
FlightAware: a modern enterprise built around Tcl

About FlightAware - Brief History

• Founded in 2005 by three pilots/hackers, based in Houston, Texas

• Originally focused on general aviation, expanded into airlines in 2008

• Largest aviation web site in the world

• 3,000,000 registered users

• 150,000,000 page views/month

• Issue 250,000 flight alerts/day

• We are a top100 site based on page views.

• Largest customers include United, NetJets, ARINC Direct, Boeing

• 40 employees at offices in Houston and New York City

• Data centers in Houston, Dallas, and London

Provides real-time flight status to:

• Travelers

• Aircraft operators

• Airport operators

• Other tracking apps (TripAdvisor)

• Apps for every mobile app platform

• Localized in 15 languages

FlightAware at a Glance

About FlightAware - Airspace Views

High-Resolution Zoom Explains Delays

Transatlantic flight after holding South of Heathrow for 42 min

Monthly Unique Web Site Visitors

2005

2006

2007

2008

2009

2010

2011

2012

YTD 2013 4,500,000

3,000,000

2,600,000

2,200,000

1,800,000

1,390,000

996,000

350,000

3,500

2013 uniques up 50%
YOY, beating projections.

About FlightAware - Worldwide Airport Delays

FlightAware - Airspace Aware - Delays

Misery Map - Interactive Delay Explorer

Mobile Apps

iPhone, iPad, Android, BlackBerry, PlayBook, Symbian, Windows Phone 7, Windows 8

Next-Generation Flight Tracking - Datalink Coverage

FlightAware is the datalink flight tracking provider for over 4,000 aircraft worldwide.

It took years to develop the credibility in the industry to be able to go after these
relationships.

FlightAware and United - Currently

Operational Analysis & Efficiency Automation

Flight Operations

12

© 2013 Optimized Systems and Solutions Inc. All rights reserved.

!
12

Data via external vendors

Circular holding

ATC procedure issues

Route Complexity Index

Push Technology

Live, streaming flight push for all flights on FlightAware.com

About FlightAware - Products

Operational Analytics Content
Web-Based Flight Tracking

Premium Accounts, FlightAware Global

Historical Flight Data

Over 325M archived flights, billions of positions

Worldwide Airport, Navaid, and
Oceanic Track Database

FlightXML - API
Used by dispatch software, billing software, air

carriers, airport authorities, etc.

Fuel Price Market Analysis

Reporting, graphing, comparisons, and analysis

Worldwide Fuel Price Data Feed

Data Feeds
Consolidated “FlightAware Controlstream” data feed

that incorporates dozens of data feeds.

Traffic Flow Management
Simulations

Weather Products

International text and composite imagery

Flight Planning
ICAO Flight Plan Filing, over 100 aircraft auto-setup.

Monthly Industry Aviation
Report

Aviation News &
E-Mail Newsletter
Monthly Circulation: 3,000,000

Two-Way Messaging
Web Interface to ACARS messaging

Airspace Optimizations
Aircraft Photo Database

375,000 photos
100,000 aircraft

Flight Alerts
via email, text message (SMS), etc.

Commercial Data Services FlightAware News Network

About FlightAware - Updates - Photos

About FlightAware - Updates

Coming Soon (Launching at NBAA in October 2013)

• Integration with ForeFlight electronic flight bag
iPad App

• View any FlightAware route in ForeFlight

• Updated FlightAware routes pushed to
iPad app.

FlightAware at a Glance - Behind the Scenes

Services - Custom
25%

Services - Direct
15%

Services - Online
10%

Advertising
50%

Where the revenue comes from...

FlightAware Technology

FlightAware Technology - Flight Tracking

FlightAware Technology - Behind the Scenes

• Feed Conditioners - recipients of any format data feed to be normalized for internal processing

• Daystream - temporal cloud technology for storing and retrieving terabytes of real-time or historical data

• Combiner - aggregator of over 30 real-time data feeds

• Feed Interpreter - stateful decision engine that analyzes “Combiner” and produces “Controlstream”

• Controlstream - normalized, internal data feed available to all internal programs (140 msgs/sec)

• Birdseye - custom 10GB shared memory real-time 4D position/flight plan database

• Archiver - stores positions from “Birdseye” and proxies real-time requests for over 250M historical flights

• MULTICOM - event alerting service between data events (e.g., departure) and delivery channels (e.g., email)

• Flightpush - web push server for streaming, real-time updates to user maps

• Balancer - redundant cloud manager of over two dozen map and weather servers (real time and historical)

What the Feed Interpreter does...

• Collect flightplans from a variety of sources and assigns unique Flight IDs to them

• ident (UAL972), orig (EGLL), dest (KIAH), registration (N769UA), EDT, ETA, route, waypoints, etc.

• Collect positions from a variety of sources (ANSP radar, ADS-B, ACARS via satellite and/or VHF)

• Collect OOOI (Out, Off, On, In) where available

• Match positions and other messages with flightplans

• Do extensive work to disambiguate the noisy signals

• Generate departures, arrivals, minutes-out messages, change messages (gate, bag claim, equipment, etc)

• Move aircraft along projected path when positions aren’t coming in

• Update ETAs

• Maintain multiple “forks” of flights with different input sources to abide by data provider covenants

• Cash the checks

FlightAware Technology - Error Correction

• Lost messages (e.g., missing departure, missing arrival, etc.)
• Out-of-order messages
• Inter-facility messaging / erroneous flight plan cancellations
• Non-standard ATC idents and aircraft types
• Mistyped ATC idents
• Ambiguous/duplicate airport codes
• Erroneous departures or arrival messages
• Conflicting positions reported by multiple radars
• Inconsistent data (two sources disagree)
• Duplicate flight plans
• Duplicate transoceanic positions or post-arrival positions
• False “airspace protection” positions
• Accidental or double diversions
• Wrong dates (+/- 24/48/72 hours)
• Invalid/incorrect destinations
• Airborne departures from a VOR/waypoint/fix (no origin airport)
• Flights without flightplans

Seventeen Simple Examples:

Positions from FAA ASDI

FlightAware Technology - Out of range RADAR

Positions after FlightAware processing

FlightAware Technology - Projections

Useful when no satellite/VDL positions are being received.

(. . . time gap . . .)

(. . . time gap . . .)

Feed Interpreter - Some Details

• Feed interpreter comprises about 21,000 lines of Tcl code.

• It would have been basically impossible to write and have unacceptable performance without speedtables.

• If the feed interpreter isn’t running, no flights depart, arrive or even move.

• Feed interpreter knows about airline flights from two days before the flight until a day after.

• Consequently, feed interpreter is stateful.

• All of its state is maintained in speedtables.

• FI’s speedtables are checkpointed every 30 minutes to provide a restart point in the event of a crash.

• Feed interpreter forks a child to do the checkpoint so it doesn’t stop processing.

• Checkpoints are rsynced to guard against a hard machine failure.

• Despite constant software upgrades, the feed interpreter’s state has been maintained continuously for over
five years.

• You can telnet into the feed interpreter from localhost and directly execute Tcl commands.

• All feed interpreter’s procs reside in 70 source files that contain nothing other than proc definitions.

• Consequently, updated procs without data structure changes can be sourced-in live.

• Yeah, we really do that, but we test first.

FlightAware Web-Serving Architecture

Server Capacity
We own and operate almost all of our server capacity

• ~100 servers in six racks, mostly 1Us and blades
• Three datacenters (Houston, Dallas, London)
• Originally whitebox; migrated to Dell due to ease of ordering/managing/repair/financing.
• Banks will finance server purchases.
• Electricity is more expensive than physical space or bandwidth.

“Haven’t you guys heard of AWS?”
“Yes, frequently during their multi-hour outages.”

• We release FlightAware four times a week.

• Staff uses tomorrow’s FlightAware today.

• On a typical day we’re doing over 150 pages/sec most of the day.

• Every uncaught error is recorded and investigated.

• On a typical day about one page in a million suffers a partial failure.

• No amount of testing will find all the bugs that our 950,000 daily users will uncover.

FlightAware from the inside

• We use Apache with mod_rivet to script in webpages

• We use Pgtcl to talk to PostgreSQL

• We write database stored procedures in PL/Tcl

• We use scotty for datagrams, ICMP, and SNMP.

• We used huddle to generate JSON until the performance became too big of an issue,
then we wrote yajl-tcl, a C extension to talk to yajl

• We use Itcl, SOAP, http, ncgi, sgml, and sha1.

• We use ftp, htmlparse, ldap, and TLS, smtp, soundex and zlib.

• The Apache parent process loads 546 Tcl packages, which are inherited by the 300
Apache children spawned on each webserver.

FlightAware and Tcl

FlightAware from the inside

<?
flightaware_startpage 1 300

set ::pagedata(leftAd) "1 main_left"

if {![userIsMobile]} {
flightaware_openlayers_emit delay

}

flightaware_header "" "" 0

flightaware_framework_mainpage

flightaware_footer
?>

Source code to the Homepage

• Do what you love and what you would do for free.

• Build something great; worry about business model later.

• Spend what you earn.

• Started out with $25K in 2005

• You don’t need VC to start a software/services company.

• You can build a legit / viable enterprise around Tcl.

• If you can predict the future with reasonable accuracy for something people care
about, they will pay.

• Node.js is crashy and hard to code for.

FlightAware Lessons Learned

Major insights from forty years developing
software

...that I don’t hear people talking about very much

• Spending two years writing a spec and five years implementing it is a recipe for failure
• You don’t really understand the application until you’ve implemented it

• But how can I implement it if I don’t understand it?
• Get something working and start trying to use it

• If you’re building an alarms subsystem, start with a call to queue an alarm that just
dumps the call parameters to the terminal

• If you need to support alarm priorities, allow the priority to be specified but
ignore it until you’re ready to handle it

• Create flexible, extensible interfaces
• key-value pairs, etc

Major insights from forty years developing
software

Build iteratively

Most applications, even math-intensive things like the feed interpreter, spend a lot more
of their time manipulating text than performing calculations.

Major insights from forty years developing
software

Text is King

• Relying on your customers to tell you when something isn’t working is awful and if
that’s all you’ve got, you are asking for it.

• Monitoring based on machines being up and programs existing in the process table,
etc, is inadequate.

• Build monitoring into your apps.
• Send an “I’m OK” message to your monitoring software upon successfully processing

an event, etc.
• The absence of “I’m OK” messages tells you something is wrong, and will work,

regardless of the cause.
• Make it zero-config so programmers will use it.
• fa_watchdog_reset united_delay_extractor -interval 3600 -description "United delay

extractor" -class feed -tags reports

• We monitor 545 points (213 unique) in our software throw.

Major insights from forty years developing
software

Build monitoring into your apps

If the only solution you have been able to come up with, you know it won’t work, but
after tons of thinking you have come up with no alternative, write the thing you know
won’t work and see what you learn from it.

Major insights from forty years developing
software

Solving super hard problems

• If you are trying to build a software business, you had better be thinking about a
twenty-year timeline for your platform.

• We have already been at FlightAware for eight years -- a ten-year timeline would be
insufficient.

Major insights from forty years developing
software

Take a long view

• The data is complex; our understanding was incomplete.

• Had we not saved the raw data we would have lost fidelity.

Major insights from forty years developing
software

Save all your data as received if you can afford to

• Almost never is it worth it to throw everything away and start over

• Far less than the typical programmer’s impulse

• You don’t actually understand the thing you’re throwing away
• You don’t understand how complicated it is

• You don’t understand all the problems that it solves

• It only makes sense for rare, epic events where massive modernization is essential.

• Getting off of proprietary hardware or a proprietary operating system (1980s)

• Getting away from something horrible like systems programming in Fortran (1980s)
• Moving from text files to a SQL database; moving to the Internet (1990s)

• History is littered with the corpses of solid companies that committed suicide by
committing to a ground-up rewrite.

Major insights from forty years developing
software

Avoid Ground-Up Rewrites (like the plague)

• It is the nature of fashion that it is both unpredictable and capricious.

• Fashion is a sort of epiphenomena of a community of thinkers, publicizers, followers, and
fools.

• Fashion applies to programming languages, too.

• Languages go out of fashion through no fault of their own.

• Proponents of the new hotness always oversell the capabilities, strength, maturity,
usefulness and applicability of their language.

• They are advocates, even if they pretend to be otherwise.

Major insights from forty years developing
software

Fashion: A popular trend, especially in styles of
dress and ornament or manners of behavior

Major insights from forty years developing
software

Immature development environments are
schedule-killers, or even business killers.

• Malfunctions at any layer below the layer you’re working on can cause multi-day schedule
hits, or worse.

• Hardware

• Operating System

• Language Implementation

• It is extremely valuable to have the source code to the entire stack.

• Extremely stable

• Featureful

• Reliable

• Huge library of useful packages

Tcl - the Pluses

• Higher performance: Javascript gets faster with each release; Tcl gets slower.

• Better capabilities to represent complex data hierarchies, like the DOM.

• If you are using upvar to alias arrays from a bunch of arrays in a namespace, you are
working around Tcl’s lack of facility with complex data structures.

• For me, dict doesn’t cut it.

• Speedtables really help, but they’re not a first-class part of Tcl, so they move data in
and out of arrays.

• I am jealous of Javascript’s ability to do things like

var projected_circle = new OpenLayers.Feature.Vector(new
OpenLayers.Geometry.Polygon.createRegularPolygon(layer.features[0].geometry,
radius, circle_segments));

• A general ability to invoke procs while explicitly naming the arguments as in Tk and iTcl.

Tcl - stuff I’d like to see

• The website is outdated, and it shows.

• The wiki is outdated and it super shows.

• There is no single place to go to find manpages, etc.

• Not hosting on github seems like we’re willfully driving users away.

Can we expand the Tcl userbase and if so, how?

• Scripting languages will continue to be (very) important.

• I expect Javasript to be the dominant scripting language for the next ten years.

• Javascript has some pretty nasty warts but overall it is quite good.

• Node is holding Javascript back on the server side.

• There is no actual end in sight -- Tcl will remain viable as long as it has a community of
active developers.

• Tcl New and Proven? Absolutely!

Where Things Are Going

