_bait {} {
 my variable has_bait
 set has_bait 1
 puts “Cutting Bait”
 }
}

20th Annual Tcl Conference 75 New Orleans, LA Sept. 23-27, 2013

fisherman gordan
gordan action fish
> error: I have no bait
gordan signal fish
gordan lock remove_all
Cutting Bait
Fishing

%�����-���������
When the last lock is removed from an

object, it automatically schedules a call to a
method called Signal_Pipeline.
Signal_Pipeline figures out which signals
have been called, which signals need to be
triggered or suppressed as a result, as well
as the order in which they need to be
executed. It then executes that plan before
returning.

,���	�������
�
Notifications are a message passing

system for objects. They are akin to Tk
bindings. Objects can both emit and receive
notifications.

In the case of emitting an event, it simply
passes the message to the TAO message
handler. The TAO core then looks through
subscriptions to find what objects would be
interested in receiving a message of that
type from the sender object. With list in
hand, TAO goes about calling the notify
ensemble for each recipient with the sender,
type, and content of the message.

If we extend our fisherman example,
about, lets add a notification to the
fisherman that a fish is on the line.

::tao::class fisherman {
 notify::fish_on {snd dictargs} {
 set caught [dict get $dictargs caught_by]
 if { $caught ne [self] } continue
 set fish [dict get $dictargs fish]
 my action catch_fish $fish
 }
}

For the fisherman, we need to set up a
handler for fish_on messages. Because
messages are broadcast, we embed the
caught_by field in the message. Thus, if we
overhear another fisherman’s fish_on we
don’t do something a rude and uncouth as
to harvest it.

Let us assume we have a pond object
that is responsible for pairing fish with
baited hooks.

::tao::class pond {
 method time_step {} {
 foreach fisherman [my list_fishermen] {
 if {![my catch_criterial $fisherman]} {
 # No fish caught
 continue
 }
 # Generate the fish
 set species [my random_species]
 set fish [$species –size random]
 # Hook it on the line
 my event_publish fish_on $fisherman
 set msg {}
 dict set msg fish $fish
 dict set msg species $species
 dict set msg size [$fich cget size]
 dict set msg caught_by $fisherman
 my event generate fish_on $msg
 }
 }
}

The pond sets up a publication with an
intended target of the fisherman. It then
assembles the outbound message as a dict.
And finally it broadcasts the message.

%����+�
�����������#��������
Object names are tracked by the TAO

message handling system. As such, the
system needs to be notified if an object is
destroyed or renamed.

To facilitate this, the TAO parser secretly
adds a line to the top of every classes
destructor which calls the
::tao::object_destroy procedure. This
procedure scrubs the notification system of
all subscriptions, publications, and
bindings.

When an object is renamed, developers
are encouraged to use the
::tao::object_rename procedure. This
prodedure updates the references in the
notification table to the new name.

.����
����������/01�
TAO developers need to take care when

binding objects for events. Objects can, and
do, change names.

 Let’s suppose we are binding a
command to a button. In pure Tcl, this is
easy, we tell the system to call back at a
given command name:

button .foo –command some_command

With namespaces, we need to be a little
more elaborate.

20th Annual Tcl Conference 76 New Orleans, LA Sept. 23-27, 2013

namespace eval ::foo {
 button .foo –command ::foo::some_command
}

Inside of a class method, if the object
wants to exercises one of its own methods,
it needs to provide a path. The technique
that immediately comes to mind for most
developers is the [self] command.

oo::class define myobject {
 method makebutton {} {
 button .foo –command \
 [list [self] some_command]
 }
}

I am here to tell you there is a better way.
Many of you may not be familiar with the
namespace code command. namespace
code captures the environment in which it
was called, and provides a globalized return
path.

oo::class define myobject {
 method makebutton {} {
 button .foo –command \
 [namespace code {my some_command}]
 }
}

While an object can change names, it will
never change namespaces. (Besides, this is
TAO, and the name that can be stored isn’t
the real name anyway ;-)

Here is a rigged demo of the
phenomenon. We have a silly class that can
delay calling one of its methods through the
Tcl event loop. We will use two different
approaches to mapping the global path
back to our intended call.
• The delayed_nspace method takes in a

method as an argument and schedules a
callback to that method using
namespace code.

• The delayed_self method takes in a
method as an argument and schedules a
callback to that method using self.

They both also advertise which method
sent the event via the [self method]
mechanism, so we can track what is going
on.

tao::class silly {
 method gratification {{how {}}} {
 return “[self] Ahhh $how”
 }

 method delayed_nspace m {
 after idle \
 [namespace code [list my $m [self method]]]
 }

 method delayed_self m {
 after idle \
 [list [self] $m [self method]]]
 }
}

For normal purposes, both techniques
work the same way.

silly create whosit
whosit gratification
> ::whosit Ahhhh
whosit delayed_nspace gratification ; update
> ::whosit Ahhhh delayed_nspace
whosit delayed_self gratification ; update
> ::whosit Ahhhhh delayed_self

Now we will trigger the events, but
change the name before we give the event
loop a chance to respond.

whosit delayed_nspace gratification
whosit delayed_self gratification
rename whosit whatsit
update
> ::whatsit Ahhhh delayed_nspace
> BGERROR: Invalid command “whosit”

namespace code has other advantages.
Unlike calls to [self], the event can call
private methods.

tao::class silly {
 method Gratification {{how {}}} {
 return “[self] AHHH $how”
 }
}

whatsit delayed_nspace Gratification
update
> ::whatsit Ahhhh delayed_nspace
whatsit delayed_self Gratification
update
> BGERROR: unknown method Gratification must
be…

20th Annual Tcl Conference 77 New Orleans, LA Sept. 23-27, 2013

���2�3�
TAO/TK is a GUI extension to TAO,

geared toward the creation and operation of
graphical user interfaces in Tk. TAO classes
come in three distinct forms:

1. Meta Classes, intended to be the
building blocks for other classes.
2. User Widgets, classes intended to be
called directly by the end user and
behave like a Tk widget.
3. Dynamic Widgets, a special class of
widgets designed for data entry screens.

�����
��

�
�
In UI design, there is often the

need/desire/lazy tendency to lump similar
functions together. Very often though, this
code re-use is only helpful on a high-level.
Meta classes are method and properties that
are inherited by other classes, but which
don’t make a complete product in their own
right.

For coding consistency, TAO/TK meta
classes are located in the taotk::meta
namespace.

4
���5�����
�
User Widgets are designed to be readily

useable as a Tk-Like command. Borrowing
from the tradition started by tile, TAO/TK
widgets are located in their won
namespace, ::taotk. They operate just like
any other widget:

::taotk::browser .html –title {About:Blank}

To make TAO/TK widgets behave like
the Tk commands developers are familiar
with, we use the unknown handler built
into TclOO.

 class_method unknown args {
 set tkpath [lindex $args 0]
 if {[string index $tkpath 0] eq "."} {
 if {[winfo exists $tkpath]} {
 error "Bad path name $tkpath"
 }
 set obj [my new $tkpath \
 {*}[lrange $args 1 end]]
 if {![winfo exists $tkpath]} {
 catch {$obj destroy}
 return {}
 }
 $obj tkalias $tkpath
 return $tkpath
 }
 next {*}$args
 }

The tkalias method renames the Tk
object to something in the object’s
namespace, and then renames the object to
take the Tk object’s place. When the object is
destroyed, the native Tk object will be
destroyed along with it. Even though the Tk
object’s command has been renamed, it still
behaves within TK as if it had never been
moved.

 method tkalias tkname {
 set oldname $tkname
 my variable tkalias
 set tkalias $tkname
 set self [self]
 set nativewidget [::info object \
 namespace $self]::tkwidget
 my graft nativewidget $nativewidget
 rename ::$tkalias $nativewidget
 ::tao::object_rename [self] ::$tkalias
 my bind_widget $tkalias
 return $nativewidget
 }

The bind_widget method ensures that
when Tk destroys the widget, the object’s
destructor is called.

 method bind_widget window {
 my graft topframe $window
 my graft toplevel \
 [winfo toplevel $window]
 bind $window <Destroy> \
 [namespace code {my EventDestroy %W}]
 }

The EventDestroy method is a sanity
check. When <Destroy> goes off, it is
possible for a parent to see the <Destroy>
event for it’s children. Also, there are times
where the only notification that goes out to
a child window is that the toplevel window
to was destroyef. It took a bit of trial and
error to get this part right.

20th Annual Tcl Conference 78 New Orleans, LA Sept. 23-27, 2013

 method EventDestroy window {
 if { [string match "${window}*" $w] } {
 my destroy
 }
 }

Conversely, our destructor needs to
destroy the Tk object when called. But
because the developer may have his/her
own destructor logic, the smarts for this
process have been packed into a private
method. It is the destructor’s job to call that
private method at some point.

Before we destroy the native Tk widget,
we use the unbind_widget method to
remove our bindings to prevent the
<Destroy> binding for the Tk object from
calling the destructor yet again.

 destructor {
 my Widget_destructor
 }

 method unbind_widget window {
 my variable tkalias
 if {[winfo exists $window]} {
 bind $window <Destroy> {}
 }
 set tkalias {}
 }

 method Widget_destructor {} {
 my variable tkalias
 set alias $tkalias
 if {$alias ne {}} {
 my unbind_widget $alias
 }
 catch {my action destroy}
 # Destroy an alias we may have created
 if { $alias ne {} && \
 [winfo exists $alias] } {

 catch {
 rename [namespace current]::tkwidget {}
 }

 } else {
 catch {
 ::destroy [my organ nativewidget]}

 }
 }

 }

 �������5�����
�

Dynamic Widgets are designed for
producing automated data entry screens.
They are designed to obey a limited set of
commands, and fit into a relatively rigid
template
1. Every element to be tracked is an field

in a global array
2. For every element, a key/value list of

metadata is provided to the constructor.

3. The path specified will become a frame
containing the tk objects that implement
the UI representation of the element.

The syntax boils down to:

taotk::dynamic_widget tkpath fieldname \
 arrayname properties

Let’s see an example:

toplevel .foo
array set ::record {
 message {Have nice day}
}
taotk::dynamic_widget .foo.bar \
message ::record {}

grid .foo.bar

And we get back and entry box (the
default if we have no other data):

If we just alter the description, we get

different behavior.

set ::record(weather) sunny

taotk::dynamic_widget .foo.baz weather \
 ::record {
widget select
values {cloudy sunny rainy foggy snowy}
}
grid .foo.baz

We now see a combobox:

And if you hang around me, soon

enough you’ll be generating screens that
look like this:

20th Annual Tcl Conference 79 New Orleans, LA Sept. 23-27, 2013

On the project I work with, we have
hundreds of “specs” that can be used to
describe a piece of equipment, a room on a
ship, a doorway, even crew members. We
also have dozens of controls that we present
to the user to drive the simulator. And even
50 or so visual preferences.

Needless to say, figuring out which
properties go on a given screen is hard
enough without having to generate the GUI.

�����������	������
�
The first step to making a Dynamic

Widget is to read through the description.
In the absence of any other information, the
dynamic system will assume the field is a
text string, represented by an entry box.

If the user has specified a “widget”
property, that is which widget will be used.
Otherwise, the widget has to be inferred.
With no widget property, it tries to guess by
the presence of a “values” field. If “values”
is present, the widget is then assumed to be
a selection. With no “widget” or “values”
property, the inferencer then looks for a
field name “type” or “storage”.

Here are the basic dynamic widgets
implemented by TAO/TK:
boolean A checkbox to handle the simple cases of

1 and 0
checkbutton A checkbutton with stylized properties

for controlling on/off values
color Presents the user with a label

previewing the current value and a
button to activate the Tk color chooser

entry An entry box. If the “read-only”
property is set to true, reverts to a label.

filename Presents the user with an entry field for
a value as well as a button to launch the
Tk file chooser

font Presents the user with a label
previewing the current value and a
button to activate the Tk font chooser

label A label
real An entrybox, but intended for numerical

values
scale Presents the user with an entry box

coupled with a scale slider.
script A button that, when pressed, presents

the user with a popup window with a
text widget.

vector Breaks the entry into pieces and presents
an entry box for each component.

!��������
�
���� �������5�����
�

To register a new class of dynamic

widget, place it in the ::taotk::dynamic
namespace. The name you give it in that

namespace is the name you reference in the
widget property of the object description.

The constructor for dynamic widgets is
as follows:

constructor {
 window fieldname arrayname args
} {
 my InitializePublic
 my configurelist \
 [::tao::args_to_options {*}$args]
 my variable field arrayvar
 set field $fieldname
 set arrayvar $arrayname

 my graft mainframe $window
 my graft nativewidget $window
 my BuildDynamicMethods
 my Build_topframe $window
 my build_widget $window
 my bind_widget $window
}

The BuildDynamicMethods method
adds hooks to TAO/TK’s style sheet
handler. The build_topframe method
builds the frame at window. The
build_widget method builds the UI for this
element. The bind_widget ensures the
destruction of the Tk path calls the
destructor for the object.

For every dynamic widget developed
thus far, I’ve only had to modify the
build_widget method.

Implementing an entry box is simplicity
itself:

tao::class taotk::dynamic::entry {
 superclass taotk::dynamic
 option width {default 0}

 method build_widget window {
 set readonly [my cget readonly]
 set varname [my GlobalVariableName]
 set opts [list \
 -textvariable ${varname} \
 -width [my cget width] \
 -style [my Style label] \
]
 if { $readonly } {
 ::ttk::label $window.native {*}$opts \
 -takefocus 1
 } else {
 ::ttk::entry $window.native {*}$opts
 }
 my graft nativewidget $window.native
 grid $window.native -sticky news
 }
}

20th Annual Tcl Conference 80 New Orleans, LA Sept. 23-27, 2013

�����
����
I’ve gone over quite a bit of material in

this paper. In fact, there is quite a bit more
on the cutting room floor, including sample
projects, and demonstrations. That material
as well as the complete sources for
TAO/TK and all of its supporting libraries
and documentation will be copied to the
USB sticks that will be distributed by the
conference. I will also be publishing the
material online at:

http://www.etoyoc.com/tao2.0

��"������������
�
This paper would not be possible if it

weren’t for the work of Donal Fellows to
bring TclOO to life, convince the
community to use it, and explain its inner
workings to me patiently over several years.

I would also like to thank my employer,
T&E Solutions, for allowing me to share this
research with the community, plus the time
to prepare this material and present it at the
conference.

I would like to thank my wife, Ginger,
for being a code-widow for the past few
weeks while I put this paper together.

I would also like to thank Victoria
Andrews for proofreading early drafts of
this paper.

The random squiggles that I may or may
not have completely eliminated from this
manuscript are early works of my son,
Xavier. Never too early to start them
coding, I guess. I just wish he wouldn’t
have picked Tcl instead of Perl for his first
project.

The graphic on the front cover was taken
from Mallory Pearce’s “Ready-To-Use
Celtic Designs” published by Dover Clip
Art.

���������
�������
���3������
�

3������6��������

Syntax:
 option fieldname keyvaluelist

The option keyword defines an option
that will be conferred to all object of this
class, and passed on to descendents of this
class. It is equivilent to:

pproperty fieldname ooption keyvaluelist

3������6�������-���

�

Syntax:
 option_class fieldname keyvaluelist

The option_class keyword defines a set
of attributes that can be inherited by other
options.

This statement is equivalent to:

property fieldname option_class \
 keyvaluelist

3������6����������

Syntax:
 pproperty fieldname ?type? description

The property keyword defines a
property that will be conferred to all objects
of this class, and passed on to descendents
of this class.

3������6�'��������

Syntax:
 vvariable fieldname defaultvalue

The variable keyword defines an
variable that will be conferred to all object
of this class, and passed on to descendents
of this class. The difference between the
TAO form of the keyword and the standard
TclOO usage is that TAO guarantees the
variable will be initialized with the default
value within the InitializePublic method,
which is normally called by the constructor.

 This statement is equivilent to:

property fieldname vvariable default

20th Annual Tcl Conference 81 New Orleans, LA Sept. 23-27, 2013

3������6����

-�������

Syntax:
 cclass_method name arglist body

The class_method keyword defines a
method for the class itself. If no method of
the same name is defined of the class, the
implementation will be copied to the objects
of the class.

class_method is equivalent to declaring a
local method for the class object via:

oo::objdefine class mmethod arglist body

A method defined by class_method will
be inherited by descendents of a class,
whereas the above example would not.

������������	�����
��

�
�

%������������
�
The static methods of the moac are

methods declared in tao/moac.tcl file, using
the conventional manner. They can be
superseded and/or replaced by
descendents.

������6�������

Syntax:
 OBJ cget field ?default?

Returns the current value for option field.
If “default” is given as the second
argument, return the default value for
option field.

������6����	������

Syntax:
 OBJ configure field
OBJ configure field value ?field value…?

If one value given, return the current
value for field. If two or more arguments
given, write new values to options.

������6����	�������
��

Syntax:
 OBJ configurelist {field value …}

Write new values to options.

������6��'�����������

Syntax:
 OBJ event ccancel handle

Cancel any timer events created by event
schedule. handle can be of any form
acceptable to [string match].

������6��'�������������

Syntax:
 OBJ event ggenerate event args…

Generates an event to be published to
other objects. Args are intended to be a
key/value list describing the event.

������6��'���������
���

Syntax:
 OBJ event publish who event

Add a notification subscription for
events matching event to recipients
matching who. Both event and who can be
of any form acceptable to [string match].

20th Annual Tcl Conference 82 New Orleans, LA Sept. 23-27, 2013

������6��'����
��������

Syntax:
 OOBJ event schedule handle interval script

Schedule for the Tcl event loop to run
script on the object’s behalf after interval.
Any input valid for [after] is acceptable for
interval.

������6��'����
��
�������

Syntax:
 OBJ eevent ssubscribe who event

Add a notification subscription for
events matching event to senders matching
who. Both event and who can be of any
form acceptable to [string match].

������6��'�����������
���

Syntax:
 OBJ event uunpublish ?event?

Remove all subscribers for this object’s
notifications matching pattern event. event
can be of any form acceptable to [string
match]. If no event is given, all publications
for this object are removed.

������6��'������
��
�������

Syntax:
 OBJ event uunsubscribe ?event?

Remove all subscriptions for this object
to notifications matching pattern event.
event can be of any form acceptable to
[string match]. If no event is given, all
subscriptions for this object are removed.
(NOTE: It is still possible for the object to
still receive notifications if the object
matches another object’s publication.)

������6����	��

Syntax:
 OBJ graft stub object

Create a link to another object as a
forwarded method. Two methods are
created: $stub and <$stub>.

������6���������7��������

Syntax:
 my InitializePublic

Designed to be the first method called by
the constructor. This method reads the
properties of the object an ensures the
default value is loaded for all declared
variables and options.

������6���������7��

Syntax:
 OBJ initialize

Designed to be called by the constructor
after the object has initialized all of its
variables. The default implementation is
empty, it is reserved for developers to
perform any higher level initialization that
an object may require within the
constructor.

������6�������

Syntax:
 OBJ morph newclass

Convert this object to be of class newclass.

������6�������

Syntax:
 OBJ organ all
 OBJ organ stub

If the argument all is given, return a
key/value list of all stubs for this object and
what objects they point to. Otherwise,
return the object directed to by stub.

������6����'����

Syntax:
 OBJ private mmethod args…

Exercise a private method.

������6�
������

Syntax:
 OBJ signal signal ?signal…?

Register a signal to be executed during
the next Signal_pipeline. An “idle” signal
will trigger an [after idle] call to
Signal_pipeline if not locks are active.

������6�%�����-���������

Syntax:
 mmy Signal_pipeline

Develop and execute a pipeline based on
all signal received since the last call to
Signal_pipeline.

���������
�����
�

��
�����6�������������������8���
98�

Every submethod is a response to an
“event”. Actions are expected to be

20th Annual Tcl Conference 83 New Orleans, LA Sept. 23-27, 2013

immediate. Developers can feel free to
define their own events.

������6�������66��������-��
��

Syntax:
 OBJ action pipeline_busy

Commands to run at the start of
Signal_pipeline, but before the pipeline
begins.

�������������66��������-�����

Syntax:
 OBJ action pipeline_idle

Commands to run at completion (or
failure) of Signal_pipeline.

��
�����6����"�

The lock ensemble manages object locks.

������6����"66����'��

Syntax:
 OBJ lock active

Return a list of all locks currently active
on this object.

������6����"66�������

Syntax:
 OBJ llock ccreate lock ?lock…?

Create one or more locks on the object.
Returns zero if the all of the locks specified
are new. Returns 1 if one or more of the
locks was already active.

����������"66���"�

Syntax:
 OBJ lock ppeek lock ?lock…?

Returns 1 if one or more of the locks
specified is active. Returns 0 otherwise.

������6����"66����'���

Syntax:
 OBJ lock remove lock ?lock…?

Remove one or more locks on the object.
Returns zero if other locks are still present
on the object. Returns 1, and calls lock
remove_all if there are no more locks on the
object.

������6����"66����'�-����

Syntax:
 OOBJ llock rremove_all

Remove all locks on the object and call
the Signal_pipeline method.

��
�����6�����	���'�����������
�

This ensemble is present to allow object
to respond to notifications. The only
defined notification is default, which quietly
ignores any event that wasn’t already
processed.

��
�����6�������-
�������������'�����

Each submethod is the name of an
option. The default handler mirrors any
option set with an existing internal variable.

��
�����6�%����:���������

Return the name of an object to create for
a particular stub. The default hander
returns:

[namespace current]::Subobject_generic_$stub

 �������������
�
Dynamic methods are generated by the

TAO parser. They are custom produced for
each class, and replaced with the next call to
tao::class.

������6����������

Syntax:
 OBJ property property
 OBJ property type property
 OOBJ property type <llist>
 OOBJ property type <ddict>

This method has several functions
depending on the content and number of
arguments. A modified form is also created
for the class itself, with a subset of all
properties that do not depend on the state
of an object instance.
Usage: OBJ property property

Returns the value of property field. If
multiple types for field are given, the line of
succession is as follows: signal, option,
variable, subst, eval, const.

i.e. if a class has a signal named foo and a
constant named foo the data returned from

20th Annual Tcl Conference 84 New Orleans, LA Sept. 23-27, 2013

property will be the description for the
signal.

Usage: OOBJ property type property

Return the value of property property of
type type.

Usage: OOBJ property type <llist>

Return a list of all properties of type type.

Usage: OOBJ property type <ddict>

Return a dict of all properties of type
type.

���� !�%������

�����6�����
����

TAO has to independently track the
chain of heredity for classes. It does this by
replicating the rules TclOO uses, and then
recording the results as a sequence of
ancestors from the most advanced, to the
most primitive.

�����6����

�

Each class that has been processed by the
TAO parser has an entry in this table. The
name field is the name of the class. The
package field is for future expansion. The
regen field is set to true when an ancestor of
the class is modified. See Class
Regeneration.

�����6����

-����
�

As projects grow and evolve, the names
of classes can change over time. The
class_alias table is consulted in cases where
a new class tries to refer to an ancestor
whose name has changed.

�����6���
������

TAO captures information about method
ensembles in the ensemble table.

create table ancestry (
 class string references class,
 ancorder integer,
 parent string references class,
 primary key (class,ancorder)
);

create table class (
 name string primary key,
 package string,
 regen integer default 0
);

create table class_alias (
 cname string references class,
 alias string references class
);

create table ensemble (
 class string references class,
 method string,
 submethod string,
 arglist string,
 defined string references class,
 body text,
 primary key (class,method,submethod)
 on conflict replace);

20th Annual Tcl Conference 85 New Orleans, LA Sept. 23-27, 2013

�

�����6��������

TAO captures information about
methods in the method table.

�����6���:����

Each object that has been spawned by a
tao class has an entry. name is the name of
the class. package is for future expansion.
regen is set to true when the class is
modified, and the dynamic methods for the
object need to be regenerated.

�����6���:���-����
�

Objects can occasionally change names
throughout the course of the program. This
table has an entry for all former names an
object may have possessed.

�����6���:���-�����

TAO has an independent event handling
system, The object_bind table is where an
object designates which script to call when
an event is triggered.

�����6���:���-
��������

TAO has an independent event handling
system, The object_schedule table is where
an object can schedule an event to occur in
the future.

�����6���:���-
��
������
�

TAO has an independent event handling
system, The object_subscribers table is
where an object can subscribe which events
from which objects it wishes to respond to.
Note: sender, receiver and event are
matched using the same rules as [string
match].

To make the “example” object listen to

all events from “appmain”:

�����6����������

TAO stores the input given by the
parser’s option, property, and signal
keywords as records in the property table.

�����6������������

TAO captures information about class
method classes in the typemethod table.

create table method (
 class string references class,
 method string,
 arglist string,
 body text,
 defined string references class,
 primary key (class,method)
 on conflict replace);

create table object (
 name string primary key,
 package string,
 regen integer default 0
);

create table object_alias (
 cname string references class,
 alias string references class
);

create table object_bind (
 object string references object,
 event string,
 script blob,
 primary key (object,event) on conflict
replace
);

create table object_schedule (
 object string references object,
 event string,
 time integer,
 eventorder integer default 0,
 script string,
 primary key (object,event) on conflict
replace
);

create table object_subscribers (
 sender string references object,
 receiver string references object,
 event string,
 primary key (sender,receiver,event) on
conflict ignore
);

insert into object_subscribers (
sender,receiver,event
) VALUES (
‘appmain’,’example’,’*’
);

create table property (
 class string references class,
 property string,
 defined string references class,
 type string,
 dict keyvaluelist,
 primary key (class,property,type) on
conflict replace
);

create table typemethod (
 class string references class,
 method string,
 arglist string,
 body text,
 defined string references class,
 primary key (class,method) on conflict
replace
);

20th Annual Tcl Conference 86 New Orleans, LA Sept. 23-27, 2013

Scintilla Tk Porting Project
Brian S Griffin

Mentor Graphics Corporation
8005 SW Boeckman Road

Wilsonville, OR 97070
brian_griffin@mentor.com

Abstract

A couple of years ago we decided that the application window used to display program
source file text was inadequate in several ways. The basic problem was with the
performance of a few significant features: keyword/syntax coloring, inline annotations,
and large file load times. There have also been recurring problems with keeping
displayed line numbers in sync with the text body. Rather than continuing to attempt
repairs on the current implementation, a decision was made to find a complete
replacement. After reviewing and testing a number of applications and widgets, we
narrowed the field down to two options: customizing the Tk text widget, or porting
Scintilla to Tk. This paper will discuss the requirements and implementation
challenges with ScintillaTk.

Introduction

In 1995 when development started on our Tk-based GUI, a simple Tk Text widget was
used to display program text. The simple Tcl code implementing the source code
viewer was more than adequate to meet the needs at that time. As features were
added to the application, the demands on the source view grew. The Supertext1
widget was added to support undo. In 2004, an effort was made to provide a more
IDE-like experience in the application; we decided to incorporate a Tcl/Tk based text
editor developed for another product in the company. This editor widget gained
widespread use across several products.

Although the editor was a bit buggy, the real problems began when we attempted to
implement source code value annotations in 2006. Annotations display values above
or below variables that appear in the source code. Implementing this using Tcl/Tk is a
challenge. Various techniques were attempted until we finally settled on using double-
spaced text and overlaid label widgets below each location. This gave a clean
presentation and allowed for easy and efficient update to values as they change,

1 Supertext extension of the Tk text widget: http://wiki.tcl.tk/3387

20th Annual Tcl Conference 87 New Orleans, LA Sept. 23-27, 2013

however, when scrolling the text, the labels had to be removed before the scroll and laid
back down after the scroll. This leads to slow scrolling performance and a lot of
flashing.

After living with the flashing and buggy editor implementation, a decision was made to
start over. We searched for existing source code viewer widgets that provided all the
necessary features. All possible solutions were considered, from using an external
editor to writing a fully custom widget. The Scintilla widget quickly gained favor
primarily because of the annotation, line number, and folding features. In this paper, I
will describe the project of porting Scintilla to work with Tcl/Tk as a Tk widget, the
Scintilla architecture. I will also describe the challenges faced and solved, or not
solved as the case may be. In the conclusion I will offer some suggestions for possible
improvements to Tk and Scintilla.

Problems with [text]

To begin, I have to say that the Tk text widget is an awesome implementation. It is
amazingly fast compared to all other text viewers we’ve tested. The feature set is
really good, especially the powerful tag system. And the peer2 feature is pretty cool.

There are some things that are hard to do or hard to do right. One of the most
common things done with the text widget when displaying source code is to display line
numbers along the left hand column. There are at least 3 techniques to do this:

• Insert the line number with the text in the text widget.
$text insert $index “$lineno $text”

• Fill a second text widget with line numbers and pack this widget next to the body
text widget.
while {[$linetext compare end < [$text index end]]} {
 $linetext insert end “${lineno}¥n”
 incr lineno
}

• Actively draw line numbers in a canvas packed next to the text widget.
set dline [$text dlineinfo ${i}.0]
set y [lindex $dline 1]
$canvas create text 0 $y -anchor nw -text $i�

The editor was implemented using the second technique – using a second text widget
to contain line numbers as well as other indicators, marks and counters. Inevitably,
bugs would creep in over time, causing the contents displayed in the two widgets to be

2 TIP #169: Add Peer Text Widgets (http://www.tcl.tk/cgi-bin/tct/tip/169.html)

20th Annual Tcl Conference 88 New Orleans, LA Sept. 23-27, 2013

out of sync. Most recently, the change in the text widget to support smooth scrolling
caused a synchronization problem in the editor.

The rich tag mechanism is a great feature of the text widget. One of the most visible
uses is for syntax highlighting of source code. However, a Tcl-based lexer is not the
most efficient way to process large text files. Our current editor employed such a lexer
and consequently, the load time performance suffered with very large files.

Annotating the source code with values is a desired feature. We first attempted to
make use of tags to implement annotations. We tried to -offset3 the value text, but
without an x (horizontal) offset option, the desired effect could not be achieved. We
also tried embedded windows4 (widgets), but again there is insufficient offset placement
control to achieve the desired effect.

Figure 1. Label widgets placed under the source text to display annotated values.
(“1’d” means 1-bit wide, decimal radix followed by the value.)

The solution we settled on was to place label widgets over the double-spaced text
widget, using the bounding box information supplied by the text widget. The desired
effect was achieved, but with the side effect of flashing when the window is scrolled,
since a scrolling operation required removing and replacing the label widgets. In
addition, the work involved was too much and delayed the scrolling action. Another
undesirable trait of this approach is the double-spacing of the source text, which ends
up wasting a lot of screen space, as illustrated in Figure 2a. Ideally, the annotation
rendering would be handled directly by the widget so that it is all drawn at one time.
Then the annotations would take up space only where they are needed, as shown in
Figure 2b.

3 Text widget tag vertical offset option.
(http://www.tcl.tk/man/tcl8.5/TkCmd/text.htm#M37)

4 Text widget embedded window feature.
(http://www.tcl.tk/man/tcl8.5/TkCmd/text.htm#M49)

20th Annual Tcl Conference 89 New Orleans, LA Sept. 23-27, 2013

Figure 2a. Double-spaced source text to allow for placement of label widget
annotations.

Figure 2b. With vertical space allocated only to annotations, 4 additional lines of

source text can be displayed in the same screen space.

20th Annual Tcl Conference 90 New Orleans, LA Sept. 23-27, 2013

Replacement Criteria

In order to improve the user experience with the source code viewer, we identified key
requirements that must be addressed.

��������	��
������
��������
��
���
�����

The time to load and display a very large source file with syntax highlighting must be the
best possible. A review was conducted of various IDEs and text editors to determine a
nominal standard. The review was not exhaustive, but several popular tools were
tested.

���	��	�����
����
���

A highly efficient and flexible mechanism is needed to annotate the source text without
getting in the way of display performance or text selection and editing.

����������
����
���

A mechanism to place marks and other data annotations in a margin to the left side of
the text, by line, is required. Some common examples are line numbers, breakpoint
symbols, bookmark symbols, and execution counts. At times it may be necessary to
have markers overlap and still be recognizable, as shown in Figure 4.

Figure 4. Overlapping markers. Red dots are breakpoints. Blue arrow is the current
execution location.

��
�	��
������

Scope folding is a combination of special margin marks coupled with lexical parsing to
identify language scopes. This feature is considered a lower priority, “nice to have”
capability.

20th Annual Tcl Conference 91 New Orleans, LA Sept. 23-27, 2013

Solution space

Several possible solutions were considered to satisfy our high priority requirements.
We tested several widgets and editors, including the Tk text widget. We even
considered writing a text widget from scratch, but that was rejected as too large a
project and the performance testing showed that there were several other viable
candidates.

Some additional requirements, not listed above: the widget must work with Tk, be
easy to implement within our application, and naturally interact with the rest of the GUI.
Only the Tk text widget met these criteria. The next best candidate was the Scintilla5
text widget, an open source code-editing component. Except for not supporting Tk, it
meets all of the other required features.

This led us to two possible conclusions:

1. Using the Tk text widget, enhance it to support annotations and margins, C
based lexers for syntax highlighting, and scope folding.

2. Port Scintilla to Tk.

Clearly #2 is the easier task as it only has 1 item!

Scintilla Architecture

What makes it even possible to consider porting Scintilla to Tk is the architecture of
Scintilla; it was developed with porting in mind. This component has been ported to
Gtk, Windows, OSX, ncurses, MorphOS, wxWidgets, and FOX. The developers have
done a pretty good job of isolating the platform requirements from the editor. A
platform header file provides the definition of a few virtual classes which, when
implemented, provide all the facilities needed to support Scintilla editing and
presentation.

• Font – allocate fonts, provide font parameters

• Surface – abstract place to draw
• Window – access to window manipulation and properties

• ListBox, Menu – Widgets for menus and dialogs

• ElapsedTime – timer access

• DynamicLibrary – abstract dynamic library loading facility

• Platform – used to retrieve system wide parameters such as double-click speed
and chrome color.

5 Scintilla is maintained by Neil Hodgson and hosted on Sourceforge.
The web site is http://www.scintilla.org

20th Annual Tcl Conference 92 New Orleans, LA Sept. 23-27, 2013

The key interface classes here are Surface, Window, and Font. These provide for the
crux of the rendering engine. The Platform, DynamicLIbrary, and ElapsedTime
complete the necessary general facilities. The ListBox and Menu widget interfaces are
only necessary if the Scintilla editor is going to manage Auto completion or Popup
menus, respectively, otherwise, the platform may use other means to implement these
behaviors.

All operations on the component are done through a generic message interface that
looks like this:

sptr_t sci_cmd(
 sptr_t ptr,
 unsigned int iMessage,
 uptr_t wParam,
 sptr_t lParam
);

As of this writing, there are 645 different messages.

The component also separates the notion of Document from Window; Documents hold
the text contents and styling, and a Window presents a Document on the screen, similar
to the Tk text peer feature. From the Scintilla documentation:

“A Scintilla window and the document that it displays are separate entities. When you
create a new window, you also create a new, empty document. Each document has a
reference count that is initially set to 1. The document also has a list of the Scintilla
windows that are linked to it so when any window changes the document, all other
windows in which it appears are notified to cause them to update. The system is arranged
in this way so that you can work with many documents in a single Scintilla window and
so you can display a single document in multiple windows (for use with splitter
windows).”6

So, how hard could it be to marry Tcl/Tk, a portable GUI toolkit, with Scintilla, a port
capable text-editing component?

Implementation

One of the driving goals in implementing this port was to take maximum advantage of
the Tk API in order to maximize portability of the port. In other words, we want the
widget to work wherever Tk works without having to deal with OS specific platform

6 Scintilla Documentation, section Multiple Views
(http://www.scintilla.org/ScintillaDoc.html#MultipleViews)

20th Annual Tcl Conference 93 New Orleans, LA Sept. 23-27, 2013

issues within the ScintillaTk port code. After all, that is Tcl/Tk’s philosophy7 as well.
In the descriptions below you’ll see how this is applied and how successful it is.

������	�

The Surface class was probably the most straightforward to implement. This class has
methods like FillRectange and DrawText that align closely with Tk C API calls. Almost
every method is implemented with just a few lines of code. The one limitation is the
rendering with alpha (transparency) channel in colors. Currently the alpha channel is
ignored since the current attempted implementation has poor performance. This is a
known limitation in Tk.

�
����

Fonts are implemented as a wrapper class around the Tk_GetFont() API and a bit of
code to manage the font references. Scintilla does require the use of Xft in order to
support the Font property requests, which include arbitrary float sizes. Older X11 fonts
aren’t sufficient and produce less than desirable results.

����	��

The Scintilla interface for images is based on a raw 4-plane image data array: rgb color
+ alpha channel. This format is compatible with Tk_GetImage, however, there is no Tk
API to directly draw a raw image to a drawable. To draw the image it must first be put
into a Tk_Image. This presents a challenge in managing images from Tcl/Tk since
they pass through Scintilla as an unmanaged array. There isn’t any way to associate a
Scintilla image draw request with a particular Tk_Image.

There are two reasons why I believe Scintilla has a single DrawImage request using raw
image data: 1) some of the images drawn are internally created by Scintilla, not
supplied by the client or platform, and 2) Scintilla can optimize a redraw by requesting a
partial image redraw. This single interface keeps things simple for the components
implementation.

It would be helpful if Scintilla defined a class or opaque handle for images and then let
the platform implementation manage the resource. It would also be helpful if Tk
exposed the TkPutImage() as a public function.

���
������

Scintilla supports both UNICODE and UTF-8 encodings internally as a runtime
configuration option. For the Tk platform, keeping Scintilla set to UTF-8 encoding

7 John K. Ousterhout, Ken Jones, [et al], 2010, Tcl and the Tk Toolkit – Second Edition,
Addison-Wesley, page xxxii.

20th Annual Tcl Conference 94 New Orleans, LA Sept. 23-27, 2013

makes it simple to interface text between Tcl and the Scintilla Document since Tcl is all
UTF-8 internally.

�
�����	��	�	���

One of Scintilla’s features is that it comes with a number of programming language
lexers used to perform syntax highlighting. It can also be configured to make lexers
loadable dynamically. It is up to the platform implementation to provide the loading
mechanism. This was simple to implement using Tcl’s Tcl_LoadFile API, however, the
set of symbol entry points that Scintilla needs are not the same pair of entry points for
which LoadFile was designed. The platform DynamicLibrary class also requires a
FindFunction method. We decided to make use of TclpFindSymbol() in the
implementation. This is currently a problem since this function is not easily exposed.

�����
���������	����	�

To complete the porting effort, the Scintilla component needs to act and feel like any
other Tk widget. This means integrating the Scintilla component into the Tcl/Tk
command & widget infrastructure. The code here constitutes about 80% of the
implementation. For this part of the project we set the goal to match the Tk text widget
subcommands and options as much as possible within the limits of what Scintilla can
support. For example, we matched the scrollbar interface, but since Scintilla does not
support embedded windows, that part of the Tk interface is left out. In some cases,
code from the Tk text widget was borrowed in order to match the behavior. This was
done for the “search” subcommand, for example.

All of the important text widget subcommands have been implemented for managing the
widgets’ content and display. For the most part, the Scintilla widget is compatible with
the Tk text widget. Figure 5 lists the widget subcommands. Those that are
underlined in the figure have been added to support Scintilla specific features. Tk text
widget subcommands that have not been implemented are shown in the figure printed
in grey italic.

A couple of items cannot be supported in Scintilla; they are embedded images and
windows. Scintilla simply has no mechanism to duplicate these Tk text widget features,
therefore, these subcommands have not been implemented. The tag subcommand
implements all the same Tk text widget methods, but a tag's options are different for
Scintilla since the styling of text, margins, and annotations diverge from Tk text widgets'
design.

20th Annual Tcl Conference 95 New Orleans, LA Sept. 23-27, 2013

annotate

bbox

cget

compare

configure

count

debug

delete

dlineinfo

dump

edit

fold

get

image

index

insert

keywords

loadlexer

margin

mark

marker

peer

property

replace

scisearch

search

see

style

tag

textwidth

window

version

xview

yview

zoomin

zoomout

Figure 5. Scintilla widget subcommands. Underlined subcommands are added for
Scintilla. Greyed out italic subcommands have not been implemented.

����	��������

In Tk's text widget, formatting of text can be performed by applying a tag to one or more
arbitrary ranges of characters. A tag's definition holds the formatting properties to be
applied to the text. These properties include color, font, and shading (stippling), but
there are also additional controls over things like spacing, margin, justification, offset,
and even event binding, a very flexible and powerful mechanism. Scintilla, on the
other hand, has the notion of Styles that are applied on a character-by-character basis.
Style only affects the look of the character, color, font, weight, etc., and not any other
rendering considerations. There are a few predefined styles, and the number of styles
is limited to 256.

Since Tk text widget tags are effectively unlimited, this presents a challenge to
implementing tags in the Scintilla widget. In order to present the appearance of an
unlimited number of tags in Scintilla, a Tag Manger is implemented to keep track of tag
names and ranges, and to manage the allocation of styles as needed. One of the
heavier uses of tags in the text widget tends to be as meta-data on the text. This use
model does not require consuming any style resources since no formatting changes are
applied to the tag. So far we have not seen any practical case of hitting the limit on
styles. Styles can also be applied to margin text and annotation text. Luckily, these
styles can be configured to be a different set from those used in the document body.

������������
����
�����������
������� 	���

Scintilla provides a number of different ways to augment the document body with
additional information: margins, indicators, and annotation.

20th Annual Tcl Conference 96 New Orleans, LA Sept. 23-27, 2013

• Margins and markers: Scintilla provides for up to five margins. There are
three types of margins: symbol, number, or text. The margins are configured
using the margin subcommand. Symbols can be set in the margins using either
the built-in Scintilla markers, or using Tk images. Markers are configured using
the markers subcommand.

• Indicators: Indicators are drawn on the text in the document body. An
indicator is specified via the tag subcommand.

• Annotations: These are read-only lines of text that appear under editable lines
of text in the document. The text is styled independently from the document text.
Annotations are configured via the annotation subcommand.

�	�	���

Scintilla provides a number of built-in lexers for a variety of programming languages.
Additional lexers can be dynamically loaded using the loadlexer subcommand. The
configure option, -language, is used to set the name of the lexer language to use. The
lexer is then configured using the "keywords" and "property" subcommands. Each
lexer defines the number of keyword sets, and the names and types of properties. In
order to use these subcommands correctly one must become familiar with the particular
lexer in use.

�	���
����

Scintilla provides a search function, as does Tk. Because there are differences in the
options and results of these two functions, we decided to provide both search
subcommands in the widget. The search method uses the Tk text widget algorithm to
perform the search. The code for this was copied from Tk. The second method,
scisearch, calls the Scintilla function to perform the search. The differences come
about because they use different regular expression engines, and they have different
definitions of a word. Rather than trying to accommodate or justify merging the
behaviors, providing two subcommands was just easier.

�	������
�����!

��

Other subcommands provide direct access to Scintilla.

The textwidth subcommand is similar to the [font measure] command in Tk, except that
Scintilla performs the calculation.

The zoomin and zoomout methods provide a capability specific to Scintilla.

Not all specialized calls that Scintilla provides have been implemented; to date, only the
calls that have been needed have been implemented in the widget interface.

20th Annual Tcl Conference 97 New Orleans, LA Sept. 23-27, 2013

Conclusions

Scintilla has a good foundational architecture that made the porting effort relatively easy.
The work here is not complete; there is plenty to do to evolve this widget extension into
a powerful text component for Tk.

Some of the remaining work needed to complete the port:

• Complete all Tk text widget configure options and subcommands to improve
compatibility.

• Implement event binding for tags.

• Create a custom subset of Tk text widget tests to verify compatibility.

• Complete access to all Scintilla API calls and options.

• The configure script(s) for all Tk supported platforms. The current configure
script has only been tested on some Linux machines, and only works on
Windows under specific conditions.

• Full html documentation.

There are a few things that could be done in each project that would benefit the
integration:

• It would probably be better if all lexers were dynamically loaded as a Tk package,
one per language.

• Create TIP's to expose the few internal functions needed to complete the Tk port
and keep the ScintillaTk portable and isolated as much as possible.

• I would like to see ScintillaTk brought into the Scintilla project directly since most
of the implementation variations will come from Scintilla itself. The platform port
intentionally uses Tk's public API (with already noted exceptions), which keeps
the port isolated from the Tcl/Tk releases.

Acknowledgments

I'd like to thank the developers who did the porting work: Joe Mueller, John Vella, and
Ron Wold. It's their "boots on the ground" that are getting this job done. Thanks,
guys!

20th Annual Tcl Conference 98 New Orleans, LA Sept. 23-27, 2013

Dynaforms and Dynaviews:
A Declarative Language for User Dialogs in Tcl/Tk

William H. Duquette

Jet Propulsion Laboratory, California Institute of Technology
William.H.Duquette@jpl.nasa.gov

Abstract

A dynaform is a specification of a dynamic data entry form: one whose content and layout can
change based on the input of the user. Consider a GUI for entering rules for filing e-mail
messages into folders: each rule can have many different forms, depending on the desired
criteria. The user must first select the kind of criteria; each criterion has its own set of
parameters, and the user's choices for those parameters might result in a further series of
choices. The dynaform mechanism consists of a little language for specifying such a set of
related inputs, infrastructure for processing that language, and the dynaview widget, which can
display any desired dynaform and accept user input.

1. Background

The Athena Regional Stability Simulation is a model of political actors and the effects of their
actions in a particular region of the world. The region is divided into neighborhoods, in which
reside civilian groups. The actors have a variety of assets, including money, military and police
forces, and means of communication, that they use to achieve their political ends. The extent to
which they succeed depends on the attitudes of the civilians, which change in response to current
events. The Athena user must enter a wide variety of data about many different simulation
entities, and the complexity of the data to be entered has increased with each new version of the
software. The dynaform mechanism is our latest approach to providing complex user-friendly
easily maintainable data entry forms with a minimum of code.

2. The Problem

In the Athena application, an order is a specialized procedure used to handle user input. An
order takes a dictionary of order parameters and values as input, validates them, and either
throws a detailed error or performs the desired task. On success it returns an undo script; the
application's undo/redo stack is in fact a stack of executed orders.

Some orders are simple, with one or two parameters that are always provided by the application;
most are more complicated, and require significant input from the user. As a result, each order
requires an order dialog. At present Athena contains 187 orders, and this number is always

20th Annual Tcl Conference 99 New Orleans, LA Sept. 23-27, 2013

increasing. It is essential that implementation and maintenance of order dialogs be easy and
straightforward.

2.1 Field Widgets

Tk provides a number of widget types useful for entering data, but their APIs often have subtle
differences. Athena defines a standard field widget API, and uses Snit wrappers where necessary
to make standard widget conform. The API was established early in Athena development, and
has been remarkably stable since.

First, every field widget has at least the following options:

-state state
Sets the widget's state to normal or disabled in the usual way.

-changecmd command

Specifies a command prefix that will be called whenever the field's value changes for any
reason (whether programmatically or due to user input). The command is called with one
additional argument, the new value of the field.

Next, it has at least the following subcommands:

field get

Retrieves the field widget's current value.

field set value
Sets the field widget's value, calling the –changecmd.

Configuration is naturally field-type-specific, but once the field widgets are created and
configured they all work just the same from the point of view of the form infrastructure.

2.2 Order Dialogs: The Mark I Solution

Our original solution to the order dialog problem was to associate enough metadata with each
order definition to allow Athena to put together and pop up an order dialog. The first dialogs
were quite simple: two parallel columns, with labels on the left and data entry fields on the right,
implemented in a Tk grid. There were just a few field types, mostly text fields and combo box-
based pull-downs; the metadata specified the list of valid items for the pull-downs.

These order dialogs often required additional code to provide dynamic behavior:

• Enabling or disabling fields based on prior entries in the dialog

20th Annual Tcl Conference 100 New Orleans, LA Sept. 23-27, 2013

• Configuring field widgets based on the state of the application (i.e., setting a pull-down to
contain a list of currently defined simulation entities)

• Configuring field widgets based on the state of prior fields in the dialog.

Dynamic behavior was provided by means of a –refreshcmd callback associated with the

dialog fields. Whenever the content of any field in the dialog changed, whether
programmatically or due to user input, the dialog code called each field's –refreshcmd

callback. The callback could enable or disable the field, or reconfigure it in a variety of ways.
The difficulty was that each field was handled individually, when it was often necessary to
coordinate changes to multiple fields.

Further, there were multiple reasons why a field might be refreshed, and the appropriate response
differed. The callbacks needed to second guess the dialog logic in order to do the right thing. As
a result, dialogs were finicky to get right, and when there was a problem it was hard to fix it
without introducing problems elsewhere. Worse, the underlying dialog logic was convoluted and
hard to follow.

2.3 Order Dialogs: The Mark II Solution

As a result, I rewrote the order dialog code from scratch, separating the main dialog logic from
the form logic. I abstracted the form code out into a new form widget. The layout was still two

parallel columns of labels and fields, but the order dialog code itself no longer needed to concern
itself with the layout. The field-specific –refreshcmd callbacks were replaced by a single –

refreshcmd callback that applied to the entire form. It was called with:

• The name of the order dialog, a Snit widget with a variety of introspection and
configuration subcommands.

• A list of the names of the order parameters whose fields had changed

• A dictionary of the current values of all fields

The callback would then have to figure out the appropriate dialog configuration given the fields
that had changed and the current field values, and update the dialog accordingly. It was now
much easier to coordinate configuration changes to multiple fields, since all of the logic was in
one callback. This scheme was a great improvement over its predecessor, but also proved to be
unmanageable for complex dialogs. The complexity was all in one place—in the –

refreshcmd callback—but refreshing still occurred for multiple reasons, and the callback

code still needed to second guess the dialog logic in order to do the right thing. Writing robust
code that caught all of the corner cases was difficult for any but the simplest patterns.

20th Annual Tcl Conference 101 New Orleans, LA Sept. 23-27, 2013

In the meantime Athena continued to grow, the number of orders continued to increase, and the
individual orders continued to get more complex.

2.4 Lingering Issues

By this time we had a fairly sophisticated, maintainable set of code; but it was still unpleasantly
limited.

• Dynamic behavior was easier to implement than before, but not truly simple.

• Form layout was limited to two parallel columns, and there was no easy way to change it.

3. An Example

As a simple example, the Athena analyst may create a DEPLOY tactic to deploy simulated
troops into a neighborhood. He may choose the number of troops to deploy in two ways: he
may deploy all remaining troops or he may deploy some specific number of troops; and in the
latter case, he may deploy them with or without reinforcement. If he selects all remaining
troops, he is done; but if he chooses to enter a specific number, he must enter the number and the
reinforcement flag.

With the old system, the dialog looked like this:1

When the user chose to deploy all remaining personnel, the "Personnel:" field was disabled.
When the user chose to deploy only some, the "Personnel:" field was enabled again, and the user
could type in a number. Note that it was not possible to make the "Personnel:" field disappear
when it was not wanted: the underlying "form" widget didn't support that.

1 The reinforcement flag field is not shown, because it had not yet been added to the underlying order.

20th Annual Tcl Conference 102 New Orleans, LA Sept. 23-27, 2013

4. The Mark III Solution

The Mark I solution had the order dialog widget layout fields in a Tk grid based on the list of
order parameters and a little metadata. Any relationships between fields were captured purely in
external callbacks.

The Mark II solution made use of a Tk-grid-based form widget, and had the order dialog widget
configure it based on the list of order parameters and a little metadata. The layout remained the
same, and any relationships between fields were captured, again, in external callbacks.

The Mark III solution is radically different: the order dialog uses a new form widget, the
dynaview widget, which can display any dynaform. A dynaform is a description of the form's

fields and layout, including significant relationships between the fields, as captured in a
declarative Tcl-based language. A dynaform specification becomes part of each order's
metadata, but the dynaform language and infrastructure are independent of the order and order
dialog infrastructure. In short, the new infrastructure is useful not only for order dialogs but for
other general purpose dialogs.

The Mark III equivalent of the order dialog show above implemented as follows as a dynaform:

rcc "Owner:" -for owner
text owner -context yes

rcc "Group:" -for g
enum g -listcmd {group ownedby $owner}

rcc "Mode:" -for mode
selector mode {
 case SOME "Deploy some of the group's personnel" {
 rcc "Personnel:" -for personnel
 text personnel

 rcc "Reinforce?" -for reinforce
 yesno reinforce -defvalue 0
 }

 case ALL "Deploy all of the group's remaining personnel" {}
}
. . .

The text, enum, selector, and yesno commands each create a field, giving it a name and

any required configuration options. The rcc commands add labels and layout hints. We'll take

them in turn.

20th Annual Tcl Conference 103 New Orleans, LA Sept. 23-27, 2013

4.1 Field Specifications

All field creation commands have the following signature:

 fieldtype name ?option value...?

There are a number of standard field options, and each field type may have its own specific set of
options.

The owner field names the actor to whose strategy the new tactic will be added. It is defined as

follows:

 text owner -context yes

It is a text entry field; the –context option indicates that it is a "context" field: one whose value is
set by the application to provide context to those that follow. The value of a context field cannot
be edited by the user. Tactics are always created from a browser widget that shows the strategy
of one actor at a time, and so the owner field is field in by the browser when the dialog is popped
up.

The g field is used to enter the name of the force group to be deployed. It is defined as follows:

 enum g -listcmd {group ownedby $owner}

The enum command creates an enumeration field, which is rendered as a combo box containing

a list of force groups to deploy. Each actor has his own set of force groups, so the content of the
list has to be limited to those belonging to the owner. In the Mark II code, this would have been
done in a clumsy way by the –refreshcmd, which when called would have had to figure out

which fields needed to be updated and how. Here, instead, we simply define a –listcmd,

which returns the desired list. It is called whenever the infrastructure determines that any prior
field's value has changed.

Note that the –listcmd references the variable $owner. Rather than being called in the

global namespace, as callbacks usually are, all field configuration callback commands are called
in a context in which the form's field values are available as variables. This makes it trivially
easy to make a field's configuration depend on a prior field in the same dialog. In this case, the
command simply returns all of the groups owned by the tactic's owner.

20th Annual Tcl Conference 104 New Orleans, LA Sept. 23-27, 2013

The reinforce field is a Boolean field created using the yesno field type. This is an

example of a custom field type; it simply wraps the enum field type with the required

configuration options to display "Yes" and "No" and map them to the integers 1 and 0. It was
defined by the Athena application itself to streamline this common case.

4.2 Selector Fields

Next we come to the mode field, which specifies how the number of personnel to deploy is to be
determined. It is defined as follows:

selector mode {
 case SOME "Deploy some of the group's personnel" {
 rcc "Personnel:" -for personnel
 text personnel

 rcc "Reinforce?" -for reinforce
 yesno reinforce -defvalue 0
 }

 case ALL "Deploy all of the group's remaining personnel" {}
}

The selector field type controls the form's displayed content in a special way. After any

options, it takes a body script which contains case commands; each case command takes a

body script which can contain arbitrary dynaform commands.

The mode field will be displayed as a combo box with one item for each of the cases in the

selector body. The field's value will be SOME or ALL, and the combo box will display the
associated text, e.g., "Deploy some of the group's personnel". When the user selects a case, the
fields defined in that case's body will be displayed. For this dynaform, the dialog will display the
personnel and reinforce fields only when the mode is SOME.

For example, the dialog looks like this when the mode is ALL:

20th Annual Tcl Conference 105 New Orleans, LA Sept. 23-27, 2013

but like this when the mode is SOME:

Selector fields can be nested arbitrarily deeply.

4.3 Dynamic Behavior

The Mark I and Mark II versions of the order dialog infrastructure allowed for three kinds of
dynamic behavior in response to changes in the content of the fields:

• Changing the configuration of a field, e.g., setting the list of valid items for a pull-down
field.

• Loading record data into the dialog when a key field's value changes.

• Changing the layout in some way

Dynaforms support these same behaviors, but in a significantly different way. In the Mark I and
Mark II code it was necessary to write –refreshcmd callbacks; these callbacks had to contain

significant logic to determine what just happened and the current state of the dialog, and make
the required changes. This required second-guessing the underlying dialog code, and unless the

20th Annual Tcl Conference 106 New Orleans, LA Sept. 23-27, 2013

programmer had a pretty good notion of how that code worked, it was hopeless. Even if the
callbacks did mostly what was wanted it was hard to catch all of the corner cases.

With dynaforms, each of the three behaviors listed above is handled in an appropriate way.

Fields that require dynamic configuration do so by a callback that returns the required
configuration information given the values of the prior fields in the dialog and the state of the
application. The enum field, for example, has a –listcmd option; the command must return

the current list of valid items, which is passed directly to the underlying field widget. The
dynaform infrastructure ensures that the callback will be called whenever needed; and the
callback need not concern itself with the dialog or second-guess its behavior or state. The
command usually can just do a simple data retrieval, without any complex logic.

Key fields are handled by a –loadcmd callback; this is an option that can be used with any field

type. The callback is called whenever the field's content changes in any way; and its job is to
return a dictionary of field names and values to load into the dialog. Again, the command
usually just does a simply data retrieval. All of the logic is handled by the infrastructure.

Finally, it is no longer necessary to write custom logic to control the dynamic layout of the
dialog. Instead, such dynamic behavior is stated declaratively in the dynaform specification
script. No callbacks are involved.

In short, dynaforms get the encapsulation layer in the right place. There are a few things a form
might need to know, and callback options are provided so that the dynaform can ask for them;
but the application programmer need only provide information. The dynaform's logic is internal,
where it belongs.

4.4 Layout Hints and Layout Engines

The remaining commands in the dynaform language create label text and provide layout hints;
the rcc command does both. For example, the label for the personnel field is created as

follows:

 rcc "Personnel:" -for personnel

This command assumes that a table layout is being used. It creates a new row and column,
places the label "Personnel:" in that column, and then creates a new column for any subsequent
content. The –for option relates it explicitly to the personnel field; when the field's value is

invalid, the label will be drawn in red.

The rcc command is referred to as a layout "hint" because the dynaform language doesn't

presuppose any particular mechanism of laying out the fields; rather, it is aimed at defining the

20th Annual Tcl Conference 107 New Orleans, LA Sept. 23-27, 2013

fields and linking them to each other and to the required application data. The hints are there for
the use of the GUI when it displays the dynaform, which it is free to do in any way it likes. In
particular, the dynaform language does not itself assume the use of Tk; it could in principle be
used with Gtk or (on the server side) with HTML or JavaScript displayed in a browser.

4.5 The Item Tree

Consider the following dynaform.

label "A:" –for a
text a

label "B:" –for b
selector b {
 case B1 "B1:" {
 label "C:" –for c
 text c
 }

 case B2 "B2:" {
 label "D:" –for d
 text d
 }

 case B3 "B3:" {
 label "C:" –for c
 text c

 label "D:" –for d
 text d
 }
}

First there is field a, which is always displayed. Next, there is selector b, which is always

displayed. The selector has three cases; the first displays field c, the second field d, and the third

both. Each field has an associated label. Each command in the form defines an item, and these
items form a tree, as shown in the following diagram.

If this were a real form, it would be associated with an order with fields a, b, c, and d, and the

processing of fields c and d would depend on the value of field b. Note that there are fields

named c and d on several different branches. This is perfectly OK. Laying out the dynaform

involves walking this tree, and picking the branches corresponding to the selector values. A field

20th Annual Tcl Conference 108 New Orleans, LA Sept. 23-27, 2013

name can appear on any number of branches, just so long as it does not appear twice on the path
from the root to any leaf node.

The path from the root to a leaf given the current selector values is called the current path.

4.6 Creating a Dynaform

Dynaforms are created using the dynaform define command:

dynaform define MYFORM {
form specification commands

}

Most dynaforms in Athena are associated with orders; the form specification is entered as part of
the order's metadata and dynaform define is called automatically.

5. The Dynaview Widget

Dynaforms are displayed by the dynaview widget; the dynaform to display is determined by

the –formtype option, which names any defined dynaform. The manner in which the form is

displayed is determined by the selected layout algorithm. Given the algorithm, the widget

20th Annual Tcl Conference 109 New Orleans, LA Sept. 23-27, 2013

follows the current path from the root to a leaf, using or ignoring hints and laying out labels and
fields. How the hints are used depends on entirely on the chosen layout algorithm.

5.1 Layout Algorithms

At present, the dynaview widget supports three different layout algorithms: ribbon, 2column,
and ncolumn. The default is ncolumn, but a form can select a different algorithm using the
layout command, e.g.,

 layout ribbon

The ribbon algorithm lays out labels and fields in one row, horizontally, ignoring other layout
hints.

The 2column algorithm lays out labels and fields in two parallel columns, like the Mark I and
Mark II order dialog code.

The ncolumn algorithm allows labels and fields to be laid out in table cells, as with a Tk grid or
HTML table. The layout hints indicate row and column breaks.

The real point to allowing multiple layout algorithms is "future-proofing". The current layout
scheme is working for us, but the architecture allows us to define additional schemes for
particular purposes without changing any existing dynaforms.

The underlying geometry manager in each case is a Tkhtml3 widget; thus, the layout algorithm is
generally producing HTML text. Tkhtml3 has a number of advantages over a Tk grid; it is easy
to include rich text in the form, and lines of label text and field widgets wrap more attractively.
However, the dependence of the API on Tkhtml3 is minimal, and future layout algorithms could
use a different underlying widget.

5.2 Widget API

The dynaview widget has the following options:

-formtype name
Sets the name of the dynaform to display.

-state state

Sets the widget's state to normal or disabled in the usual way.

20th Annual Tcl Conference 110 New Orleans, LA Sept. 23-27, 2013

-changecmd command
Specifies a command prefix that will be called whenever the form's value changes for any
reason (whether programmatically or due to user input). The command is called with one
additional argument, the new value of the form.

-currentcmd command
Specifies a command prefix that will be called whenever the one of the form's fields receives
the focus. The command is called with one additional argument, the name of the field that
received the focus.

Next, it has the following subcommands (among others):

form get

Retrieves the form's current value: a dictionary of field names and values.

form set dict
Sets the values of the form's field widgets given the field names and values in the dict, and
calls the –changecmd.

form current

Returns the name of the field that has the input focus (or the first field, if no field has the
input focus).

form invalid fields...
Marks the named fields invalid. The effect is determined by the layout algorithm; for
ncolumn, for example, the associated fields are colored red.

form clear
Clears all non-context fields, and fills in default values.

form refresh
Refreshes all fields from first to last; all fields will now be configured in accordance with the
current state of the application.

Note that the dynaview widget adheres to the field widget API described in section 2.1. This

is often useful when a field's value isn't a simple scalar value. Instead, a custom field type can be
defined based on the dynaview widget and an appropriate dynaform.

20th Annual Tcl Conference 111 New Orleans, LA Sept. 23-27, 2013

5.3 The dynabox Command

The dynabox command pops up a modal dialog containing a dynaform, with "OK" and "Cancel"
buttons. On "OK" it returns the value of the dynaform (i.e., [$form get]); on "Cancel" it

returns the empty string. It is roughly similar to the standard tk_messageBox command, but
displays an arbitrary dynaform. Thus, dynaforms can be used for general data entry, not simply
for order dialogs. This is another advantage of dynaforms over the Mark I and Mark II solutions.

6. Dynaform Language

This section gives a rough overview of the dynaform language. We divide the commands in the
language into two sets: content and layout.

6.1 Content Commands

The content commands are as follows:

fieldType name ?option value...?
Adds a field of the given type with the given name to the form. There are a number of
predefined field types, including text and enum, as described above, and the application

programmer can add more. The options are used to configure the field. The following
options can be used with any field type.

-context flag

If flag is true, the field is a read-only "context" field. It provides context to the user, and
its value might be used by field configuration callbacks.

-defvalue value
Specifies a default value for the field; the value is placed in the field when the form is
cleared.

-invisible flag
If flag is true, the field is invisible, i.e., is not displayed in the dialog. This allows the
application to provide context data for use by field configuration callbacks without
making it visible to the user.

-loadcmd command
This command is called when the field's value changes; its purpose is to load data into the
dialog when a key field's value changes. It is given the field's current value and other
configuration data, and returns a dictionary containing field names and values. Any field
whose name matches a dictionary key is updated with the value from the dictionary.

20th Annual Tcl Conference 112 New Orleans, LA Sept. 23-27, 2013

-tip text
Specifies tool-tip text for the field. This option is a layout hint, and how the text is used
depends on the layout algorithm.

label text ?-for field?
Adds the text to the form; it can contain rich text in the form of HTML markup. If the –for

option is included then the text is a label for the named field, and may be highlighted (i.e.,
colored red) when the field's content is in error.

selector name ?options...? selscript
The selector command adds a special pull-down field that controls the content of the dialog.
It has the given name and takes all of the standard field options. The selscript contains one
or more case commands; the user selects the case from the pull-down.

case case label script

This command can only appear in a selector field's selscript, where it adds another case

to the selector. The case is a symbolic constant used as the selector field's value when the

case is selected, and the label is corresponding text that appears in the pull-down. The script
contains any arbitrary dynaform commands (fields, labels, and layout hints); the form items
in the script are displayed when the case is selected by the user.

when expr tscript ?else fscript?
This command is like a selector case in that it controls the items that will be displayed;
however, it is not a field. Instead, expr is a Boolean expression that may reference upstream
fields by name (as well as arbitrary commands). If the expression is true, then the items in
the tscript will be laid out; otherwise those in the fscript (if any) will be laid out.

6.2 Layout Commands

layout algorithm ?options...?
Specifies the layout algorithm to use. Currently, the choices are ncolumn (the default),
2column, and ribbon. The choice of algorithm determines how the layout hints are used.
Most existing hint commands are used only by the ncolumn algorithm.

br

Adds a line break to the form.

c ?label? ?options...?
For ncolumn layouts, starts a new column. If label is given, a label is added as the first item
in the column.

20th Annual Tcl Conference 113 New Orleans, LA Sept. 23-27, 2013

-for field

Relates the label to a field, as for the label command.

-span n

The new column will span n table columns; defaults to 1.

-width width

The desired column width, in HTML length units, e.g., "3in" or "100pxi".

cc label ?options...?
For ncolumn layouts, starts a new column, places the label text in it, and starts a second
column. The options are the same as for the c command.

para

Adds a paragraph break to the form.

rc ?label? ?options...?
For ncolumn layouts, starts a new row and column. The arguments are as for the c

command.

rcc label ?options...?

For ncolumn layouts, starts a new row and column, places the label text in it, and starts a
second column. The options are the same as for the cc command.

7. Examples

This section gives a number of additional examples of dynaforms and the resulting dialogs.

7.1 Dynaform with Help Text

The following dynaform is designed to contain help text so as to be immediately understandable
to the user. It is used to enter inputs for a Boolean condition called "DURING":

20th Annual Tcl Conference 114 New Orleans, LA Sept. 23-27, 2013

The form specification is as follows; condcc is a custom field type.

rcc "Tactic/Goal ID:" -for cc_id
condcc cc_id

rcc "" -width 3in
label {
 This condition is met when the current simulation time
 is between
}

rcc "Start Week:" -for t1
text t1
label "and"

rcc "End Week:" -for t2
text t2
label ", inclusive."

7.2 Dynaform with "When" Conditions

The following dynaform grows depending on the user input. It is used to enter some number of
casualties to a group in the simulation.

First the user must select a group. If it's a civilian group, then Athena wants to know what force
group is responsible for the casualities (if any). A "Responsible Group" field appears.

For historical reasons, Athena allows there to be up to two responsible force groups. If a name is
chosen for the first, a second "Responsible Group" field appears.

20th Annual Tcl Conference 115 New Orleans, LA Sept. 23-27, 2013

The dynaform specification is as follows; nbhood and frcgroup are custom field types.

rcc "Neighborhood:" -for n
nbhood n

rcc "Group:" -for f
enum f -listcmd {::aam GroupsInN $n}

rcc "Casualties:" -for casualties
text casualties -defvalue 1

when {$f in [::civgroup names]} {
 rcc "Responsible Group:" -for g1
 frcgroup g1

 when {$g1 ne ""} {
 rcc "Responsible Group 2:" -for g2
 enum g2 -listcmd {::aam AllButG1 $g1}
 }
}

8. References

[1] Duquette, William, Snit Object Framework, found in Tcllib,
http://tcllib.sourceforge.net/doc/snit.html.

9. Acknowledgements

This research was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration, during
the development of the Athena Stability & Recovery Operations Simulation (Athena) for the
TRADOC G2 Intelligence Support Activity (TRISA) at Fort Leavenworth, Kansas.

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

20th Annual Tcl Conference 116 New Orleans, LA Sept. 23-27, 2013

20th Annual Tcl Conference 117 New Orleans, LA Sept. 23-27, 2013

20th Annual Tcl Conference 118 New Orleans, LA Sept. 23-27, 2013

Tcl 2013
New Orleans, LA

September 23-27, 2013

Session IV
September 26, 2013

10:45-12:15am

20th Annual Tcl Conference 119 New Orleans, LA Sept. 23-27, 2013

20th Annual Tcl Conference 120 New Orleans, LA Sept. 23-27, 2013

A 1Ghz digital Oscilloscope in (mostly) Tcl
Ronald Fox

National Superconducting Cyclotron
Laboratory, Michigan State University

640 S Shaw Lane
East Lansing, MI 48824-1321

CAEN Technologies

1140 Bay Street Suite 2C
Staten Island, NY 10305

ron@caentech.com

��������

�������	·¸�¸
	�

�	��
�����	������¸�
�����·¸�·�����

����¸·¸�¸
	 � ·�·���· � �
 � �¸�� � ·���� � ���� �

��

�¸�¸�¸���¸
	 � ����	

�� � �

�· � � � ����� � ���
 �

·¸��
¸
¸���¸
	 � ¸	 � �
����
	¸�· � ·����·� � ������ � ���

������

· � �
������ � �
���

�� � ��¸�¸��
 � ����

����¸·¸�¸
	 � ·�·���·� � ����¸�� � �¸���� � ����

���	·�¸··¸
	���	��¸���·��	����	�������

�	�¸	�

�
�·������

�������	¸	¸�¸������

��¸·��������¸

������··���·

��������
����������¸·

��¸	� � ����

��� � �
 � �����·· � ��� �
¸�·� � ·����· �

·����� � � �	 � ��¸· � �
�� � ��� �
���� � �	� � �	
��¸
¸��

��������� � ·���� �

 � ��� � ����

�� � �¸�¸�¸��� � ¸·

�¸���	����¸	�����
�	¸�¸����
��
������¸·�
��¸
¸��

�
 � �
·� � �����¸��	���·� � ���� �

 � � � �¸�¸��

·�¸

·�
���

�	
����
���
��

� � ����¸�¸
	�
 � 	��
��� � �	� � ����¸�
� � ���·¸�· � ����

����¸·¸�¸
	 � ·�·���· � ���� � �·� �

 � �
������

�¸�¸�¸���·�� � ���·� � ���¸��· � ���

�� � �	 � �	�

�

�	�
�·¸· �

 � � � ����

�� � �	� � ��
�¸�� � � � ·¸	�
�

��
����
������
·� ����
���·

������� �!
�������
�

� � "¸
�¸	·
	 �#$% � �������· � ��� � ��¸��� �

 � ���

����

�� ����� � �	� ���
�¸��· � � � 	����� � ���� � ¸·

��
�
��¸
	�
��
��������¸����

� �����¸�¸
	�
�	��
�����	������¸�
�����������¸·¸�¸
	

·�·���·�

��	�����¸�����·¸�	¸
¸��	��¸	��·���	��¸	

�	�

� � �
����
	¸�· � �
 � �
	�¸�¸
	 � ��� � ·¸�	�
·

���·�	�����
������¸�¸�¸����� �!
�������
���
��·���

�$% � &�¸�� � �
 � $¸�¸��
 � %
	������'� � �	 � �����	�

�¸·��¸�¸	��
� � ¸· � ����¸��� � �
 � �
	���� � �
�� � ���

¸	���· � �	� � ·
�� � ��
���	�� � ·¸�	�
 � �
 � �¸�¸��

·¸�	�
·���

� ��	�����	���¸��·���
�������¸���
����	�·�¸	����

���

���	���

��¸���·�����

�·��#$%·�&!#$%·'

�	���¸��������¸���
¸�
����
�������
������������·

&!()#·' ������ ¸�	¸��� �� � ���	·¸�¸
	�
�
��
������

�¸�¸�¸���· � �
 � ��� � �·� �

 � ����

�� � �¸�¸�¸���·

�
��
�� � �¸�� � !()#· � ¸	 � ��¸�� � ��� � ��������

�¸�¸��
�·¸�	�
���
��··¸	���
�
�¸���·����	����������

����������
��·�·���·�·�����·������·�

�·����	���

�����	¸���������
�· ���¸�����		
� �����	�
����

�

��¸	��	��
�����������

�	������¸��	��
�*��
����(��·¸�·����������¸·¸�¸
	·

·�·���· � ��·�� � ��
�	� � ���·� � !#$% !()#

�
��¸	��¸
	·�������

���+$¸�¸��
�$����#���¸·¸�¸
	

��·���·+�&$$#�'��

� ����·� �����	��· ��
 �	
� ��
����¸��
�� �� ��
·��

�
��������$��¸	�����
��·��·
��������

�����·�·���

·����� � �	� � ���¸	� � ·�·��� � �¸��	
·�¸�·� � ¸� � ¸·

�
��
	��
�	�����
����	·�¸����������

�������

�
� � ��� �
�
	� � �	� � �
����
	¸�· � �
 � ��� �
	
¸	�

�¸��	
·�¸�· � ·

������ � � ��¸· � ����¸����	�

���·�¸��

��¸	����·�·�������	��¸��������¸����	�·

����·��·�·���·�·¸	������¸��
��¸�¸�¸���¸
	�·����·

�����������·�����
���	�����-,��

!�������
��� � �
 � ��
����¸��
� � ���� � ���� �
�
�

�¸�¸��
 � ���� �
�
� � � � $$#� � � �
���� � 	����� �

���������· ���·�����
��¸�¸����

����������		�
�

���·�����������·���	���
�
����
·��������

�����

����·¸�	�
��
������
���
���¸�¸�¸�����
����������·

������

���������¸�¸��
�·¸�	�
���
��··¸	�����

����

�������!()#�
¸��������··
�¸������¸��������#$%

���		�
����¸·���	�������

�	�¸	���	��
��·����¸	�

���·��·�	����
�����$$#�������¸���

� ���¸·��������¸

���·��¸�������
-�����������
�¸��·

��·�������· ��¸�� �� �·¸��
¸
¸�� �
��¸
¸�� ��
�	¸�¸��

�
��
 � ���� �����· �
	� � ·�� �

 � ���·� � ���������·

�
�������
�����
��� �����·�
���

���¸·���
-����¸·

¸�¸�����
���
�¸	����·�������·�·�����������¸�¸�¸���

�
 � ��
���
� � ������ � ����

��· �
�
� � ���¸�

������
�·�

�� � ���	· �
�� � ���� � ���
��·����· �

 � ��� �·���� �

 � �

�¸�¸�¸��� ����		�
· � ��� ��	�

�
�· � ��� ���
��·· �

20th Annual Tcl Conference 121 New Orleans, LA Sept. 23-27, 2013

·���¸	������	�
·�¸

·�
����������

��������
�¸��

�·��· � �¸�� � �¸�¸��
 �
·�¸

·�
�� � ·

����� � ����

������· � �� � ·���¸	� � ����
��¸��� � �¸�¸�¸���

���������·�

� ����¸·�·

������¸·�
����
����¸���	�¸	���
 ��������

�������¸

��¸·��··.

� ��� � �
�	¸�¸�� � �
��
 � ��¸	� � ��
�¸��� � �

�����·��

� ��� ������¸	� �

 � ��� �% �#(� ��¸�� � � ���

�
���	� � �	·���
�� � �	� � �
� � �¸�¸�¸���

�
��
��¸

���	��·�������	�
���

� �����
	·¸�����¸
	·����¸	��������
¸���

��

�����¸�·����������	��¸�·�¸��
¸���¸
	·�

� ��� � ���
¸���¸
	/· �
�	��¸
	�
¸�� � �	� � �·��

¸	���
����

� �··��·��	�
�������	��·

��¸
	·����¸������

¸	 � ������¸	� � ��� � ·

����� � ¸	 � ��������

������

� !�������
���

�	 ����
�
�����
��

�	���·���

��· ����%#0*��
���
�¸���·���
���

�

�¸·��
¸�¸	� � ����

��·� � ���·�	��� � ��� � �¸�¸�¸���

���������· � �
 � �� � �·�� � �¸��
�� � ¸	���������¸
	�

���·�����������·������	���·�
¸���1�
·����¸����2�

1��¸���� �
���
2� � ���		�
 � ��·�� � �	� � ·���
�

�¸	�
��� �*����·��· ������

��	��
	
�·�����
��

��� � ���	¸	� �

 � ���������· � �	� � �
� � ����

��������� � ¸������� � ���� � ����¸·¸�¸
	� � �#· � ·���

�·��· �

��	 � ��� � ��
��
� � ����¸	� � ���	¸	�
�

����

��·��
��������¸	���������

����¸·�
���

#���¸�¸	���	���¸·�
��¸	������

��·�¸·���
�����

·
����¸	��������
·���·��·�������
	��¸	�������·��

#
�
·���

��·��·�������	����
���
�·�������	���·�

���¸�¸��
�
·�¸

·�
����
 ��¸·�
�������·¸�	�
· � ����

��������	�������
¸	���
��¸�¸�¸����¸������¸��#$%���

"�������

������¸�����
������
��
��
�����·

�����

�
���������
	��

· �¸	����¸�¸��
�
·�¸

·�
���� ����

����¸
�� � �¸�¸�¸��� � ���������· � �	� � ���¸� � ¸	���	�

	���·��
�
�����	�����¸���	�
�
�������·������¸	�

�
���
��¸
¸����
	��

·�·�����·���¸���������·�

��

���		�
�·�
�������¸�������
���

"� � ���� � �
·
 � ������� � �
 � ��� � � � ·���� ��¸�����

�
�������¸����·���	����
��·����¸	���
��·��·���

�
�������	
���
���
��·�����·�����¸��·���"������

�¸��¸	·�������·���
�¸�������¸�����������
��
��

����
·�¸

·�
����·���¸	���
����
���¸	�����¸�	���

�·��· � ���
��� � ��� � ��
��·· �

 � ·���¸	� � �� � ���

�¸�¸�¸������¸
���

�¸	��������·��
�����··�·���·�¸	

������
��··��
�������	�¸�����
��··���#�������·������

·��·���

������·�
�����
	��

·������	��
������¸
��¸	

��������������
����

��
	��

·������	��
���

�	 ������
�
�������������
�����

%#0*���
�¸��·���
�������·���

�
¸����¸�·345�����

�¸��· � �
·� �

 � ��� � �
��
��
��
��
 � �¸

���	��·

�
��������
��������� ���¸· ��

�· ��¸�¸�¸���· ��

�����
���������� �� ���·¸� �
���
 ��¸��
�� ����¸	�

��¸����¸�¸�¸�����������
¸���¸
	�¸·��·¸	��

����
¸�·��·����

���
���¸	������·�
������
¸���¸
	

��· � �
 ���
���������
 ������¸	��

 � �����¸�¸�¸���

¸����¸�·�������
¸����¸�·�¸	�
�������������·���������

	
��·�¸���
���
���·�¸�������¸	���·
���¸·������¸	�

��·��
	�������	����������������¸·���¸
��
	��
��

�
�� � ��� ��¸�¸�¸��� �
¸�������	�� ��� ���
66�
¸�����

�������·���·��¸�����
·�������375���

��� � ������� �
¸����� � ������· � �
 � ��� � ��

��
������� � �· � � � �
���	� � �	·���
� � ¸	 � ���

��������� 	����·����� �¸�� � ��� ���·���
���	�

������� !� ���� � �
���	�·� ���� ����� � � � ·���¸
¸�

�¸�¸�¸����
¸������
�	��¸
	����������������·�

�����

�	��¸
	 ������ ������ �	���··��� ����	 ����� ���

�¸�	�
�� �

� � �����
� � �	�������� � ����· � ���

�
	������ � ���� � �	� �

��� � ������	 � ·��¸	�

�����·�	���¸
	· � &���� � � � ��
�� �
¸��

%#0*8$)�98::;7<8!#-�¹=8%A$0 � ��¸��

¸· �� ���
��� ¸	� �����¸�¸�¸��� �
��¸
���	������
� � ¸·

�������¸	���
��
�����·��¸	��1��;7<+�

�	� �#�$% �&'(')�%��� *

"�¸
������%#0*��¸�¸�¸����
¸��������
�· ����

�

-
� �

 � ¸	·�
��¸	� � ��� � ��
������� �
�
� � �
·�

�
��
 � ·���¸
¸� � ¸··��·� � ·
�� � �
��
��
��
��

�¸

���	��· � ��� �	
�� ��
������ � ���	·����	� � �
 � ���

��
�������� � ����·�� ¸	�
������������	
� �
¸�¸���

�
.

20th Annual Tcl Conference 122 New Orleans, LA Sept. 23-27, 2013

� %
		���¸
	 � ������	 � ��� � �
·� � �	� � ���

�¸�¸�¸����

� ����
¸	��
�����	���

������¸�¸�¸���

� >�

���
���	¸���¸
	�

������¸�¸�¸����

� *������

����		�
·�

� �	�����

�������	��·

����#(���
�·���
�¸����������	¸·���
����������

�¸�¸�¸��� � �
��
 �
��¸
� � �	� � �
��
 � ���·¸
	 � &�

�
��
 � ���·¸
	 � ¸· � � � ����¸��
�� � �¸�¸�¸��� � �
��

�¸��¸	���
��¸
�'���"¸�������������¸
	�

�����¸	���

�

���� � ��	��� � ��� � �
��
 �
��¸
� � �	� � �
��

���·¸
	�����·�

¸�¸�	���
�·�
����������
����¸�·�

��

�
��
��

�	� � (! * +��+��,#�$% �&'(')�%��� *

-
��
� � �����¸
¸�¸�· � ��� � ·�
��� � ¸	 � �	 � �?¹¸��

������·����#���������¸	�����·

��������	��
	����

������·� � ¸	

����¸
	 �

� � � � �
��
� � �
 � � � �¸���

%�¸
� � ���
��· �

 � � ��
��
��· ���·��� � ���
�� � ���

�����·�	�����¸��¸	������¸����· �
¸·�· �

���
��· �
�

·����¸��· �����	�¸	��
	���������
��	
� � ����·���

���
�� � ��· � ��
�¸�
� �
¸�
�· � ���� � 	��� � �
 � ��

�����·�	������

#�·��

�������
¸���¸
	���· ��
·
����	���¸���	��

��¸	��¸	������
��
��������·��� ���¸· ����
¸���¸
	

�

�· � ����������·���
 ������¸	��¸	���������¸��

��·¸�	��·�

�	���#�-#$�/'+���#��': ��'�'��##;

��� � �¸�¸�¸��� � �
��
�· � ���� � ��
�¸����	�

���
�¸�·� � �"�¸
� � ·
�� ��
		���¸
	 � ����· � &����

%A*0� � �	� � %A*0� � �
		����� � @-0 � ��·

¸	���
���·' � ·���
�� � ¸	�������·� �
����· � &A�>

%
		����� � @-0 � ��· � ¸	���
���· � �	� � ��·��
�

�¸�¸�¸���·��¸���A�>�¸	���
���·'��
�	
���	����·�

����

���

!�������
�� � ��� �#(� � ���·�	�· � ¸	�������· � �
 � ���

�·����· ����	�· ���¸�����·������

���� ����· ����

¸	��	� � ¸· �

� � ��� � #(� � �
 � �� � �

�� � �� � ���

���
¸���¸
	�

�����	�·���¸������	����������
���

�����¸�¸�¸���·�

��¸· � �
��
 � ��
�¸��· � ����� � ¸��
���	���¸
	

�
���	��¸��·��¸��¸	�����
 ������
¸���¸
	���¸��	���

�	����	��

�.

4� $�¸��������

�
�
����·�

���·���¸	� �'<� !

�¸���� �
� � ��� �
¸���
 � #(� � ���¸��
�	�

&��
8%������¸���,�	�
��'�

7� %��������	������	��·
�����

��������
 ��

���	��

��

B� C�	������

¸	��¸	�����������	���
·���	�

���	���
�������¸	����
¸���¸
	�����������	

�������������������¸·���	�����
	���¸�������

����%�
���
�
���¸��������
����������������

�����
���	��¸�����
·�	���·��
��·��������
�������

���������
�¸��
���	��
��¸
	�B����¸	�������%#0*

�¸�¸�¸����
¸������¸·��������·�
����¸·�
��¸
	��
�·�	
�

�
·���

�������¸

¸��
�����������

�������������·�

����
¸���¸
	���¸���¸���������¸�����

�����¸���

������¸������������¸·������

���·�����������·���
	�

·�
����"��	��������
¸���¸
	�¸·���
���
���·�
	���
��

��¸�����������

·�������¸�������������
����¸	��

¸	��

�����

¸	������������	��

· �

� ���������¸
��
�

�	���
·�·��	�����	��������
�������¸	�����������	

�����¸·����¸
��
��� �������¸	����������
��··�·����

���	���	�����	�·¸�	�
·������

���������
���·���

��¸������

¸	��

"��	�������
��··���¸��¸·������·�����¸
���������¸	�

¸· � �	��
��� � � � ·

����� � ��¸���� � ¸· � ��	������ � �

�	·���� ��� ��

¸	�� �������·��· ������ � �A	��� ����

��¸���� � ¸· � �
·��� � ���� � �
 � ��� � ��¸	 � ������� � ���

��	�
�·�
��	�
	������¸�¸�¸������	�����

·����	�

������¸��
�����¸
	��
��
�����

=	 ����>�
��������
��	

��� � ·�
�� � ��
���� � ¸· � � � �����¸��

� � ¸	��	·¸��

��
����� � � !
� � ���� � ��¸����� � ��� � ��
���� � ��·�

���� � �· ���	� � �· � D � �����· �

 � ���¸��

� � ·�����

��
�·�	� ��
¸	�· � ����� � �#� � �¸�� � ����·� � ¸� � ¸· � 	
�

	���··�������� � ����·

��������������������������

�
����������������·��������·�

����	�������·��

¸	���
������·�������·�
	·¸���

����

�¸	���������·�������
	·¸������

�������

�

��¸	�.

4� >¹��

20th Annual Tcl Conference 123 New Orleans, LA Sept. 23-27, 2013

7� C�
���
����>¹��%
��
	�	�·�&C>%'�

B� (

������

<� C

��
���
�	���	��·������¸�·�

E� ��������¸	����

���¸·�·���¸
	��¸

���¸�

�

��·��¸��������

����·���������·��������
·

�	� � �
	· �

 � �·¸	� � ���� � �¸��¸	 � ��¸·

���
¸���¸
	� � � # � �
	�
��¸	�� ·���·���¸
	

�¸

 � ��·��¸�� � ��� � ��
¸�� � �	� � ���� � ��·

	�������
�����������
¸����
��
���

=	� ���

>¹��¸·�����
 �������	·¸
	���¸���	��	����¸	��¸	��

���)�
����,
�
����3B5������¸·����
��
¸���

����	·¸
	������
������·����¸������¸����

�

·
��¸·�¸�����������¸��
��
��
	�	�·�

�!#*�

4� #·����
��¸
�������	·¸
	�¸�·����

���	��

¸·�������

��

7� ��· � ��·¸�	 �
�	�· � ¸�·�

 � ��·¸
� � �
 � �¸��

����¸	� � �����¸�·� � � 0��� � ����� � �
�
� � ��

�����·�	�����· �������
���	�������¸	�����

�

���
�
��·¸��
��������������

������¸	�

�����
¸	�·�¸	���������
��

B� ����
�� �

� � ����	·¸
	� � �

��¸	���

���	·

����¸
	��	��
��������¸��¸	��¸·�����

�

��

<� ��������
� ���· ��·���>¹�� ¸	�
���� ��
��

�	����·�
��¸
¸����¸���¸��

�#+*�

4� >¹�� ¸· �	
� �·���· � �	��
�� ��	�� ��� � ¸	��	�

�
� � ��� � ���¸		¸	� � ��· � �
 � ����� � ��¸·

���
¸���¸
	�¸	���·��������� �*
����
�����

�������
F¸�·�������
	��¸	�>¹���
���¸·��

7� >¹�����·�	
�����������¸�����
 ������"�¸
�

������· ���¸·� � �
 ������¸� ��
���
	���
 ��

D�E� ��	����¸
���������
·¸�
���·�
�· � ����

�
�� � ¸· � ��¸	� ��
	� �
	 � ��� ���
-��� � &
�·�

��������� � ���� �¸�����¸· ������ ���· ��
¸	�

���
����
¸�·�����
����·�#��¸
�BG��7G4B'��¸�

¸·�	
���
�������������·

����������
��¸·���
�

�
 � �
��¸� � ��� � ��·
����· � 	����� � �

�
	�¸	����
���

�������·

������

B� >¹����· � � �
�� ��¸��� � �

�· � ¸	�
 ���
 ��

��¸����
�
�������H·�

���¸	��	�	��/�

����·

�������¸

¸��
� � ¸	���·��������
-���

��������	�
	���

<� #·����
��¸
�������	·¸
	�&���	
������

��

��¸·��	�����	��������
¸��'��������¸	�����

·

����� � ¸	 � � ������¸� �������� � ��·�
�· � ¸	

·
������

�	��·�&·���·���¸
	�I'�

=	� � <'&�#! �������#,(#+ +�*

����C��
���
����>¹��%
��
	�	�·���
-����&C>%'

3<5�¸·�����
-���������¸·���	����>
�������	�¸	������¸·

� �

�� �

 � ��� �>¹����
-���� � ���� � ¸	��	� �

 � ���

��
-������·��
������������·�
����
�¸	�·�

�>¹�

�����
���¸	����·���· � �
����¸�
� �>¹������ ���·

���
��
�� �
�
����� � ¸	���	�
· � ����	��	�¸�· � ����

����
�¸�¸	�
�>¹��·�

��·�
�
��

�!#*�

4� C>%��
�·��
����¸�����
�D�E�&��¸·�����
�

��·�	
������¸�	����������¸	���
��·��C>%

�¸�� � D�I � ��
��·�· � �
��
��� � ��� � ��
-���

����·�·��·������¸����·����	��·����¸���D�I

�������
��·�·'�
7� ��������
����·��·�������·�

�C>%��¸����

��
-��� � ���� � �·�� � >¹� � �	� � 	����� � �

�¸�������
���
�D�E��¸���·����··�
B� C>%� ¸· � �¸��
� ��
����¸�
� ��¸�� �>¹��·

��������
�/·��	
�
�����

�>¹���
�
����

�·����¸����
���¸���C>%�

�#+*

4� >
���
�··¸
¸�· �����·

�������·�1������

�

�	 � �
��� � ��
��·�2 � ��¸�� � ¸	�¸����· � �����

��� � �� � ·
�� � �¸�
�

· � ¸
 � �·�� � ¸	 � �

����	�¸	���	�¸�
	��	��
7� C>%�·�¸

���·�
¸	����·��
���
 ���¸	���	�
·�
B� C>% � ��· � 	
� � ��� � ���	 � ��·��� � �¸��

�����¸� ��������·�
<� �����
·������	��·���

���
��·�·�����·�����

�
 �
��� �7GGJ��	� � ��� ��
·� � ����	� �·�� �

�
��¸�·�������
����	���¸
	��
��¸�·�¸	

7G44� � �A	

���	���
� � ��¸· � ��
-��� � ·���·

¸��
���
���������

=	� �%#�&?'!�

(

������ � 3E5 � ¸· � � � ���� � ��
 � ·�¸�	�¸
¸� � �

��¸	�

����������¸���	����#�-�	�-����·� � �(

������ � ¸·

�¸·��¸�������·�������

�������
¸��

�!#*

20th Annual Tcl Conference 124 New Orleans, LA Sept. 23-27, 2013

4� #�-�	 � ¸· � ���� � ��·�
	·¸�� � �
 � ���·�¸
	·

��
���(

��������	��������¸

¸	���
�����

���	��·��	������
¸��·�
	������·��
7� �¸	�� � (

������ � ¸· � ���� � ��
 ��� � ·�

�

��¸	��	�	���

�������������¸	��������	�

#�-�	�¸·�	
����
���
��
	�¸	����¸·��
���
	

¸��¸·���·¸���
B� �¸	���(

�������¸·����������
 �����������

¸	�
��¸	� � ¸� � ¸	 � � � ������¸� �������� � ¸·

��¸�¸�
�
<� (

������ � ��
�¸��· � ��¸�¸�¸��· �

�

�

��¸	�������	·

��· � ����� � �
��������¸��

���	� � ��	�
¸	� � ��	 � ��� � ��� � ��¸
¸�� � �

¸	��������¸��������

��

�#+*

4� (

������/·��������
�	������&���	
����·�¸�

��¸· � ��· � �	 � ����	���� � �

' �
���· � �

�
	���	·���
������

���	���
7� (

������/·�

��·�¸·�
	�·���¸�������¸�·���#·

·����¸��¸·�	
���
����¸����	������·¸
���������

�
���
��/·�	����

����	��¸��

�����	�¸	�

�����¸�·�&����·���¸
	�<�E���

�'�
B� ��¸· � ����
� � ��· � 	
� �
��¸
¸�� � �¸��

(

��������	�������

����������
�
������

���	¸	���������
��·¸	��¸���

���¸��
��

=	= �#%%�@#$!��/+��'+D'*��!'(?�&*

��¸· �
��¸
	 � ���	· � �����¸	� � �� �
�	 � �����¸�·

����������·¸�	���

���	�����������
�����	���·�

����·�
�����
�������

�!#*�

4� ������·�
�¸	�����������¸

������

�·�¸���

�
����	���·�
7� ������·�
�¸	�����������¸

����·
����¸	���

��	���·¸
���	���·��	���	�������¸	��¸	��
�

������

�#+*

4� �¸�� � ·��	� � �����¸	� � �	� � ������¸	�

��¸·����������
�
����������
�
���¸��

���� � �
�
� � �� � ·��	� �
	 � ��� � ��¸	

���
¸���¸
	�

=	G
 &�*�#+�'+���#+* H$ +& *

*
	� �

 � ���·� � ��
¸��· � ¸· � ¸���
� � ��� � �
·�

�������¸���

��

�

��������
��������·�(

�������

�
������

���	�����·�¸	����·��
	������

��¸	���

��	�
�
� � ���·� � ·�¸
��� � ·¸	� � ���� � �	� � �

��	�
�
� � ���·� � ·�¸
��� � ·����

�� � �
 � ·�� � �
�

��¸��
��(

��������
�
��������������

��

(

������/· ����

���	�����·����������������
��

�
��
�������
��
��

����¸
·�������	��

�����¸��

#�-�	������	������ �
 �
¸��·
��� ¸··��· ��¸�� � ���

��������������
���������·�����·�
��

���¸·���·���

#· �·������ ¸	�·���¸
	�<�B� �(

������ � ¸· �	
� � ���

�

��·¸�	���

��������	��¸�������¸�·�������
�
����

��
�������������·�
������
¸���¸
	���!
�������
��

���
� � ���	��· � ����� � ¸	 � >¹� � ��� � ���

���� � ��

·¸��
� � ���	�¸	� �
��¸
	· � ¸	 � ��� � �

� � �¸�����

����¸������
��
��������	����¸
	�

������

��

#· � ����

���	� � ��
���··��� � ¸� � ��· � �·�
�
 � �

�	���·�
���������

�·��·��������
���¸	����*���3I5

�
	��¸	�� � ���� � �
�
� � ���	·����	�
� � �������� � ���

�

���·�	��������·���

��·���
�¸���
�����·���¸��·

����¸�����������·�
������
¸���¸
	�·�����·�������·

�	��������

 �������·� � �#� � ��� ��	��

 � ��� �����

�
����������¸	��(

���������·����

����
¸���

G	 J$+&��#+'%��-�'+���* !�
+� !<'&

��¸·�·���¸
	��¸

���·��¸��������·���¸	���
����

����

·�
�����
�����¸	�·
�������¸
�

"��	 �·����¸	� � ��� ���
����� � ��� �
¸�·� � ��¸	� � ����

��·� � �� � ��
�¸��� � ¸· � ¸	

����¸
	 � ��
�� � ���

�
		���¸
	��
������¸�¸�¸��������¸·�¸·������	�
���
	�

�¸�����¸�

��·�
�	�¸	�!¸�����4���

����������
�

�
�	���	��
	�����
�
���

�·������·����
�·�
���

������	������
���	¸���¸
	·�¸	���
���·����¸
��
�

�	� � ��
�¸�� � ���������· � ���� � �

�� ��� � ·���¸
¸�

�¸�¸�¸��� � �
��
� � �
 � �� � ·�
����� �
�
� � ��� � ·��

����������
������¸	���
������

� A	�� � �
		���¸
	 � ��· � ���	 � �·���
¸·��� ��¸�� � �

�¸�¸�¸���������·

����������·�¸�·��
��
�
��¸
���	�

�
��
�¸	·��	����	��

�·����¸�·����������¸·�¸�·�¸	

�	��?¹¸���������·��� �����������·��¸·������

����

��������/·�@!����
������¸��¸·��
�¸���¸	�
�������

�¸����
�� ���·�� �
	 ������ � ��� �
�����¸	� �·�·���

¸��· � �
 � ��� � ·��� � ��¸	�·� � � ��� �
����� � �
��

�
������

20th Annual Tcl Conference 125 New Orleans, LA Sept. 23-27, 2013

�������	
���

�����
�����������������

A	

���	���
�� � ��� � ¸	��� � �

���� � ��	�� �

 � ���

�¸�¸�¸����¸·��	�
��¸
	��������		
�����������¸	���

!
��������
��
�
��¸
���	���
��
�¸	·��	���������

��� � � � ·�� �

 � �
··¸�
� � ¸	��� � ��	��· � ��� � �·��

·���¸
¸�·����	�
����¸	�������
��
����

��� � �
��
 �
��¸
�� � �
��
 � ¸	·��	�� � �	� � ·��¸�

	�������	¸���
�� ¸��	�¸
�����
��
��� �����·��¸�

	������¸·��
·
������
�
���������¸���� ����·�����

�·����
����������
�

����������
��
��¸	��	
����

�?¹¸����������·�������¸·�·�
����¸	������·��/·��
��

�¸����
�� � ���� � &���¸	 � ��� � ����� �

���¸
	 �

 � ��¸·

������·������	�·�
	�����
�����¸	��·�·���'����
����

�
��
����·����	��·�����

����¸�·�������·�����
��

��
�¸��·����

�������	����·���

���	���¸���
¸�¸�

��¸��

�
������
��
����·�	��������	�·��	���

��������·��

��
··¸�
���

�������	��·��������·�	�����	�����

�·�����·��·�
���������
�������

�������	���

�����

�
��
��� ���¸·�¸	

����¸
	�¸·�·�
����¸	������·��/·

������·���	������·�����·����¸

�	��������¸	���

��
������

����¸·�¸	

����¸
	��

!¸�����7���

��·�
�·�����
�

��·���¸	���
����� ��	

��¸·�·���¸
	����¸

���·��¸���¸	����	.

• �������		�
��	����¸�����·�
���¸
	���	�·�

• ������
����
	��

·���	�

• ����)�¸�����	�

• �������· �¸	���¸��������·�����	�¸	������

�¸��������

��¸�·�

�

• ������	���
���	�·�

G	� �?'++ %�'+���!��� !�* % &��#+

����	������

����		�
·�¸·�
	��

�������
����¸�·

 � ��� � �
��
� �
��¸
� �
��
� � ¸	·��	��� � � ���

������·� �

��� �

 � ��¸· � ¸	

����¸
	 � ¸· � �·�� � �

��	������������¸��

����		�
�·�
���¸
	��	����¸����

·�
���¸
	 � ������
��· � �	� � ��¸���� � ·�
���¸
	�

"�¸
�������¸�¸�¸����¸·��
	�¸	�
�·
��·���
¸	����	

�����	�
���¸������	�����		�
���¸����· ������·����

������¸	�����	��
�·�
�����������

������
���������

�
·� � �
������� � ���� ������	�
 � ��¸���� � ¸· � �����
�

��������

�¸��¸	������
·��
�

¸	�������¸·��·����

¸	�¸���� � � � ����

�� � ·�
�
� � �� � ·�
���� � � ���

���		�
 � ��¸����· � ��� � ��¸��	 � �� � ��� � !()#

¸������ ��··
�¸���� ��¸�� � ���� ����		�
� � ����·�

��
�¸�����
���¸	��������¸·��¸�¸	��
� ���¸�����	

���·����
�
¸������	������¸·¸	��
��
�

¸	�������

��

���		�
 � ��
··�· � � � ����·�

� � ��
��� � ���� � ·�
��

�
	��

· � ·���¸
	 � &E�7' � �¸

 � ��
�¸�� � �
��

¸	

����¸
	���
����
��������¸��������������·����

·���

��¸����·���	�
	
���
���
�
�������������		�
·�¸	

��� � ��¸���� � ·�
���¸
	 ���	�� � �*
�� � ���� � ��¸· � ¸· � �

��������
¸���������¸������	��
���	
����·

�����

¸
��� �
�
� � ��
	�·� � � � �
�� � ¸	�
�·¸�� � ·�� �

��¸����·�� ������
��
����¸�����¸·�����

�¸��
�
��

�

��
	��¸���¸
	·��
�������¸�����

"��	 � ��� �·�
�� � ¸· � ��¸������� �
	
� � ��� ��������

���		�
·������

�������"������
··¸�
��������
��
�

¸· � ��
������� � �
 � �¸·��
� � ��� � ���	·
�� �

�	������� � ���		�
· � �
 �
��¸�¸�� � ���� � ���	·
��

���

���	���

�	����¸�¸
	��
����������	�
��	�����		�
���������

��¸����·�� ����·

��������	�

��������¸���������	�

�¸��� � � � "�¸
� � ��¸· �
������ � ·���· � �·�
�··� � ¸�·

����
·���	���·�
�
	�··��¸

����
����
����¸	����

·��·����	��·���¸
	·�

20th Annual Tcl Conference 126 New Orleans, LA Sept. 23-27, 2013

G	� �&#(�&#+�!#%*

��¸·�·���¸
	�

�·��������·�
����
	��

·����!
�����

�
·��������·�
����
	��

·�����
�¸��
���
�
��
�
���

�¸����¸	�����
�����¸	���¸���������¸

�����·��������

��
���������¸�����	��&·���·���¸
	�E�B'���	�
������

�¸·��
������·���

��
	��

·����������	
����
���	���

����
�����¸
	���¸	�����

�����

��� �
�
� � �
·� � �
	��

 � ¸· � � � ���		�
 � ·�
���¸
	

�
	��

����-
·���
	��

·�
�������
	����������		�

��·¸·�� ���
·��������
�	
������
���
����·��
��
	

	 � ��� � �·�� � ¸	���
���� � � ��� � ·�
����� � ���		�

������¸	�·���¸������		�
�¸·�·�
������

���
	��

�

����	 ������������
����

����
�
���
·���
��

��
	��

·�¸·��·����
�¸	-�����

$%�

·���
	�����·¸�	�
�����¸·�¸·��	�

�
�·��
����

����¸��
��
·¸�¸
	��	
��
	��	��	�

� �¸�¸��
�·�
���

>����-�·�¸	����¸·���
�������·¸�	�
���	������¸·���
�

�������¸��¸	������

������������	������¸
	�

��� � �¸�¸�¸���� � � *
�� � ���� � ���� � ���		�
 � ��· � �	

¸	����	��	��$%�

·�����-�·��

A
��	����	�
¸�·���
���¸	����·¸�	�
�¸	�
�����·�
���

��� ��·�� ��
�· � 	
� � ���� �� ��

� � ¸��� ������ � ���

��·�
¸	�� ¸· � ¸	� ��� ��¸	�
��� ���¸· � ¸· ���� � �
 �$%

·��· �
	� ��� �·¸�	�
 � ¸�·�

� � ���� �� ', �J�+� !

����
	��������· ��
 ����
���¸��

��·����������		�

$%�

·���·
����������·¸�	�
���·�
¸	��¸·�

������¸	

������	����

������������	����¸	�
��

���������
¸	����
������·�������

��¸	��·�����

·

����� � ��¸����·� � � ��� � ¸��� � ¸· � ���� � ���·� � ���

�·�	���
	
�· � �¸�� � ��� � �����
 � ·¸�	�
 � �	� � ���

�����

�� �
¸��
�� �
 � ��·�
� � ¸	�
	��
� ��
�� � �����·

���������
����
����·�
¸	��� ���������������
���

·�����
������·�	���¸����
¸	�·�¸·��
��������	���¸

����� � ��� � ·¸�	¸
¸��	� �
��
¸��· �
�
�� ��¸· � �������

����������¸·��������	������������������������¸��

��� � ������� � ���� � ·��� � � ��¸· � ������� � ¸· � ���¸	

���������
�����

 �·

������ ��¸����· ��	������$%

·�������¸�����
 ���	��� ��� �������
¸	� ��¸��� ����

��
���¸·��
��������	����
��������

�	������¸�����¸·�·¸��
¸·�¸�������
¸	�����
�
�¸���

�
��·���¸�����

�

��������

20th Annual Tcl Conference 127 New Orleans, LA Sept. 23-27, 2013

����� ��������������
�������

�
 � ��� � �¸��� �

 � ��� �$%�

·�� � �
	��

· � ��� � ���

��¸������
	��

·�������·���
	��

������¸����¸
	��	�

����·�

��

������
���¸	��������¸·��¸�¸	��
��

0�������		�
 ���· �� �
���¸	��������¸·��¸�¸	��
��

��¸· � �¸·��¸�¸	��
� � ¸· � ���� � ������¸	�· � ���	 � �

���		�
 � ��¸����· � ��� � �¸�¸�¸��� � �
 � ·�
�� � � � ������

����������¸����¸
	�&�¸·¸	��
��
�

¸	�'�������¸	�·

������� � ��� � ��¸���� �
����· ����	 � ��� �����

��

�
�· � ��

� � &
�

¸	� � ����' � ��� � ��¸���� � ��
�� �
�

��
�� � &�¸·¸	� � ����'� � � ��� � ���� � �¸����¸
	� � �·

·�
�	�¸·��
��
	�

���

����		�
·������������	�

��¸���� � ¸· � � �

�¸� � ¸	��� � �	� � �����

�� � ��· � 	

����·�

���··
�¸������¸���¸������

�

�	�����¸	���¸���������¸�����¸

·
�����������¸����

�
	��

·�����
	
���	��
���¸
�����·�
���������		�

¸·��	��
����
��
	��¸������
�������¸�����

-�����· � �
 � ��� �
�
� �

 � ��� �=� ��¸· � �¸·�
�� � ���

��¸���������·�

��

����������		�
�������
	��¸����·

�
�������¸�������#�������������
��
�
��
¸	�·������

�

 ������������� �
 � �������		�
� ¸� ��
	��

·� � ����

������ � �

� � �
·
 � ������· � ��� � �

� �

 � ���

�
���·�
	�¸	�����		�
�· � ����� � ¸
 � ���� ����		�
 � ¸·

�	��
�� �

� � �¸·�
�� � &¸� � ¸· �
���
 � �
 � ��¸���� �
	 � �

���		�
��¸��
���

�¸	�����¸�'�

����� ������� �
��!���
�����

�
��¸����

�������¸�����
���
��	���������-�·���	�

¸· � ��� � ���
�� �
�	��� � �
	��

� � � ��¸· � �
	��

 � ¸·

�
��
	����
··��

����		�
·�

������¸�¸�¸����

0��� � �¸�¸�¸��� � �
��
� � ��· � � �
���� � ���
��

���¸�������
�
	��
�������	��·�
������ �������

��

���	¸���¸
	 �

 � ���� ����
�� � ¸· � ��
�������
��

A	����	�������

�����	������

�·���
�·�����¸���

�����������¸�������	������

����	�· ������
��
�

��	 � ��

�� � ��

�� � ¸� � ¸· � 	
� � ��
� � �
 � ��·�
	� � �

��¸����·�

A	��	�
·�¸

·�
�����-�·�¸	�������������	����

��

·¸���&���
���
�	���'��
���·�
	�·��
���-�·�¸	�����

�

�·��
���¸���

�����·�
����¸·�
����

#· � �¸�� � � � �¸�¸��
 � ·�
��� � ·¸	�� � ¸	����·¸	� � ���

���
�� � ·¸�� � �
�· � 	
� � ���	�� � ��� � ·���
¸	�

�����	�� �
	� � �
�· � 	
� � ���	�� � ��� � ·¸�	�

��·

��¸
	����	���-�·�¸	����¸·�����������

����" #���������

�����¸�¸�¸�����
��
�·������
	�¸	�
�·
���¸�¸�¸�¸	�

¸	�
 � � � �¸	� � ��

��� � �#� ��¸���� � ·¸��
� � ��

· � ���

�¸�¸�¸��� �
¸������ � �
 � �
	�¸	�� � �¸�¸�¸�¸	� � ¸	 � �

�¸

���	���¸	����

����	�¸
�����	������¸�����
����·�

���������
���

·¸	���

��	����	��·���

�����	�
����

�������
�������
���¸����
����������¸�����������¸·�¸·

�·�
�
������·��	
���

��������¸�����¸	�¸����·����

���¸		¸	��

��	����	��

�¸	����·������������	����

�	��

��	����	��

�¸	����·�������������¸�������-�·�

&�
��
	��
��

����		�
·'���
���·�
	�·��
�����
��

�
��� � ��¸���� � ��-�·���	� �
	 � � � �¸�¸��
 �
� � �	�

�

·�
���

#�-�·�¸	����¸·���	��
·¸�¸
	����������

�����������

¸	����·���	�������¸	��¸����¸��¸	������¸����¸	�
�

������������������������������¸
¸����
�

�������¸	

�¸����
·
 ���
�¸��· � ��� ���¸
¸�� � �
 �·�� � ��� �·¸�	�

��¸
���
����������
���¸������
	�¸�¸
	�����¸·���	���

�·�
�
 �

� � ·¸�	�
· � �¸�� � � � ·

� � �¸·���¸�� � ����

�
	��¸	��·�
�
�¸	

����¸
	�
	�����
���¸	�������

����·¸�	�
�

A	���
��
	��·��

���¸·�¸	�	��
�������·¸�·�¸·����

�·� �

 �
�·� ·

��·�¸	�¸

��
� ���¸�· � �
 ��
 �����¸�
�

¸��	�¸
¸���¸
	� � � �	 � ���� � ��·� �
	� � ��· � � � ·¸	�
�

��
�
��
�¸�
¸���
	����������

�����¸��

�������
�

���·��
· � ���� � ����� � �
 � ¸
	¸�¸	� � ���¸��¸
	 � ��

��¸��¸	� �
¸���� � � A	� � ���·��
�· � ��
����¸�· � ���

�����������
����·¸�	�
���¸
������
���������������

� � ���� � ·

��� � ·¸�	�
� � � *
���

� � ��� � ·

���

·¸�	�
 ���
�¸��· �·
����¸	��
¸�� � ��� � �
��
 ��	����

��¸
� � ��� � ��
��� � ·¸�	�
 � ��
�¸��· � �

� � �¸�¸	�

&

�������	��

����¸���

�

¸����
���

�������
�'�

A	����	����	��·�������¸·��¸�¸	��
���
���
�¸����

���	���������

�����	
	����
�··�

��������

�������������¸�¸	��

�������
����·¸�	�
�
�
�����

�·���������

�����������
��

20th Annual Tcl Conference 128 New Orleans, LA Sept. 23-27, 2013

����� �����$�%�������
���
����

��� �
¸	�
 � �
	��

 � &�¸����
·�' � �
	��

· � ����

����¸·¸�¸
	� � ���¸· �·���¸
	 �

 � ��� ��
	��

· � ��	�

�������·��
������··�·�����
��
����¸	��	���·.

4� "��	�
¸�·��·���¸	�����¸��¸· �	
���
��
�	
�

���

���	
�������������¸�����
���
�·�
�
�

�� �
� � ����� � ��� � ·¸�	�
 � ��·�
¸	� � �¸

�����

���¸	�����&�·���¸�

��¸
��
���
	��

�
��������
¸	��

7� �
���¸��·�����	�������¸�����
�¸
·�¸�·��

�

�
 � ·�� � ·
����¸	� � ���	 � ¸
 � ¸��· � 	
� � �

���	¸	�
�
�·¸�	�
�

B� "��	 � ��� � ��¸���� � ¸· � ·�� � �� � ��
���
� � ¸�

·�
�
���������
	
�����·
	������·�����·����

��������
��
���	�������
�
�������
��
��

<� ����� ���� � �¸��· ����	��
� ���	� � �
 � ����

�����
��
	�� ��¸���� ��	�� ���	�·�
�� ���¸	�

�
�� � ���� � ·
 � ���� � ��� � ����� � ���� � ��·

����¸������	����¸	·��������

·�
��

���·� �	���· � ��� � �����··�� ���� ��� � ���¸
 � ����
	

��¸� � �	� � ����� � ����
	· � ¸	 � ��� � ���� � ����¸·¸�¸
	

�
	��

���	��

������·������
	�-�·����

���������¸
�����
	���¸�·

¸· �
���
�� ���'!�� ���	 ����� � ���¸	� � ¸· � ¸	 ����¸���

�
¸��¸	� � ¸� � ���¸	· � ���� � ���¸	� � �	� � ���	��· � ���

���
��	��
�	��¸
	�

 � ���������
	��
 ���#(� � ����

���¸
�����
	���¸��������¸	�·������
���
�������¸·

����	�� ��	 ��$�#� �
����¸
�����¸�������· �	
�����	

��
��··����¸��¸	����¸��
������·

��������¸�����¸·

��	��������	��������·�
�¸	��������¸·��¸·�
��������

����� � ¸· � �	 � ���¸��	��
 � �
¸	�¸��	�� ��¸�� � � � �����

�����¸·�	
�����¸	��������¸������
	�¸�¸
	��������	

����·����
�������¸	�������
��������¸������
·¸�¸
	�

A�����¸·� � � � ��·�
¸	� � ����� � �¸

 � �� � �¸·�
�����

"��	� ��� ��#!,'%� ���¸
 �����
	� ¸· �·�
������ � ���

���
���¸��·

��������¸�������·��¸������
���¸·�	
�

���

����� � �	� �
	
� � ��� � ��¸���� � �
	�¸�¸
	·

��·��¸����������)A���¸

���·�
��¸	���������

�
 ���+�% ��!��� ! �¸· � �
¸����� � ���� � ���¸	� � ��
�·

���	 � ��� � 	��� � ��¸���� �
����·� � %
¸��¸	� ���+�%

�!��� !����¸	�������·������
��
	���
�����¸�������

J#!& �¸· � �
¸���� � � � ·¸	�
� � ·

����� � ��¸���� � ¸·

���

�����

�
 ����� � ���¸	�� ¸· ���
��� � &����
¸��¸	� ���#('� � ���

�
·������	�������·�����¸	��¸·�
�����

G	� �? ��!#& �$! ��$��

��� � ·�� �

 � ���¸
 � ����
	· � �� � ��� � �
��
��

 � ���

�¸	�
����·��¸��·�����	
���
�

��

�·���¸	����

��� ��¸�¸�¸���� � �"��	�� � ���¸
 �����
	� ¸· �·�
������

	
� � ��� � �
	��

· � ��
���	� � �
 � ���� � ·��� �

 � ���

��
��··������	��
�������¸·���
�¸��·����¸�����
¸��

¸	���
����

��·���¸	����������¸�¸�¸��������¸	������

�������

�·���·������¸·¸�
������

��¸��·��·���·���	

��·¸
� � �� � ·�¸���� � ¸
 � ����
��¸��� � �	� � ���¸�����

���������¸	��¸·��
··¸�
�����
������·�����
¸���·�����

�	
�����������������
¸	��������	���� ��	���¸��

·�
��� � ��� ��K(!�� ���¸
 � ����
	 ��	���

 ��
	��

·

�¸

�����	��
���

��¸· � ·�� �

 � ��¸�� � �
��· � � ¸· � � � �
���
�¸·�

������	�����	�����
 ���
��	
�¸����·��· �·�������

�¸�¸�¸��� � �	� � ��� � ¸����¸�	�� � � �
�

 � �¸����

¸	���
��� � �
�
� � ������ � ¸	 � �
�� � ������ �
�

�����¸�	�����·��·� � �!�������
��� �
��¸	��
��� ���

�

���
��··��
������·�����
�¸��·�����¸�����
���	��

��¸���

���·��· ���
 ��!�
&� ������	
�����������

�����
¸	����������·������
¸	��¸��

G	=
+� !'&��+��/��?��? �(%#�

����·�
�����
�������
�¸��·�·���
���

��·�����

·¸��
� � ��� � �·�
�
 � ¸	������¸
	· � �¸�� � ��� � ������

���·��¸	������¸
	·���	�������

������¸��������	

��������¸	��¸·����¸���
�����	���������¸	��¸·���
���

&������
������·¸	�
����¸�����
�����	���������¸	��¸·

��
���'� � � ¹�·· �
�����	�
� � �·�� �
�����¸
	· � ���

��	���
���	�·���¸
��
�����¸
	·�����������
¸���

�¸

 � �� �
�����	�
� � ���

���� � ��� � ¸��
���	���

�·¸	����·�
����.�
��������
��
�

��� � �
·¸�¸
	 �

 � ��� � ���·
� � ¸· � �
	�¸	�
�·
�

�¸·�
������ ���¸·��

�·��������·
���
�����·����

��������·¸��
��¸	

����¸
	���
�������������·�����·

�����¸����	����¸����

�������
������·�

�
��������·
��¸·���������
��������������&->4��¸��

�
�¸
	'���������	��
������¸
	�

�¸	����·��¸·��������

�	���¸·�
������ ��������¸
	�¸·�·���������

�����

������·
����������������¸·��
���·��¸·¸�
������#·����

���¸
	 �

 � ¸	����·� � ¸· � ���	��� � ¸�· � ����	� � ¸	 ��
��

�¸�� � �	� � ·¸�	�
 � ��¸��� � ��� � �
	�¸	�
�·
�

20th Annual Tcl Conference 129 New Orleans, LA Sept. 23-27, 2013

�¸·�
�������"��	�->4�¸·���
��·������
�������	�

¸·��¸·�
�����	�����������·
��

� $
¸	� � 	
��¸	� � �	� � ���	���

� � �
¸��¸	�

�'+& %���
�¸��·���·¸��
�������
����·���

�

� �
������·� � � -
·� � �¸�¸��
 � �	� � �	�

�

·�
��· � ��
�¸�� � ·���
�� �

� � ���·��¸	�

�

���� � �	� � �¸�� � �¸

���	��·� � � � ��¸·

������ � ��
�¸��· �

� � ·¸��
��	�
�·

���·�����	� �

 � �

���� � �	� � �¸��

�¸

���	��·�

� %
¸��¸	���K('+������	�·������

����
�	�

�������¸
	�

�¸	����·��� ��¸	���(

�������¸·

�

�����
���

·���������·�����	����	���¸��

¸	�����
 �

� � � � ·���¸
¸�� � ��	�� �

�

��¸	������
��·�����������
�����	·¸
	��¸	

��	���
 ��¸

 � 	
� � �� � �����
� � ��� � ·�
�����

���¸
	�

�¸	����·��

� %
¸��¸	��
+<#���
�¸��·������¸	¸�����	�

���¸������
��·�

����������·��¸��¸	����

���¸
	�

�¸	����·��

���¸· ��
����·��	�¸	�����¸� ��
����¸�����·��¸�¸	�

��� � ���¸
	 �

 � ¸	����·� � ����	·¸
	� � � -�
�¸�
�

����	·¸
	· ��������������· ���·������ �0��������	�

�����¸
	���·��·���������¸
�· ��

��
¸�¸�· ��
���¸·

����	·¸
	�·������ � ������
	�����

��	�����	·¸
	

·�������·�·����
�··
��·�

�	�
�
��>¹��

"��	��� � ��� � ·�
�� � �¸·�
�� � ¸· � ����	��� � ��

����
	· � ��� ��¸·�
���� � �
 � ��� � �¸��� �

 � ��� ���¸��

��	�� � ����·� � ����
	· � ��� �
���
�� �� *�#! � �	�

�! D�#$*���%
¸��¸	���! D�#$*��
�·������
��

����

�

��·������

���¸��
���
¸	�������
	������	·¸
	

���
� � � %
¸��¸	� �� *�#! � �����	· � �
 � ���

�	����	�����¸·�
�����"��	����������

��·�����¸·

������ � ���·����
 �����
	· ��������
����
�
�����

�·���¸	���
����

G	G � +$�&#,,'+�*

¹�··�
�����	�
���·����
���	�·�������
��������

��� � ��	�� � � ��� ��� / ���	� � ��
�¸��· � ���

�¸	��
�	��¸
	·.�

� �!����
��
�·������¸·¸�¸
¸���

����

��¸	���

��¸���

� � '% � �##!�*� �
��
�· � ������	 � ���·

���
���¸	�#$%��	¸�·�&·���
��	�������	�

��� � ��
��' � �	� � ���·¸��

� � ���	¸	�
�

�

��¸	���·�&	�	
·��
	�·��	���¸

¸�

�·'�

� ��')	 � �!��� ! ��
��
�· �
	 �
� �

�
������¸
	· � ���� � ·���¸
¸�� � ��� � ��¸����

�
·¸�¸
	�

#�
����
��·���
�����')	��!��� !	���������������

�

��· � ¸	�������
��
���������	��·�	���
	
�·
��

����·���
���

���¸·��·����
��¸��������¸�¸�¸���¸
	

�·���
�·�� �����

�¸���

���¸·��·����
��

������

!()#� �	� �
���� � �¸�¸��
 �

�¸� � ¸	 � ��� � �
��
��

��¸����· � �
�� � � � �¸��· � ���� � ��� � ��
���� � �
 � ���

·���
¸	� � �

�� � ��� � ��� � ������¸	�� � �� �
���

¸������ ���¸�� � ¸· � �

���� ���� ��� �

�¸� � �

���

��¸· � ���	· � ���� �
�
� � �
 � ¸�·�

� � ��
 � �
��
���
�

¸��	�¸��
�·¸�	�
·����������������¸

���	���¸��·�¸	

��� � �����·� � ���¸· � ��	 � �� � �¸·�����¸	�� � � ���¸����

·���¸
¸���¸
	 � ¸· � � � ·

����� � �
������¸
	 � ����

����·�����
¸�·����¸���������·�

����
··¸	��
	����

����

��·��	��·�¸
�·�������
��
·¸�¸
	�¸����������
�

������¸��·�
�
��������
��¸	���
�������
���·�
�����

�����������¸������ ���¸·�·���¸
¸��·������
·¸�¸
	�

������¸�����¸	��¸·�
������¸�����������
·��

��
�¸	�

����-¸������
������
¸	�·�����������¸		¸	���	���	��

��������

������¸�������	
���

���	¸	����·�¸	��

���	¸	��
	���¸�����·���¸
¸���¸
	���¸
���������¸	�

�
 �

���� � ��� � ��·�
¸	� �

 � ��� � ·¸�	�
 � ���·�·

��
�
��· � �����·� � �����· � ����¸��� � �� � ���� � �¸��

��� � 	
� � ���� � � � �¸·��¸�¸	��
� � ��
··¸	��

!�������
�� � ¸
 � ��� � �����	�
 � ��¸���� � ¸· � �·�� � 	

���	¸	�
�
 � ·�¸
� � ��	 ��� � �
������ ������·� � ���

�¸·��¸�¸	��
� ��������������	
��¸	���
 ��
 ��¸��

������¸�����

Q	��'&:'��+���#+& !+*

!�
��������������¸		¸	��������
�
���·��
��������

����·

������¸	�
��������¸���	���¸	������������¸���

�
��

�� � ����	��	� � ��
F¸�· � �
 �

�� � � � ·�� �

��������·3;5�� � ���¸·��
�
���

���������
¸���¸
	

�
 ��� ��
�	�� �
������ ��¸�� � ��� �%#0*�$¸�¸�¸���

¸����¸�· � ��
�¸�¸	� �

� � � � 	���
� � ·¸	�
� �
¸
�

¸	·��

��¸
	 �

 � ��� � ·

����� �
	 � �

 � ·���
����

20th Annual Tcl Conference 130 New Orleans, LA Sept. 23-27, 2013

�
��

��·�&�����	�
��B7��	��I<��¸��¹¸	����	��B7

�	��I<��¸��"¸	�
�·�
�����¸	��·�·���·'�

!�

� � ·¸	�
� �
¸
� � ¸	·��

��¸
	 � ¸· � 	
� � �
··¸�
�

�����·��
�����¸	��·�·�������¸�����¸���· �

�����

A�>��	��%A*0��¸	���
���·���������¸���������·�

	
��
	
��������
����¸	·��

��������¸	�������·��

¹¸	���

�����¸	�
��������	�
��	���¸	�������·��

"¸	�
�· ��
���������� � ��� ��
��
�� �·�·������	

������	����	��¸��

��¸	·��

���������	����¸��·

�������������

)���¸	� � ��
··��
��

�� �����(���· � �
 � �
�� ��¸��

�
��¸
�� � ����	·¸
	· � ���� � ���� � ����	��	�¸�·

���� � ¸	 � ��� � �¸����
 �
¸
�·�·��� � ¸· � ��¸��� � �	��

�¸��
�� � � � 	����� �

 � ·������· �

?��(�VV/�:�	�&%	�:� ��¸· ��
�
������� ����	���¸�� ��

�¸� �

	��� � �
 � ��� ��
��¸	�� � ���� ��¸�¸ � ��
�¸���

��¸�����
����¸	�·���
����������������	������
�
¸
�

�¸����	�����
�

��
¸���������·�·
������������

	��
���
���������	��	��
¸����¸�·�

�����
�
�����

����(����¸�·�

�

����
�¸�¸	�
�¸������·��
���
�¸�������¸	��������

��
�	� ��&%WJ��#'�J�% ����� � �
�
� �

�� � ���

$¸�¸�¸����
¸����¸�·��	��¸�·�����	��	�¸�·��·������

��� � ��
��·· �

 �

��¸	� � ��� � �¸�¸�¸��� � �������

�������� � � ��¸· � �
·�� � 	
 � ��
�
��· � �	���

"¸	�
�·� � �A	��� �¹¸	��� ��
���������	� ��
���

�����
����	���¸
	�

������
�	��¸
	�·����· ������¸

����
�-������		
�����

�����
�
�������¸����
�
¸
�

·�·������2� ��
��¸

����������
 ��
�������
¸
���
 ��

����
���� � �¸����
�� � �	� �

�� � ���� � ����
����

¸
�2�������

����
	·¸·��	�
��
�¸
����

��¸·���·����	���

����������
�����
�����������¸
�

��� �
¸
� � ��� � ���� � ���	 � �
�¸��� � ��¸��	�
�

��
8!�¹
��!¸
� � �¸� � 	
� � ·���
� � ·�

¸�¸�	�

¸	

����¸
	� ��
�������

���¸
	�

���������
����

�
����
��

��������	��¸��

������
�
¸	��¸���·
����

��	��¸� �

���� �
�

 � ���� � �
 � ·�����¸	� �

� � ���

·������
�-����¸	�¸�·�·��	�����·���

��¸����
�¸�·�

�������	���
��
�����
�	��

����¸· ���
�
�����·

�
��������������(����¸	����
�¸
¸���·��

�����¸���

��� ��
�¸
¸���¸
	· � �	������ � ��� � �������� � ¸	�

K ����	·�
��� � �����¸	� � ��� � �¸����
�� � ¸
 � 	������

��
¸	�� � ��� � �	�¸�
	��	� � ���¸��
�

�
W�
����@W���� ��
 � ¸	�
��� �K ����	·�
��

�	�������������������(�����

��� � ����	������
 � ·��¸��� � ������¸	� � � � ¹¸	��

�
��

����
�¸�·���������
��¸����·������
¸����¸�·��

���� � �¸����
�� � �	� � ���
¸�¸�
� �

��· � ���� �
�
�

������ � � �0����¸��	��

�� ¸� � �������� � ���� �·¸��
�

·���¸
�¸	� � ��� �
�

 � ���� � �
 � ��� � �
�¸�� � ·�����

¸����¸�· � ��· � ·�¸

 � ¸	·�

¸�¸�	� � �
 �

�� � ����

�¸��
��������
W�
����@W�������
¸	¸�¸
	�

X	�J$�$! �/#!:�

��� �
�	��¸
	�
¸�� �

 � ��� � ·�
�� � ���
¸���¸
	 � ¸·

·�

¸�¸�	���
�·���
���·�����

�����%#0*�
��¸
��

�¸�¸�¸�����
��
�·�� �!�������
���¸·��
�		����
��

�
�����	������
�	��¸
	�
¸���

�����·

�������	���

�
��	����·
���

·���	�·.

�4� ����
�� � �¸

 � �� � ����� � �
 � ���
�� � �����·

�
�������¸·�
����
 ��
���������	���¸	���

¸
�·���#�·¸��
��:-¹�
��L�A*�

������¸

��
���
������·���

�����������

������	�

�?¹¸�� � ¸· � ��¸	� � �
	·¸����� � �· � � � �¸	���

���� � ���� � �
�
� � ·���
�� � ��� � ��	�
�

����·· � ����¸���
 �

 � �	 � ���	� �
�
� � �

�

���¸
	�

����	�·�

�7� ��� � ����¸������� �

 � ��� � ·

����� ��
·�
�

�· � ��� � -
��
 � @¸�� � %
	��

��

&-@%' � ·

����� � ������	� ���� � �����· � ¸	

�����������	���·� �������
�����· � ������¸·

�¸·��··¸
	� ���������-
��
��	��%
	��

��

�
��
	�	�· � ·�
�
� ��� � ��
� � �
 � ��	 � �· � �

����
�·· �·�������¸�����

 ���
¸	���·
����

��·�� � �
���	¸���¸
	· � ��
�¸�¸	� � ���

�����¸
¸�� �

 � �·¸	� � �¸���� � ��� � %#0*

��
�¸����@¸���
� �� ���·�
���·�� ���¸���	

�¸���������¸������¸��������¸�¸�¸���· � ¸	��

���
����������¸·¸�¸
	�·�·����

�B� ��� �	���� �
 � �
��� ��� � ���� �
	
���?¹¸��

�
��
�������¸
¸�¸�· �������·��
���¸	�
����

¸
� �·�·������	 ��� � ���
��� ��·¸	� ��
��

�
	� � �� � #	�
	 � F
��
�	�
 � 3D5� ���� � �

�������������

 ��
��� � ¸��
���	�¸	�����

������·���
���
����
������¸	��������
��
�

20th Annual Tcl Conference 131 New Orleans, LA Sept. 23-27, 2013

�����¸
¸�� � ������·� � ¸· � ���� �
	
�� � ��¸·

·�
�
�����·�
��

�<� "�¸
�� � � ��¸	�� ���� ¸��
���	���¸
	�

 � ���

���¸��������¸
¸�¸�·�������·���·��	��?¹¸��

������·����·����

����
¸����¸��
����·����·

�������·�¸
	�

��
���
���¸	��¸	����

���

���·¸
	· �

�����·�
�����
������· �%#0*

����	�· �
�� � �¸�¸�¸��� � ��
���� �
¸	��

����¸
¸��¸··��·����.

��' ,
� � �
 � ������ � ��� � �����¸
¸�¸�·

������·��

��' ,
� � �
 � ��
�¸�� � ������· � �
 � ���

%#0*$¸�¸�¸��� �
¸����¸�· � ���	 � 	��

����������	�����	��¸�¸�¸����
¸������

������·�����¸���¸��

Y	��#+&%$*�#+*

"¸�� � ��� � ¸	����·����·��

 ��¸���
�����	��� ��¸��

��·

��¸
	 �

�·� �#$% � ��·�� � �¸�¸�¸���¸
	 � ����·�

�

· ���������¸�����
�·���
����
���¸	�����¸�	���

�	�������¸�	�����·��·�

����·�����¸��·�� ���
��	�

����(���· � ��
�¸�� � � � ����

���	� � �	�¸�
	��	�

���� � ¸· � � � �

� � ��
�	�� � ������	 � ��¸��

����

���	���	���·¸��
�����

���	��

��¸· � �����· � ��· � ��·��¸��� �%#0*�����	

�¸�·

�
����
���
�¸������

�

������¸	¸�¸�
�·�����

�¸�·

�	���
���� �
¸	��

 ��¸�¸�¸���·� ���� �·

����� � ¸·

�
�¸	� � �
����· � ¸�· �
¸�·� � ¸	¸�¸�
 � ���
¸� � ��
��·�·�

!
�������
·�����������

���	����·����	�·�

��

�	����
��
��
����

Z	�� < ! +& *

345�%#0*�$¸�¸�¸����¹¸������¸·���
���
�����¸
��
��

·���
���
¸������

������%#0*�
��¸
��

��¸�¸�¸���·�

���¸
��
����.�

?��(�VV///	&' +	��V&*�� V�' +�!#�	[*(;

��,#�\X�X]('! +�\�Y�

375���
66�¸·���%66��	���·�
��¸
	�

�������-
��

������·�

�
¸���
��������·����	�����	�
��

�	���·�
������·�����������������	��¸·���¸�

��

��·���¸����¸	�

����. ������
��� �
���	¸�� ��
7GG< (����· C
	

!
�

����
�

3B5�)��,
�
����>�¸
�¸	��#��
¸���¸
	·��¸���>¹��

����. ����¸	��¸����· K�
�· �����	�
 ��
 >¹� ��	

�
��·���
�

3<5�>�������	�¸	�����
��

����. ����

�¸��·
����

����	�� �

3E5�(

���������·���¸���	����#�-�	�-����·��	��¸·�

�����

���
¸��
	����	�����·
�����¸·.�

����. �
�·����¸��·������
� ���¸����
 D�E ��
¸� �

�

����� �

����������
�

3I5��*���¸·�"��$��������·��������
�
�-����

�¸�	��������	·¸
	��
���
 ������*���¸·������

�

��
¹¸���	��¸·���·��¸������������

?��(�VV///	/[�H �� 	&#,V*+��V*+��	?�,%�

3;5����¹�	���·�'�(�
�����)���*�+���&���,�

+������&���
����!����������(��·�	������
�7GG7�

@�	�
�����>%������4I�7G��7GG7��(��������¸
��
��

	
¸	�����

?��(�VV///	�&%	�:V&#,,$+��-V�&%�^^�V'!&?�D V�

&%�^^�('(!*V%'+� !*>�&%:��V�&%:��	(�<�

3D5�#��F
��
�	�
���
�@!��¸	������¸
	�

����
¸��B

�����. ����·¸
�·

���
� ��
·�
¸���
·����

20th Annual Tcl Conference 132 New Orleans, LA Sept. 23-27, 2013

Cmdr

Andreas Kupries ActiveState Software Inc. 409 Granville Vancouver, BC CA

andreask@ActiveState.com

ABSTRACT

The cmdr framework is a set of 12 related Tcl packages for the easy specification of the interfaces of command line applications.
This means the declaration of the set of commands provided by the application, and their parameters, be they options or
positional inputs. At runtime the internals of the framework, guided by the chosen specification, handle the bulk of processing
$::argv. This covers determining the requested command, mapping argument words to command parameters, and validating
them. Additional features of the runtime are an integrated help system and interactive command line shells with basic
command and argument completion.

1. INTRODUCTION
Following a short overview of the framework’s history, the bulk of the paper describes its design and internal structure.

The paper concludes with a dicussion of limitations, warts, and possible future directions to take.
Development of cmdr[3] (speak Commander) began as a rewrite of the stackato command line client’s[1] because of various

problems with the existing system, namely the use a global namespace for all options of all commands, and the hacks needed
to support hierarchical commands.

Wanted was a system able to at least handle most of the tasks of command line processing automatically, like parsing
the list of words, determining the requested command, separating named options from positional inputs, matching argument
words to the parameter, etc.

Further wanted were facilities to ease the implementation of less common tasks, like validation of parameter values, trans-
forming from external (string) to internal representations, performing checks across multiple parameters, etc.

Existing packages like getopt[10] and cmdline[8] were much too simple for all of the above, so development of a new package
was begun. The TEPAM[8] package, which actually comes relatively near to the requirements, was not remembered at
the time. It is also more geared towards the creation of procedures with more complex argument processing, and not the
description of the entire command line syntax of applications.

A requirement going beyond the above, and initially more of a wish, was support for an interactive command line shell.
This spawned the development of a CriTcl[4] binding[9] to the linenoise[2] C library which portably handles all the necessary
low-level tasks regarding terminal access and control. Build on top of this cmdr not only supports command line shells in
various places of the runtime, but also has command line completion.

This paper describes version 0.4 of the framework.
As a small motivating example see listing 1 which specifies a command line providing 3 commands for the management of

command aliases. This is actually a slice of stackato’s interface, modified to fit.
While this example does not have the necessary backend procedures required to actually run the commands, it is enough

to demonstrate the integrated help system. Listing 2 shows the output of tclsh ./alias0.tcl help.
The decoupling of command names from their implementations we see here makes it easy to re-arrange and re-label the

user visible commands without having to touch any other part of the code.
Listing 3 for example shows how the specification would look like if a command hierarchy is prefered over a flat set of

names.
The associated help is shown in listing 2, albeit in the shortest variant possible, the result of running the command tclsh

./alias1.tcl help --list 1.

1And a bit of manual breaking of lines normally done automatically, guided by the terminal width. The default of 80 did not
fit here.

20th Annual Tcl Conference 133 New Orleans, LA Sept. 23-27, 2013

2. SPECIFICATION
The domain specific language demonstrated in the previous section is the first, and main, interface seen by a developer.
It actually consists of three separate languages, for the specification of the overall command hierarchy (see table 1), of the

individual commands in that hierarchy (see table 2), and their parameters (see table 3).

2.1 General
The conceptual model underneath the command hierarchy is that of a tree.
The inner nodes of the tree represent command ensembles, here called “officer”s. Each officer knows one or more commands,

and delegates actual execution to their respective specification, which may be another officer, or a private.
The leaf nodes of the tree represent the individual commands, here called “private”s. Each private is responsible for a single

action, and knows how to perform it and the parameters used to configure that action at runtime.
The same model is graphically presented in the Entity-Relationship-Diagram 1 below.

Figure 1: The Entities and their Relations

The not yet described “Actor” is the common base class for the ensembles and commands. The other, “Config”, is the
second interface seen by the developer, as the sole argument to the action callback argument of private (see 2nd-last row of
table 1). This container holds all the declared parameters of the command the action is invoked for, and provides easy access
to them through its methods at the time “Execution” (→ 3.4).

2.2 Officers
The three most common DSL commands used to specify officers (officer, private, and description, see table 1) have

already been demonstrated in the examples (see listings 1 and 3).

alias name = name’... Declare an alternate name for a command path.
alias name Declare an alternate name for the previous command.
common name script Declare shared code block.
default Set last command as default.
description text Set help text for the current ensemble.
ehandler cmdprefix Execution Interposition.
officer name script Declare a nested ensemble.
private name script cmdprefix Declare a simple command. The script uses the commands found in table 2.
undocumented Hide ensemble from help.

Table 1: Officer DSL

This leaves us with five commands not shown yet.
Of these alias is a structuring command, for the command hierarchy. It main uses are the creating of alternate com-

mand names, and of shortcuts through the command hierarchy. For example, stackato’s command specification for alias
management is more like listing 3 and uses shortcuts similar to what is shown in listing 5 to provide the look of a flat
namespace.

While common is a structuring command as well, its use is in structuring the specification itself. It creates named values,
usually code blocks, which can be shared between specifications. Each block is visible in the current officer and its subordinates,
but not to siblings. An example of such a block is shown in listing 6 (page), where it defines an option to access the subsystem
for debug narative [8]. The example is actually special, as the code block named *all* is reserved by the framework. This
code block, if defined, is automatically included at the front of all private specifications, i.e. shared across all specified
commands. A very important trait for the option in the example, as it makes the debug setup available to all commands
without having to explicitly include the block, and possibly forgetting such.

Use of the undocumented command influences the help generation, excluding all officers marked with it (and their sub-
ordinates) from the help. Note that subordinates reachable through aliases may be included, under the alias name, if not
explicitly excluded themselves.

20th Annual Tcl Conference 134 New Orleans, LA Sept. 23-27, 2013

The last two commands influence the framework’s behaviour at runtime
The default command sets up a default command to use at runtime if the currently processed word does not match any

of the commands known to the officer. Without such a default an error would be thrown instead.
The ehandler command is possibly the most disruptive. It should normally only the specified at the top of the whole

hierarchy. At runtime the framework will call the command prefix specified through it with a single argument, a script whose
execution is equivalent to the phases “Parsing”, “Comletion”, and “Execution” of the framework, as described in section ??.
The handler must call this script, and can perform any application-specific actions before and after.

The handler’s main uses are the capturing and handling of application-specific errors which should not abort the application,
or shown as Tcl stacktrace, and for the cleanup of application-specific transient settings the parameter callbacks and/or
command implementations may have set during their execution. This is especially important if the interactive command line
shells of the framework are not disabled. Without such a handler and its bespoke cleanup code transient settings will leak
between multiple commands run from such a shell, something which is definitely not wanted.

2.3 Privates
The specification of simple commands is relatively simple, with only seven commands (see table 2). The important parts

are found in the parameter specifications, explained in the next section.

description text Set help text for command.
interactive Allow interactive shell.
undocumented Hide command from help.
use name Execute the named common block here.
input name help script Declare a positional parameter. See table 3 for the available commands.
option name help script Declare a named parameter. See table 3 for the available commands.
state name help script Declare a hidden parameter. See table 3 for the available commands.

Table 2: Private DSL

The commands description and undocumented behave like the equivalents for officers.
use is the counterpart to common of officers, inserting the named code block it defines into the specification.
interactive influences the runtime. By default the only interactive command line shells are associated with the officers.

Setting this marker activates such a shell for the command, to be invoked when required parameters do not have a value. The
global command cmdr::config interactive can be used to globally activate this type of shell for all commands.

The remaining three commands all add one of the three kinds of parameters to the command.

2.4 Parameters
The parameters of private commands are the heart of the system, providing the space needed to transfer the command

arguments to the implementations, and having the most attributes controlling their behaviour.
This complexity is mitigated strongly by the use of sensible defaults for each of the three possible kinds of parameter, i.e.

positional inputs, named options, and state hidden from the command line. Each kind has its own construction command
in the DSL for private, specifying the common information which cannot have defaults, i.e. the name identifying it to the
system (→ 2.4.1, the help text describing it in informal speech, and, of course, the specification itself (see table 2).

The association between the specification commands, parameter attributes, and their defaults is found in table 3, with each
group explained in the following sections.

2.4.1 Naming

We have two commands to influence the visible naming of all parameters.
As background, all parameters are named for proper identification within the framework and other Tcl code, i.e. the

various calbacks, including a private’s action. This system name has to be unique within the private a parameter belongs
to. Beyond that however the visible parameters have to be identified within help texts, and, in case of options, for detection
during “Parsing” (→ 3.2). That is the visible naming, seen by a user of any application whose command line processing is
based on the cmdr framework.

The label command handles this, using the system name as default. Note that in most cases this default is good enough.
The only use case seen so far is when two semantically equivalent input and option parameters clash, requiring different
internal names due to the requirement for uniqueness, yet also the same visible name and flag within the help to highight
their connection and equivalence.

In case of options the label command and its default specifies the name of the primary flag recognized during “Parsing”.
If that is not enough for a specific option the command alias allows the specification of any number additional flags to
be recognized. Note however that the framework automatically recognizes not only the specified flags, but also all unique
prefixes, obviating the need for alias in many cases.

2.4.2 General control

The general handling of a parameter is influenced by three commands.
Like officers and privates parameters can be hidden from the generated help. The command for this is undocumented,

the same as for the first two . This is mainly of use to hide options giving an application developer access to the internals of

20th Annual Tcl Conference 135 New Orleans, LA Sept. 23-27, 2013

Command Attribute Input Option State Notes
– name – – – Parameter name, unique

within the private.
– description – – – Help text.
– visible yes yes no Parameter is (in)visible to

“Parsing” (→ 3.2).
– ordered yes no n/a Access during “Parsing” (→

3.2) is ordered.
label text label name name n/a Name to use in the help,

and as primary flag (for an
option).

alias name aliases n/a none n/a Declare alternate flag for an
option to be recognized by.
Multiple aliases are allowed.

optional optionality no n/a (yes) n/a (no) Declare input as optional.
test acceptance threshold n/a n/a Control the matching of

words to optional inputs (→
??).

undocumented undocumented no no n/a (yes) Declare as hidden from help.
list listness no no no Declare as list-valued.
default value default ∗ ∗ ∗ Set constant default value.

Details in section 2.4.3.
generate cmdprefix generate ∗ ∗ ∗ Set callback returning the

default value. Details in sec-
tion 2.4.3.

interact ?prompt? interact, prompt ∗ ∗ ∗ Enable the interactive en-
try of the string value. De-
fault prompt derives from
the label. Details in section
2.4.3.

defered defered no no yes Defer calculation of the in-
ternal representation until
demanded.

immediate defered yes yes no Complement of defered.
Calculate the internal rep-
resentation during “Comple-
tion” (→ 3.3).

presence presence no no n/a Declare as boolean option

without argument. Implies
default and validate set-
tings.

validate cmdprefix validate ∗ ∗ ∗ Declare validation type. De-
tails in section 2.4.4.

when-complete cmdprefix when-complete none none none Set callback executed when
the value becomes known.

when-set cmdprefix when-set none none none Set callback executed when
the string value becomes
known.

Table 3: Parameters: DSL, Attributes, and Defaults

20th Annual Tcl Conference 136 New Orleans, LA Sept. 23-27, 2013

their application, something a regular has no need of, and doesn’t have to know about.
Next is the possibility of specific inputs not being required to be set by the user of the application, i.e. having sensible

defaults (see also validation in section2.4.4). To mark such parameters use the command optional. During “Parsing” (→
3.2) the system will then expend some effort to determine whether an argument word should be assigned to such a parameter,
or not.

The test command is related to this, switching from the standard regime based on counting to a different one based on
validation. The details are explained in section 3.2.

2.4.3 Representations

An important concept of parameters is something taken up from Tcl itself. The differentation between string and internal
representations. Where Tcl uses internal representations to speed up its execution here this separation is that between the
information delivered to the application by a user, and the application-specific data structures behind them.

All parameters will have an internal representation. This is usually derived from the string representation provided by the
user. The details of that process are explained in section 2.4.4 about validation types. However we have cases where the user
cannot specify a string representation (states), or is allowed to choose not to (optional inputs, options). For these cases
three specification commands are made available enabling us to programmatically choose the internal representation. They
are default, generate, and interact.

The first, default, provides a constant value for the internal representation. The second, generate, provides a callback to
compute the internal representation at runtime. This is useful if the default is something which cannot be captured as a fixed
value, for example a handle to some resource, or a dynamically created object. These two commands exclude each other, i.e.
only of them can be specified.

If none of them are specified, and we need a default (see the cases above) a default is chosen per the two rules below:

1. Use the empty string for a list parameter.

2. Use the default value supplied by the chosen validation type (See section 2.4.4).

The third command, interact, actually does not specify an internal representation, but activates another method for the
user to specify a string value for the parameter, outside of the command line. As such it has priority over either default and
generate, and can be specified with either. A parameter marked with it will interactively ask the user for a value if none was
specified on the command line.

To recapitulate:

1. A string representation specified on the command line has the highest priority and goes through the chosen validation
type to get the associated internal representation.

2. If activated via interact a small shell is run asking the user for a value (or more, as per list). The result goes through
the chosen validation type to get the associated internal representation.

3. After that the internal representation is either the declared default, or the result of invoking the generate callback.
As internal representations they are not run through the chosen validation type.

A command just noted in the recapitulation is list. It is used to mark parameters whose string and thus internal value
should be treated as a list. This affects the handling of the parameter during “Parsing” (→ 3.2), by interact above, and the
use of the validation type. The last two ask for multiple values, and feed the elements of the string value separately through
validation instead of just the string value in one. During “Parsing” treatment of options changes from keeping only the last
assigned value to accumulation of all values. Similarly a list-input takes all remaining words on the command line for itself
instead of just the current word. Because of this list-inputs are only allowed as the last parameter of a private.

The last two specification commands dealing with the representations control when the internal representation is created.
A defered parameter will do it on-demand, on the first access to its value. A immediate parameter on the other hand will
do this during “Completion” (→ 3.3).

2.4.4 Validation

The answer to the necessity of moving between the string and internal representations described in the previous section are
the validation types. Given a string representation they either return the associated internal representation or raise an error,
signaling that the input was illegal. This part of their work, the verification of the legality of the input string gave them their
name.

Because of the same necessity all parameters must have a validation type assigned to them, and the system will choose
which, if the user did not. This choice is made per the six rules below and always returns one of the standard types shown
in table 4.

1. Use “identity” if a generate callback is specified.

2. Use “boolean” if no default is specified and the parameter is an option.

3. Use “identity” if no default is specified and the parameter is an input.

20th Annual Tcl Conference 137 New Orleans, LA Sept. 23-27, 2013

4. Use “boolean” if the specified default value is a Tcl boolean.

5. Use “integer” if the specified default value is a Tcl integer.

6. Use “identity” as fallback of last resort.

Name Complete-able Accepts
boolean yes A Tcl boolean
identity no All strings
≡ pass
≡ str
integer no A Tcl integer
rdirectory yes A readable directory name
rfile yes A readable file name
rpath yes A readable path
rwdirectory yes A read/writable directory name
rwfile yes A read/writable file name
rwpath yes A read/writable path

Table 4: Builtin Validation Types

The general concept of validation types was taken from snit [7], and modified to suit cmdr. Where snit’s types expect
only a single method to validate the input cmdr expects all types to support an ensemble of four methods, one for the basic
validation and transformation of the input, another for the release of any internal representation so generated, plus delivery
of a default representation and support for command line completion. The details (method names, signatures, etc.) can be
found in table 5.

{∗}vtype... Meaning
... complete p x Return the list of legal string representations for the type and parameter p which have the incomplete

word x as their prefix.
... default p Return the default internal representation for the type and parameter p.

... release p x Release the (resources associated with the) internal representation x of parameter p.

... validate p x Verify that x is a legal string representation for p, and return the associated internal representation.

Table 5: Validation Type Methods

As an example the implementation of the standard boolean validation type is shown in listing 7. Note that while this
example uses a namespace ensemble other methods are possible too, i.e. all the various object systems for Tcl would be
suitable as well.

It should be noted that while snit’s validation types in principle allow for the transformation of input into a disparate
internal representation, they never went so far as to allow complex representations which might require the release of resources
after use.

Regarding the timing of a validation type’s use of its methods see table 7 about the association of phases and callbacks.
The validate and release methods are primarily used during either “Completion” (→ 3.3) or “Execution” (→ 3.4),

depending on the chosen deferal state. They may also be used during “Parsing” (→ 3.2), for optional inputs under the
test-regime (→ 2.4.2).

The complete method will be used whereever the system activates an interactive command line shell where arguments may
be assigned to parameters.

The default method on the other hand can expect to be invoked during “Dispatch” (→ 3.1), as part of the system’s
declaration processing, if not preempted by default and generate declarations for the parameter. Note here that the
default method has the same signature as a generate callback and can be used as such. This is actually needed and useful
when the default internal representation for a validation type cannot be expressed as a fixed value and its creation while
parsing the specification itself is too early. We can still use the validation type for its generation, by hooking it explicitly into
generate to change the timing of its invokation.

Not yet discussed so far is presence. This is best handled as part of the wider area of options with a boolean validation type
assigned to them. These have associated special behaviours, both in the handling of the specification, and during “Parsing”
(→ 3.2).

First, normal boolean options. They have automatic aliases declared for them, derived from their primary flag. An
option named “foo” will have an alias of “no-foo”, and the reverse. During parsing the “foo” and “no-foo” flags have inverse
semantics, and both are allowed to occur without option argument following the flag. This is in contrast to all other options
which must have such an argument. The parser essentially uses the validation type to decide if the word after the flag is a
proper boolean value, or not, i.e. an argument to assign to the parameter, or not.

20th Annual Tcl Conference 138 New Orleans, LA Sept. 23-27, 2013

Now presence declares a variant of the above, a boolean option without the automatic aliases, and never taking an
argument during “Parsing” (→ 3.2). Its mere presence on the command line will set its parameter. Their default is
consequently fixed to “false” as well.

2.4.5 Signaling

Of the four callbacks supported by parameters the first two, generate and validate have been described already, in the
sections 2.4.3 about representations and 2.4.4 about validation types, respectively.

This section explains the commonalities between the callbacks in general, and the last two, for notifications about state
changes in detail.

All callbacks are treated as command prefixes, not scripts. There are no placeholder substitutions, only arguments added
to each command prefix on invokation. This does not harm the generality of the system, as complex scripts can be used via
procedures or equivalents (i.e. apply).

The signatures expected by the system are shown in the tables 6 and 5.

Callback Signature
generate cmd {∗}$cmd param

validate cmd See table 5
when-complete cmd {∗}$cmd param intrep

when-set cmd {∗}$cmd param string

Table 6: Callback signatures

The last two callbacks not yet described are the two state-change callbacks defined via when-set and when-complete.
They are invoked when either the string representation of their parameter is set (when-set), or their internal representation
(when-complete). Through them the framework can actively drive parts of the application while processing the command
line, whereas normally the application drives access to parameters through their methods (see table 9).

Dispatch Parsing Completion Execution
validate (default) ∗
validate (complete) ∗ immediate defered

when-set ∗
generate immediate defered

validate (validate) test immediate defered

validate (release) test immediate defered

when-complete immediate defered

Table 7: Execution Phases and Callbacks

Due to their nature these callbacks are invoked at runtime during either “Parsing” (→ 3.2), “Completion” (→ 3.3), or
“Execution” (→ 3.4). The details are shown in table 7. The specification commands influencing the timing, i.e. forcing the
use in a specific phase are shown in the intersection of callback and phase.

3. EXECUTION
At runtime a command line is processed in four distinct phases, “Dispatch” (→ 3.1), “Parsing” (→ 3.2), “Completion” (→

3.3), and “Execution” (→ 3.4), explained in more detail in the following sections.

3.1 Dispatch
The first phase determines the private to use. To this end it processes words from the command line and uses them to

navigate the tree of officers until a private is reached.
Each word of the command line is treated as the name of the officer instance to descend into. An error will be thrown

when encountering a name for which there is no known actor2, and the current officer has no default declared for it.
On the converse, when reaching the end of the command line but not reaching a private the framework will not throw

an error. It will start an interactive command line shell instead. This shell provides access to exactly the commands of the
officer which was reached, plus two pseudo-commands to either exit this shell or gain help (.exit, and .help).

Execution of the command tree specification, i.e. generation of the associated internal cmdr data structures, is intertwined
with this descend through the command tree. I.e. instead of processing the entire specification in full it is lazily unfolded on
demand, ignoring all parts which are not needed. Note that the generated data structures are not destroyed after “Execution”
(→ 3.4), but kept, avoiding the need to re-parse the parts of the specification already used at least once when an interactive
command line shell is active.

2officer or private

20th Annual Tcl Conference 139 New Orleans, LA Sept. 23-27, 2013

3.2 Parsing
This is the most complex phase internally, having to assign the left-over words to the parameters of the chosen private,

taking into account the kind of parameters, their requiredness, listness, and other attributes.
Generally processing the words from left to right options are detected in all positions, through their flags (primary, aliases,

and all unique prefixes), followed by their (string) value to assign.
When a word cannot be the flag for an option the positional inputs are considered, in order of their declarations. For a

mandatory input the word is simply assigned as its string value and processing continues with the next word, and the next
input, if any. Operation becomes more complex when the input under consideration is optional. Now it is necessary to
truly decide if the word should be assigned to this input or the following.

The standard method for this decision is to count words and compare to the count of mandatory inputs left. If there
are more words available than required to satisfiy all mandatory inputs, then we can and do assign the current word to the
optional input. Otherwise the current input is skipped and we consider the next. A set of condensed examples can be found
in table 8, showing how a various numbers of argument words are assigned to a specific set of inputs, optional and non.
This is called the “threshold” algorithm.

Parameter A? B C? D? E
#Required 2 1 1
2 arguments: a b
3 arguments: a b c
4 arguments: a b c d
5 arguments: a b c d e

Table 8: Example: Mapping arguments to optional inputs by threshold

The non-triviality in the above description is in the phrase to “count words”. We cannot simply count all words left
on the command line. To get a proper count we have discard/ignore all words belonging to options. At this point the
processor essentially works ahead, processing and removing all flags/options and their arguments from the command line
before performing the comparison and making its decision.

The whole behaviour however can be changed via test (→ 2.4.2). Instead of counting words the current word is run through
the validation type of the current input. On acceptance the value is assigned to it, otherwise that input is skipped and the
next one put under consideration.

After all of the above the system will process any options found after the last word assigned to the last input to consider.
Errors are thrown if we either find more words than inputs to assign to, or encountering an unknown option flag. Note that

not having enough words for all required inputs is not an error unless the framework is not allowed to start an interactive
shell. In this shell all parameters are mapped to shell commands taking a single argument, the string value of parameter to
assign. Additional five pseudo commands are available to either abort, or commit to the action, or gain help (.ok, .run,

.exit, .cancel, and .help).

Parameters marked as list-valued also trigger special behaviours. For options the assigned values get accumulated instead
of each new value overwriting the last. For inputs only one such parameter can exist, and will be the last of the private.
The processor now takes all remaining words and assign them to this parameter. If the list is also optional then options may
be processed ahead or not, depending on the chosen decision mode, as described for regular inputs above.

Then are the boolean and presence options modifying the handling of flags and flag arguments. The details of this were
already explained in section 2.4.4.

3.3 Completion
This phase is reached when all words of the command line have been processed and no error was thrown by the preceding

phases. At this point we know the private to use, and its parameters may have a string representation.
All immediate-mode parameters are now given their internal representation. The parameters marked as defered are ignored

here and will get theirs on first access by the backend.
This completion of parameters is done in their order of declaration within the enclosing private. Note that when parameters

have dependencies between them, i.e. the calculation of their internal representation requires the internal representation of
another parameter then this order may be violated as the requesting parameter triggers completion in the requested one on
access. If this is behaviour not wanted then it is the responsibility of the user specifying the private to place the parameters
into an order where all parameters access only previously completed parameters during their completion.

3.4 Execution
The last phase is also the most simple.
It only invokes the Tcl command prefix associated with the chosen private, providing it with the config instance holding

the parameter information extracted from the command line as its single argument.
Listing 8 is an example of very simple action implementations, matching to the initial example specifications in listings 1

and 3.
All parameters declared for the private are made accessible through individual methods associated with each. A parameter

named P is mapped to the method “@P”, with all methods provided by the parameter class accessible as sub-methods. This

20th Annual Tcl Conference 140 New Orleans, LA Sept. 23-27, 2013

general access to all methods may be removed in the future, restricting actions and callbacks to a safe subset. A first
approximation of such a set can be found in table 9.

cmdline True if the parameter accessible on command line.
config ... Access to the methods of the container the parameter belongs to, and thus all other

parameters of the private.
default Default value, if specified. See hasdefault.

defered True if the internal representation is generated on demand.
description ?detail? Help text. May be generated.
documented True if the parameter is not hidden from help.
forget Squash the internal representation. See also reset.

generator Command prefix to generate a default value (internal representation).
hasdefault True if a default value was specified. See default.

help Help structure describing the parameter.
interactive True if the parameter allows interactive entry of its value.
is type Check if the result of type matches the argument.
isbool True if the parametr is a boolean option.
list True if the parameter holds a list of values.
lock reason For use in when-set callbacks. Allows parameters to exclude each other’s use.
locker The reason set by lock, if any.
name The parameter’s name.
options List of option flags, if any.
ordered True if the parameter is positional.
presence True if the parameter is a boolean option not taking arguments.
primary option True if the provided flag name is the primary option to be recognized (instead of an

alias, or complement).
prompt Text used as prompt during interactive entry.
required True if the option is mandatory ((input) only).
reset Squash internal and string representations. See also forget.

self The parameter’s instance command
set value Programmatically set the string representation.
set? True if the string representation was set.
string Return the string representation, or error.
type Parameter type. One of input, option, or state.

validator Command prefix used to validate the string representation and transform it into the
internal representation.

value Return the internal representation. May calculate it now from the string representa-
tion.

when-complete Command prefix invoked when the internal representation is set.
when-set Command prefix invoked when the string representation is set.

Table 9: Parameter Methods

Calling “@P” without arguments is a shortcut for “@P value”, i.e. the retrieval of the associated internal representation.
Possibly calculating it if it is the first access and the parameter was in defered mode.

4. FUTURE DIRECTIONS
While I consider the framework to be quite mature, and it is already in use in a medium complex command line application,

i.e. stackato [1], it is not without warts, nor opportunities for extension and improvement.
For example, the entire distinction between immediate and defered parameters is possibly not required.
The main use of immediate and “Completion” (→ 3.3) was to generate the internal representation of all parameters before

invoking the action, validating all before use by the backend. Currently my thinking is beginning to doubt if that is as much
of an advantage as I thought, over the converse, i.e. having everything defered and validating each parameter on first access.
This would ignore all parameters not used by the chosen path through the code, leaving them unchecked. Which still offends
my sensibilities somewhat.

Then there are the error messages currently generated for missing parameters, superfluous arguments, unknown options,
etc. These are not as good as they could be, given the information available through the specification, i.e. all the help text.
It might make sense to actually generate the help of the command and make it a part of the general error message.

Furthermore, currently all options are associated with specific commands. While the common and use commands allow
the sharing of option definitions this is essentially duplication, even if hidden somewhat. Having actual global options not
associated with any command, yet available to all is a request recently made for stackato. This would require some changes
to “Dispatch” (→ 3.1), as it would have to recognize and process options as well, while navigating the command tree.

A wart I might have to live with is the hard-wired support for the special behaviours of boolean and presence options.

20th Annual Tcl Conference 141 New Orleans, LA Sept. 23-27, 2013

While I would like to replace that special code in “Parsing” (→ 3.2) with a general interface added to validation types and
then moving them into the boolean type I currently do not see how this general interface should look like.

What is possible, would be to extend the validation types with optional methods to support type-specific interactive entry
of values, to overide the simple shells currently used. These would then become fallbacks, used only for types without bespoke
interaction. Related to that is the idea of adding a menu based interactor to the current set of general string and list entry
interactors, to be used for validation types limited to a finite (and small) set of legal inputs. That is something which can be
determined already, by inspecting the result of a type’s complete method in response to an empty string.

A simple extension of the framework would the addition of more general validation types, i.e. useful to a broad class of
applications. At least the builtin integer type could be extended to allow sub-typing, i.e. restriction to a range of integers
instead of accepting all possible. Very application-specific validation types should be left out of the framework however.

On the side of the generated help the most important situations should be covered by the builtin formats, especially given
that the json format provides access to essentially the entire specification in a portable format, convertible to any other
format needed by a particular environment. Even so I am tempted to add direct support for at least doctools [8].

Structurally the help currently follows the hierarchy of commands and can show only either the single requested command,
or all commands of a specific sub-tree. While this is ok for basic use a nicer help might have its own hierarchy, splitting the
set of commands commands into logical sections which follow the use of the application instead. Support for this will require
additional specification commands declaring the section(s) an application command is in.

20th Annual Tcl Conference 142 New Orleans, LA Sept. 23-27, 2013

APPENDIX

A. REFERENCES

[1] Various, Stackato Client https://github.com/ActiveState/stackato-cli

[2] Andreas Kupries, Linenoise. https://github.com/andreas-kupries/linenoise/,
fork of Steve Bennet, https://github.com/msteveb/linenoise/,
fork of Antirez, https://github.com/antirez/linenoise/

[3] Andreas Kupries, Cmdr. https://core.tcl.tk/akupries/cmdr/

[4] Andreas Kupries, Critcl https://github.com/andreas-kupries/critcl/

[5] Andreas Kupries, Kettle. https://core.tcl.tk/akupries/kettle/

[6] Andreas Kupries, Linenoise Utilities. https://core.tcl.tk/akupries/linenoise-utilities

[7] Will Duquette, Snit.
https://core.tcl.tk/tcllib/doc/trunk/embedded/www/tcllib/files/modules/snit/snit.html#subsection11

[8] Various, Tcllib. https://core.tcl.tk/tcllib

[9] Andreas Kupries, Tcl Linenoise Binding. https://github.com/andreas-kupries/tcl-linenoise/

[10] Various, Tcl Core. https://core.tcl.tk/tcl/

B. LISTINGS

Listing 1: Simple alias management API
−∗− t c l −∗
package require Tcl 8 . 5
package require cmdr
#package require foo−backend

cmdr c r e a t e : : f o o foo {
pr i va t e a l i a s+ {

d e s c r i p t i o n {
Create a shor t cut for a command (p r e f i x) .

}
input name {

The name o f the new sho r t c u t .
} {

va l i d a t e : : f o o : : ba ckend : : v t : : no ta command
}
input command {

The command (p r e f i x) the name w i l l map t o .
} {

l i s t
}

} : : f o o : : b a c k e n d : : a l i a s : : a d d

p r i va t e a l i a s− {
d e s c r i p t i o n {

Remove a shor t cut by name.
}
input name {

The name o f the shor t cut to remove.
} {

va l i d a t e : : f o o : : b a c k e n d : : v t : : a l i a s n a m e
}

} : : f o o : : b a c k e n d : : a l i a s : : r e m o v e

p r i va t e a l i a s ? {
d e s c r i p t i o n {

L i s t the known a l i a s e s (sho r t cu t s) .
}

} : : f o o : : b a c k e n d : : a l i a s : : l i s t
}

f oo do {∗}$argv
exit

20th Annual Tcl Conference 143 New Orleans, LA Sept. 23-27, 2013

Listing 2: Help for Listing 1
a l i a s+ name command . . .

Create a shor t cut f o r a command (p r e f i x) .

name The name o f the new shor t cut .
command The command (p r e f i x) the name w i l l map to .

a l i a s − name
Remove a shor t cut by name .

name The name o f the shor t cut to remove .

a l i a s ?
L i s t the known a l i a s e s (sho r t cu t s) .

he lp [OPTIONS] ?cmdname . . . ?
Ret r i eve he lp f o r a command or command s e t . Without
arguments he lp f o r a l l commands i s g iven . The d e f au l t
format i s −− f u l l .

−− f u l l Act ivate f u l l form o f the he lp .
−− l i s t Act ivate l i s t form o f the he lp .
−−shor t Act ivate shor t form o f the he lp .

cmdname The e n t i r e command l i n e , the name o f the
command to get he lp f o r . This can be s e v e r a l
words .

20th Annual Tcl Conference 144 New Orleans, LA Sept. 23-27, 2013

Listing 3: Hierarchical commands
−∗− t c l −∗
package require Tcl 8 . 5
package require cmdr
#package require foo−backend

cmdr c r e a t e : : f o o foo {
o f f i c e r a l i a s {

d e s c r i p t i o n {
A c o l l e c t i o n o f commands to manage
u s e r− s p e c i f i c sho r t cu t s for command
entry

}

pr i va t e add {
d e s c r i p t i o n {

Create a shor t cut for a command (p r e f i x) .
}
input name {

The name o f the new sho r t c u t .
} {

va l i d a t e : : f o o : : ba ckend : : v t : : no ta command
}
input command {

The command (p r e f i x) the name w i l l map t o .
} {

l i s t
}

} : : f o o : : b a c k e n d : : a l i a s : : a d d

p r i va t e remove {
d e s c r i p t i o n {

Remove a shor t cut by name.
}
input name {

The name o f the shor t cut to remove.
} {

va l i d a t e : : f o o : : b a c k e n d : : v t : : a l i a s n a m e
}

} : : f o o : : b a c k e n d : : a l i a s : : r e m o v e

p r i va t e l i s t {
d e s c r i p t i o n {

L i s t the known a l i a s e s (sho r t cu t s) .
}

} : : f o o : : b a c k e n d : : a l i a s : : l i s t
}

}

f oo do {∗}$argv
exit

Listing 4: Help for Listing 3 (–list format)
a l i a s add name command . . .
a l i a s he lp [OPTIONS] ?cmdname . . . ?
a l i a s l i s t
a l i a s remove name
help [OPTIONS] ?cmdname . . . ?

Listing 5: Specifying alternate names
a l i a s a l i a s+ = a l i a s add
a l i a s a l i a s− = a l i a s remove
a l i a s a l i a s ? = a l i a s l i s t

20th Annual Tcl Conference 145 New Orleans, LA Sept. 23-27, 2013

Listing 6: Option shared by all commands
common ∗ a l l ∗ {

opt ion debug {
Act ivate c l i e n t i n t e r n a l t r a c i n g .

} {
undocumented
l i s t
when−complete [lambda {p tags } {

foreach t $tags { debug on $t }
}]

}
}

Listing 7: Validation type: Boolean

package require cmdr : :va l idate : : common

namespace eval : : cmd r : : v a l i d a t e : : b o o l e a n {
namespace export default va l i d a t e complete r e l e a s e
namespace ensemble c r e a t e

namespace import : : cmd r : : v a l i d a t e : : c ommon : : f a i l
namespace import : : cmdr : :va l idate : : common: :complete−enum

}

proc : : c m d r : : v a l i d a t e : : b o o l e a n : : r e l e a s e {p x} {
Simple i n t e rna l r e p r e s en t a t i on . Nothing to r e l e a s e .
return

}

proc : : c m d r : : v a l i d a t e : : b o o l e a n : : d e f a u l t {p} {
return no

}

proc : : cmd r : : v a l i d a t e : : b o o l e a n : : c omp l e t e {p x} {
x i s string r e p r e s en t a t i on . Resu l t as w e l l .
return [complete−enum {

yes no f a l s e t rue on o f f 0 1
} 1 $x]

}

proc : : c m d r : : v a l i d a t e : : b o o l e a n : : v a l i d a t e {p x} {
x i s string r e p r e s en t a t i on . Resu l t i s i n t e rna l r e p r e s en t a t i on .
i f { [string i s boolean − s t r i c t $x]} {

return $x
}
f a i l $p BOOLEAN ”a boolean ” $x

}

20th Annual Tcl Conference 146 New Orleans, LA Sept. 23-27, 2013

Listing 8: Simple alias management backend
−∗− t c l −∗−
#####################

namespace eval : : f o o : : b a c k e n d : : a l i a s {
namespace export l i s t add remove
namespace ensemble c r e a t e

}

#####################
Command implementat ions .

proc : : f o o : : b a c k e n d : : a l i a s : : l i s t { c on f i g } {
set a l i a s e s [manager known]

i f { [$ c on f i g @json]} {
puts [jmap a l i a s e s $ a l i a s e s]
return

}

[t a b l e : : d o t {Al ia s Command} {
foreach {name command} $ a l i a s e s {

$t add $name $command
}

} show d i sp l ay
return

}

proc : : f o o : : b a c k e n d : : a l i a s : : a d d { c on f i g } {
set name [$ con f i g @name]
set command [$ con f i g @command]

manager add $name $command
say [c o l o r green ” Su c c e s s f u l l y a l i a s e d ’$name ’ to ’$command ’ ”]
return

}

proc : : f o o : : b a c k e n d : : a l i a s : : r e m o v e { c on f i g } {
set name [$ con f i g @name]

i f { ! [manager has $name]} {
e r r [c o l o r red ”Unknown a l i a s ’ $name ’ ”]

} else {
manager remove $name
say [c o l o r green ” Su c c e s s f u l l y una l i a s ed ’$name ’ ”]

}
return

}

#####################
package provide f o o : : b a c k e n d : : a l i a s 0

20th Annual Tcl Conference 147 New Orleans, LA Sept. 23-27, 2013

Public Key Infrastructure and the Tool Command Language

Roy S. Keene
Jemimah Ruhala

September 23rd, 2013

Abstract

Public key cryptography, also known as asymmet-
ric cryptography, is a mechanism by which messages
can be transformed (either encrypted or decrypted)
with a private key and then reassembled with a re-
lated, but separate public key. The public key in-
frastructure (PKI) that supports the trust model by
which two parties that have no previous knowledge
of each other can verify each others identity through
trust anchors is implemented using digital signatures
made possible by public key cryptography. Being
able to participate in PKI directly with Tcl scripts
makes many interesting and useful applications pos-
sible. The PKI module in Tcllib implements the var-
ious PKI related standards and algorithms for Tcl
scripts to accomplish this goal including PKCS#1,
X.509, and RSA. This paper aims to explain the high-
level concepts related to PKI, describe the scope of
the various standards and algorithms implemented,
and explore the possibilities of PKI in Tcl.

1 PKI

The purpose of Public Key Infrastructure (PKI) is
to provide a mechanism to establish the authenticity
of an unknown party. Most people assume PKI is a
complex system with a lot of moving parts. However,
this is not the case. A simple PKI implementation is
fairly straight-forward.

PKI establishes authenticity using certificates,
which certify that some external entity has verified
that an unknown party is who it claims to be. This
certificate is presented by the unknown party as a
means of identifying itself to you.

1.1 Public Key Cryptography

Public key cryptography, or asymmetric cryptogra-
phy uses key pairs to perform cryptographic opera-
tions on values. This is in contrast to symmetric cryp-
tography which uses a single key to perform crypto-
graphic operations. In public key cryptography there
are two related, but distinct, keys:

• A public key

• A private key

The relationship between these two keys differs de-
pending on the public key cryptography algorithm,
but in all cases it is impossible1 to derive the private
key from the public key.

Public key cryptography uses mathematical opera-
tions to perform operations on numerical values that
can only be reversed or verified with the opposite key.
That is, if something is encrypted with the private key
it can only be decrypted or verified with the public
key. Conversely, if something is encrypted with the
public key it can only be decrypted or verified with
the private key.

Given that there are two different keys (public and
private) involved with public key encryption, refering
to encryption in a general sense can be ambiguous.
Which key do we use to encrypt something with ?
For reasons that should be made clear later, when we
talk about encryption within the context of public
key cryptography, we are usually talking about en-
crypting a plain text value with the public key. This
results in a cipher text that can only be decoded by
an entity possessing the private key.

In the context of public key cryptography, encrypt-
ing a value with the private key is generally used for
digital signatures. Because messages encrypted with
the private key can only be decrypted (or verified)

1Theoretically infeasable given sufficiently large and cor-
rectly generated keys

20th Annual Tcl Conference 148 New Orleans, LA Sept. 23-27, 2013

with the public key part of the key pair we can as-
sert that if the message is meaningful when decrypted
with the public key then it could have only been en-
crypted by an entity possessing the private key.

1.2 RSA

The most common public key cryptography algo-
rithm in use today is RSA2. RSA is named for Ron
Rivest, Adi Shamir, and Leonard Adleman who made
the algorithm public and are thus widely credited as
the inventors of the algorithm.

1.2.1 Description of RSA Key Pairs

The RSA algorithm defines the following pairs of keys
in the following way:

• RSA Public Key, made up of

– The public exponent (commonly called e),
often just called the exponent

– The public modulus (commonly called n),
often just called the modulus

• RSA Private Key, made up of

– The private exponent (commonly called d),
often just called the private key since it’s
the only part of it

In the remainder of this document whenever RSA is
used a simple 16-bit RSA key pair will be used:

• Public Key

– Public Exponent: 65537

– Public Modulus: 37837

• Private Key

– Private Exponent: 40193

In practice RSA keys are much larger, as of this writ-
ing the recommended minimum size of RSA keys is
2048-bits.

2According to RSA

1.2.2 RSA Algorithm

The RSA algorithm is a relatively easy to demon-
strate public key cryptography algorithm. A simple
definition of applying RSA is ”modular exponentia-
tion”. Modular arithmetic (denoted by the “Z” sym-
bol and a modulo value) is applied to values that have
had the the exponentiation operator applied to them.
A simple example of modular exponentiation is:

34(Z5) = 1

which is 3 raised to the power of 4 all modulo 5.
Since 34 = 81 and 81(Z5) = 1 (modulus is the re-
mainder of a division operation and 81

5 results in 16
even divisions and 1 remainder), the result is 1.

Another way to think of modular arithmetic is to
think of it in the same way we think of numeric bases
(such as binary, octal, decimal, hexadecimal) and us-
ing only the least significant digit of that base. The
value 81 in base 5 is 311, the least significant digit of
which is 1 and therefore 81(Z5) = 1.

1.2.3 RSA Encryption

RSA encryption is a form of public key encryption
and therefore uses the public key. The RSA encryp-
tion function is defined as:

plainpublicExponent(ZpublicModulus) = cipher

For example:

2672965537(Z37837) = 36784

is modular exponentiation of the plain text 26729
raised the power of 65537, which is the public expo-
nent, all modulo the public modulus of 37837, which
results in the cipher text 36784. The above example is
also an example of encrypting the value 26729 (which
is 0x6869 in hexadecimal, or ”hi” in ASCII) with an
RSA key whose public exponent is 65537 and whose
public modulus is 37837 resulting in the encrypted
value of 36784.

This can only be reversed using the private key as
the exponent instead of the public exponent. That
is:

cipherprivateExponent(ZpublicModulus) = plain

For example:

3678440193(Z37837) = 26729

20th Annual Tcl Conference 149 New Orleans, LA Sept. 23-27, 2013

1.2.4 RSA Digital Signatures

Looking closer at the RSA encryption example of
modular exponentiation, we can see some of the pub-
lic key cryptography properties that we need starting
to emerge. Specifically we cannot take the cipher text
value and convert it back to the plain text with just
the public information. We must know the private ex-
ponent (or be able to derive it by factoring the public
modulus, but given a complex and correctly gener-
ated key pair this should be impossible) to reverse
the operation.

However RSA encryption is not very useful for dig-
ital signatures because it requires the private key to
do anything meaningful. With a digital signature, we
want to perform an operation on some plain text us-
ing our private exponent that can be verified using
only the public key. Fortunately RSA allows us to do
that by simply swapping the values around. That is:

plainprivateExponent(ZpublicModulus) = cipher

For example:

1234540193(Z37837) = 3293

which CAN be reversed using only public informa-
tion, as in:

cipherpublicExponent(ZpublicModulus) = plain

For example:

329365537(Z37837) = 12345

RSA guarantees that the chance of there being an-
other private key which generates the same cipher
text for a given plain text is extremely low relative to
the size of the key. Therefore we can assume that if
a given cipher text can be decrypted to a plain text
using a given public key then it must have been en-
crypted with the secretly held private key and thus as
long as the private key is protected as a secret, only
the holder could have generated this message.

1.3 Digital Signatures

Directly encrypting a message with a private key is a
workable solution for short messages but not in the
general case. RSA and most other public key cryptog-
raphy systems cannot encrypt (with either the public
key or the private key) messages larger than the size
of the key. That is, if the key is 16 bits then the

plain text message can be no larger than 16 bits. For
RSA the specific limit is that the value can be no
larger than the public modulus due to the fact that
all operations are modulo the public modulus.

Instead of directly encrypting the plain text a cryp-
tographically secure message digest algorithm such
as MD53, SHA14, or SHA2565 is used to compute a
cryptographically secure digest of the message which
is typically much smaller than the message itself.
This digest is then encrypted with the private key
and verified with the public key. In this way, arbi-
trarily long messages can be digitally signed.

1.4 Encryption

The same limitation that exists for message length
with respect to digital signatures also applies to en-
cryption. The message encrypted with RSA must be
no larger than the public key. Again, for RSA this is
due the fact that the public modulo is applied to all
operations.

Thus for the general case of encryption of an ar-
bitrarily long message using a public key cryptog-
raphy system two different cryptographic algorithms
are typically used:

• A public key (asymmetric) cryptography key

• A symmetric key

Instead of directly encrypting the plain text a sym-
metric cipher such as AES6, ARCFOUR/RC4, or
3DES7 is used with a secure randomly generated sym-
metric cipher’s key. This symmetric key is then en-
crypted with the asymmetric cipher’s public key. The
plain text is then encrypted with the selected sym-
metric cipher and the generated symmetric cipher’s
key.

1.5 Certificates

As previously mentioned in section 1, certificates are
used to certify that one entity (the issuer of the cer-
tificate) says that another entity (the subject of the
certificate) is a given identity under certain condi-
tions.

So what makes up a certificate ? Certificates are
specified by the ITU-T standard X.509 and contain
the following information:

3MD5 is defined in RFC 1321
4SHA1 is defined in RFC 3174
5SHA256 is defined in RFC 4634
6AES is defined in FIPS PUB 197
73DES is defined in FIPS PUB 46-3

20th Annual Tcl Conference 150 New Orleans, LA Sept. 23-27, 2013

• X.509 Standard version number (optional) which
identifies the revision of X.509 that this certifi-
cate complies with

• Issuer, which is the ”distinguished name” of the
entity who issued (that is, signed) the certificate

• Serial Number, which is a unique number per
issuer to uniquely identify this certificate from
the issuer

• Subject, which is the ”distinguished name”of the
entity who is being certified (and also who holds
the private key)

• Issue date and expiration date, which define the
time frame in which the certificate is valid

• The public key, including the algorithm and
algorithm-specific public key data – for RSA this
is the public modulus and public-exponent

• If this is X.509 version number 3 then X.509 ex-
tensions may be specified which restrict the uses
of this certificate

• The digital signature of all of the previous data
encoded in ASN.1 Distinguished Encoding Rules
(DER) as specified by ITU-T standard X.690,
which for RSA is the cryptographic message di-
gest of the previous data, which is then padded
(per PKCS#1), and finally encrypted with the
private key of the issuer

So now we have a system where an unknown and un-
trusted party can assert to you a fully-qualified (also
known as ”distinguished”) name and also provide a
reference to who is certifying that this assertion is
true within the parameters specified in the certificate.

What is to stop someone from taking a certificate
from an existing entity, which must be publicly ac-
cessible otherwise there would be no way to identify
the entity, and using it? Once again, public key cryp-
tography is the answer here. A certificate only proves
that the Issuer signed a request for the Subject. A
certificate does not prove that you you are talking to
is legitimately the subject specified in the certificate
but it does provide a mechanism to do that. The
public key being certified is in the certificate so all
that is needed is for you to issue some sort of chal-
lenge for the party presenting the certificate to prove
that it has the private key that corresponds with the
certified public key. How this challenge is done de-
pends on the protocol and is outside the scope of this
document.

1.6 Finally... PKI

At this point we have described all of the vital com-
ponents to a simple PKI system:

• A method to identify an entity

• A method for one entity to assert the identity of
another entity

With these simple tools we can construct a system
where we trust few entities to act as authoritative
sources of identity information for unknown entities.
Entities which act as authoritative sources of trust
are known as Certificate Authorities and are identi-
fied by certificates with the X.509v3 extension known
as “Basic Constraints” set to the value of “true”. Cer-
tificate authority certificates may be signed by other
certificate authorities or they may be self-signed. A
self-signed certificate authority certificate is known as
a“root certificate authority certificate”while a certifi-
cate authority certificate signed by another certificate
authority is known as an “intermediate certificate au-
thority certificate”.

The result of such a system is a hierarchy of certifi-
cate authorities which can issue certificates. If trust is
given to one of the certificate authorities then any cer-
tificates issued by that certificate authority (directly,
or indirectly through a chain of subordinate or inter-
mediate certificate authorities) can also be trusted as
having met the requirements of that certificate au-
thority.

1.7 More Complete PKI

While a simple PKI system is straight-forward to de-
scribe, a more complete (and secure) PKI system is
more complex due to things such as revocation lists
(CRLs) and the many X.509v3 extensions which can
be used to limit the utility of X.509 certificates. This
document will not cover those items due to their com-
plexity and scope.

2 PKI with Tcl

Tcl version 8.5 and newer transparently support
arithmetic on arbitrarily big integers which enables
us to write a pure Tcl implementation of RSA using
the [expr] command. Versions prior to 8.5 could use
the bigmath package within TCLLIB at a consider-
able cost for speed.

20th Annual Tcl Conference 151 New Orleans, LA Sept. 23-27, 2013

2.1 The pki Package

The pki package is a module within TCLLIB, a col-
lection of popular TCL-based packages. It requires
Tcl version 8.5 for its big integer support.

The pki package provides an interface for most
things related to PKI. It originally started as just an
RSA package but as additional needs for interoper-
ability arose more and more PKI support was added.

Currently it only supports the RSA public key
cryptography system but is extensible to support ad-
ditional algorithms (and indeed this is how PKCS#11
support is implemented).

The rest of this section briefly describes the inter-
face to the pki package.

2.1.1 pki::encrypt

The [pki::encrypt] command encrypts a message with
a key from a public key cryptography algorithm, such
as RSA. Either the public key or the private key
may be used to encrypt the message. It is worth
noting that not every public key cryptography algo-
rithm supports encryption and decryption. Notable
the Digital Signature Algorithm8 (DSA) only sup-
ports creating and verifying signatures.

The encrypted message is returned on success and
an error is raised upon failure. In general, assuming a
valid key has been supplied, the most common error
returned is that the message is larger than the key
and the algorithm does not support that.

The [pki::encrypt], [pki::decrypt], [pki::sign], and
[pki::verify] commands each examine the key to de-
termine what backend to call to handle the specific
operation. The RSA backend is always registered as
it is a part of the “pki” package. Additional backends
may be registered at run-time.

2.1.2 pki::decrypt

The [pki::decrypt] command decrypts a previously
encrypted message with a key from a public key cryp-
tography algorithm, such as RSA. Either the public
key or the private key may be used to decrypt the
encrypted message.

The decrypted message is returned on success and
an error is raised upon failure. It is worth noting that
the decrypted message returned may be invalid if the
key is not valid, however this is usually caught due to
RSA PKCS#1 v1.5 padding on encrypted messages.

8DSA is specified in FIPS 186-4

2.1.3 pki::sign

The [pki::sign] command creates the digital signature
of a message with a key from a public key cryptog-
raphy algorithm, such as RSA. This will require the
key supplied to include the private key.

The signature is returned on success and an error
is raised upon failure.

2.1.4 pki::verify

The [pki::verify] command verifies that a digital sig-
nature is valid for a given message, signature, and
key.

If the message can successfully be verified then
“true” is returned otherwise “false” is returned.

2.1.5 pki::pkcs::parse key

The [pki::pkcs::parse key] command loads the sup-
plied PKCS#1 key pair (or just the public key, if
requested) into a key structure used internally by the
“pki”package. If the key is encrypted a password may
be supplied to decrypt it. If the key is encrypted and
no password is supplied an error is raised.

The key is returned on success and an error is raised
upon failure.

2.1.6 pki::pkcs::create csr

The [pki::pkcs::create csr] command creates the sup-
plied PKCS#1 certificate signing request (CSR) with
a specified key and the request subject given. A cer-
tificate signing request is the standardized message
format handled by certificate authorities to create a
certificate. It includes the public key, the requested
name, and a signature of the entire request.

2.1.7 pki::pkcs::parse csr

The [pki::pkcs::parse csr] command reads the sup-
plied PKCS#1 certificate signing request (CSR) and
returns the public key information as well as the re-
quested name as a single key object.

2.1.8 pki::x509::parse cert

The [pki::pkcs::parse cert] command reads the sup-
plied X.509 certificate and returns the public key in-
formation as well as the other information in the cer-
tificate in a single certificate object, which may also
be used as a public key object. At this point is worth
nothing that the key object used internally by the

20th Annual Tcl Conference 152 New Orleans, LA Sept. 23-27, 2013

“pki” package is just a Tcl dictionary (dict) and may
freely be accessed as such.

2.1.9 pki::x509::verify cert

The [pki::x509::verify cert] command verifies that a
certificate is properly signed by a trusted certificate
authority, which may either be a root certificate au-
thority or an intermediate certificate authority. It is
worth noting that this does not verify that the certifi-
cate may be used for any particular purpose or even
that it may be used at this time, but only that it was
legitimately issued by a trusted certificate authority.

If the certificate can be verified to have been is-
sued by a trusted certificate authority then “true” is
returned otherwise “false” is returned.

2.1.10 pki::x509::validate cert

The [pki::x509::validate cert] command verifies that
a certificate may be used for some purpose, such as
SSL/TLS, being a certificate authority responsible
for signing a subject. It checks the parameters of
the X.509v3 certificate such as validity period (issue
date and expiration date), the subject distinguished
name, the “Basic Constraints” extension, and other
attributes based on how it is invoked.

If the certificate can be determined to be valid for
the specified purpose then “true” is returned other-
wise “false” is returned.

2.1.11 pki::x509::create cert

The [pki::x509::create cert] command creates an
X.509 certificate from a certificate signing request us-
ing a specified certificate authority key to sign it, a
specified serial number, and with the given additional
X.509 parameters. The process of creating a certifi-
cate is sometimes called “signing a certificate” which
is a misnomer since there is no such thing as an un-
signed certificate9 in X.509.

The parameters to [pki::x509::create cert] are
rather unwieldy at this point due to the number of
required parameters and newer versions will likely re-
place the positional parameters with named parame-
ters.

Upon success the certificate is returned in either
PEM or DER format which are suitable for exchange
with other PKI systems. It must be parsed with
[pki::x509::parse cert] before it can be used internally
with the “pki” package.

9Indeed, an unsigned certificate would certify nothing

2.1.12 pki::rsa::generate

The [pki::x509::generate] command generates an RSA
key of a given size. You can also optionally specify the
public key exponent to use rather than the default of
65537, but it is not advisable to actually do so since
it may decrease the security of the generated key.

2.2 The “pki::pkcs11” Package

The “pki::pkcs11” package uses and extends the “pki”
package with support for RSA PKCS#11 hardware
security modules (HSMs) such as cryptographic ac-
celerators or smart-cards. Unlike the “pki” module it
is not written in Tcl, but is written in C. This is due
to the fact that the RSA PKCS#11 standard specifies
a C API for “cryptoki modules”.

The “pki::pkcs11” module has a relatively simple
interface thanks to re-using most of the “pki” package
for operations and supporting only the most basic
RSA PKCS#11 functionality.

2.2.1 pki::pkcs11::loadmodule

The [pki::pkcs11::loadmodule] command loads a
“cryptoki module”, which is an RSA PKCS#11 com-
pliant library (DLL or shared object, for example)
that will be used for accessing a specific hardware
device.

If the specified module can be successly loaded an
opaque handle is returned otherwise an error is raised.

2.2.2 pki::pkcs11::unloadmodule

The [pki::pkcs11::unloadmodule] command unloads
and frees allocated structures for an RSA PKCS#11
cryptoki module specified by the opaque handle. Af-
ter the specified module is unloaded the opaque han-
dle may no longer be used.

Upon success “true” is returned otherwise “false” is
returned.

2.2.3 pki::pkcs11::listslots

The [pki::pkcs11::listslots] command lists the slots
that are available for a given opaque cryptoki mod-
ule handle. In RSA PKCS#11 a slots contain at most
one token which can contain objects such as certifi-
cates, public keys, private keys, etc.

Upon successful operation a list is returned. The
returned list contains one element per slot. Each item
of the returned list is itself a sub-list containing the
following items:

20th Annual Tcl Conference 153 New Orleans, LA Sept. 23-27, 2013

1. The slot identification number for the slot

2. The label of the slot

3. Flags set for the slot

If there is an error in processing the request then an
error is raised. If there are no slots available then an
empty list is returned.

2.2.4 pki::pkcs11::listcerts

The [pki::pkcs11::listcerts] command lists the certifi-
cate objects available for a given handle and slot iden-
tification number.

Upon successful operation a list is returned. Each
item of the returned list contains a certificate/key ob-
ject (as would be returned by [pki::x509::parse cert]).
If there is an error in processing the request then an
error is raised. If there are no certificate objects for
a given slot identification number associated with a
given opaque handle then an empty list is returned.

2.2.5 pki::pkcs11::encrypt

The [pki::pkcs11::encrypt] command is not intended
to be called directly by end-user applications. It
calls the C Encrypt() function within the loaded
RSA PKCS#11 cryptoki module. Instead of calling
this command end-user applications should call the
[pki::encrypt], [pki::decrypt], or [pki::sign] command
which will invoke this command if the key supplied
indicates it is a PKCS#11 module.

Because RSA PKCS#11 cryptoki modules expose
functions to perform public key cryptography they do
not need to export the private key in order for appli-
cations to perform cryptographic operations that use
the private key. For example a user using a smart-
card can prove that he has access to his private key
and thus legitimately is associated with the certifi-
cates presented without being able read to the pri-
vate key at all. Instead the smart-card performs the
cryptographic operation and returns a cryptographic
result. This means that there is no way for an ad-
versary to acquire the private key for a smart-card10

user since the user themselves cannot read the private
key.

2.2.6 pki::pkcs11::decrypt

The [pki::pkcs11::decrypt] command, like the
[pki::pkcs11::decrypt] command, is not intended to

10Except for the possibility of physically acquiring the device

be called directly by end-user applications.

2.2.7 pki::pkcs11::login

The [pki::pkcs11::login] command logs into a device
by calling the RSA PKCS#11 cryptoki module’s
C Login() function. Because cryptographic modules
perform cryptographic operations using the private
key they will often be require the user to verify to
the hardware security module or smart-card that they
legitimately should be able to perform that opera-
tion by supplying a password. If a login is required
to use a particular hardware token then the LO-
GIN REQUIRED flag will be set in the result from
[pki::pkcs11::listslots] for the slot that the token is in.

If the password successfully logs into the device
then “true” is returned. If the password is incorrect
then “false” is returned. If some other error condition
is asserted then an error is raised.

2.2.8 pki::pkcs11::logout

The [pki::pkcs11::logout] command logs out of a de-
vice by calling the RSA PKCS#11 crytptoki mod-
ule’s C Logout() function. Once you are logged out,
token attempts to perform cryptographic operations
will probably fail.

2.3 Doing Something Useful

2.3.1 Establishing a Simple Certificate Au-
thority

The very first thing we need to be concerned with
when establishing a public key infrastructure system
is the establishment of an authority to certify identi-
ties. This is our certificate authority. All we need for
a minimal certificate authority is certificate author-
ity certificate and some way to ensure that we do not
issue certificates with duplicate serial numbers. We
can do this from within Tcl using the “pki” module
easily.

First we must load the “pki” package,
which can be obtained from TCLLIB or from
http://rkeene.org/devel/pki/.

% package r e qu i r e pki 0 . 3

Then we need to generate our private key. Since
RSA is the only public key cryptography algorithm
currently implemented we should use that:

% s e t ca key [pki : : r sa : : generate 2048]

20th Annual Tcl Conference 154 New Orleans, LA Sept. 23-27, 2013

Next we need to “sign our key”which will necessar-
ily be stored as a certificate (a key that was simply
signed would not include any identifying information
and would be generally useless). Since this key will
be our first certificate authority certificate it must be
signed by its own key and is therefore self-signed and
also therefore a root certificate authority. The “pki”
package does not provide a nice way to handle cer-
tificate authorities. To accomplish that we just add
a “subject” key to the “ca key” dictionary:

% se t c a key sub j e c t \
”CN=Example Root CA”

% d i c t s e t ca key sub j e c t \
$ca key sub j e c t

After we have updated this object we can use sign
it using the [pki::x509::create cert] command:

% se t i s s u e da t e [c l o ck seconds]
% se t exp i r e da t e [c l o ck add \

$ i s s u e da t e 1 year]
% s e t c a c e r t

[pki : : x509 : : c r e a t e c e r t \
$ca key $ca key 1 $ i s s u e da t e \
$exp i r e da t e 1 [l i s t] 1]

At this point we have successfully established our
certificate authority by creating a private key and
a signed certificate which identifies us. We should
save our private key, which is stored in the dictionary
named “ca key”, and our certificate which is repre-
sented by the value stored in the variable “ca cert”
somewhere to prevent losing them and also in such a
way that others may not access them.

2.3.2 Provisioning User Certificates

Now that we have a certificate authority, our users
may start using it. The first thing they will want to
do is obtain a copy of our certificate authority certifi-
cate through a secure and trusted channel in order to
establish trust with it. After that they will also want
to generate their own RSA private key:

% package r e qu i r e pki 0 . 3
% se t user key [pki : : r sa : : generate 2048]

Next the user should generate a certificate sign-
ing request (CSR) so that the certificate authority
will know the public key as well as what identity
the user is claiming to be. This is done with the
[pki::pkcs::create csr] command:

% se t u s e r c s r [pki : : pkcs : : c r e a t e c s r \
$user key [l i s t ”CN” ”Joe User ”] 1]

Then the user can distribute the CSR to the cer-
tificate authority over a trusted channel (although all
of the information in the CSR is public if the channel
is compromised, a malicious man-in-the-middle could
alter the request so that his or her public key be used
instead) and the certificate authority can generate a
certificate:

(On C e r t i f i c a t e Authority)
% se t u s e r c s r {//From User //}
% se t u s e r c s r l i s t \

[pki : : pkcs : : p a r s e c s r $u s e r c s r]
% s e t i s s u e da t e [c l o ck seconds]
% se t exp i r e da t e [c l o ck add \

$ i s s u e da t e 1 year]
% s e t u s e r c e r t \

[pki : : x509 : : c r e a t e c e r t \
$ u s e r c s r l i s t $ca key 2 \
$ i s s u e da t e $exp i r e da t e 0 [l i s t] \
1]

The certificate authority can then give the user his
or her certificate over any channel since it’s public.

2.3.3 Securely Exchanging Messages

Once several users have certificates issued by our cer-
tificate authority they can use the trust they have
established with the certificate authority and the cer-
tificate authority certificate to validate messages be-
tween them, creating a secure and trusted channel
between two users who may have never previously
communicated.

This can be done by creating a simple ad-hoc pro-
tocol for the users to communicate where users:

1. Initially exchange certificates with the peer

2. Each side performs some action to verify that the
Subject of the certificate is who they are talking
to

3. Each side validates that the certificate is valid
using [pki::x509::validate cert]

4. Each side securely generates a 128-bit key for
AES using the “aes” package (from TCLLIB)

5. Each side encrypts the 128-bit key as well as the
initialization vector (IV) with the peer’s public
key, which can only be successfully decrypted by
the peer

6. Each side decrypts the received 128-bit key and
IV using his or her private key

20th Annual Tcl Conference 155 New Orleans, LA Sept. 23-27, 2013

7. Each side initializes an AES chain block cipher
mode stream for sending encrypted blocks to its
peer and another AES chain block cipher mode
stream for receiving encrypted blocks

3 Legal Information

Since the pki package implements RSA, which is
strong cryptography, it must be registered with the
United States Department of Commerce. Currently
the pki module is registered with Export Registration
Number (ERN) R103416 and is authorized for export
and re-export from the United States. No effort has
been made to ensure that it can be imported to- or
exported from other countries.

20th Annual Tcl Conference 156 New Orleans, LA Sept. 23-27, 2013

Tcl 2013
New Orleans, LA

September 23-27, 2013

Session V
September 26 1:30-3:00pm

20th Annual Tcl Conference 157 New Orleans, LA Sept. 23-27, 2013

20th Annual Tcl Conference 158 New Orleans, LA Sept. 23-27, 2013

Optimizing Tcl Bytecode
Donal Fellows

The University of Manchester / Tcl Core Team
donal.k.fellows@manchester.ac.uk

1. Abstract
The Tcl interpreter has an evaluation strategy of parsing a script into a sequence of commands, and
compiling each of those commands into a sequence of bytecodes that will produce the result of the
command. I have made a number of extensions to the scope of commands that are handled this way
over the years, but in 2012 I started looking at a new way to do the compilation, with an aim to
eventually creating an "interpreter" suitable for Tcl 9. This paper looks at the changes made (some
of which are present in 8.6.0, and the rest of which will appear in 8.6.1) and the prospects for future
directions.

1. Introduction

During the development of Tcl 8.6, Kevin
Kenny and Ozgur Dogan Ugurlu demonstrat-
ed[1] (through the implementation of the
command ::tcl::unsupported::assemble) that it
was possible to create an assembler for Tcl
bytecodes that was sufficiently safe that it was
suitable for exposure in a Safe Interpreter. In
particular, it became clear that there were a
set of constraints that could be applied that
would ensure that a Tcl assembler would nev-
er generate code that could crash; access to
parts of the stack not “owned” by the code
was prohibited. Though infinite loops were
still possible — excluding infinite loops re-
quires either totally emasculating the capabili-
ties of Tcl or the possibility of proving excep-
tionally complex mathematical theorems —
those loops would never exceed properly cal-
culable stack bounds.

I found this absolutely fascinating, as it
showed that the bytecode that we had been
generating was not nearly as unruly as I had
previously feared; my problems with writing
compilation commands such as for switch and
dict had been more due to my not being aware
of those implicit constraints, rather than their
absence. It also allowed us to quantify exactly
what was wrong with the compilation of break

and continue, both of which had long been
known to be problematic in cases previously
only known in an operational sense.

When we considered the implications of this,
we realized that it also made it substantially
easier to consider compilation of Tcl to actual
native code. Previous attempts[2] had focused
on a simplistic transformation of the existing
bytecodes to their machine-code equivalents,
but that is a strategy that is unlikely to yield
significant benefits for several reasons:

1. The bytecode that they are starting
from is significantly non-optimal in the
first place.

2. Tcl commands are potentially highly
dynamic, with the option for their im-
plementations to be changed substan-
tially as a script executes.

3. The value-model of Tcl is very strong-
ly rooted in the concept of an immuta-
ble reference with typed views, which
is substantially different to that of ma-
chine code (mutable references to ma-
chine words) or languages like C (mu-
table references to typed variables).

The combination of these issues means that
compilation of Tcl to machine code is a sig-
nificant challenge. This paper will be primari-

20th Annual Tcl Conference 159 New Orleans, LA Sept. 23-27, 2013

ly looking at dealing with the first part of this
problem, so that the bytecode that the compi-
lation starts from is at least a stronger founda-
tion. The advantage of working on this part is
that the results of doing this can be made
available to the community more rapidly than
the other parts; full compilation will require a
lot more work to support than tweaking
things to work better within current con-
straints.

In this paper, I present a summary of Tcl’s
bytecode system in Section 2. In Section 3, I
describe how I have been improving the cov-
erage of commands that bytecode is generated
for. In Section 4, I describe the improvements
I have made to the bytecode generated for a
number of existing Tcl commands. In Section
5, I talk about an improvement to the intro-
spection tools for Tcl bytecode so as to more
simply expose the information that is there to
scripts. In Section 6, I describe the simple op-
timizer that I have created for Tcl bytecode,
and in Section 7 I present some performance
measurements to examine whether I am mak-
ing any progress on the performance front.
Finally, I examine possible future directions
in Section 8.

2. About Bytecode

Tcl’s current system of compilation uses a
custom target called Bytecode[3], designed
primarily to be an in-memory and on-disk da-
ta structure1 that has minimal space consump-
tion as a primary goal.

The fundamental model of bytecode execu-
tion is that there is a stack of values that rep-
resent intermediate working values, argu-
ments and results. Every command becomes
a sequence of instructions that ends up with

1 Support for what became the TclPro compiler
and the tbcload extension was part of the original
mandate, though it is not part that is officially
supported for general free use. However, the con-
sequences of that support are subtly scattered
through the code.

the result of the command being pushed on
the stack; in the simplest case, a command is
compiled into a push of all the argument
words and an invoke via Tcl’s basic com-
mand dispatch, which will in turn replace
those argument words with the single result
value. The pushing of the argument words
may be non-trivial if the words are complex
compounds of various substitutions, but the
overall model is comparatively simple.

When this simple universal execution strategy
is used, the command in question is referred
to as uncompiled. This is obviously not actual-
ly true — we have just discussed what the
compilation is! — but the key is that the actu-
al embodiment of the semantics of the com-
mand is still the standard implementation
function; all that is bytecode-compiled is the
assembly of the arguments and the lookup
and invocation of that function. With a
“compiled” command, the semantics of the
command are embodied by a direct sequence
of bytecode instructions. Those instructions
will produce the result of the command with-
out (typically) going through command dis-
patch.

Command compilation

Each compiled command has its own strategy
for producing instructions, the command
compiler, which is asked to consider how to
do the compilation in a particular case. Any
failure of the command compiler will cause
the standard compilation to be used, which is
also used when the command name itself is
dynamically generated (e.g., the value of a
variable or the result of a command), as at
that point Tcl is unable to statically determine
the command compiler to use.2

2 It is a consequence of this that TclOO instance
dispatch is unlikely to ever be compiled; a key us-
age pattern of TclOO is to hold the name of the
instance to invoke in a variable, clearly a case that
cannot ever be compiled to anything substantially
better than the current dispatch mechanism.

20th Annual Tcl Conference 160 New Orleans, LA Sept. 23-27, 2013

Command compilers can fail for many rea-
sons. One of the main reasons is if one of
their arguments is not a literal despite the
compiler requiring it to be; this is what hap-
pens when any of the arguments to while is
not a literal. The other two common reasons
for failure are if there is a lack of a local vari-
able table (LVT) in the compilation context,
or if given the wrong number of arguments,
though this is very much not an exhaustive
set.

The lack of an LVT case requires some expla-
nation. The local variable table is a numerical-
ly indexed collection of variables that is used to
hold the formal arguments to a procedure, the
local variables inside that procedure, and
whatever extra information is necessary (local
temporary variables that hold values in pat-
terns that would interfere with the stack).
Some instructions for compiling commands
only exist in a form that accesses the local
variable table, so compilations that necessari-
ly use those instructions cannot be done with-
out an LVT present: this is exactly why
foreach is not efficient except when used in a
procedure (or other procedure-like entity,
such as a lambda term or TclOO method).

Exposure of bytecode in Tcl scripts

There has been a disassembler for Tcl
bytecodes since they were introduced in Tcl
8.0, but up to 8.4, this was one of the most
hidden features (it required setting a magic
variable and then reading standard output,
itself tricky on Windows). In 8.5, this disas-
sembler was exposed more cleanly via the
disassemble command in the tcl::unsupported
namespace.

In 8.6 this was joined by assemble, though the
two commands shared very little in terms of
actual syntax beyond the names of the in-
structions. In addition, the supported instruc-
tion sets were also subtly different, mainly
due to it being hard to correctly and safely is-
sue some instructions.

3. Improving Coverage

In order to improve the overall generation of
bytecode by Tcl, it is necessary to increase the
fraction of Tcl code that can be compiled to
pure bytecode. That is, an instruction se-
quence is pure bytecode if it does not contain
any of the instructions invokeStk1, invokeStk4
(commonly just referred to as invokeStk, as
they are a linked pair) or invokeExpanded3.
Script fragments that have their instruction
sequences entirely free of those instructions
are entirely predictable in their behaviour, at
least at an operational/type-theoretic level.

But what was the status of Tcl’s compilation
of commands back in mid-2012? Well, there
had been some adjustments done during the
development of 8.6, but they had been rather
piecemeal. After the introduction of compila-
tion strategies for subst (in 2009), unset (in
2010) and dict with (in 2011), not much had
really changed; the set of scripts that would be
likely to become pure bytecode was indeed
very small.

Improving key loop types

To change this, I instead took a different tack
and looked at scripts where I wanted them to
become pure bytecode. An example of the sort
of script that I wanted to be pure was an inner
loop of a simple value-generating coroutine.
Such a coroutine is this one, which yields first
its own name (often a useful thing to do), then
each of its arguments, and finally it causes the
receiving loop to break.

proc all args {
 yield [info coroutine]
 foreach item $args {
 yield $item
 }
 return -code break
}

3 The other instruction that should not be present
is invokeReplace, which I will discuss later in this
paper.

20th Annual Tcl Conference 161 New Orleans, LA Sept. 23-27, 2013

This coroutine body procedure would be cre-
ated and its values consumed something like
this:

set c [coroutine X all "foo" "bar"]
while 1 {
 puts "X\[[incr i]\] = [$c]"
}

As you can see, all the commands in all are
part of Tcl itself, and ones that are reasonably
likely to occur in an inner loop. Furthermore,
all the operations involve data that is availa-
ble locally; it is all either immediately present
on the stack, in the stack frame, or in the in-
terpreter.

An alternative mechanism for doing such a
simple yielding loop is this one:

proc all args {
 yield [info coroutine]
 foreach x [lrange $args 0 end-1] {
 yield $x
 }
 return [lindex $args end]
}

This has a different pattern of usage, or rather
two slightly different patterns, one of which is
done with info commands:

set c [coroutine X all "foo" "bar"]
while {[llength [info commands $c]]} {
 puts "X\[[incr i]\] = [$c]"
}

And the other with namespace which (equiva-
lent to having the -command option specified):

set c [coroutine X all "foo" "bar"]
while {[namespace which $c] ne ""} {
 puts "X\[[incr i]\] = [$c]"
}

Making these as pure as practical (i.e., the
generating and receiving loops except for the
necessary call to the coroutine itself, and — in
this illustrative example — the call to puts to
print the values) required being able to
bytecode-compile both a way to actually pro-
duce values, yield, and a way to detect wheth-
er the coroutine had terminated from both
within and outside the coroutine. Within the

coroutine, it was a matter of making info
coroutine be a compiled operation (interior
termination detection is really just a matter of
whether a non-yielding exit from the coroutine
is performed, such as a return) and from out-
side the coroutine it was a matter of allowing
for a way to query whether a particular com-
mand existed, which was done in different
ways by different people: some used info
commands with a literal non-pattern argument,
and others used namespace which -command.

Similar concerns with determining whether a
procedure call actually provided a value for
some optional argument encouraged me to
add info level to the compilation list. I also did
namespace current and self object, as these are
very common in some coding styles, while
representing information that is readily avail-
able.

The compilations of all of these introspection
commands are to straightforward instructions
that implement the functionality; thus, the
coroName instruction implements the func-
tionality of info coroutine, resolveCmd imple-
ments namespace which, the yield instruction
(unsurprisingly) implements the core of the
yield command, etc.

Examining the Teapot

Yet for all that, I did not feel that I had made
much of an impact in the coverage. I needed a
different technique for selecting what com-
mands would attract improvements. So I
turned to the Tcl packages that I had installed
in my local Teapot repository.

The vast majority of packages in the Teapot
are either wholly or partially scripts, so this
forms a substantial body of Tcl code that is in
current use. By looking at this and finding
what commands were common but uncom-
piled, I would at least establish a set of com-
mands that should be compiled if possible and
reasonable. Not all of them actually ought to
be compiled (for example, there is no real
benefit to compiling commands that do I/O)

20th Annual Tcl Conference 162 New Orleans, LA Sept. 23-27, 2013

but it would at least establish some priority;
very rarely used commands clearly need not
attract significant effort.

In particular, I studied the core ensemble
commands array, dict, namespace and string.
(The vast majority of info and interp is only
used on code that does not need to be fast,
and chan is almost entirely focused on OS ac-
cess.)

As can be seen in Table 1 and in more depth
in Appendix 1 (the frequency counts date
from October 2012), just how frequent the
various subcommands are varies widely; array
set is nearly 70 times more common than
array size. In addition, some of the subcom-
mands are largely impractical to implement:
the operations that read the state of an array
(size, get and names) have really rather strange
trace behaviour, using privileged access to the
implementation of the arrays to operate (the
existence of elements has to be checked dur-
ing the processing of those subcommands).
But it does indicate that array set is a strong
candidate for compilation.

Similarly, I have identified that the first, last,
map, and range operations of string are practi-
cal, as are the code, qualifiers and tail opera-
tions of namespace, and the merge operation of
dict. (Strictly, string last is not actually suffi-
ciently frequent to be worthwhile, but its func-
tionality is required to implement the more
frequent namespace qualifiers operation.) Some
of the impractical operations were namespace
eval (very common, but crosses stack frame
boundaries) and string is (potentially very rel-
evant, but very complex).

Generating values

In addition, I looked for commands that
could be used to produce literals. With the
introduction of lmap and dict map in 8.6, we
have increased the need to be able to produce
a literal value as the result of evaluating a Tcl
script. A few techniques were in common use:

• expr 123 — Fine for numbers, but poor
where the value is non-numeric or
(even worse) looks like a number but
isn’t.

• subst abc — A reasonable way of pro-
ducing a simple value, but not actually
commonly chosen.

• format abc — A way that works pro-
vided the literal being produced has no
%-substitutions in it, but otherwise
problematic. Also slow.

• format "%s" abc — Lacks the formal
problems of the option immediately
above, but still very slow.

• list abc — Not correct at all except for
literal lists! This is particularly obvious
when the literal being produced con-
tains spaces.

• return -level 0 abc — The “official”
method, hardly used by anyone due to
it being so thoroughly unobvious.

It was clear that it was desirable to make
more of these operations efficient. In particu-
lar, wherever these commands produce a con-
stant value or a value determined entirely by
arguments, there is an excellent opportunity
for generating the operation via efficient
bytecodes. Since some of these were already
bytecoded (expr, subst, list and that complex
return form) what I was seeking to do was to
ensure that the other potential common forms
were efficient: in particular, where format has
constant arguments or is only using simple
string concatenation (literal pieces plus exact-
ly %s) then it is entirely practical to bytecode

Command Incidence Practical
array size 37 No
array exists 56 Yes
array unset 191 Yes
array get 479 No
array names 1085 No
array set 2511 Yes

Table 1: Incidence of array subcommands

20th Annual Tcl Conference 163 New Orleans, LA Sept. 23-27, 2013

them. The other forms of format remain un-
compiled.

4. Improving Generation

But it is not just that the set of commands for
which instructions are issued has been ex-
tended; I have also looked at improving the
generation of bytecode for existing com-
mands.

In particular, the very complex commands
switch, try and dict with have had a lot of at-
tention from me, as have the built-in ensem-
bles as generic features. I have also worked on
changing the break and continue compilers so
that they jump to their target instruction loca-
tions (after doing appropriate clean-up) rather
going to the expense of throwing exceptions.

Improving ensembles

One of the key features of Tcl’s ensembles is
that they can be bytecode compiled into. This
is a key feature that distinguishes them from
objects; they are command groupings, but the
name of the command and its subcommand
are expected to normally be literals in scripts.
This is particularly true for those ensembles
defined by Tcl itself. (Enabling compilation
for all ensembles would have the unfortunate
side effect of making the Snit extension
enormously more expensive.)

The ensemble dispatch mechanism in Tcl 8.5
normally uses a cache in the subcommand’s
Tcl_Obj to hold a reference to the implementa-
tion command to dispatch to (building that
cache from the ensemble’s internal table if it
does not exist or has been modified) and dis-
patches via Tcl_EvalObjv. This mechanism is
fairly quick, but has some overhead relative to
directly invoking the command. Where the
ensemble is marked for compilation (via an
internal flag not exposed to third-party code,
used for string, info, etc.), the subcommand is
a known literal, and the implementation
command has a compilation implementation
of its own, the compiler for that implementa-

tion is called with the rewritten argument list
so that bytecode is generated. This means that
we can use this mechanism for well known
core Tcl ensembles with no degradation in
performance.

However, the mechanism is not that fast
where specialist bytecode compilers are not
available. In particular, there are a number of
steps that are relatively costly, such as the re-
write of the argument lists and the double
dispatch (once to process the overall ensemble
command, and a second time for the dispatch
to the implementation), and a fair number of
the subcommands that it is used with are rele-
vant for use in high-performance code (e.g.,
the string tolower command is really rather
common when cleaning up external data).

To improve this situation, I have done two
things. The first is to embed a new mecha-
nism in Tcl (via the new bytecode instruction
invokeReplace) to perform the efficient dispatch
of ensemble subcommands. This embeds part
of the mechanism described above; it reduces
the overhead of the dispatch mechanism to
the minimum (i.e., a single call to
Tcl_EvalObjv) while preserving the exact exter-
nally visible semantics that already existed.
The second improvement is to add very sim-
ple command compilers to many (but not all)
of the existing subcommand implementa-
tions; these simple compilers just check if the
correct number of arguments is supplied (i.e.,
that there will be no call to Tcl_WrongNumArgs
at runtime, as that is one of the few functions
that can observe the differences due to en-
semble dispatch) and if the right number of
arguments is present, issues a direct invokeStk
instruction to call the relevant implementa-
tion command.

Following this change, we can now observe
four different ways that ensemble subcom-
mands can be dispatched:

1. Directly compiled subcommands just
generate normal bytecode:

20th Annual Tcl Conference 164 New Orleans, LA Sept. 23-27, 2013

string range foo 2 3

Compiles to:

push "foo"
strrangeImm 2 3

2. Simple subcommands become invoca-
tions of the underlying implementa-
tion:

string tolower foo

Compiles to:

push "::tcl::string::tolower"
push "foo"
invokeStk1 2

3. Complex subcommands become the
replacing invoke of the subcommand:

namespace eval ::foo { bar }

Compiles to:

push "namespace"
push "eval"
push "::foo"
push " bar "
push "::tcl::namespace::eval"
invokeReplace 4 2

4. Invocations of uncompiled ensembles
use the old mechanism:

userEnsembleExample x y

Compiles to:

push "userEnsembleExample"
push "x"
push "y"
invokeStk1 3

The criteria for whether a subcommand is
deemed to be “complex” are whether it eval-
uates a script during it’s processing (as those
scripts can contain a call to info level or info
frame, both of which can observe the differ-
ence), or whether the subcommand has a non-
trivial mechanism for determining if the cor-
rect number of arguments has been supplied
(the chan copy command is one of these).

As previously noted, this mechanism is not
enabled for ensembles created outside the

core of Tcl. This is because the cost of delet-
ing or doing an update of a compiled ensem-
ble is substantial: it triggers the re-compilation
of all bytecode in the interpreter. The impact
on Snit in particular would be enormous, giv-
en that it is constructing an object system on
top of the ensemble mechanism.

Improving switch

The switch command has a number of main
modes of operation from the perspective of
bytecode generation. There are three principal
ones:

• Jump table. This is generated when do-
ing exact matching of the argument,
and is fast especially when the number
of things to compare against is large
(such as in the implementation of the
clock command’s format parser). This
was already substantially correct, as it
did not need to retain a copy of the
value to test against for any length of
time.

• Sequence of conditions. This is what is
normally generated, and is what is
used for case-insensitive exact match-
es, glob matches and simple regular
expression matches. This is the area
that had a substantive amount of work
applied to it, mainly to ensure that the
computed stack depth used during the
compilation of the body scripts was ac-
tually correct so that any break or con-
tinue across the switch command
would function correctly instead of
causing one of a whole variety of
crashes.

Note that this did not substantially
change the actual code generated; this
is much more about getting correct
metadata about the generated code, so
that other code could be generated cor-
rectly.

20th Annual Tcl Conference 165 New Orleans, LA Sept. 23-27, 2013

• Uncompiled. This represents the degen-
erate case, and is used in awkward sit-
uations such as when a script is not a
literal, or when a particularly complex
regular expression match is used (par-
ticularly with capturing of the sub-
expressions). This case remains in
need of substantial work in the future
in order to reduce the number of varia-
tions of switch that are not compiled.

Improving try

For the try command, the key to understand-
ing its fundamental complexity is that there
are two major conditions to consider when
doing code generation: the correct way to cre-
ate code depends strongly on whether or not
there are any on or trap clauses4, and whether
or not there is a finally clause. If there are nei-
ther, the try is little more than an eval variant
(without the concatenation).

The aim of any code generation plan for a
construct like try has to be to keep the amount
of overhead down. Additionally, care has to
be taken when an error occurs during the pro-
cessing of any on, trap or finally clauses, as the
original exception state has to be embedded in
the option dictionary’s -during option. The
major opportunity for optimization is when
there is no finally clause and no trapping of a
TCL_OK result, when it is possible to allow the
exiting of the context without having to do a
full trap and reissue of all exceptions; only the
actual exceptional cases need special extra
processing.

If we look at this code:

try {
 puts "foo bar"
} on error msg {
 puts "bad stuff: $msg"
}

4 The only difference between a trap clause and an
on error clause is that the former also checks
whether the given words match a prefix of the -
errorcode list.

This is only compiled when placed in a con-
text with a local variable table (i.e., in a pro-
cedure, lambda term or method) and it pro-
duces this rather long bytecode sequence in
Tcl 8.6.0 (for clarity, the parts that are not ac-
tually executed normally are indented, and
the parts that are normally executed are in
bold):

beginCatch4 0
push "puts"
push "foo bar"
invokeStk1 2
push "0"
reverse 2
jump1 +4 # � pc 22
 pushReturnCode
 pushResult
pushReturnOpts # = pc 22
endCatch
storeScalar1 %2
pop
storeScalar1 %1
pop
dup
push "1"
eq
jumpFalse4 +26 # � pc 60
 pop
 loadScalar1 %1
 storeScalar1 %msg
 pop
 push "puts"
 push "bad stuff: "
 loadScalar1 %msg
 concat1 2
 invokeStk1 2
 jump4 +11 # � pc 66
pop # = pc 60
loadScalar1 %2
loadScalar1 %1
returnStk
done # = pc 66

With the changes, this is now rather longer
(alas) because of the need to handle the -during
exception logging, but also correct and faster
when no errors occur:

beginCatch4 0
push "puts"
push "foo bar"
invokeStk1 2
endCatch
jump4 +103 # � pc 115
 pushReturnCode

20th Annual Tcl Conference 166 New Orleans, LA Sept. 23-27, 2013

 pushResult
 pushReturnOpts
 endCatch
 storeScalar1 %2
 pop
 storeScalar1 %1
 pop
 dup
 push "1"
 eq
 jumpFalse4 +78 # � pc 109
 pop
 loadScalar1 %1
 storeScalar1 %msg
 pop
 beginCatch4 1
 push "puts"
 push "bad stuff: "
 loadScalar1 %msg
 concat1 2
 invokeStk1 2
 endCatch
 jump4 +57 # � pc 115
 pushResult
 pushReturnOpts
 pushReturnCode
 endCatch
 push "1"
 eq
 jumpFalse1 +28 # � pc 98
 loadScalar1 %2
 reverse 2
 storeScalar1 %2
 pop
 push "-during"
 reverse 2
 dictSet 1 %2
 reverse 2 # = pc 98
 returnStk
 jump4 +11 # � pc 115
 pop # = pc 109
 loadScalar1 %2
 loadScalar1 %1
 returnStk
done # = pc 115

In particular, I have highlighted in bold the
instructions taken when no error occurs in the
body; as can be seen, the number of instruc-
tions processed in this, the expected case, is
now far smaller; the execution overhead of the
try command is demonstrably reduced despite
the increase in length of bytecode created.
This difference is only exacerbated when the
try command has a sequence of trap clauses
instead of a single simple on error clause.

Improving dict with

Sometimes, the Tcl community find things to
do with Tcl commands that I never anticipat-
ed. So it was with dict with, where one of the
key use-cases has turned out to be converting
a dictionary into a group of local variables
without maintaining the binding to the map-
ping in the dictionary. The common idiom for
this technique is to use an empty body script,
and that has the advantage that it is a case
that can be simply detected during compila-
tion.

When I detect this case, I am able to deter-
mine precisely that there can be no exceptions
arising from the evaluation of the body of the
dict with — no commands, no substitutions,
therefore no errors — so I can omit the (com-
plex!) code stanza to manage exceptions aris-
ing from the body script. Indeed, I can actual-
ly omit virtually everything from the imple-
mentation of the command other than the op-
eration to expand the dictionary into variables
and the operation to write the values back.
The latter has to remain as I cannot prove at
the time of issuing the code that none of the
variables have a trace set on them that modi-
fies the values.

Improving break and continue

Traditionally, the break and continue com-
mands are implemented as commands that
produce the specialized result codes
TCL_BREAK (defined to be 3 in tcl.h) and
TCL_CONTINUE (4) respectively. In the
bytecode-compiled era, these have been trans-
lated into instructions (with the same names
as the commands) that generate the relevant
exception conditions. However, this is actual-
ly not very efficient, as it requires the code
processing these conditions to jump outside
the main bytecode evaluation loop to the sep-
arate code that finds the exception target in
the two cases.

Instead, I track exactly what exception trap-
ping ranges are present at the point where the

20th Annual Tcl Conference 167 New Orleans, LA Sept. 23-27, 2013

break/continue is issued. By finding the in-
nermost active range, I can directly determine
where the exception would end up branching
to, and directly use a jump instruction instead.
This is a significantly more optimal instruc-
tion sequence.

However, there are some significant wrinkles
to this. In particular, it is possible for the stack
depth to be different between the place where
the break/continue command is being com-
piled and the place where we want to jump
to; this is actually a bug in Tcl’s bytecode
generation of long standing. The problem is
not (usually) the nesting of commands that
you see with most Tcl scripts, but rather more
esoteric scripts such as:

while 1 {
 puts "foo,[continue]"
}

This is problematic because words for the in-
ner invocation of puts are being placed on the
evaluation stack when the continue is pro-
cessed, and a skip back to the start of the loop
without resetting (whether done via an excep-
tion or via a direct jump) results in the overall
stack depth growing without reasonable
bound. Preventing this requires additional pop
instructions to be done before the jump so that
the stack depth is correct for the target in-
struction. This does somewhat decrease the
efficiency in this case, but since it is rare and
previously a critical error, the cost is entirely
justifiable. (The complexity of tracking the
stack depths and jump targets is only borne
during compilation, not execution.)

A variation on this (also handled) is where
there are expansions being processed on the
stack at the same time, because expansions
have their own tracking stack.

Improving expanding list

The final major improvement to code genera-
tion that I have made was to the list com-
mand when some of its arguments are derived
from expansion. While it is not generally pos-

sible to handle expansion which produces the
first word of a command, as it easily becomes
impractical to figure out what command is
being compiled, when that command is capa-
ble of processing any number of arguments
and producing a result, it should be possible
to make a compiled version of that command.
The only command for which I have done
this is list, where an all expanding arguments
version:

list {*}$foo {*}$bar

is actually semantically equivalent to this:

concat [lrange $foo 0 end] \
 [lrange $bar 0 end]

However, it can be implemented in a consid-
erably more efficient manner, as there is no
need to consider what is going on with string
interpretations; it can be a pure list operation.

In terms of how the code generated changes,
this:

list {*}$foo {*}$bar

used to compile to this5:

expandStart
push "list"
loadScalar %foo
expandStkTop 2
loadScalar %bar
expandStkTop 3
invokeExpanded

Following this change, we instead generate
this sequence of instructions:

loadScalar %foo
loadScalar %bar
listConcat

This sequence with three arguments to list,
one of which is expanded:

list $foo $bar {*}$grill

Used to compile to this:

5 It turns out that the numeric parameter to
expandStkTop is not actually necessary for the in-
struction to function correctly, not now that stack
depth calculations are correct.

20th Annual Tcl Conference 168 New Orleans, LA Sept. 23-27, 2013

expandStart
push "list"
loadScalar %foo
loadScalar %bar
loadScalar %grill
expandStkTop 4
invokeExpanded

But now becomes this:

loadScalar %foo
loadScalar %bar
list 2
loadScalar %grill
listConcat

The listConcat instruction used is a simple bi-
nary operation to concatenate two lists.

It should be noted that the mechanism for al-
lowing a command to take charge of what in-
structions it is compiled when expansion is
present is generic. The potential exists to in-
crease the number of commands that produce
efficient code, but most commands have the
issue that they support additional options or
fixed-position arguments, so compilers have
to be relatively careful; the list command is a
special case in that it is a simple command
that treats all arguments (after the initial
command name) exactly the same.

5. Improving Inspection

As part of this work, and with a little minor
prodding from Colin McCormack, I found
that there were some fairly severe limitations
on the built-in disassembler that needed to be
addressed.

Disassembler history

The disassembler in Tcl 8.5 was originally a
part of Tcl 8.0 as a debugging tool. It was en-
abled by setting the variable tcl_traceCompile to
2 and causing the code in question to be com-
piled, when it would print the disassembled
bytecode directly to standard out. (In situa-
tions without a real C-level stdout, such as in
wish or tkcon on Windows, no output would
be produced at all.) As you can no doubt
guess, this was highly tricky to use; you had

to wrap it in something like this, assuming an
argument to the procedure was required for it
to work:

proc disasProc {procedureName} {
 global tcl_traceCompile
 rename set SET
 rename SET set
 set tcl_traceCompile 2
 catch {$procedureName}
 set tcl_traceCompile 0
 return
}

This was horrible (especially the need to flush
the bytecode cache by bumping the compila-
tion epoch) so in Tcl 8.5 I altered the code to
do the direct printing to instead dump its re-
sults out to a string buffer instead of printing
directly, and wrapped this into the disassemble
command (which was put in the
tcl::unsupported namespace to signify that we
were not guaranteeing the interface) together
with a bit of code to allow the control of ex-
actly what was being printed. This allowed
the equivalent of the above to be done with:

proc disasProc {procedureName} {
 puts [disassemble proc \
 $procedureName]
}

This is an enormous improvement in usabil-
ity, and works correctly on all platforms. (The
parameter passed as proc above is used to dis-
ambiguate between procedures, scripts, lamb-
da/apply terms, etc.)

However, the results of the disassembly (used
in abbreviated form earlier in this paper) are
difficult to consume in a script, as they are
designed purely to be a basic debugging tool.
In particular, they intermix metadata and the
disassembly information. There is also quite a
bit of information in the bytecode itself that is
not exposed in the disassembled code, mostly
relating to the parsed script’s commands.

20th Annual Tcl Conference 169 New Orleans, LA Sept. 23-27, 2013

The new disassembler

To address this, I have created an additional
disassembler6 that takes the same arguments
as the existing disassembler, but instead of
producing its results as a complex string, it
generates a dictionary that describes the
bytecode. The description dictionary contains
these keys:

• literals — contains a list of all literal
values used in push instructions in the
bytecode.

• variables — contains a list of infor-
mation about all variables defined in
the bytecode. Each variable is repre-
sented by a list where the first word is
a set of flags (e.g., “scalar” to indicate
that the variable is a simple variable)
and the second word is the name of
the variable; temporary variables don’t
have the second word as they are un-
named.

• exception — contains a list of dictionar-
ies that describe the exception ranges in
the bytecode. Each of these dictionar-
ies states what type it is (catch ranges
trap all non-TCL_OK exceptions, loop
ranges only trap TCL_BREAK and
TCL_CONTINUE), what range of instruc-
tions are covered, and where to jump
to when an exception occurs.

• instructions — contains a dictionary of
the disassembled code, with the keys
of the (inner) dictionary being the nu-
meric addresses of the instructions in
order and the values of the dictionary
each being a list that is the disassembly
of the instruction. The first value in
each list is the instruction name, and
the subsequent values are the argu-

6 This is ::tcl::unsupported::getbytecode at the time of
writing. This is not a name that I consider to be a
long-term name, as it is not getting the bytecode so
much as describing it.

ments. Each argument may be an inte-
ger, a reference to a literal (an index
into the literals list preceded by “@”), a
jump target (an address preceded by
“pc ”), a variable index (a “%” fol-
lowed by the index into the variables
list), an immediate index literal (starts
with a period, “.”, followed by a list
index which may be either start- or
end-relative), or an auxiliary index (a
“?” followed by an index into the
auxiliary list).

• auxiliary — contains a list of auxiliary
information descriptors. This is used to
encode three key things: the descrip-
tion of what variables are used by the
foreach-related instructions, the de-
scription of relative jumps to use in a
jumpTable instruction, and the descrip-
tion of how to map variables in the in-
structions used to compile dict update.
Each descriptor is a dictionary where
the only guaranteed key is name, which
holds the name of the type of auxiliary
information encoded in the particular
record.

• commands — contains a list of diction-
aries that describe what commands
were detected in the code that was
compiled to produce the bytecode. The
order of the list of dictionaries is the
order in which the commands start
within the script. For each command,
the dictionary contains the range of in-
structions generated from that com-
mand (as addresses, in the codefrom
and codeto members), the range of the
source code that the command occu-
pied (as offsets from the beginning of
the script, in the scriptfrom and scripto
members), and in the script element,
the full text of the command that was
compiled (which can include sub-
commands).

20th Annual Tcl Conference 170 New Orleans, LA Sept. 23-27, 2013

• script — contains the full text of the
script that was actually compiled to
produce the bytecode.

• namespace — contains the fully quali-
fied name of the namespace used as
context to resolve commands in the
bytecode.

• stackdepth — contains the maximum
stack depth (approximately the maxi-
mum number of arguments that need
to be on the stack at once, plus the
space for evaluating expressions).

• exceptdepth — contains the maximum
depth of nested exception ranges.

The general principle of how the information
is encoded in the result of getbytecode is to en-
sure that the maximum amount of infor-
mation from the low-level bytecode is present
without exposing any of the complex encod-
ings that are used there or requiring consum-
ers of the result to know how each of the in-
structions actually treats its result. In fact, this
isn’t quite all the information in the bytecode,
but it is exceptionally difficult to make use of
the rest (such as the interpreter reference and
the compilation epoch) from scripts.

Using the disassembly

Though the output of getbytecode is not easy
to read as a person, for scripts it is exception-
ally easy to process. This makes it easy to do
things like analysing the flow of control in the
program, detecting automatically where loops
are and allowing the visualization of how ex-
ception ranges are used.

An example of what can be done with this is
shown in Appendix 2, where the controlflow
command (based on a heavily-modified ver-
sion of a x86 instruction renderer[4] originally
written in Python) prints out the address of
each instruction followed by the instruction
itself, with arguments converted to an easier-
to-read form (e.g., variable references are con-

verted to %name, or %%%index if they are
nameless temporaries). Arrows are added as a
prefix to indicate jumps, the different colour
applied to the instructions in the middle of the
output indicates that a (loop) exception range
is in force, and the two coloured addresses are
the targets for the exception range, one for
TCL_CONTINUE (being where to go to start the
next loop iteration) and the other for
TCL_BREAK (for finishing the loop). The out-
put part of the code renders to a normal Unix
terminal.

It should be noted that the technique I used is
not infallible when it comes to display. When
asked to display a moderately complex proce-
dure, such as those present in the implemen-
tation of Tcl’s clock command (e.g.,
ParseClockFormatFormat2), that has a number
of substantial switch statements that compile
into jump tables, the number of indents be-
comes larger than any reasonable width of
terminal.

6. Optimization

Given all the work described above, it has be-
come clear that it is necessary to generate im-
proved bytecode. There are a number of plac-
es where simply generating better code within
the implementation of a command was not
generating good code within the wider stream
of bytecode.

For example, it is the fundamental structure
of Tcl command compilation that they overall
push a single word onto the bytecode execu-
tion engine’s stack. Then, in the common
case where the result of the command is not
needed, that word is then immediately
popped off the stack again. It is therefore
closer to optimal to not push the value in the
first place, if it is possible to avoid doing so.
Some cases are particularly easy to determine,
such as where the commands being compiled
always produce an empty (or other constant)
value as their results; the last step of the com-
pilation of both for and foreach is the push of

20th Annual Tcl Conference 171 New Orleans, LA Sept. 23-27, 2013

an empty value, and it is very rare to actually
use the results of those commands precisely
because it is always the empty string.

Yet to safely avoid doing that extra work at
runtime, you have to be cautious during com-
pilation. In particular, suppose the generation
of the pointless result is followed by a pop of
the value, but the pop can also be jumped to
from elsewhere (a pattern easily generated
when using the if command) then might well
be wrong to just remove the push/pop se-
quence as that will cause other code paths to
create an unbalanced stack.

The simplest way of preventing such prob-
lems with code removal is to determine if
there are any jumps (of any kind, including
conditionals, result-branch operations, jump
tables, exception targets, etc.) and to only do
the removal when the pop can only be reached
by that one push. This safety requirement re-
duces the number of optimizations done, but
ensures that those that are done are correct.

Optimizations performed

There are a number of optimizations that are
done now that were not part of Tcl 8.6.0.
These are:

• Removal of push/pop sequences, as de-
scribed earlier.

• Folding logical not into a following
branch by inverting the branch instruc-
tion’s condition.

• Removing tryCvtNumeric (part of the
compilation of expressions) when the
subsequent instruction will perform
the numeric conversion anyway.

• Advancing jumps to their ultimate tar-
get, instead of having them pass
through a chain of jumps and nops to
get there. This was a relatively com-
mon pattern, especially given that
jumps are now being generated from
break and continue commands.

• Removing startCommand instructions7
where the code is found to be suitably
“well-behaved”, such as compiling to
bytecode without any invoking of ex-
ternal commands or being located
within the implementation of Tcl. Un-
like the other optimizations described
here, this one is done by rerunning the
compiler in a special mode where it
simply does not issue the instruction
we want to exclude.

• Removing outright unreachable code
at the end of a bytecode compilation.
Where there is code after a done in-
struction that is not jumped to, it is
possible to determine exactly that the
following code cannot possibly be exe-
cuted, and so makes it a good candi-
date for removal. However, this is an
exceptionally minor optimization, as
unreachable code is not executed by
virtue of its very unreachability.

These optimizations are supported by a new
peephole optimization within the execution
engine. I added a special case to the pro-
cessing of pop instructions so that a sequence
of pops would be handled more efficiently.
The optimizer generates such sequences at
this point because it does not move any
pointers into the bytecode other than those
held by simple jump and branch instructions.
In particular, command boundaries are not
modified; they have a singularly complex en-
coding that it is non-trivial to work with.

7 The startCommand instruction is used to skip the
rest of the bytecode of a command when the
compilation epoch of the interpreter has been up-
dated since the start of processing of the bytecode
in question, typically in response to a rename or
deletion of a command with a bytecode compiler
attached to it. It is a common instruction to deal
with a rare case so as to ensure official semantic
correctness, and unfortunately is relatively expen-
sive to process.

20th Annual Tcl Conference 172 New Orleans, LA Sept. 23-27, 2013

7. Performance Measurements

In order to compare the performance of Tcl
between different versions, it is necessary to
be very specific about what is actually being
tested. In particular, it is easy to measure
something completely different to what you
expected to measure. To that end, the code
used to perform the performance measure-
ments is included in Appendix 3; the timings
in Table 2 are rounded to 4 significant figures
and are in microseconds.

The ListConcat program tests the performance
of the new way of handling expansion in the
list command. The Fibonacci program tests
general bytecode and integer operation han-
dling, the ListIterate program tests general
bytecode and list operation handling, and the
ProcCall program tests the costs of calling a
procedure. The LoopCB program tests the
costs of the break and continue commands.
The EnsDispatch* programs test the perfor-
mance of ensembles: EnsDispatch1 tests the
costs of doing ensemble dispatch for two cas-
es where we can convert to a direct invoca-
tion of the implementation command,
EnsDispatch2 tests the costs where we can fully
compile to bytecode, EnsDispatch3 tests a case
that still has to use the full ensemble dispatch
mechanism, and EnsDispatch4 tests the costs
for user-defined ensembles, verifying that no

unreasonable costs have been introduced in-
advertently. The DictWith program illustrates
the handling of the empty-body special case in
dict with. The Try* programs illustrate the
change of profile of costs associated with try:
TryNormal shows what happens when no er-
ror is trapped, TryError shows a trapped error,
TryNested shows the relative costs of throwing
an error in a handler script (note that none of
these execute on Tcl 8.5; the try command
was new in 8.6, and was not compiled fully in
8.6b1), and TryOver shows the overhead asso-
ciated with the evidence collection technique
used in TryNested (using the interior workload
associated with TryNormal).

Performance tests were done on a MacBook
Pro with a 2.7GHz Intel Core i7 processor
running OS X 10.8.4. The tests were deliber-
ately not disk intensive, and the amount of
memory used was much smaller than the free
memory available. The executables used for
these performance tests were compiled from
clean checkouts of the source tree for the re-
lease versions associated with each tag from
fossil, except for 8.6.0+, which corresponds to
the commit labelled bc57d06610b7. All were
compiled with exactly the same version of the
compiler, and using the default, optimizing
configuration. The benchmark driver script
forces compilation of the code being bench-
marked by running it once, then runs it for
100k iterations each of 20 times, taking the
minimum (so as to try to avoid any potential
problems with jitter due to the OS).

The overall evidence8 is that some of the op-
timizations are definitely valuable; for exam-
ple, the optimizations to core ensemble dis-
patch restore or even improve on the speed
that was in Tcl 8.5 for the majority of ensem-

8 It makes no sense to combine the performance
figures, as the benchmarks are not chosen at all to
represent realistic code or to give equal weight to
all operations. They are best regarded as samplings
of the performance of small parts of the implemen-
tation of Tcl.

Program 8.5.14 8.6b1 8.6b2 8.6.0+
ListConcat 0.418 1.564 0.544 0.493
Fibonacci 1.266 1.722 1.441 1.441
ListIterate 3.077 3.315 2.091 2.176
ProcCall 0.863 1.449 1.310 1.264
LoopCB 1.074 1.714 1.404 1.617

EnsDispatch1 0.975 1.944 1.400 0.888
EnsDispatch2 0.489 1.385 0.990 0.393
EnsDispatch3 0.520 1.598 1.261 1.112
EnsDispatch4 0.448 1.311 0.803 0.804

DictWith 2.634 4.072 1.895 1.289
TryNormal N/A 26.221 1.385 0.522
TryError N/A 39.313 3.804 3.931

TryNested N/A 57.236 7.727 11.788
TryOver N/A 39.230 4.120 4.290

Table 2: Times to execute key programs

20th Annual Tcl Conference 173 New Orleans, LA Sept. 23-27, 2013

ble subcommands. Similarly, some other op-
erations (e.g., dict with, try in the non-error
case) are clearly much cheaper now.

However, not everything is faster; command
dispatch is definitely slower in 8.6 than in 8.5
and that has an impact on many of these
benchmarks (most notably ProcCall and
EnsDispatch4) and I have no idea why Lis-
tIterate is so much faster in 8.6 and LoopCB so
much slower; further examination of the situ-
ation will be required. The increase in execu-
tion time of TryNested is expected due to the
change of semantics of option dictionary
handling in the error-in-handler case; TryOver
confirms that this is the cause, and not the
additional overhead of the error trapping used
in our little benchmarking framework.

8. Future Considerations

This document represents on-going work;
many things remain to be done in each of the
areas described. For example, in the area of
language coverage, we still need to analyse
what is the actual set of commands required
to allow the majority of Tcl scripts to be vir-
tually entirely compiled to bytecode without
the use of the generic dispatch sequence.
There are a number of commands that are
fairly common, relatively simple, but which
are not compiled (e.g., string trim). Which
ones can we change that status on? This re-
mains to be determined.

On the other hand, we also know that the
large majority of Tcl scripts are going to be
continuing to call commands even after con-
version to bytecode. This is because there is
an on-going need to invoke user-defined
commands, whether they are procedures, ob-
jects or functionality defined in an extension
written in a foreign language. What can we
do to make that step more efficient? Can we
support anything like inlining of procedures?
(It is my theory that the last question can be
definitely answered affirmatively with relative
ease provided the local variable table has no

named entries in it, but that’s an incredibly
restrictive condition; the real question is
whether it is possible to do so with fewer re-
strictions, and to what extent the results
change the visible semantics.)

When it comes to the quality of the generated
code, more can be done. In particular, the
current mechanisms for exception handling
are especially complex, and have a far-
reaching impact on code generation. Perhaps
adding a mechanism such as perhaps internal
subroutines à la classic BASIC would enable at
least some reduction in complexity.

There is also the fact that we currently need to
explicitly push exception depths on the stack; it
would be far nicer (from the perspective of code
generation at least) if the target stack depth in-
formation were encoded in the exception range
record. After all, we now have that information
accurately during code generation.

For the disassembly side of things, the obvi-
ous thing to do now would be to move to al-
lowing the assembler to be able to handle
what the disassembler produces in some way,
possibly with syntactic changes, so that we
can perform a full round-trip from Tcl code to
bytecode to disassembled bytecode to code
that is executable again. Currently there are a
few key things missing, most notably includ-
ing the ability to issue the foreach-related in-
structions. The aim would be to enable the
writing of more of the optimizer in Tcl itself
(ignoring for now the problems associated
with optimizing the optimizer’s own code).

However, for all the above, the major chal-
lenge for the future of bytecodes has to be to
improve the optimizer. The next step has to
be to actually remove irrelevant and unreach-
able code and other miscellaneous related
structures (e.g., exception ranges). This would
let the code issued be made quite a bit more
compact. This might in turn require substan-
tial reconfiguration of the in-memory repre-
sentation of bytecode.

20th Annual Tcl Conference 174 New Orleans, LA Sept. 23-27, 2013

Longer term

The real goal is meeting the Lehenbauer
Challenges and achieving speedups of be-
tween 2× (i.e., code that executes in half the
time) and 10× (i.e., code that executes in a
tenth of the time) as these will improve a
great many Tcl scripts instead of specific
code. The optimization strategies described
within this document may go some way to-
wards addressing the lower end of that range
of improvements depending on the exact pro-
file of code to be improved (indeed, the Dic-
tWith micro-benchmark in Section 7 already
achieves a better-than-double speedup), but
the higher end will definitely require native
code generation.

The aim of this work is therefore to provide
an improved basis for generating code where
it is possible to more easily analyse the code
to be native-compiled and determine its real
type behaviour. Proving micro-theorems
about the types of variables is the key to de-
termining how to generate good native code
from Tcl programs, and it is conjectured that
bytecode has a key advantage over straight
Tcl code as a starting point in that the type
logic of bytecode is more static. It remains to
be seen if this conjecture is actually a true
one.

9. References
[1] Ugurlu, O.D., Kenny K., A bytecode assembler

for Tcl, in Proceedings of the 17th Annual
Tcl/Tk Conference (Tcl’2010), Tcl Communi-
ty Association, Whitmore Lake, MI, 2010.

[2] Vitale, B., Abdelrahman, T.S., Catenation and
specialization for Tcl virtual machine performance,
in Proceedings of the 2004 Workshop on In-
terpreters, Virtual Machines and Emulators
(IVME’04), pages 42–50, ACM, Washington,
DC, 2004. doi:10.1145/1059579.1059591

[3] Lewis, B., An on-the-fly bytecode compiler for Tcl,
in Proceedings of the 4th Annual USENIX
Tcl/Tk Workshop, USENIX, Berkeley, CA,
1996.

[4] Fairchild, D., Automagical ASM Control Flow
Arrow-Annotation, weblog entry at
http://blog.fairchild.dk/2013/06/automagical-asm-

control-flow-arrow-annotation/, June 11, 2013,
accessed June 19, 2013.

20th Annual Tcl Conference 175 New Orleans, LA Sept. 23-27, 2013

Appendix 1: Teapot Ensemble Subcommand Frequency Tables

In the tables below, the assessment of whether a command is practical to bytecode depends mainly
on the internal complexity of the command; commands that create or destroy commands are al-
ways considered to be impractical as they potentially modify the interpreter epoch. The final col-
umn states whether the subcommand was bytecode-compiled in Tcl 8.6b2, i.e., prior to the work in
this paper.

The shell script used to extract the information was (with the environment variables
$TEAPOT_REPOSITORY and $TCL_CMD supplying the place to look for the sources and the command
to look for respectively):

find $TEAPOT_REPOSITORY -name "*.tm" -print0 | xargs -0 grep -lw $TCL_CMD \
 | xargs cat | grep -w $TCL_CMD | sed -nE "
 /$TCL_CMD +\[a-z\]/ {
 s/^.*$TCL_CMD (\[a-z\]*).*\$/\\1/
 p
 }

" | sort | uniq -c | sort -n

The result of that script was then hand-filtered to remove irrelevant values (such as words in free-
text that just happen to mention the major command) and to coalesce abbreviations onto their
main subcommand.

For the string command (subcommands not mentioned did not occur):

Command # Uses Practical to Bytecode Bytecoded in 8.6b2
string totitle 1 Possibly No
string replace 2 Possibly No
string trimleft 8 Yes No
string last 28 Yes No
string trimright 33 Yes No
string repeat 34 Possibly No
string toupper 145 Possibly No
string trim 147 Yes No
string index 245 Yes Yes
string tolower 248 Possibly No
string is 424 Possibly No
string map 569 Possibly No
string first 674 Yes No
string range 892 Yes No
string match 898 Yes Yes
string length 1100 Yes Yes
string equal 2129 Yes Yes
string compare 5971 Yes Yes

For the dict command (subcommands not mentioned did not occur; note that dict map was only in-
troduced after this survey was done):

20th Annual Tcl Conference 176 New Orleans, LA Sept. 23-27, 2013

Command # Uses Practical to Bytecode Bytecoded in 8.6b2
dict keys 1 Yes No
dict with 1 Yes Yes
dict unset 2 Yes No
dict lappend 3 Yes Yes
dict values 8 Yes No
dict for 8 Yes Yes
dict merge 15 Yes No
dict incr 18 Yes Yes
dict create 22 Yes No
dict append 28 Yes Yes
dict exists 34 Yes No
dict get 297 Yes Yes
dict set 347 Yes Yes

For the namespace command (subcommands not mentioned did not occur):

Command # Uses Practical to Bytecode Bytecoded in 8.6b2
namespace forget 3 No No
namespace inscope 6 Possibly No
namespace parent 7 Yes No
namespace children 17 Possibly No
namespace qualifiers 30 Yes No
namespace exists 50 Yes No
namespace which 56 Yes No
namespace delete 77 No No
namespace code 116 Yes No
namespace import 130 No No
namespace upvar 132 Yes Yes
namespace origin 153 Possibly No
namespace tail 206 Yes No
namespace ensemble 269 No No
namespace current 272 Yes No
namespace export 757 Possibly No
namespace eval 2681 No No

For the array command (subcommands not mentioned did not occur):

Command # Uses Practical to Bytecode Bytecoded in 8.6b2
array size 37 Possibly No
array exists 56 Yes No
array unset 191 Yes No
array get 479 Possibly No
array names 1085 Possibly No
array set 2511 Yes No

For the info command (subcommands not mentioned did not occur; note that info class and info
object are themselves ensembles, and that info patchlevel is impractical due to the “interesting” fail-
ure mode behaviour):

20th Annual Tcl Conference 177 New Orleans, LA Sept. 23-27, 2013

Command #Uses Practical To Bytecode Bytecoded in 8.6b2
info class 1 Yes (parts) No
info default 1 No No
info loaded 1 No No
info frame 2 Possibly No
info sharedlibextension 4 No No
info nameofexecutable 8 No No
info object 8 Yes (parts) No
info patchlevel 11 No No
info complete 12 Possibly No
info body 29 No No
info vars 33 Possibly No
info args 42 No No
info procs 50 No No
info hostname 54 No No
info script 67 Possibly No
info commands 274 Possibly No
info level 587 Yes No
info exists 3822 Yes Yes

For other ensembles, they are typically wholly impractical to bytecode other than through generic
mechanisms (e.g., the chan ensemble, which is thoroughly entangled with the I/O subsystem and so
likely to encounter dominating OS-related delays, but which still benefits from the generic im-
provements to the ensemble mechanism).

Appendix 2: Example of controlflow Output

Sample code used to create the output:

controlflow lambda {{a b c} {
 set sum 0
 foreach x [list $a $b $c] {
 incr sum [expr {$x**2}]
 }
 puts "sum of squares: $sum"
}}

Output from the above code:

20th Annual Tcl Conference 178 New Orleans, LA Sept. 23-27, 2013

 0 push1 "0"
 2 storeScalar1 %sum
 4 pop
 ┌─ 5 startCommand �� 61 2
 │ 14 loadScalar1 %a
 │ 16 loadScalar1 %b
 │ 18 loadScalar1 %c
 │ 20 list 3
 │ 25 storeScalar1 %%%4
 │ 27 pop
 │ 28 foreach_start4 {data %%%4 loop %%%5 assign %x}
 ┌──┼► 33 foreach_step4 {data %%%4 loop %%%5 assign %x}
 │ ┌┼─ 38 jumpFalse1 � 59
 │┌┼┼─ 40 startCommand � 56 2
 ││││ 49 loadScalar1 %x
 ││││ 51 push1 "2"
 ││││ 53 expon
 ││││ 54 incrScalar1 %sum
 │└┼┼► 56 pop
 └─┼┼─ 57 jump1 � 33
 └┼► 59 push1 ""
 └► 61 pop
 62 push1 "puts"
 64 push1 "sum\ of\ squares:\ "
 66 loadScalar1 %sum
 68 concat1 2
 70 invokeStk1 2
 72 done
As you can see, the implementation of the loop body has been indented, and the (loop) exception
range — the range of instructions where a TCL_BREAK or TCL_CONTINUE instruction will trigger a
jump to a nominated target instruction — has been highlighted in red. The break-target for the ex-
ception range has its address highlighted in blue, the continue-target has its address highlighted in
red.

The source to the controlflow command is too long to include in this document. It can be down-
loaded from DropBox: https://dl.dropboxusercontent.com/u/19238925/Tcl/2013/controlflow.tcl

Appendix 3: Performance Measurement Script

The performance measurements of Section 7 were done with this consolidated script.

package require Tcl 8.5

proc listConcat {a b c} {
 list $a $b {*}$c
}

proc Fibonacci {n} {

20th Annual Tcl Conference 179 New Orleans, LA Sept. 23-27, 2013

 set a 0
 set b 1
 for {set i 2} {$i <= $n} {incr i} {
 set b [expr {$a + [set a $b]}]
 }
 return $b
}

proc iter {param} {
 set result {}
 foreach x $param {
 lappend result [string length $param]
 }
 return $result
}

proc inner {} {
 return "ok"
}
proc outer {} {
 inner; inner; inner; inner; inner
}

proc loopcb {x} {
 for {set i 0} {$i < 10000} {incr i} {
 if {$i == $x} break
 continue
 }
 return "ok"
}

proc ensDispatch1 {} {
 info tclversion
 info patchlevel
}

proc ensDispatch2 {} {
 namespace current
 info level
}

proc ensDispatch3 {} {
 namespace inscope :: {return -level 0 "ok"}
 namespace inscope :: {return -level 0 "ok"}
}

proc ensDispatch4 {} {
 ens4 foo bar

20th Annual Tcl Conference 180 New Orleans, LA Sept. 23-27, 2013

}
namespace ensemble create -command ens4 -map {
 foo {::ens4core}
}
proc ens4core {msg} {
 return $msg
}

proc dictWithAdd {d} {
 dict with d {}
 return [expr {$a + $b}]
}

proc tryNormal {} {
 set d 1.875
 try {
 set x [expr {$d / $d}]
 } on error {} {
 set x "error happened"
 }
 return $x
}

proc tryError {} {
 # Zero divided by zero is an error (no NaN please!)
 set d 0.0
 try {
 set x [expr {$d / $d}]
 } on error {} {
 set x "error happened"
 }
 return $x
}

proc tryNested {} {
 set d 0.0
 catch {
 try {
 set x [expr {$d / $d}]
 } on error {} {
 error "error happened"
 }
 } msg opt
 return $opt
}

proc tryNestedOver {} {
 set d 0.0

20th Annual Tcl Conference 181 New Orleans, LA Sept. 23-27, 2013

 catch {
 try {
 set x [expr {$d / $d}]
 } on error {} {
 set x "error happened"
 }
 } msg opt
 return $opt
}

proc benchmark {title script {version 8.5}} {
 if {[package vsatisfies [info patchlevel] $version]} {
 eval $script
 for {set i 0} {$i < 20} {incr i} {
 lappend t [lindex [time $script 100000] 0]
 }
 puts [format "%s: %4f" $title [tcl::mathfunc::min {*}$t]]
 } else {
 puts [format "%s: N/A" $title]
 }
}

benchmark "ListConcat" { listConcat {a b c} {d e f} {g h i} }
benchmark "Fibonacci" { Fibonacci 10 }
benchmark "ListIterate" { iter {a aaa aaaaa} }
benchmark "ProcCall" { outer }
benchmark "LoopCB" { loopcb 10}
benchmark "EnsDispatch1" { ensDispatch1 }
benchmark "EnsDispatch2" { ensDispatch2 }
benchmark "EnsDispatch3" { ensDispatch3 }
benchmark "EnsDispatch4" { ensDispatch4 }
benchmark "DictWith" { dictWithAdd {a 1 b 2 c 4} }
benchmark "TryNormal" { tryNormal } 8.6
benchmark "TryError" { tryError } 8.6
benchmark "TryNested" { tryNested } 8.6
benchmark "TryNestedOver" { tryNestedOver } 8.6

This script can be downloaded from DropBox:
https://dl.dropboxusercontent.com/u/19238925/Tcl/2013/optbench.tcl

20th Annual Tcl Conference 182 New Orleans, LA Sept. 23-27, 2013

Tcl 2013
New Orleans, LA

September 23-27, 2013

Session VI
September 26 3:15-4:15pm

20th Annual Tcl Conference 183 New Orleans, LA Sept. 23-27, 2013

20th Annual Tcl Conference 184 New Orleans, LA Sept. 23-27, 2013

���������	�
����
�������	���
����������
����
��������

����
������

Ronald Fox
National Superconducting Cyclotron

Laboratory, Michigan State University
640 S Shaw Lane

East Lansing, MI 48824-1321
fox@nscl.msu.edu

CAEN Technologies
1140 Bay Street Suite 2C
Staten Island, NY 10305

ron@caentech.com

��������

�����������	�

�������
���	������������������

	�������
�������������
�������������
��

��

���

������������������������������������
�����

������ �	��������������������������������
��

����������!""�������������������������������

�������	����������#�$%&�'��(���
��������������

$��������������)���������������������������

���������������
���
���������(������*'�+,�

���������������(������������
��������������#�

������ (�	��������������	��������������
�

$��������������������������������	�����������

���#�����������������������	�

�
��������
������

	�

���������-����������������#��������������

	�����������������������������

 !�"���#$%��"#�

������������������������������-���������
�

���
�����������������
����������
�����	�������

����
�-���������������
�(��������������������

���

��������
��
��	���������#
�	���������������

��������������������������#��(�������
�.���������

�#��

����������������������#������������������	�����

	��
���#�����

�	���
�
��������
����������������

����������
��������
��������������������������

����������������������

��������������������������

������������

'������������(���	���������������
�-(�
�����

������
��������������������������������
���������

������
�.����������������(��������������������#�
�

�������(�����������
������������/��������	�������

��#�������

������������������������(������	�����������	�(�

�����������������������(�������������	���������	�

����������
�(���������#�������	���������������

���

��������#�	��������
�������#������
����

�-���������
���������

'�������������'�	�

�#�����������
������
�������#���

���
�������������-����������'�	�

������������
���

������#��������������	��������������� �������

������������������������(�����������������������

�����#���
0���	�����������1�
��1��������#���������

��

�����������������������#��������-����������	����

�����

����#����������������	�

�������
����&��

������
������	����������������������*'�+�''�

����������������	����������
�$�����������������

�	�������������������	�

�
��������
����
����	���

��

	�

�
��������
������	�

������������������������

	�

�������
����������1���������������#����������

�������������������#��������!""���������������
��

�������������	��������$%&�'�������������

���������������)������������������������

20th Annual Tcl Conference 185 New Orleans, LA Sept. 23-27, 2013

��������������	�

�
��������
����
����	��������

��������������������������������������	�

��������

�������������##��������������
����
��
�������������

	����

2���

�(��-����������	���������������������������

	�

�
��������
������	�

����#������	��������	���

��������
����#��������������������������������#���

����2���
����#���%����'�������3�����������

�������������������������

&!����'	�#%�$

�������������������
�����	��-�������������

���
�������������������#����������������������

�������������������4������ 5�����
���
���#
��

������
����
����	����������#�������
�����
0���

�
�������������������

&! ��
����
�������������
������

���������������
(�����������
���������������

���

���������	���
��������#�����

��
����(������������

�����������##����������
�����-�
�������������������#�

��������#�����������
�����������
���������������

&-����������������
����������#������
����

�����

���
���	����������������
���	�������������

	���
������������#�����������������#�����������

����������
��������
#�

�������������������������	�����������
��������

��������������
��	����������	����������������	

�����	
�����	�����
����������������������������(

�������
�����������������
����������

�
�����������������������������
�(����������#���

�##������������/����������#���������������������
���

�������������������
�������#����
������������#����

�����
���
������	����
�����������������##�����

���
����
��������
��������	�

���
��#��
�����

���
��
�#�������������������
��������������+�����

���
���	�������������������

�	���������
�����

���
��
�
����������
����������������������������

#��
���
���#

��������������
����

6������������/����
���	������##�������������������

���������	�������
�����������#�
�	���#���

�-�������������	������
�����-���������
�

�����������������������
�������
�
�������������

	�����������#�����������-����������

7�������
�����

���(��������������������(����(�

���������������������
���������#���������
�����

������(��������������������������4�����������#�

��	�#���������������������#���������#�����

��

���������
������5�����������
��������4#������5(

�
������������4#�����5(������������
���������#�

�����	������������

����
������� 	�� 	�	�����
��� 	������� 	 ���	 ����

������

$��������������������������������##�������

���
�����#���������������������(���������
����#�

��������

�����������
�����������
����������

���	�����'

�����������8��
��������,�
�
�	9

����
�������	��	���	
���	���������	�����
���	�

���	��	���	�����	��������	��	�� !"�#� ��

�������	�����#�������
��������������������
�������

��

������������
�������������
������

��������
�-�

���������������������������������:���;����������

���������������������������
���������������������

20th Annual Tcl Conference 186 New Orleans, LA Sept. 23-27, 2013

�������������������������(�����������#�����������

�����������������#
���������������

���������
��#������������������������������.��(�

���

	��������#������
�������
��������������������

�����#���#��������������##
�������������
����#�

����������������������������
����������

�-�������������
�����#�	�������(����������������

8""����������������<���������������������

�&%�1���*�����������8""1���#���������������

8"""1���#�����������������������8�=<
�����#�

�����#�������������������

�����>8?����7����

��

�������
�������������������8"""1���#�������

���������������
�-��������	
�
���
�������������

#�
��������������������������#���������(�
�	����������

������#��<���������������������#�	��������

8""0�������

��������������
��
�	���������#���������������

��

�����
����������
�	�������������������������

���
�������������-������������������������

���#��������������������
�����������������

���
��������
�����������<��������������

@��������������������������������������
�

��
�����������������
����������
���������������

����������������
�������������������������������

�����#
�	����

���������������##���
�������
������

����������
���������������������������������������

�����
���������
��������
�
������������������������

�������������������������������������
����������
�

��#�������

�����������������

������
������������������������������������
���

���������#
�	��������������
�������

�����#�

�����#�������������������(�
��������������������	

�������������	������������������������������������

���������������������������-����������2���

�-���
������$����������������������(��������

��������
��������

���#�����������A)�����
���

	���������������������#�����������������
����������

���������*'�+>B?(�������

��������#����

����������������
�)A��������������-����������

�������������
���������������

��(������#���(����

��������������#���������������#��������������������

�������������������������������	����	��$��
������

����������������
��������������������
�����������

���#�������#�
��-����������

�

&!&����($�)

���������������������������������4������ 5

�����������
�����������������������������������

����������������
����������
���������

����������

��
����#�������(������������
�������
�,"88>C?��

�����������������������������
���#��������	��#����

����������������������

������ 1�����������������
�##��������

������
���������������&���������
�##��������������

����
��������������������
����#�������������

��
��

���������������������������������
�����������
�

���������

����������*�����
���%����������

�������������������������60'6������������	�����

�����������
������

�	������������
���������������

����
������-���������
�����#������
���
�������#������

�-���

������
�������#�������������������������������
���

������������������-�������
�##�����������������

������������������������
������������
���
���������

����
���
��
����������������#��������������������

����
����60'6������������������������#�������

���-����������������
�##��������������#�����������

�������������@%'�����������(��������������������

�������������
������������

����������������������

����#��������-�����������������������������

���������

��
������

���-������������������#���������������������-��

����������
���
��������

������
�
����
������
������������������
���

��������������	�

�������
��������#����	�����

����������������#����������������������������

���#�
����������������4#����-���
��������

���������(������������
���������������#���

20th Annual Tcl Conference 187 New Orleans, LA Sept. 23-27, 2013

����
����������������������� ��	�����
�����5��

��
0���#����������������
������

�����������#����

���
������������(����������������
���������������

�-����������������������
��������#���������

�����������

+����#��������������������������������������

�����#���������������
�������������������������

��������+�
������������������������������������

����#�����������������������#�	�����������������

����������������%���������

�����������#�������

���	������

����������B�
�
�	9

�������������#����������������-���������������

���������
������%���������

���'�����������������

������	�

��
�����������
���������������������������

������������������������������������

7����%���������

�����������
�����#����������

�-������������������������+�
������
��!������'#�

#������������������������������������
�
�
�
���
����

������������������
��
���������������

������	�

�

��#�������������#�%���������

1��������������

%���������

�����
#��-����������6'�������

�-������������������������-������������������9

� #����
��D�'�������	��������%�������

�������������������
������%���������

�

� #���*���D�'�������/�������������

���������������������������

� #���+�D�'�������/����������������������

����������������

� #���
���D�'�������/���������������������

������������������

� #����
���D�'�������/�������������

���������������������������

�����������������(���	��������)��
���##�������

	��	�

�������������������
��������������������#�

��������)
�##������
����������9

� %����
�##����������������������

� �����
����������
����#������
�##��������

���������������

� ����������������

���������#�����������#�

�
������4����������������������5��������

�����
�##�����������
�##����
��������/������

����������������������%����
�##����6'

� ���������
�##�����#�	��������������������

�#��
��������������������������������#�����

�##�����������
�##�������
�������������

�������������������
���������������
������

�����
�##����6'��������������������������

#���������������������������-������9

� ������
������D�������������#�����������

�##������������

�
�����������D���������������������������

�����

'�����������������������
����������
���������������

���������������������������#������#����@�'E�

����
������#����������

,!��-"�#&���$�	�..���-���

�����*'�+,�����������������������������
��

�����������������������������'������
����������.���

���	����	����
��������$%&�'�������

$�<<��6*&%&�A)����������������7��	�

�����

������#�$%&�'������������-����������

�*'�+,1������������

�	������$�<��6*&%&�

������������#�

���
������������*'�+,����

�*'�+,��
���#����	����������$%&�'������������

#������2����������������*'�+,����������

����
�������	%�	 ������&����'
	�
��	�����
����

20th Annual Tcl Conference 188 New Orleans, LA Sept. 23-27, 2013

����
����������
����������.������	����	�

�	����

����$�<<��6*&%&�����$%&�'��1��

�������������
��������>=?���������������������#�

�*'�+,�������������������
����'

����������C�

�
�	����	�����������,����������	����

$�<<��6*&%&�

$�<<��6*&%&����
�������	�������������
��

����������������
��������������������������������

������������������������@�������
��������������

��� 	 ���������� 	 #��(�� � ��� � ���
� � ����
 � �#

$�<<��6*&%&��������������������������

����
�������)� 	 ������ 	 ��� 	 ��� 	 ����
*���� 	 �

+�,,�&-#� �

�������
�����������������������������
�����	������

���@�������
������������+�
����(�2���

$�<<��6*&%&�4�������
����5����
������������

����� �
��� �
��� � �� � ������� � �������

��
��������� � 4���5� � � 6���� � �� � ����� � �*'�+,

	����$%&�'��(������������������������
��������

���� � ������
�� � #�� � ������0������ � ,"8B � 	���

$�<<��6*&%&���

����
������� 	.� 	+����
*���� 	�� 	 ��� 	����� 	�
	 ��

��
�	(����	�
��/	0��	1����	1������

���*'�+,�������������������������������
�������

������ � � ����� � ������ ��������� � ���� � ������

����� � ������ � �������� � �� � ��	����� � ���������

�������
 � ��
��������� � 4����5 � 	����(� ��������

	��� � %�������� � @���������(�
��
�� ��� � �*'�+,

����������������� ���������

�	����*'�+,���

� � ������ � �� � %�������� � @��������� � ����� � �� � ���

������������������

������	����$�<<��6*&%&

�������

$�<<��6*&%& � ������
� � �������� � ��� � �	�

���� � ����������� � ������ � �� � � � #�

� � 2
��� ����

����������
� �������.��� �������� � ���� � ���� ��#

���� � ������ � �� � :������
 �$����������; � 4�$�5�

���������������������
������>F?������

�����������

#��� � ��� � ��
� � �
���� � #�� � ���� � ��#������(� 	����

#���������������
����������������	�����'

���������

=�
�
�	9

20th Annual Tcl Conference 189 New Orleans, LA Sept. 23-27, 2013

+�
�� #������� � ��������� � �� � ��� � ����������� �	���

�*'�+,�	�

�
��������
���
�
�	�

,! �	�..���-�����
������
��

�$�1������������
�������������������&6'��>G?�

�������������

�������������&6'�����������

�����

�������������������������������$������������

����������
�����������%�����������*�
����������

	��
���

���������
�6������������

@�
���������������������������������(��#���������(�

�$�����������
��
�����������
����
���

������
������������������������������#�#�
���4����

����������
��������������5���+##
�������
�����

��#�	����4	���������
������������������������

���������������
����5(�
��
��������������

���������������
��������������������������� �

�����������������������#�����	��������

�����������
>!?����
�������#�	���������������

��
������������

,!&������-"�#&�$������/
��������������

�*'�+,1��������������������������������

���
������������#����������� �����������H<)

@�3�������������������
�������
������>8"?������

�����������������%���������

���#�	����������
���

��������
����

��

�������������#������*'�+,��
�������������

���	��
�
�	����'

����������G

7���������-���������#�������&��H8CI=���

���
�������
������������&��H8CI=�
�����

����
���

�����
���	�����
������	�

�����������

���������#�	����

�������������
��	���	�������������������������

����H8CI=�������
���������%�������

���#����������#�
����������������
�

���������

��������
�������
���4���������
����
�����������

	�

5���7��	�

������
�������������
��������������

���������#�������H8CI=�
���������
����������

��������
�
�	�

,!,�"���*
����*����������������

'����������������#��������
����#�����������

���
������������	�����������#�

�	�������������

� 7���������
����������������	J

� 7����������������������������������	�

�����������������J

� *�	�������������������������������������

�������
��	�����������������J

� *�	����������������������������

�*'�+,���������������������������#�
����

�$���������������
����������
��
���������

����##
�������
�����

��������
�������

��������
�����������������
��

������#�������������7��
������$���������������

����
������� 	2� 	 1���(������� 	 �
 	 �������

�����
*����
����
�������	3�	���	�#��4�	����������
	��������

20th Annual Tcl Conference 190 New Orleans, LA Sept. 23-27, 2013

������������������������
�����������������
��	��

��HE'�#����������
�>I?�4H<&�	��������-����

�����������������#�����I)@�#�����5(���������
��

���������K�����������������/��������
�������

H<&�4F)@5�#����������
�����������������
��#���

������������	����������������������������H<)

@�3�����������#�	�����������������������
�
�����#

����������������
�����������
����#����������#�
��

������������������������������������
�1��������1�

#������������
������
��������������������������

���������
�����������
��

�������������
�����������	����������������������

	��
��
�����������
�������������������� �

%���������

1���-�����������������
��$����������

	��
��
���������#�������$������������
�����
����

������
������� L����������������� �

%���������

�������������
����
�����������	�����

��
�����
������
��������������������&������
>88?�

��������������������$������������
�6H�����

�������������������#������$��6H��������-��	�������

������	�����

����
����������������

%���������

1��%��������

�������
��-��������

�������������%���������

1���6'�������
��

������������������������#����$���������������	����

��������������

���������
���������������	�����
��������

��

�����,�������������������	���������	����

������������������������#������
�������������

$�<<��6*&%&�������������������������	���

�����������$�<<��6*&%&��������������������

��������
���#�26$��
��������
������#�����������.��

	���#�����4�������������������������

�
�	����

������.������
����������
������##���������#��������

�����
��������.��������������#�����������
����������

#����������������������5�

2����������(��$��������������$�����������������

���
���������������������������#�����$'�<+�����

<����������
�����������������������.�������������

����������������������
�����������
����	����

�������
��������#���	���������������
�����
��

���������#���&��������
�������������#���	����

	�����
�������������&��H8CI=�26$������
��

���������
�������
�����
�	���	������������

�����#�����	���������
�	�������
����������#�����

H<@�3�%���������������������������
�����
�

������

����������
���
���������
��������

$�<<��6*&%&1����������	�����*'�+,�

�����������+��������������	������	�����
���

������

��(�������������������
�(�����������
�

����
��

�	����������
��������������#�����26$��

#���	�������
���������������
����������	�����

��������
��
��������������7���������������	��
��

�����
����������������������������������
�����
��

�������

���	���������������
��	������(��$�����������

�����

�������
���������������������������#����

������#�����'0+�������

����4'+��5(�����������������

�����������#�
����+�����������������������
����#���

������4����-������������������
�����������#������

����5(��##
�������
����������������������
�����

��
��
�����������������������#���������������

#������������������#�
���

7��������������(�	��
�������*'�+,��� �������

���
��
���

�������������(����	��
��
��

�����������������
��������������������
�
�������

������*'�+,����������$������#��*'�+,�	����

���'+����@�#��������
�(������������
��������������

�����#����'+�������$���������������
�-����7��

�����������������������������
��������������
���

��������
�##������������#����*'�+,������������

	�����������	��������������
���������#����

�������������������������
����
����������

�������(�������������������	������������

�*'�+,�����������������$������������������

��

#�
��	���

�����	�����������������������������������	���

	�����������MM�����������������	������������
�

��������

�����

�
�
������#�#���������	����������������$�

4����5�������������������*'�+,������������

����
������������������

�������������������

�������������#��*'�+,�������#���������	����

�$��������#�������������������#��	����
����#�

20th Annual Tcl Conference 191 New Orleans, LA Sept. 23-27, 2013

�������������������	����	��������
�������$��

��

�
��������

,!0�����
������������
�����

�#��������
���������������������(���������#�

���	����

���#���������������������>8,?�����
����������

������������������������	�������

��
�����

	����������
�������
��������#������	�����

�����

������������������
��A��������������
��	����

�����,������$��	�������������##���
���

����������������������������

��
�����#��������

��%'3@>8B?������������	�����
����������#����

����������������������������������@�#��������
��

����
��������������������������	���������
�	���

������������

�����������(�������#�����������
���

�������������	���������������������������
������

���������
�(���������������������������������������

#��������������

������
�������������
����	��	��
������	���

�����#�������������������
�������������������

���
�������7����������
������������������(�

$%&�'���	�

������
���������

��������������

�����*'�+,��� ��������	�

�
�������������	���

����������������������������
�����������������
���

���������-����������

0!��122���$�	���"��

$%&�'��>8C?�����������#������
����#�

���

�����
��#���������������
1��������
�������������

���������������������������
��������.������

8""<*.���26$��
�����������
������
������������

�#�������	���#���������
���	��������
�-�

�������
�������
����������

�	�����������������

��������������������������������
����������������

������������������

��
��������
�������������

���
���������������������������

�	��������������

�#�A)��

���

#�

���������������������������������������	���

������������
����
�������

�
��������
����
��
����

����3���

'������2�

��#�,"88(��#��������������������������

�3��(�$%&�'���	���������������������������

���
������������
�����-���������
���������������

�-�������������#���������������
����������

�������������
��	������������������������

���/����
�)
����#�����������������A)�������������

��������#����������������������#���������-������

����������������
���������

������	�����������
���

���#�-�����������

������������������������������#�����������������

���/����
��#���������	��������!""�

������������>8=?�����������������������������

����������

�������������	�

�������
������$%&�'��������

������������������(������!""������������������

���������������	������������#�����������	�������

��##������������������������������	��
��

0! �����	���"���$������/
��������������

$%&�'����������-���
���#�����	�
������#�

	���#����������.���������������������������������

�������������#��������������������������������

���	��
�
�	����'

����������G�
�
�	�

����
�������	5�	1���(�������	�
	+ ���!�	0�6

���������������#�����������������������#�����

�����������������������
����������������
���
�

������������������9

20th Annual Tcl Conference 192 New Orleans, LA Sept. 23-27, 2013

� ��

���������������
��#����	���#����

��#���������

� 6���������#���������#��������������
������

���������������
���

� ������������������
������
����������������

���	����#�
�����
�������

���������������������������

���
�������
����#�

&6'��>8F?��������������

����������������������)

���4	�����$%&�'�����

������$
�
�
�&�����

��
���5(����������������������

�	������������

�-�����
��������$%&�'����
����������
�����������#

����������������
���#��������$
�
�
�&�����

3��
������

����$&3���������������
�����������#��������

�����������������
������������������������#�����#�

������#������������������	�����������������������

������������)�������#��������$%&�'���������.��

8""<*.�����
�����������
������.������	�

����

#�������������������������������

�	����
�����

��#�	����������	������
��	��������-������������

#�����������
�������������������#��������������

����������

������������������������	��������

����������������

0!&������122�$������/
��������������

����������������������������#��������!""�

�������������������������������	��
�
�	����

�

����������I�
�
�	�

'��������

���������(�����%��������������������

������
��
����������)������������������
����������

��

��������������������%���������#�	���������������#

��H<)@�3>8F?�4H<&0@�3�
���������
���

�������5���������#����	��������H<&�
�����

�
������������������)@�3>8G?�4��<��0@�3�

����������������5���������#����	����������<���

������
����������

������#���������
������
��������H<&�����

��<���
���������#��
�����������

������������

����
���426$�5�	�����������#���	�������

����������
�����������-�����
�������.������

����	������+����#�������26$������
������
�����

����-�����

���
���������������������������������

���������������
�������������������������.������

�#�����������
�.�������#��������������	����������

��������������������

�����!""�������������������������������� �

��#�	������+����#������������������������������

�������!""�����������������(���	�����

����������
��

0!,�.�
������������������!

���������#�
���������#������!""�����$%&�'���

��������������������������������������9

� ��������������#���������)������

���������.������
��	���������!""�����

$%&�'���
��������
����������

� �����#���������!""�
������������������

$%&�'���$&3������#�������������

�����

�������#�	����

����������##�����������

�	�$%&�'��������������

��������#��������#�
���	��������������
��

���
�.����##
������'���������������������������

����������#�����������
������������������(�	��

���������#�

�	�������	�

9

� �����
�
����������������#��������

$%&�'���$&3�����
���������������

����
������� 	7� 	 &5BB 	 0���

��$��
����� 	
�
��� 	 ����(

�������

20th Annual Tcl Conference 193 New Orleans, LA Sept. 23-27, 2013

� �����
�
�������������#��������������������

	�������������#����������������������

	����	����������
���������

� �����
�
���������������������
��
�����������

���
�������#�	����

�������������������������
�������#�	�����-������

	���������������-���#���������������������������

������(������������
��
���������#����$%&�'���

��������������#��������� ������##���������������

������������

���������

�����	��������������
�����#�
����

�����������������������������
�#�������������������

	��
��
�����
�������#������������,0$����������

������������
������������
���

)�%��	�C���	0���	
���	&5BB	��	���	+�1

'���������������������#���������!""��������

$%&�'���$&3(�	������9

� ������������#������������������������

�!""���60'6��������������

� &-�������������#��������

���������������

��������������
�������!""�������������

� &-���������������������#��������������

� 7�������������������$%&�'���$&3�

�����������
���
�

� @�������$%&�'���$&3��6'��������������

�������������$%&�'���$&3�

7���
���	���������
���

������������������!""�

�������������
�����������������
�������������������

$%&�'���$&3����������������������#�����������

#������	���������#��������������
���(���������������

����
��������������� ������
�##�������

���#�����������
�����	�������������������� �

�����
�##����
�����

���������
���������#����������������������
���

�
�����
����	���������-���������#�����
�����������

����������
������������������#������� �

�������������������#�@�'E�������������
�����

#���
�����#�������������������7�����
����������

������������������
����	��
��
������������
���9

�������������	�
���������
���

��

'�����

��������������
���������	�����������7����	��

#����(���	�����	��������@�'E��������	�������

�����
����������

�����
��
�##��������������������

�	�������������#�����������
�����-������������

2����������(������������������������������

����
����������������������#���������������

����

�#���������������#�������-������������������������

�����#�������������������	��������
���	��������

�������
����#��������
����	�����������)	����������

������
�����������	��
�
�	9

��
�����������������

���������������������������
���� !"

����������������

�

	���������#�������

���
����	��������������

������������������!""�����������60'6������

����
��
������������
��������������
�����#�

������������(�����������������-�����������������

#����������(�	���������������������������������

$%&�'���$&3���'�������������������������

�������-����������������(��������������

����������

����������
/�����������������#�������������������

������������������������������������

�	������

�����������
�����������������#��������������

�������������������$%&�'���$&3���

��������
��������������������
����
�����
���

�

�	�����������������������������������
�������

'������������������������

������������������������

������
��#�$%&�'��������������#�
���#��������

�!""������������#����
��#�������$&3��6'�

)�%��	0���	
���	+�1	��	!&��0�6

'����������������������������������#����

$%&�'���������������������������������������)

�������������#�����������
����##����������������

#��������#��������������������������#��������

�����������#��������/����
��	���������������

#��	����#�����������������������������	����������

20th Annual Tcl Conference 194 New Orleans, LA Sept. 23-27, 2013

���	�������
�������#���������/����
�)
����#�������(

������������������
��
������������#���������!""�

����$%&�'�������������������
�)������

���������������

'�����������-���#�������$��4����������

$����������������������5(�����
��������������

������
����������
����	�������#����!""0��$��

������
�����������������������'#�	��������������

�!""0$%&�'���
��
��������(����������������
���

��������������
��������������������������

$%&�'��������

����$%&�'���$&3����
�������������#���������

�

�	���
�����������
������
����������������
���#�

����������������������������������
��#�

����
�##���

	����������)����������������#�#�����������

@�#��������
�(�	����	������#��������$&3��������

��
��������(�
�����������#�����������������������

�#������������������
�)�������������������������

���)�-�����������������
������	���������9

� ������������#��������$&3�����
������

� $
������������#��������������������	������

���������#����������������	����	��#�����

#�����#���������#�����������

� 2��������������
���������������
�##���

������������

� '����������������������������
�##���	�����

����������
�������������������#���

��
�������
�����

����������������������@��-�����
�����#�����#���9

������������#������
���

��

7�����

� ��*���������������������������������#����

����$&3�����
�����������������������������

� �������������������������������$&3������

������������(��
����4�
���5����������

#��������������
��
���������	���������

����������������� ������
�##���#������

��������������

�
���������������������������#������� �

���

������������������� ������
�##����

���������������������

�	�������
��
�������������

4����5����
������������������#�
���������

2����������(��	����$%&�'�������������

���������������
���
������������������������

�-���������
�����������������(���*����	�

�
��

�����
��������������������������	��$%&�'���

��
�������
�������#�	����

)�%�%	���
��������	�������

�����
�����������������
�	����������������

�����

���������	�����������,(�������������

������������

#���
�����#����������� �����������
���#�	������

'������(�����(���	�����������������������������

�������������� ��������������������

�����#����	����	�����������������	��9

� ����

������-����������������	����	����

�������$%&�'��������

� ����

������-����������������	����	����

��������!""������

� ����

������-����������������	�����	�����

�����������!""�����$%&�'��������
��

����������������������������

�������

�

$%&�'���	�����������������

�!""0$%&�'��������������

���������.��������������

� �������������� �����������������

��������������

�����������
����������

�����������

������������

������-��������������

��������
�

����������(�	��������$%&�'������������
�������

&������
(�������&6'��������������������
�

$%&�'��1������������������������� �

����������������������

��/����

����$%���%����

20th Annual Tcl Conference 195 New Orleans, LA Sept. 23-27, 2013

3!����%(��

�*'�+,1��������������	����������#�
�
���

��#��������
�������#�������
�����#������%'3@�

���
������
�����������
�#�������0������

��##�����������	��������#�������������-��

���/�������*'�+,������	�

������

������
�����

�
�������������������#��*'�+,�����$%&�'���

	��������
����������

���������0������

����$%&�'��0�!""�����������������
���������

������#��������#�
����������������������)
����

����
�������������������������������������

��

������������������(��������������
��

��

��#����������
����������������������-���������
�

����
��������

�����������������#������������������	�����	���

�����	������������������������������-����������

��#�������2�������������������������#�������*����

��������
�����0������#������������

�������#�

$%&�'����������������������
����#�
����������

���������#
�	�������������#�����
��#�
�����
���������

7��
������������������	�

����	�����@��-����

�

���������'���������	�����#�������������#�����������

����������#
�	�������#������
�����������������

�������������������

�����������������#
�	���������������#�������

���������������������
��������������#�����
����

���������#
�	������������#�����$%&�'�������

�!""�����������

���������#�����
�
�����%���������
�������������

������������������-�����������#�	�������������
�

����������	����������
������������	��������

�������

���
������#���

2�������
������	�������
�������������
�����#�����

�*'�+,����������	����$%&�'���#�����������

�����������
�������������������,"8C�

'��,",,(�<��������������@������������������������

#��������������������#�&������	�

�
��

������������������2���
����#���%����'�������

%��������42%'35���������������������������

������(�������������������
�����������	����
����

	���������������������	��
��
�����#�
�#���

�-�������������#��������������#���
����

'������

�
�	������������������������������(���

�������������
�������������������������������

	����	��
�
�����	�

�
�����������
���
�

��������������#����������������������������������

2%'3���7��
�
����������������������	�����
�����(�

���������
�-�����������	�

�����������7���
���

�
��������������������������	�

(�#����������������(

������������	������������
��������.���������

��������������������(����������$������

$%&�'��������	�

7�����������#����#�������������������#����������#�

	����������
����
����

��������������	����
�����	

�
�������������������������#�����������������

����
������������	������������������������������

��
��������������-�����������������������������

������
��������������������������������������

������ �������������������#����������
�������

2%'3������� ����������������

4!���5�������

>8? �$� �3���� � �� � �
� �,��������� 	 ��� 	�,&	0���

��$��
����� 	 &�
��� 	��������� � �� � ��� � 8G��

'�����������
����#�����������������������*���

&����� � ��� � ���
��� � 6������ � 4�*&6"I5(

��

����� � �� �6�

��� � �� � �������7 � �����
����

��
����,8I�4,"8"5�",,"C,

>,?�<�6������������#��	
��	
���	
��������	���	��

��	�
���	+����
*����	���	���	�!�	��������

,�

 	 �����D��F 	6�������� � �� ���6�@%&

$�<<�)%�N � �6&��%+��+6N � ���

%&���&� � �+6'��9 � 8"�� � '�����������

��������� �B"����)B�����8III�������2�(���	

<�-��� � 4@��5 ���

����� � �� ��"������! � �
��!

=,I(�����8G=)8!B�

�

>B?�<�7�������O(�����
���(���N��7�(�%�7��$���(

%������(�������� ��#��4H	�	���C�	���	��������

20th Annual Tcl Conference 196 New Orleans, LA Sept. 23-27, 2013

�� 	 +����
*���� 	�
����
 � "���

����� � ��+

.����+������������������
�����C=,�4,"""5�,"=)

,,,

>C?�%��2�-�����
�����	��	���	!&���	�	%B	I�.FJ	����

�����
*����C�����������������
�,"88�+���
���,C),!

<�������(� H� � ����
�

� � ��
��� � ��9
����900			���
������������������������0	�
0�����������06����������)

,"880%��2�-0���
��
���#�

>=?��*'�+,����������
�����9��

����900			������������������0P�
���0%�������0��

���,����
�

>F?�<�6����������������
��0������	0���	��$��
�����

&�
���	
��	+����
*����	 	6����������������,"88

2�

 �<������ � �# � ��� ��6� � �������� � �# ����
���

6������ �&��� ��������(�<' �+���
�� �,F),I(�,"88

��

������������������H�
����=F(����
���8,

>G? ����� � ��	�� �4C��C��� 	 �
 	 ��� 	 �K*���������

-��
��
	���	����
�����	�������	&�
����	�-��&

+�
������9�����900����

����0&6'��0+���H��	���#

>!?�%��2�-(����3�
��(�P��+�/�(�K��H�������

!&��&*�����	,������	���	!���
	�
	-����������	

!������	-��
��
	0���	�����
�
	6��������������
�

,""C�����
�

����
������9��

����900			���
���0���������0��
,""C06�����0%��

2�-0#�-���#�

>I? � K��� � �������� ��-+� 	 ��� 	 O#0�

0�C���*����
 	
�� 	 0+& 	 ��� 	 0&&0� �������

������������ � �� � ��� � ��� � $�<<��6*&%&

$�����������
���,"(�,"8,���
�������

>8"? � %� � 2�-(� P� � 6��Q/Q���(� K� � �������(� *�

�������� �� 	 0����� 	 &*���
�� 	 �������� 	
��

��
�����	!������	-��
��
	�K*�������
�		6��������

�����
�,""!�<�������(�H��+���
���,"),C(�,""!

����
�

� � ��
��� � ��9

����900			���
������������������������0	�
0���

��������06����������)

,""!0�����������0���
������0������
���#

>88? � %� � 2�- ����"�(����
 	
�� 	 �-��& 	 �������

&�
���
�	6��������������
�,""G���	�+�
����(���

������
�� � ,C)B!(� ,""G � ����
�

� � ��
��� � ��9

����900			���
������������������������0	�
0���

��������06����������)

,""G0�����������0$��0��������#�

>8,? � 2�� � � � ����������� � �# � ����� � ��� � ���

����
�
���������9�����900			�������
����0��
��0�

>8B? � 2�� � ��#�������� � �
��� � ��%'3@ � ���9

����900			�������
����0��
��0����
�0�����R�#R

����������#�

>8C?�$%&�'����������
����<�������

������
����

����900���	�����������
����0�����0$������R����R�

�����
���#�

>8=? ���� 	 &5BB 	
��������� 	�� � 3�.�� � �� � �
�

"���
������� � ���� � .���
���� � ��+ ������ �� 3

H,"C�<���,""B����F,I)FBB�

	

>8F? �����900			�	�����)�����0��0����
��0���))

����
��0��)��
����
�

>8G? �����900			�	�����)

�����0��0����
��0�����))����
��0��)��
����
�

20th Annual Tcl Conference 197 New Orleans, LA Sept. 23-27, 2013

A Plague of Gofers:
Generalized Rule-Based Data Entry

With Lazy Data Retrieval

William H. Duquette
Jet Propulsion Laboratory, California Institute of Technology

William.H.Duquette@jpl.nasa.gov

Abstract

A gofer value is a data value that tells the application how to retrieve a desired piece of data on
demand, according to some rule, and a gofer type is the code that validates gofer values and
retrieves the data on demand. The advantage of using a gofer is that the value returned can
change over the lifetime of the gofer value as state of the application changes. The gofer
infrastructure allows the definition of gofer types consisting of many different rules, with support
for GUI creation and editing of gofer values.

For example, the user may desire that a particular simulation input affect all civilian groups
residing in a particular set of neighborhoods. Instead of listing the groups explicitly, the user
chooses the relevant rule and the neighborhoods of interest; at each time step, the simulation can
determine the groups that currently reside in the chosen neighborhoods.

1. Background

The Athena Regional Stability Simulation is a model of political actors and the effects of their
actions in a particular region of the world. The region is divided into neighborhoods, in which
reside various civilian groups. The actors have a variety of assets, including money, military and
police forces, and means of communication, which they use to achieve their political ends. The
user of Athena models the behavior of the actors in the simulation by defining their strategies,
which consist of a prioritized list of tactics; then, the actor's behavior is determined by the tactics
the actor executes.

2. The Problem

Consider a tactic that performs a particular bit of behavior: for example, paying money to fund
social services for particular groups in the civilian population. The tactic has several parameters,
of which these are the most important:

• The list of groups for which services are to be funded

20th Annual Tcl Conference 198 New Orleans, LA Sept. 23-27, 2013

• The amount of money to spend during the current week

Now, there are any number of ways the user might select the list of groups and the sum of
money. He might want the groups that reside in a particular neighborhood, or the groups that
support the actor who will execute the tactic. He might want the actor to spend a specific
amount of money, or the amount of money required to achieve a particular result, or 40% of the
actor's available cash. From a software point of view, however, we have always required that the
user enter the precise list of groups and the precise sum of money.

Now suppose the user wants to select all civilian groups that support a particular actor. He has to
go through the output data to figure out which groups those are, and enter them in the tactic's
dialog. If there are many of them, this is tedious and error-prone. And worse than that, tactics
are defined before the simulation begins to run, but the list of groups that support an actor can
change as the simulation is running. If he enters a specific list of groups, it may become
incorrect over the course of the run. In short, there is really no way to do what the Athena user
wants to do.

3. The Solution: Rule-based Data Retrieval

The solution is to redefine the tactic parameters. Instead of entering the desired data values, the
user enters rules for retrieving the desired data values. That is, instead of

• The list of groups for which services are to be funded

• The amount of money to spend during the current week

the user enters

• A rule for selecting a list of civilian groups

• A rule for choosing a sum of money

20th Annual Tcl Conference 199 New Orleans, LA Sept. 23-27, 2013

When it is time to execute the tactic, the tactic code evaluates the rules to retrieve the desired
data values.

This solves the problem nicely, but it poses two further challenges. First, we need to be able to
edit these rule descriptions in the GUI in a user-friendly way. Second, there is likely to be a
large number of these data-retrieval rules for any given data type (i.e., "list of civilian groups").
The code related to any particular rule needs to be both concise and maintainable. Athena's
"gofer" concept handles both of these challenges.

A gofer type is a collection of rules for retrieving data of a particular type (e.g., lists of civilian
groups). The rules are referred to as gofer rules. A gofer value, also called a gdict, is a
dictionary that specifies the gofer type, the specific rule, and any additional data required by the
rule (e.g., a list of neighborhoods). Given a gofer value, we evaluate it to retrieve the relevant
data.

The gofer infrastructure provides tools for simply and concisely building gofer types out of rules.
In addition, each gofer type is associated with a dynaform [1] that can be used to create and edit
values of the type within the GUI.

4. Gofer Types

A gofer type is a type-definition object [2] that collects together a set of related gofer rules. That
is, it is an ensemble whose subcommands operate on gofer values that belonging to the type.
Like all type-definition objects it includes a validate method, of which more later; but more

importantly it includes an eval method, which is used to evaluate gofer values and retrieve the

desired data.

4.1 Evaluating Gofer Values

For example, suppose the user wants to select all civilian groups resident in neighborhoods N1
and N2. This is an application of the gofer::CIVGROUPS gofer type, which returns lists of

civilian groups. The corresponding gdict looks like this:

% set gdict {_type CIVGROUPS _rule RESIDENT_IN nlist {N1 N2}}

Every gdict has a _type key and a _rule key, along with keys for any rule-specific

parameters. In this case, the nlist parameter is a list of neighborhoods. Evaluating this value

will return a list of the names of groups resident in the two neighborhoods:

20th Annual Tcl Conference 200 New Orleans, LA Sept. 23-27, 2013

% gofer::CIVGROUPS eval $gdict
G1 G2 G3 G4
%

4.2 Validating Gofer Values

The gofer type's validate method takes a gdict and validates it, throwing an error with error

code INVALID if any problem is found and returning the gdict in canonical form otherwise.

Gofer values derive from user input, and Athena tends to be forgiving of user input. Group
names, for example, are canonically in upper case, but Athena allows group names to be entered
in lower case as well. Thus, a validate method is responsible not only for finding errors, but for
putting values into the form the application expects.

In the case of a gdict, the _type and _rule keys are canonically the first two keys, and their

values are canonically in upper case. The canonical form of other keys is naturally rule-
dependent.

For example:

% set gdict {_type civgroups _rule resident_in nlist {n1 n2}}
% gofer::CIVGROUPS validate $gdict
_type CIVGROUPS _rule RESIDENT_IN nlist {N1 N2}

4.3 Generating Narrative Strings

It is often desirable to display a gofer value in the GUI, but the standard gdict isn't terribly
readable for the average user. The gofer type's narrative method takes a gdict and produces

a human-readable narrative string, suitable for embedding in a longer sentence. For example,

% set gdict {_type CIVGROUPS _rule RESIDENT_IN nlist {N1 N2}}
% gofer::CIVGROUPS narrative $gdict
all civilian groups resident in neighborhoods N1 and N2

4.4 Representing Raw Inputs

Of course, sometimes one will want to choose the list of groups by hand, in the old-fashioned
way. Consequently, every gofer type has a BY_VALUE rule with one parameter, raw_value,

that is used to represent a value chosen by hand. For example,

% set gdict {_type CIVGROUPS _rule BY_VALUE raw_value {G1 G4}}

This gdict simply evaluates to its raw value:

20th Annual Tcl Conference 201 New Orleans, LA Sept. 23-27, 2013

% gofer::CIVGROUPS eval $gdict
G1 G4

4.5 Auto-Translation of Raw Inputs

To ease the integration of gofers and the import of older Athena scenarios after gofers have been
added, we allow for the following special case. On validation, if a gofer value does not begin
with the _type key we assume that it is simply a raw value, and translate it into a gdict with the

BY_VALUE rule. For example,

% gofer::CIVGROUPS validate {G1 G2 G3}
_type CIVGROUPS _rule BY_VALUE raw_value {G1 G2 G3}

Of course, the raw_value must also be a valid value for the gofer type's BY_VALUE rule.

5. Defining a Gofer Type

At base, a gofer type is simply an ensemble command with the right subcommands and
semantics; it could be implemented as a namespace ensemble, or as a Snit type ensemble [3], and
we started with the latter. It developed that distinct gofer types have a great deal of mechanism
in common, and so the type ensembles evolved into instances of a Snit type called goferType.

Even then, there was a boilerplate code that needed to be written over and over for each type.

Consequently, gofer types are created using the gofer define command, which creates the

instance of goferType and also performs a number of other housekeeping chores. Then, once the
type object exists, rules are added to it.

5.1 Creating the Gofer Type

For example, the gofer::CIVGROUPS type is created as follows:

20th Annual Tcl Conference 202 New Orleans, LA Sept. 23-27, 2013

gofer define CIVGROUPS {
 rc "" -width 3in -span 3
 label {
 Enter a rule for selecting a set of civilian groups:
 }
 rc

 rc
 selector _rule {
 case BY_VALUE "By name" {
 rc "Select groups from the following list:"
 rc
 enumlist raw_value -dictcmd {::civgroup names} \
 -width 30 -height 10
 }
 . . .
 }
}

First, this command creates an instance of goferType called ::gofer::CIVGROUPS, and

registers it with the gofer command.

Next, it specifies a dynaform to use for editing values of the gofer type. The first field in the
dynaform script must be a selector field called _rule, with one case for each of the type's

rules. The case names must match the rule names.

Every gofer value includes a _type key, and yet no _type field appears in the script. This is

because _type has to appear at the beginning of every gofer type's dynaform script as an

invisible context field, and so gofer define adds it in automatically.

5.2 Adding a Rule to a Gofer Type

Initially, the new type will have no rules associated with it; they must be implemented
individually. Each rule is represented in the code as a type-definition object for the rule's own
parameters in the gdict. Again, this rule object could be implemented as a namespace ensemble
or a Snit type ensemble; but as before we discovered that distinct rule objects had a certain
amount of boilerplate code in common. For convenience, then, rule objects are defined using the
gofer rule command, which takes a partial Snit type definition script, adds boilerplate, and

registers the rule with its gofer type object.

20th Annual Tcl Conference 203 New Orleans, LA Sept. 23-27, 2013

For example, here is the definition of the BY_VALUE rule:

gofer rule CIVGROUPS BY_VALUE {raw_value} {
 typemethod validate {gdict} {
 dict with gdict {}
 dict create raw_value \
 [listval "groups" {civgroup validate} $raw_value]
 }

 typemethod narrative {gdict {opt ""}} {
 dict with gdict {}
 return [listnar "group" "these groups" $raw_value $opt]
 }

 typemethod eval {gdict} {
 dict get $gdict raw_value
 }
}

The gofer rule command takes four arguments:

• The type name, e.g., CIVGROUPS

• The rule name, e.g., BY_VALUE

• A list of the names of the rule's parameters, e.g., {raw_value}

• A Snit type body with type methods for the essential rule operations: validate,

narrative, and eval.

It creates a rule object, a Snit type ensemble, called ::gofer::CIVGROUPS::BY_VALUE,

and registers it with the CIVGROUPS type.

5.3 Semantics of Gofer Rule Operations

The rule operations differ slightly from the similarly named gofer operations.

• The validate operation takes a gdict and validates only the keys that are associated

with this particular rule. Any other keys are ignored. It returns a dictionary containing
only keys associated with this particular rule, with the values in canonical form.

20th Annual Tcl Conference 204 New Orleans, LA Sept. 23-27, 2013

• The narrative operation returns a narrative string given a valid gdict for this rule. As

with validate, it ignores any keys but those associated with this rule, e.g., it ignores

the _type and _rule keys.

• The eval operation evaluates the gdict; again, it ignores any keys but those associated

with this rule.

5.4 Helper Commands

One of the goals of the gofer system is that rule definitions should be as concise as possible;
consequently, shared code has been ruthlessly abstracted. For example, the validate and

narrative methods shown above for the BY_VALUE rule make use of the helper routines

listval and listnar. The precise semantics of these commands doesn't matter for the

purposes of this discussion; the main point is that they perform part of the job in a standard way.

To make adding helpers easier, the gofer rule command adds a namespace path containing

::gofer and ::gofer::typename to the rule object's namespace. Thus, the ::gofer

module can provide helpers for use by any rule, and a given gofer type can provide helpers for
use by its own rules, simply by defining procs within their namespaces.

5.5 Sharing Rules

It is not uncommon for a rule to be used by more than one gofer type. For example, Athena has
three kinds of group, and so in addition to gofer::CIVGROUPS we have also defined

gofer::GROUPS, which returns a list of any kind of group. But a list of civilian groups is also

simply a list of groups, and so almost all of the rules in gofer::CIVGROUPS can shared with

gofer::GROUPS. This is done using the gofer rulefrom command.

For example, the following command is part of the definition of gofer::GROUPS:

gofer rulefrom GROUPS CIV_RESIDENT_IN \

 ::gofer::CIVGROUPS::RESIDENT_IN

The gofer::GROUPS' CIV_RESIDENT_IN rule is simply mapped to the given rule object.

5.6 Gofer Rules and Dynaform Cases

As noted in Section 5.1, a gofer type has a dynaform that has a selector case for each of the
type's rules. It might seem like each rule's case script could be defined by the rule object, and the
full dynaform built up from the pieces. The difficulty is that the descriptive text in the dynaform
case often needs to be slightly different for each use of the rule, depending on the type with

20th Annual Tcl Conference 205 New Orleans, LA Sept. 23-27, 2013

which it is associated. Rather than imposing an unpleasant consistency across the GUI for all
types that use a rule, we chose to leave the dynaform script in one piece.

5.7 Invoking a Gofer Operation

The gofer type and its rule objects work together to implement the three primary gofer
operations: validate, narrative, and eval. When the operation is passed a gdict, the

gofer type determines the rule from the _rule key, and passes the gdict along to the rule object,

returning the result.

Only the validate operation involves any additional complexity. The rule object's

validate method only validates and canonicalizes the rule-specific parameters. The gofer

type's validate method appends the result to a stub containing the _type and _rule keys, and

returns that.

5.8 Sanity Checking

A gofer type is built out of many small pieces, all of which need to hook together just right. In
particular, each of a gofer type's rules has to have a case in the type's dynaform (and vice versa),
and the case has to contain a field for each of the rule's parameters.

One could wait for the user to discover any mismatches; instead, we wrote a routine, the gofer

check command, which does a complete sweep of all defined gofer types and throws an error if

any problems are found. This routine is called by the application's test suite, ensuring that all
potential problems are found as part of the build process.

6. The gofer Convenience Command and the _type Key

As noted frequently above, each valid gdict begins with the _type key, which names the

specific gofer type. One might think that since gofer types are distinct in use—if you need a list
of civilian groups, you don't use a gofer type that retrieves quantities of money—that this piece
of information is extraneous. And in fact, our initial implementation omitted it.

However, Athena is scriptable; and since there are user commands for creating tactics, we also
need user commands for constructing and evaluating gofer values. For convenience, then, we
added the _type key to support gofer subcommands that operate on gdicts of arbitrary type.

For example,

20th Annual Tcl Conference 206 New Orleans, LA Sept. 23-27, 2013

% set gdict [gofer construct civgroups resident_in {n1 n2}]
_type CIVGROUPS _rule RESIDENT_IN nlist {N1 N2}
% gofer narrative $gdict
all civilian groups resident in neighborhoods N1 and N2
% gofer eval $gdict
G1 G2 G3 G4
%

7. Status and Future Work

Gofers are a new feature in Athena. At present, we have defined four gopher types, for lists of
actors, lists of civilian groups, lists of force groups, and lists of groups in general. The total
number of rule objects is currently around 40, with gofer::GROUPS defining a number of

rules of its own and reusing most of the gofer::CIVGROUPS and gofer::FRCGROUPS

rules. These gofers are currently used by only two of Athena's eighteen tactics.

Clearly there is much work left to be done. We need to update the existing tactics to use gofer
parameters as appropriate. As we do so, we will discover additional gofers that we need to
define. And then, the sets of rules included in the four existing gofers are only preliminary; as
the users become more familiar with gofers and what they can do, they will have their own ideas
as to what would be useful. It's early days yet.

Nevertheless, the gofer architecture appears to be up to the job. New gofer types can be added
without disturbing existing gofer types, and new rules can be added to any existing gofer type
without disturbing other rules, or breaking any existing scenario data that uses the existing rules.
In that sense, the gofer system is complete; it now simply remains to exploit it ruthlessly.

8. References

[1] Duquette, William H., "Dynaforms and Dynaviews", 20th Tcl/Tk Conference,
Proceedings.

[2] Duquette, William H., "Type-Definition Objects", 12th Tcl/Tk Conference, http://trs-
new.jpl.nasa.gov/dspace/bitstream/2014/37573/1/05-2409.pdf.

[3] Duquette, William, Snit Object Framework, found in Tcllib,
http://tcllib.sourceforge.net/doc/snit.html.

9. Acknowledgements

This research was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration, during

20th Annual Tcl Conference 207 New Orleans, LA Sept. 23-27, 2013

the development of the Athena Stability & Recovery Operations Simulation (Athena) for the
TRADOC G2 Intelligence Support Activity (TRISA) at Fort Leavenworth, Kansas.

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

20th Annual Tcl Conference 208 New Orleans, LA Sept. 23-27, 2013

Tcl 2013
New Orleans, LA

September 23-27, 2013

Session VII
September

20th Annual Tcl Conference 209 New Orleans, LA Sept. 23-27, 2013

20th Annual Tcl Conference 210 New Orleans, LA Sept. 23-27, 2013

Tcl Fast Track: From a Novel Concept to
Global Launch in Eleven Months

Clif Flynt
Noumena Corporation

Whitmore Lake, MI

Bruce Ross
The ROMaN Project, Inc

Cary, NC

September 6, 2013

Abstract

The LORACISTM Remote Monitoring software was developed for the
clinical trials industry to allow the rapid verification of reported data from
human studies while markedly reducing unproductive time and travel ex-
penses. The successful completion of this unique and complex software
was achieved in just eleven months due to our selection of Tcl as the pro-
gramming language.

1 Introduction

1.1 Clinical Trials and the Monitoring of Study Data

Every prescription drug on the global market, and all diagnostic and thera-
peutic devices, must first undergo a long process of scientific evaluation and
clinical testing (clinical trials) to find out if they are effective and safe for use.
In the U.S. the Food and Drug Administration (FDA) controls this approval
process; other nations have similar regulatory agencies.

These clinical trials are necessary and scientifically important, but are also
very expensive to conduct. In 2012, the global cost for all clinical trials ex-
ceeded $42 billion. Approximately 25% of the total cost for conducting a clin-
ical trial is spent on the verification and validation of the study data reported
by the investigating physicians. This process is called monitoring and involves
frequent travel to their clinics and hospitals for comparing the study medical
records versus the study data.

In the end, it is the consumers of health care who must pay these costs ev-
ery time our doctors write a prescription or orders a diagnostic test. In 2011,
the FDA issued a draft guidance document that encouraged the clinical trials
industry to develop new ways of monitoring clinical trials, including the adop-
tion of new technologies and implementation of risk-based methods. While
only a draft document, the FDA was giving study sponsors (e.g. pharmaceu-
tical companies), consulting firms (CROs, clinical research organizations), and

20th Annual Tcl Conference 211 New Orleans, LA Sept. 23-27, 2013

investigators the green light to develop new systems and processes to improve
the quality and lower the overall cost for each study.

LORACISTM Remote Monitoring (LORACIS) was conceived in early 2011,
prior to the FDAs publication of the draft guidance document; however, fol-
lowing that event our development time-line had to be compressed since it
was likely that other companies would create similar products.

1.2 Regulatory Background

Every clinical trial must comply with hundreds of international, Federal, state,
and local regulations or else risk being hit with fines, lawsuits, investigations,
and rejection of their study results. The full regulatory background is far be-
yond the scope of this paper, but the two most relevant categories of regula-
tions must be reviewed to place the rest of the story into its proper context.

Patient Privacy and Data Protections: The clinical trials industry is ar-
guably one of the most heavily regulated industries in the world. Each country
has one or more government agencies dedicated to creating regulations for the
research, manufacturing, packaging, and sales of drugs, medical devices, and
diagnostic tests in response to laws passed by their respective legislative or
judicial branches.

These agencies include the U.S. Food and Drug Administration (FDA) the
Health Canada Agency (HCA), and the European Medicines Agency (EMA). In
the U.S., there are additional government agencies with regulations that must
be complied with during the the conduct of clinical studies, including the De-
partment of Health and Human Services (DHHS) and the Department Home-
land Security (DHS). One of the more familiar of these non-FDA regulations is
the Health Insurance Portability and Accountability Act of 1996, better known
as HIPAA; an even more restrictive counterpart in Europe is the EU Directive
95/46/EC - The Data Protection Directive. Both require the protection of pa-
tient privacy and safeguarding of patient health information (PHI) regardless
of whether they are participating in a study.

Computer Systems Used in Clinical Trials: In 1997, the FDA first released
its regulations covering the use of electronic signatures and computer systems
in clinical trials as Title 21 Code of Federal Regulations, Part 11 Section 11.1
(a), now commonly shorted to 21 CFR Part 11. As computer technology has
advanced the regulation has been updated (2003, 2007) and will be updated
again as needed. Virtually all software, computer hardware, and electronic
systems that generate, transmit, store, or manipulate clinical trials data must
comply with this regulation.

1.3 Centralized Monitoring

One time-tested method for reducing the number of locations a monitor must
visit is to create a central repository of photocopied patient and study records.
However, in order to be acceptable for use in verification of study data, each
photocopied page should be certified (usually by initialing and dating of each

20th Annual Tcl Conference 212 New Orleans, LA Sept. 23-27, 2013

page by the person doing the copying) as a complete and accurate copy of
the original. Also, in order to comply with the privacy regulations all iden-
tifiable patient information (e.g. name, address, medical record number, and
month/day of birth) must be obliterated (redacted, de-identified) and replaced
with a study subject identification number. The resulting binder of photo-
copied records is called a shadow chart and may be, or not be, an accurate
compilation of the study records.

Shadow charts maintained in a central location (central monitoring) are
only possible for certain dispersed networks of study sites, and still require
significant travel time and cost to visit the central locations. Also, the timeli-
ness of the centralized files may range from good to abysmal. In recent years
more and more medical clinics and hospitals have been moving from the use
of paper to electronic medical records (EMR). EMRs have increased the poten-
tial risk of privacy breaches as more individuals are given access to the EMR
computer systems for medical as well as research purposes.

As a result, the FDA’s final guidance document (August 6, 2013) defined:

Required Functionality in an Effective Remote Monitoring Platform

The functionality required in a comprehensive remote monitoring plat-
form should include the following attributes:

• Compliance with all applicable privacy protection regulations, in-
cluding HIPAA and EU-DPD

• Compliance with 21 CFR Part 11

• Compatibility with commonplace computer and server systems

• Accessible from any computer with Internet access

• Ease of use for study site personnel, monitors, and other sponsor per-
sonnel

• Maintain strong document security protection at all times

• Support for multiple global languages

• Permanent audit trail

• Overall cost for use must be less than traditional monitoring systems

1.4 The Winding Road that Led to TCL

In June 2011, ROMaN began talks with several document management soft-
ware development firms in search of one with the requisite experience, capa-
bility, and interest in creating our remote monitoring application. From the
beginning, most were surprised by the proposed complexity of functions and
security features outlined in the draft technical specifications; some declined to
offer proposals based on this alone. Others were intrigued but could not fit the
project into their schedules for many months to even years later, while others

20th Annual Tcl Conference 213 New Orleans, LA Sept. 23-27, 2013

yet were not interested as their potential profit for making our products was
simply too small.

By September 2011, a potential programming firm was located in New
Zealand that initially expressed interested and had relevant experience plus
a good pedigree - they have produced cutting edge document management
software for more than a decade. Our CEO visited the company and within
days they produced a very rough proof of concept application that showed
the most critical component called the Associated Data File could, in fact, be
made. Unfortunately, as negotiations progressed during the following months
it became apparent that several other important features could not be made by
their team while their projected budget grew beyond our ability to proceed.

In late October 2012, we contacted an expert in an older programming lan-
guage known as Clarion. This language was first released in 1986 and though
a bit antiquated, its most appealing feature is the use of a proprietary database
engine that would allow for systemic encryption of the data as well as its use
of readily available ”templates” (both open source and commercially available)
that can be quickly combined to produce much larger packages of functional
code that would otherwise require weeks or months of more traditional pro-
gramming effort. Within a month he produced a more full-featured proof of
concept than his predecessors, and again it demonstrated the overall concept,
by then code-named LORACIS, was at least possible to achieve. Unfortunately,
over several months, it became apparent that Clarion had significant difficulty
in providing the needed functionality as the third-party template library used
to produce searchable PDF documents was not able to perform as was desired.
It was also difficult to interface with other components using .NET and other
more modern languages.

In February 2012, we approached Noumena Corporation based on referrals
from the author of one component we were in-licensing. They expressed inter-
est and following a verbal agreement, produced a proof of concept application
within a month. Unlike the two previous POC applications, his showed it was
possible to overcome the more worrisome challenges by using the Tcl program-
ming language. He was able to begin working in earnest by June 2012, and the
rest is history.

LORACISTM entered beta testing at actual clinical research centers during
October, and the first production version was locked down by May 2013 in
time for our scheduled global launch date of June 24, 2013.

This concludes the recitation of the motivation, challenges, and decision
pathways that led The ROMaN Project to use Tcl for creating what is today the
only comprehensive remote monitoring platform available to the clinical trials
industry. The next part of this paper is devoted to a more technical explanation
of how Tcl achieved this goal.

20th Annual Tcl Conference 214 New Orleans, LA Sept. 23-27, 2013

2 Solution

Some languages and development environments have ceilings that limit their
usefulness.

The Clarion approach to developing the LORACISTM application ran into
difficulties when there was a need for functionality that didn’t exist within the
Clarion framework.

In his keynote talk at the 1997 Tcl/Tk Conference Brian Kernighan reported
that he found Visual Basic to be a faster tool for developing an application
than Tcl/Tk, but he reached a point where the functionality he needed was not
available, and the application could not be completed.

He pointed out that Tcl/Tk does not have a ceiling that an application can-
not exceed.

Many languages share this facility of having no ceiling - ”C” is a classic
example. However, many of the limitless languages are also mid-level or low-
level languages that carry long development times with them.

2.1 Choosing a development platform

The first step in determining if the application could be created and what the
best development language would be was to define the base sets of functional-
ity.

The primary requirements for this application are:

• Authenticate a local user.

• Validate per site and per study subscription licenses.

• Support multiple languages and alphabets.

• Display shrink-wrap-quality GUI.

• Interact with an encrypted database.

• Accept document from scanner.

• Accept document from print queue.

• Accept existing document.

• OCR process a scanned document.

• Redact personal information from PDF document.

• Modify PDF File metadata.

• Encrypt processed document.

• Perform remote authentication.

• Transmit document via SFTP.

20th Annual Tcl Conference 215 New Orleans, LA Sept. 23-27, 2013

The short development cycle forced the decision to a high-level scripting
language as the primary language.

The need to interact with external libraries suggested a language with strong
support for connecting to C and C++ libraries.

The following features are either natively supported by Tcl, are available in
the Tcllib libraries or can be easily constructed with a few lines of code:

• Authenticate a local user.

• Validate per site and per study subscription licenses.

• Support international alphabets.

• Display shrink-wrap-quality GUI.

• Interact with an encrypted database.

• Encrypt processed document.

The other requirements could be met by interacting with existing external
libraries which were available either as .NET components or linkable libraries.

After considering multiple languages, Tcl was the obvious choice:

• Tcl is a good platform for rapid prototyping.

• Tcl has strong support for integrating with external packages. Tcl sup-
ports .NET interactions as well as shared library, direct linking to external
libraries and executing separate tasks.

• Tcl uses 16-bit Unicode for all strings, which provides strong internation-
alization support.

• Tk delivers high-quality GUI tools.

• Tcl tools are mature and stable. In particular the database interface with
SQLite is very stable.

• Tcllib provides a wide range of industrial strength libraries.

Tcl is a high level language, thus application development is faster in Tcl
than it would be in C or Java.

It’s estimated that one line of Tcl replaces 10 lines of ”C” code. In The Mythi-
cal Man-Month Fred Brooks claims that a programmer produces 10 lines of code
per day, regardless of the language. Using a high-level scripting language in-
stead of a mid-level compiled language reduces the development time by a
factor of 10.

Language features are also important. A language that lacks key function-
ality will delay a project’s completion while the programmers work around or
correct the deficiencies.

20th Annual Tcl Conference 216 New Orleans, LA Sept. 23-27, 2013

Tcl has long been plagued by the lack of a native Object Oriented support.
OO Programming is not the answer to all problems, but it is a good answer
for some problems. The lack of native OO support hasn’t stopped people from
developing applications using [incr Tcl], SNIT or other OO extensions, but
having the OO support in the core where it’s guaranteed to be available is a
benefit.

Tcl 8.6 beta was used for the initial development of the ROMaN applica-
tion. When the first 8.6 release became available that became the base platform.
TclOO features were used effectively for complex widgets that were developed
for this application.

2.2 Assembling the tools

Tcl stands for Tool Control Language, but that doesn’t make it a complete tool-
box. There is a rich set of development tools available for Tcl applications.
Using these can cut development time even further.

Developing the ROMaN application used several off-the-shelf and semi-
custom tools including:

• Tcllib

• SQLite-SEE

• SWIG

• EditTable

• tktest

2.2.1 Tcllib

Tcllib is not part of the standard Tcl distribution, but as perl would be less
useful without CPAN, Tcl is enhanced by downloading Tcllib either from Ac-
tiveState or http://core.tcl.tk/tcllib.

These Tcllib packages were used in the ROMaN desktop application:
twapi Invoke windows API calls to set focus, raise windows,

when invoking Windows native applications
dde To communicate with native windows applications.
tcom Interact with .NET objects
des md5
sha256
cryptkit

Encrypting and decrypting data files

msgcat Internationalization
The Tcllib code collection is a controlled library. The contributions to

Tcllib include validation tests and documentation.

20th Annual Tcl Conference 217 New Orleans, LA Sept. 23-27, 2013

2.2.2 SQLite

The SQLite database library was developed by D. Richard Hipp and was de-
scribed at his invited talk and tutorials at the 2006 Tcl conference. SQLite is
an embeddable SQL engine that uses a single file as the database rather than
using a client and server. It is ideal for applications that have complex data rep-
resentation requirements but do not need to control transactions with multiple
writers.

SQLite has been distributed with Tcllib and other ”Batteries Included” Tcl
distributions for over a decade.

A downside to SQLite for this application is that an SQLite database can
be opened and read with the SQLite3 program. The SQLite database will
contain a patient’s personal information. Access to this information needs to
be restricted to only individuals who require access to it.

Richard also provides a non-free variant of SQLite (SQLite-SEE) that en-
crypts the database file. A user needs to know the encryption key in order to
access data in this file.

The SEE variant of SQLite solves the problem of restricting access to a pa-
tients personal data.

The SEE extension to SQLite supports the same Tcl interface as the usual
SQLite extension. This made it easy to use standard SQLite for the early proof-
of-concept and then purchase the SEE extension to be linked with the applica-
tion in the last phases.

2.2.3 SWIG

Tcl does not have native tools for manipulating a PDF file: changing the meta-
data, performing OCR, or adding watermarks. This functionality is provided
by the PDF-X library from Tracker Software:
http://www.tracker-software.com/.

This library is provided as linkable C and C++ dynamic link libraries. As
distributed they don’t interface with Tcl.

Fortunately, Tcl was designed to be interfaced to external libraries. The glue
to turn an external library into a Tcl extension is generally under 100 lines of
”C” code.

Getting data into and out of libraries that weren’t designed around Tcl’s
”everything is a string” mantra requires some ”C” code to translate from Tcl
Objects a function’s native float, int or struct formats.

This translation code is not difficult or tricky, but it’s faster to let a code
generator create it, rather they typing it by hand.

The SWIG application will examine an include file and generate the ”C”
glue code to link a library into a Tcl extension. SWIG stands for Simplified Wrap-
per and Interface Generator. This package was designed by David Beazley and
introduced at the Tcl conference in 1996. It’s available from
http://www.swig.org/

20th Annual Tcl Conference 218 New Orleans, LA Sept. 23-27, 2013

SWIG generates an Init function that invokes Tcl CreateObjCommand
to create the Tcl commands and also creates commands to translate from Tcl
format to native data formats required by the library.

In practice, the library’s include file usually needs to be modified, and re-
duced to just the parts of the API an application needs. The PDF-X library is
extensive, and only a half dozen entry points were needed for this application.
The need to rework the include file impacted the development time.

The CriTcl package is also useful for creating interfaces to external li-
braries. For example, CriTcl was used to create the cryptkit encryption
extension.

Using CriTcl would have avoided the cost for reworking the include file
at a cost of doing a bit more hand-coding and defining interfaces. I find CriTcl
to be better than SWIG for relatively simple external APIs, but the complexity
of the data structures used by the PDF-X API made SWIG’s parsing and code
generation more attractive than creating the glue code by hand.

2.2.4 EditTable

A data-centric project requires data entry screens. These are simple and easy
to write, but in the early phase of a project when the understanding of what’s
needed is changing, the time to recreate simple screens can add up.

The EditTable package will generate a data entry screen from an SQL
schema. It was described at the 2012 Tcl Conference.

The EditTable package is constructed using the TclOO mega-widget de-
sign pattern described by Donal Fellows (Tcl/Tk Proceedings 2009). This pat-
tern emulates a standard Tcl widget, allowing the new editTable object to be
created like any other Tk widget.

Syntax: editTable widgetName mixin dbEngine args

widgetName Name of the widget, normal Tk style
mixin Name of the db engine mixin
dbEngine Name of the db engine to use
args Optional arguments for opening the db engine

Creating an editTable connected to an SQLite database named test.db
would resemble:

set obj [editTable .t1 SQLITE3_support sqlite3 -dbArgs test.db]

Once an EditTable object has been created, the getSchema and makeGUI
methods will create a GUI that’s adequate for for testing and initial data entry.

The getSchema method retrieves schema information from the database
or another source. The default behavior is to query the database. This is used
internally to build GUIs for tables containing relations.

20th Annual Tcl Conference 219 New Orleans, LA Sept. 23-27, 2013

Syntax: editObj getSchema tableName

editObj A widget created with editTable command
getSchema Return the schema for a table
tableName Name of the table to return Schema for

The makeGUImethod is the workhorse that builds a GUI within the editTable
frame. It can build a GUI for any table defined within the database. The
editTable object can rebuild itself to display a different table as necessary.
The default GUI includes buttons to perform simple searches, and add, delete
or modify a record.

Syntax: editObj makeGUI schema

editObj A widget created with editTable command
makeGUI Construct a GUI within the editTable object frame.
schema a Schema - may be return from getSchema

The next example shows initializing a sample database and creating a sim-
ple GUI for a table.

toplevel .tt
set obj [editTable .tt.t1 TDBC_support sqlite3 -dbArgs test2.db]
set db [$obj config db]

$db allrows {
CREATE TABLE person (
id integer unique primary key,
loginid text, -- loginID
fname text, -- First name
lname text, -- Last name
addrRef integer references addr
);

}

$obj makeGUI [$obj getSchema person]
$obj config -table person
$obj populateBySearch "loginid = ’aaa’"

pack .tt.t1

The generated GUI resembles this:

20th Annual Tcl Conference 220 New Orleans, LA Sept. 23-27, 2013

Figure 1: Un-instrumented EditTable GUI

This was suitable for the initial development and constructing bits of func-
tionality. The advantage from a development time perspective is that no time
was wasted rebuilding better looking GUIs while the schema was still evolv-
ing.

The default GUI generated by EditTable was not suitable for end users,
but with an instrumented schema it was quite adequate.

Figure 2: LORACISTM

2.2.5 tktest

Coding projects always proceed faster at the beginning than they do at the
end. It can feel like every day completes half of the remaining tasks, and final
completion will take forever.

One reason that projects slow as they reach completion is that developing
and testing standalone pieces is relatively fast compared to integrating and
testing the final application, and then re-testing everything when a low-level
bug is discovered.

20th Annual Tcl Conference 221 New Orleans, LA Sept. 23-27, 2013

The amount of time spent in re-running tests gets longer, and when the
tests are run by hand the number of times they need to be restarted because of
a mis-key increases.

The TkReplay application was developed by Charles Crowley, and re-
ported at the 1995 Tcl Conference. Clif Flynt updated and expanded this into
the tktest package and described in a paper at the 2004 Tcl conference.

In brief, Tk widgets can be configured with a binding to report when an
event occurs. These events can then be played back to simulate a user changing
focus, typing keys, and clicking buttons.

Figure 3: tktest

The tktest application was used extensively during the middle and end
phases of this project.

During the mid-phase of project, when individual pieces are being inte-
grated and the functionality is being extended it’s very common to need to
step through several screens and inputs to get to the section of the application
where new code is being created and tested.

20th Annual Tcl Conference 222 New Orleans, LA Sept. 23-27, 2013

As that sequence of events gets longer, the probability of mis-typing and
needing to restart gets larger and the fatigue factor on the developer grows.
Being able to save the initial steps that lead to the new code and replay them
both speeds the code/test/debug debug cycle, and enables the programmer to
be productive for a longer period of time.

The LORACIS suite of applications is not quite shrink-wrap. The Loracis
client and servers must be configured for initial licenses, studies and authenti-
cation tokens. The configuration is currently done in separate steps and must
be validated before an installation kit is sent to the user.

The final validation of a distribution involves selecting, processing and up-
loading 16 documents. For obvious reasons, tktest is used to validate the
distributions before they are sent to a client.

2.3 Conclusion

The extensible nature of Tcl/Tk meant that the complex LORACISTM applica-
tion could be written using Tcl/Tk.

The high-level nature of the Tcl/Tk meant that the reduced development
cycle was possible using Tcl/Tk.

The available libraries and packages meant that production grade code did
not need to be written from scratch, saving even more time.

Code generation and testing packages reduced development time yet again.
In the end, a revolutionary new product was taken from conception to dis-

tribution in less than a calendar year and about 6 man months of developer
time. This is a fraction of the time and cost that would have been required us-
ing other tools. The final product includes about 8,000 lines of new Tcl code
and 300 lines of ”C” code.

20th Annual Tcl Conference 223 New Orleans, LA Sept. 23-27, 2013

Tcl Beans:
Persistent Storage of TclOO Objects

With Minimal Implementation Overhead

William H. Duquette
Jet Propulsion Laboratory, California Institute of Technology

William.H.Duquette@jpl.nasa.gov

Abstract

A Tcl bean is an instance of a TclOO class representing a simulation entity with associated data.
The set of all beans can be saved and later restored. Beans can own other beans, and the bean
infrastructure supports bean deletion with undo, including cascading deletion, and bean copy and
paste. The paper describes the bean implementation, including the current constraints on bean
classes, as well as lessons learned while coming to grips with the TclOO framework.

1. Background

The Athena Regional Stability Simulation is a model of political actors and the effects of their
actions in a particular region of the world. The region is divided into neighborhoods, in which
reside various civilian groups. The actors have a variety of assets, including money, military and
police forces, and means of communication, which they use to achieve their political ends. The
extent to which they succeed depends on the attitudes of the civilians, which change in response
to current events. The set of tactics an actor uses to achieve his goals is called his strategy.

1.1 The Problem

The Athena simulation model contains many different kinds of simulation entity. Most of these
entities are implemented as a simple record structure (i.e., a dictionary) coupled with a type-
definition ensemble [1]. Athena is a document-centric application, and to ease saving and
restoring the scenario data most of the simulation entities are stored at run-time in an SQLite3
database called the run-time database (RDB). Each entity type gets a table; each entity gets a
row in the table, and each record field gets a column. Entities are extracted from the RDB as
required. This pattern has a number of benefits in addition to simplifying the data persistence
problem: many of the entities serve as indices in arrays, which are conveniently represented as
RDB tables, and many of the algorithms work well as batch operations on tables. Further, the
ability to use SQL queries as the basis for algorithms and for data output has been a real win.

20th Annual Tcl Conference 224 New Orleans, LA Sept. 23-27, 2013

Over the last few years, however, we've added an increasing number of entities for which this
pattern is at best unnatural. These entities are:

• Polymorphic: any given entity type has many subtypes

• Linked into complex tree structures

• Always processed one at a time, rather than in bulk

The first two points are notoriously inconvenient to deal with in SQL, and the third point means
that there's no real advantage to dealing with the inconvenience. Consequently, we've been
looking for an alternative architecture for this data.

1.2 The Solution

Polymorphism naturally suggests an object-oriented solution with inheritance, so we began to
experiment with a TclOO-based solution. On the face of it, this is both straightforward and
appealing: our entity types and subtypes become classes and subclasses, and entities are simply
instances of classes. We get inheritance, encapsulation, and efficient execution, and of course
objects can be easily linked into complex trees or networks in any of a number of ways.

However, we still had to support persistence. In the past, Athena data has been persistent in one
of two ways: either it resides in the RDB to begin with, or it is stored in array variables owned by
some singleton. The singleton can produce a checkpoint of its data, a nested dictionary that can
be saved in the RDB as a string and can easily be pushed back into its arrays on restore.
Complex networks of TclOO objects present a different problem: not only do we need to
checkpoint the data contained within the objects, we need to be able to restore the actual network
of objects. The requirement to destroy and create a network of small objects when loading a
saved scenario is the reason why we have not represented simulation entities as instances of Snit
types: the advantages are outweighed by the nuisance factor. But the requirement for
polymorphism shifts the equation.

As a result, I defined the notion of a "Tcl bean". A bean is an object that can be easily
checkpointed as a string, and easily restored. More than that, the entire collection of beans
existing at any given time can be checkpointed and restored as a group. Along the way we were
able to support cascading deletion of beans (i.e., deleting a bean automatically deletes all of the
beans that it owns as well), cut and copy of beans, and undo of a variety of operations on beans.

The remainder of this paper will describe the bean architecture and implementation.

20th Annual Tcl Conference 225 New Orleans, LA Sept. 23-27, 2013

2. Behavior of an Individual Bean

A bean is essentially a fancy object-oriented record structure. Consider the following:

beanclass create address {
 superclass bean

 variable first
 variable last
 variable street
 variable city
 variable state
 variable zip

 constructor {} {
 next
 initialize instance variables...
 }

 methods...
}

Beans represent scenario data, which is to say user-editable data. Thus, given an instance of
address the application can set and get its variables:

% set a [address new]
::bean::address1
% $a set first John
John
% $a set last Doe
Doe
% $a get first
John

The set and get methods operate on validly defined scalar instance variables, i.e., any scalar

variable that exists in the instance’s namespace, and will throw an error if given any other name.

Because beans need to be saved and restored, we need to be able to retrieve a bean’s state and
restore it again. We assume that a bean’s savable state is simply the contents of its scalar
instance variables; we can retrieve this state as a dictionary by means of the getdict method

and restore it using the setdict method.

20th Annual Tcl Conference 226 New Orleans, LA Sept. 23-27, 2013

% set dict [$a getdict]
id 1 first John last Doe ...
% $a setdict $dict

Note that in addition to the variables defined in the class definition, the bean also has an id,

which is provided by the bean superclass. Beans are created and referenced by the user, and so

we need an ID by which they can be referred to in the GUI and in user scripts. Thus, every bean
has a unique ID, assigned on creation. This ID can be queried, but cannot be reset.

The bean’s set method is the usual way to modify the value of a bean’s instance variable,

whether from outside or in the bean’s own method bodies: it prevents the value of the id

variable from being changed, and it can notify the application that some bean has changed (and
hence, that there are unsaved changes). The setdict method uses the set method internally,

and subclasses can override it to provide additional behavior.

3. Saving and Restoring Beans

The basic assumption made by the bean class is that the application has at most one scenario

open at a time, that all beans are part of the scenario data, and that therefore all beans need to be
saved and restored en masse. We use the bean class object itself as the manager for the set of

existing beans. Thus, we can make a “checkpoint” of all beans as follows:

set checkpoint [bean checkpoint]

The checkpoint is a nested dictionary with the following structure:

 idCounter -> counter
 beans -> beanID -> serializedBean

A serialized bean is a list

 class object beandict

Thus, in the example above, if the single address record for John Doe is the only existing bean,
the checkpoint would look like this:

 idCounter 1
 beans {
 1 {address ::bean::address1 { id 1 first John ...}}
 }

The checkpoint string can then be saved to disk in any desired way, and restored as follows:

20th Annual Tcl Conference 227 New Orleans, LA Sept. 23-27, 2013

bean restore $checkpoint

The bean restore command ruthlessly destroys any existing beans, and uses the data in the

checkpoint to recreate the saved beans. Note that the recreated beans not only have the same
state, they have the same object names as before. The importance of this is discussed below in
section 5.

In order to act on all existing beans, the bean class object needs to know what beans exist.

Consequently, the class object keeps a mapping from bean IDs to object names. This mapping is
maintained by the bean register and bean unregister commands, which are called

from the bean class’s constructor and destructor respectively. It is also the bean register

command’s job to assign bean IDs.

4. Bean Trees

Beans can own other beans in complex tree structures. In Athena, there is a kind of simulation
entity called an actor. An actor is a decision maker in the simulation. Each actor has a strategy
which describes the actor’s behavior. The strategy consists of a prioritized list of blocks; each
block contains some number of Boolean conditions and some number of tactics. When the
block’s conditions are all met, the block’s tactics will be executed. The strategy, blocks,
conditions, and tactics are all implemented as bean subclasses; and there are many different
kinds of condition and tactic.

We say that the strategy owns some number of blocks, and each block owns some number of
conditions and tactics:

20th Annual Tcl Conference 228 New Orleans, LA Sept. 23-27, 2013

The relationships between the objects in a strategy are part of the scenario data, and need to be
saved with the beans. Moreover, if an object is destroyed, the dependent objects (i.e., the tactics
and conditions in a block) need to be destroyed with it. We would like these things to happen
with minimal effort on the part of the application programmer; therefore we define the notion of
a bean slot, an instance variable whose value is a list of zero or more names of bean objects that
are owned by the object.

Thus, the block class is defined (in part) as follows:

beanclass create block {
 superclass bean

 beanslot conditions
 beanslot tactics
 ...
}

The beanslot command is simply a proc in the oo::define namespace. It verifies that the

class for which it is called is truly a bean class, declares an instance variable with the given name
to contain bean references, and then registers the slot name with the bean class object. In this

way the bean class object’s methods have enough information to walk the ownership tree.

Note that not all references to other beans need go in bean slots. For example, each instance of
the block class keeps a reference to its owning strategy. Since the block does not own the

strategy to which it belongs, the reference can be stored in an ordinary instance variable.

Thus, when destroying a bean it is straightforward to destroy the beans it owns, and the beans
they own, and so on. There is no need for a bean subclass to write any specific destructor code
to enable this behavior; the bean class's destructor handles it automatically.

20th Annual Tcl Conference 229 New Orleans, LA Sept. 23-27, 2013

5. Bean Object Names

Bean ownership and bean slots are the reason that it is necessary that bean object names be saved
and restored: it allows bean objects to reference other bean objects by object name. Unique
block IDs could be used instead, but this would require doing ID lookups before calling methods
on referenced beans. Using object names keeps the code more concise and more readable.
However, we must ensure that saving and restoring the set of beans cannot result in any object
name collisions.

Beans can be assigned a unique name automatically by the bean class’s new method. By

default, TclOO objects created using the new method are given names like ::oo::Obj12.

Beans can be created at one time, saved, and restored at another into a program with a different
execution history. As a result, automatically named beans have to have names that won't conflict
with non-bean TclOO object names.

This is why bean classes are created using the beanclass metaclass. It redefines the new

method to create names that look like “::bean::<class><id>”, e.g.,

::bean::address1. Since only bean objects have names in the ::bean namespace, and

since all previously existing beans are deleted on bean restore, there is no chance of a name

collision involving automatically named beans.

The application can also choose to create beans with specific names using the bean class’s
create method. This is sometimes appropriate for top-level beans like strategies. Strategies

are owned by actors (which are not beans); each actor has a short, well-known name and a single
strategy, so strategy beans can be given names like “::strategy::<actor>”, e.g.,

::strategy::JOE. It is up to the application to make sure that explicitly named beans will

cause no name collisions on bean restore.

6. Deleting and Undeleting Beans

Because beans are scenario objects, users can delete them as they edit the scenario. It is common
for beans to own or contain other beans, and these dependent beans must be deleted with their
owner; this called a cascading delete. And since the user can undo deletions, the Tcl Bean
infrastructure has to support that as well.

A bean is deleted by passing its bean ID to the bean delete command; bean IDs are used

because beans are usually deleted due to user input, and user input usually results in an ID rather
than an object name. The command returns a delete set: a checkpoint-like string that allows the
deletion of the bean and its dependents to be undone (under the usual conditions for a successful
undo operation):

20th Annual Tcl Conference 230 New Orleans, LA Sept. 23-27, 2013

set delset [bean delete [$bean id]]
...
bean undelete $delset

The bean delete command starts with the given bean and walks the ownership tree

destroying beans. The delete set is accumulated with the help of the bean unregister

command, which is called during bean destruction, and is returned to the caller. The delete set is
simply a dictionary

 beanID -> serializedBean

7. Cut, Copy, and Paste

Copy and paste of beans is similar to deletion. When copying a block in a strategy, the user will
want to copy the conditions and tactics it contains as well. It differs in that any pasted beans will
be new distinct beans.

The ability to copy and paste is still a work in progress; however, copying is logically
straightforward. Given a bean ID, the bean copy command walks the ownership tree, copying
the class, ID, and state of each bean in the tree. Bean slot variables contain a list of bean object
names; in the saved state, each such variable is modified to contain a list of bean IDs instead.
The result is called a copy set; it can be used to create a new set of beans at any time:

set copyset [bean copy [$bean id]]
...
set newbean [bean paste $copyset]

The variable newbean now contains the name of a new bean that is the root of the copied tree.

8. Other Operations

The bean infrastructure provides a number of additional operations. The bean class object

allows the program to get a list of bean IDs, validate bean IDs, retrieve a bean given its ID, and
so forth. Specific bean classes provide the same capabilities (via the beanclass metaclass)

but limit them to beans of the appropriate type.

In addition to the set and setdict methods, each bean also has lappend and ldelete

methods; thus you can write

 $bean lappend items $myitem

20th Annual Tcl Conference 231 New Orleans, LA Sept. 23-27, 2013

instead of

 set list [$bean get items]
 lappend list $myitem
 $bean set items $list

Finally, the bean class provides a set of commonly used order mutator methods. In Athena
parlance, an order mutator is a command that updates a simulation entity given a validated set of
parameter values and returns a command that will undo the change. (An order is a command
that takes a set of parameters entered by the user, validates them, and calls a mutator to do the
dirty work.) By convention, mutator methods have names ending with an underscore.

The addbean_ method adds a bean to a bean slot. The following code adds a new block to a

strategy’s blocks slot, saving the undo script.

set undo [$strategy addbean_ blocks [block new]]

The deletebean_ method is similar: it deletes a bean with a given ID from a bean slot. The

following code deletes a block from a strategy, returning an undo script.

set undo [$strategy deletebean_ blocks [$block id]]

The update_ method handles most other changes to a single bean. It takes two arguments: a

list of bean variable names, and a dictionary of parameter names and values. It updates the value
of each of the listed bean variables, only if the provided dictionary has a matching entry whose
value is not the empty string. (An empty string indicates that the user didn’t edit that variable.)
Again, it returns an undo script.

9. Bean Constraints

It’s been said that architecture is the set of constraints you choose to live with because they make
your problem simpler. These are the specific constraints and assumptions made by the Tcl Beans
infrastructure.

• Every bean has a unique ID

• A bean’s savable state is contained in its scalar instance variables.

• Beans are saved and restored en masse.

• Bean object names are restored along with the bean data.

20th Annual Tcl Conference 232 New Orleans, LA Sept. 23-27, 2013

• Beans can own other beans; the ownership graph is a forest of trees. Owned beans are
stored in bean slot variables.

• A bean’s constructor can be called with no arguments to create a bean in the default state.
(This is required by the restore/undelete logic.) A bean’s constructor may have any
number of optional arguments.

• Every bean class must be created using the beanclass metaclass, and must be a

subclass (direct or indirect) of bean.

Naturally, some of these constraints might be relaxed over time. For example, it would be
straightforward to allow array-valued bean variables to be part of the bean's savable state, or to
provide for multiple simultaneous sets of beans that can be saved and restored individually. But
these were the constraints we thought we could easily live within given our current needs, and so
there was no need to complicate things.

10. Bean Implementation

The Tcl Bean implementation consists of three pieces of code: the beanclass metaclass, the

bean class itself, and the beanslot oo::define command.

All bean classes are created using the beanclass metaclass, which provides custom new,

get, exists, and ids methods for all bean classes. The most important of these is the new

method, which ensures that bean names are created in the ::bean namespace, as described in

Section 5. The other three methods simply allow the application to query beans belonging to the
class or its subclasses. For example

set block [block new] ;# Returns ::bean::block<id>
set ids [block ids] ;# Returns all block IDs
block exists [$block id] ;# Returns 1
block get [$block id] ;# Returns $block

If it weren’t for the naming requirement, beanclass probably wouldn’t exist.

Every bean class must be created using the beanclass metaclass, and must be a subclass

(direct or indirect) of bean. It would be helpful if beanclass could ensure the latter

requirement automatically, but I’ve not figured out how to do that in a graceful way.

20th Annual Tcl Conference 233 New Orleans, LA Sept. 23-27, 2013

11. TclOO Is Not Snit

Tcl Beans is my first attempt to implement production code using TclOO, and as a long-time
Snit [2] user I ran into some surprises and annoyances. While some of them might in theory be
fixed in future versions of TclOO, others are simply consequences of TclOO’s advanced
capabilities and have to be lived with and worked around. I record them here as a starting point
for some kind of Snit compatibility layer or other utility library.

I’m aware that Tcllib already includes the beginnings of a TclOO convenience library,
oo::util [3]; however, I’m not using it. I want to understand TclOO reasonably deeply at the

scripting level before I start depending on external convenience libraries.

11.1 Variable Declarations

In Snit, you can declare an instance variable and assign it an initial value in the body of the type
definition. In TclOO you can’t; instance variables can be declared in the class definition, but can
only be initialized in the constructor or in some other method body. This is particularly
annoying when adding variables to an object using oo::objdefine: there is no way to

initialize them from within the object’s private (i.e., unexported) code. You have to use a
publicly accessible (i.e., exported) method.

11.2 Linkage Between Types and Instances

In Snit, an instance and its type are closely linked. In particular, type variables are visible
without declaration in instance code. In TclOO, instances are only weakly linked to the class
used to create them; an instance’s class can be changed at any time. Hence, variables belonging
to the class object are not usually visible in instance methods.

This may an unavoidable consequence of TclOO’s power and flexibility. However, it would be
useful to be able to declare class variable once in the oo::define script and access it without

declaration within instance methods, even at the cost of not being able to subsequently give
instances a different class.

11.3 Code Layout

TclOO leads to harder-to-read code modules than Snit, in my view. I care very much about code
readability, and designed Snit to maximize it—given my particular (or perhaps peculiar) sense of
code aesthetics. It’s not surprising that another person’s system doesn’t give me quite what I
want, and the following observations might be a sore point only for me.

In my code, a Snit type with instances usually looks something like this template:

20th Annual Tcl Conference 234 New Orleans, LA Sept. 23-27, 2013

snit::type mytype {
 # Lookup tables
 # Other type variables
 # Type constructor (executes initialization code on load)
 # Type methods
 # Instance variables
 # Option definitions
 # Constructor/destructor
 # Instance methods
}

It’s a logical sequence, and the entire type is clearly one thing. When you get to the closing “}”
you know you’ve seen all of it.

TclOO supports a class definition syntax with a Snit-like definition body; and this works well
unless you want to define methods on the class object itself. Then you need to use something
like this to get the

oo::class create myclass

oo::objdefine myclass {
 # class variables
 # class methods
 method init {} { # Initializes class variables }
}
myclass init

oo::define myclass {
 # instance variables
 # constructor
 # instance methods
}

It should be possible to add commands to the oo::define namespace that would allow the

class variables and methods to be included in one body with the instance definitions; I believe
the classmethod command in oo::util works this way. I’m not clear on just what the

side-effects are, though, or what constraints it places on the finished class.

11.4 Metaclasses Are Not Inherited

This is a purely TclOO-related surprise, as there’s no Snit equivalent.

20th Annual Tcl Conference 235 New Orleans, LA Sept. 23-27, 2013

Tcl Beans defines the beanclass metaclass so as to customize the new method to generate a

name in a particular namespace, and then uses it define the bean class. It would seem that

subclasses of bean would inherit this behavior automatically, but they don’t. Every subclass of

bean has to be explicitly created using the beanclass metaclass. This feels wrong to me,

though I freely admit that I don’t understand it well enough to have an opinion.

12. Future Work

Tcl Beans have been implemented as a part of an experimental redesign of Athena 5’s strategy
execution engine. This redesign is not yet complete. Thus, the following work remains:

• Complete the re-implementation of the strategy engine. This will likely result in
additional features and tweaks to the bean infrastructure.

• Complete the infrastructure to support copy and paste, and use it in the GUI.

• Review the bean code in light of further experience with TclOO, and see if it can be
streamlined or improved.

13. Conclusions

As currently implemented, Tcl Beans make it simple to use TclOO objects to contain user data in
a document-centric application provided that only one document can be open at one time. Bean
classes are trivial to implement, and all bean instances can be saved and restored as a set. The
infrastructure supports many other useful patterns, including cascading deletes, undo of user
changes, and copy and paste. These features are subject to a handle of constraints, some of
which it might be possible to relax in future versions.

14. References

[1] Duquette, William H., "Type-Definition Objects", 12th Annual Tcl/Tk Conference,
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/37573/1/05-2409.pdf.

[2] Duquette, William, Snit Object Framework, found in Tcllib,
http://tcllib.sourceforge.net/doc/snit.html.

[3] Kupries, Andreas, and Fellows, Donal, TclOO Utility Package oo::util, found in

Tcllib, http://core.tcl.tk/tcllib/doc/trunk/embedded/www/tcllib/files/modules/ooutil/ooutil.html

20th Annual Tcl Conference 236 New Orleans, LA Sept. 23-27, 2013

15. Acknowledgements

This research was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration, during
the development of the Athena Stability & Recovery Operations Simulation (Athena) for the
TRADOC G2 Intelligence Support Activity (TRISA) at Fort Leavenworth, Kansas.

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

20th Annual Tcl Conference 237 New Orleans, LA Sept. 23-27, 2013

20th Annual Tcl Conference 238 New Orleans, LA Sept. 23-27, 2013

20th Annual Tcl Conference 239 New Orleans, LA Sept. 23-27, 2013

20th Annual Tcl Conference 240 New Orleans, LA Sept. 23-27, 2013

