Agent SMITH:

Evolution of a Test Tool in Tcl/Tk

By:
John J. Seal
Principal Software Engineer
Platform Support Development Section 21520
john_j seal@raytheon.com
317.306.4838

Abstract:

This paper describes the evolution of the Storyénakterface Test Harness (SMITH), a test tool
developed by Raytheon Technical Services Compan$(R for internal use on one of its
projects. Development started with a sketch mada broject engineer, and proceeded in four
incremental stages: First, implement the sketchpa®f of concept; second, automate the tool
using test case files; third, develop a C extens@mprovide hooks into the target system; and
fourth, analyze the target system’s response. €llsémges tracked the changing needs of the
project, from development of the interface codeteefeal hardware was available, through unit
test, and finally into full-scale system integratiand qualification testing.

Prepared for:
15" Annual Tcl/Tk Conference
October 20-24, 2008
Manassas, VA

Prepared By:
Rayfheon Technical Services Company Li.c
Customized Engineering and Depot Support (CEDS)

6125 East 21st Street
Indianapolis, IN 46219-2058

Agent SMITH: Evolution of a Test Tool in Tcl/Tk

The Raytheon Technical Service Company (RTSC) @uged Engineering and Depot
Support (CEDS) site in Indianapolis, IN, is respblesfor developing and maintaining a
system known as Story Teller. Our customer asket integrate a new system, called
Story Maker, to be supplied by & Barty. We had the Interface Control Document
(ICD), but actual hardware would not be availaloledquite some time. Instead of just
coding blindly to the ICD and hoping for a succak$big bang” integration, we decided
to develop a tool to exercise the interface ueal hardware was available.

The lead engineer for Story Teller used Microsdftd@ tools to sketch out a notional
Graphical User Interface (GUI) for that purpose] amarked it up with notes about what
the various elements should do [Figure 1]. Forpganson, the final tool is shown beside
it [Figure 2]. You can see that the final tool otes the initial sketch very closely, but
there are significant differences, too. Some efdtiferences arose early, once the
fundamental requirements of the tool were betteleustood, while others evolved later
to meet the needs of different user communitielse dvolution of the tool in response to
evolving requirements is a good case study in mergal development.

Harmess =
Story Maker Interface Test Toal

7 SMITH - Story Maker Interface Test H N
_F\|B Server Log .)

esponse _3

_'.Command : Expec
) Massaga Type Y Iﬂ_— Massage T_l,lpa Y |1_2_&H—

: age D [123 Ml i '
Expected Outputs TrackID IJJS—“ rackID IJJS——
VNN ¢ cc/c F80 Ssn1p ARF po 6 e e
Track View; COO(C LON /P CHASETO MuriF (E [- TELL.S u;v |D_— Tiack ID Sla‘lus' |ﬂ__

Link Outputs: o8/ Fof J T & wur [P Alrzi €A

- Message Status T IU_.

DLITEL Sy [T
P .-:.TIBS TELLStatus |n—"
..:;\D[Thr'eal]v Imm_ . \D Flagv o
oy :_'_Ca.l;e.g.ary_!_ AR ategory Flag T IU—
 Palmy R Phfom Flagv |n—
: :Sp'n.ai:.i.l.i.E_TypE._V.' F18 Spaclfn: Type Flag T ID—
ety vILIS__ - NallonalltyFIag v IU_— _'

ADI'_.

Track Modification Message Response Message

| Message Type . ‘7Méss?ige Type

[Message ID ‘ Messagé D

TrackiD [Track ID
[Elp 7

TELL Status 1 Track ID Status

‘ Message Status

| TDLJ TELL Flag

ST

‘ I . | |] Append ta Test CaseFle 8 |
mbin, b e m | Test Case File Playback :
IDkEHEe!) DD i) Delay [ms] ¥ |1UU UmlTast lHt

| Category | Category Flag | L|ne Number L |1 =
[Platiorm | Platform Flag -"-'-r";"."a,&c'K | atoe |

| Specific Type | Spec Type Flag

[Nétionality] ‘ Natlonallty Flag
[a0l

7 SMITH Event Log 0] x|

2007-01-26 09:49:30 - Case L.2: 11 1 SET——
2007-01-26 09:49:30 - Invalid ID (Threat] = ENENY
Response Message Error Text Z007-01-26 09:d9:30 - Invalid Category = FIR
Z007-01-26 09:49:30 - Couldn't walidate Platform = HEI
2007-01-26 09:49:30 - Invalid Specific Type = FOO

2007-01-26 09:49:30 - PASS

| SEND e . | o

Figure 1 — Initial Sketch Figure 2 — Final Tool

One of the first orders of business for any proigtd pick a name. An earlier project of
mine was nicknamed “matrix” because it was beingetiged when the first Matrix
movie was released, and featured a prominent maitata in the form of a TkTable.

Agent SMITH: Evolution of a Test Tool in Tcl/Tk

Another project was a code-counting tool called @ &LOCula. We always used the
phrase “Story Maker Interface” when discussing ghigect, so the acronym SMITH
suggested itself rather naturally, but my coworkergled to refer to it as Agent SMITH,
and the name stuck.

The first phase of development was to simply imm@atithe notional sketch almost
literally, as a proof of concept. The ICD defireedimple TCP/IP network protocol that
was easily implemented in Tcl. The initial Tk Gallowed the user to construct a
message, enter a destination host and port, senddbsage, and see the response. The
initial concept included fields to describe the exjed response in narrative form, but we
quickly realized that by adding fields to describe expected response in detail, the tool
could automatically check the actual responsedorectness. Thus, the tool design
quickly settled on three main data entry colummssead of two.

Once the proof of concept was demonstrated, thesteg was to add data-entry aids.
Story Teller has data files that define the valéles for certain fields, and it uses those
files to validate the messages it receives. Wehsse same files to create pull-down
menus (indicated by downward-pointing triangles)tfe entry fields. When the user
selects a value for one field, it changes the whwailable for the others; this makes it
easy to specify valid and consistent test casé& uBer can type directly into the fields
to create invalid or inconsistent test cases.

The initial proof-of-concept GUI used tk_optionMemdgets because they’re quick and
easy, but they weren’t used in the final tool feveral reasons. First, they display the
current selection; we wanted the menus to doublatesds for the entry fields. Second,
their default appearance is rather large and Misgamplex; in a dense grid they made
the GUI cluttered and hard to read.

In retrospect, perhaps we should have used labethé labels, and comboboxes for the
entry fields. That also would have resulted iregan amount of visual noise, with all
the combobox arrows lined up vertically. The desige chose, with discreet down arrow
glyphs made with characters in the menubutton n&yaeyisually clean compromise.

A related issue that became apparent during prbobacept was that the GUI window
tended to be fairly big, because of the large nurbentry fields. A standard solution
would be to use a tabbed window or multiple windolag in this case the command and
its actual and expected response really is themmuim essential information that has to
be presented all together in one place. We didtfingle ways to save some space:

* Make the Event Log a separate resizable window
» Move the Exit button into a File menu
* Move the destination specification into a Servenme

The elimination of the destination host and pottiea was a welcome change to users,
who no longer had to remember such details. Idstba Server menu offers three
canned destinations: the actual target systengdtielopment system, and localhost.

Agent SMITH: Evolution of a Test Tool in Tcl/Tk

The second phase was to automate the tool by a¢pivio read test cases from a file.
We added entries to the File menu to Open a testfda (and also to show a debug
Console). The ability to automate the tool wasangnt because, at that time, the chief
role envisioned for the tool was for Unit Test loé interface code. Just verifying that the
code followed the ICD required several hundred¢ases, and we didn’t want the user to
have to enter them manually! We wanted a simpi@&b that was easy to parse, and
what could be easier than to let Tcl do the pafsitgfact, test case files are just Tcl
scripts using a domain-specific language (DSL)reHs an example:

Case Msg Msg Track TELL ID Spec

Num Typ ID 1D Stat Threat Cat Pl at Type Nat
case 1 11 123 JJs 0 ASMDFRND AR FTR F18 us
get msg "Enter the desired Message ID:" ;# get value of nsg from operator
case 2 11 $msg JJs 0 FRI END AR FTR *F-18 us

Illegal specific type

note "Special setup required for next test case!" ;# stops automatically
case 3 11 123 JJs 0 FRI END AR *BMR *F18 us

Inconsistent platform & specific type

The actual test case file template contains a Weeeribing all the commands and
formatting rules that have to be followed, for nmegrammers. The case procedure, for
example, takes 10 mandatory arguments, with aniiedal args taken as a description;
leading asterisks indicate fields where an errexected. In fact, most of our test cases
don’t have descriptions and fit all on one 80-cafuime. The reason you don'’t see line
continuation slashes is a happy example of serégpdiost editors will wrap long lines,
and by using tabs to delimit arguments we cantgehice “indented description of the
previous line” effect. There are several other s@nds in our DSL besides those shown
in the example.

We added “transport controls” to the GUI so the tese file could be stepped through,
played automatically, rewound, etc. Progress asdlts are shown in the Event Log
window, with discrepancies between actual and epe@sults highlighted. The
controls could have been put in a separate Playwaalow, but the conceptual coupling
between the transport controls and the command/nsgpdata (i.e., the test cases being
replayed) was strong enough that we felt it deserbep them in the main window.

At first we required the user to prepare the tasedile in a text editor, but the testers
(who are not programmers) didn't like it. Theymeid out the blindingly obvious:
There’s already a GUI to specify an individual tes$e, so just add a button to append it
to the test case file! In that way the testerddoge the GUI to build the test case files,
experimenting with each single test case until @patyit just the way they wanted it, then
saving it. Bringing the tool to this point tookal two weeks of real time. The tool in
this intermediate form was used extensively by l@belopers and testers.

Once the new interface was working well, the Tedlegineer started using the tool as if
it were a Maker simulator, that is, to exercisevtmle Teller system instead of just the
new Maker interface. He pointed out that valid ceends would cause Teller to send
certain messages to other systems, and other sysbesend messages back to both

Agent SMITH: Evolution of a Test Tool in Tcl/Tk

Teller and Maker. Would it be possible for SMITavterify Teller's external response to
Maker messages, rather than just verifying that there correctly accepted or rejected?

The third phase of development was adding hooksTietler so SMITH could verify the
external message traffic. This involved having $Mlopen a server socket so it could
receive messages intended for Maker, and regigtévineceive messages sent and
received by Teller. Teller uses a peculiar homegrinter-Process Communication
(IPC) scheme, so it was necessary to write a sil@@&tension to wrap the key functions
and export them to Tcl. Could | have used CriTrdFBIDL instead? | don’t know, but
compiling a C extension to a shared library is $anp

At this point the tool could not only verify thadd messages were accepted, but that
Teller responded correctly, too. We added a Logurs® the user could choose what to
log (commands, responses, outgoing messages, @ndiimy messages) and how to log
it (simple events or hex/ASCII dumps). The hex/AStimp procedure was fun to
write, as it was the first time | used the [sulegfub ...]] idiom; for details see
<http://wiki.tcl.tk/1599. The external messages are in Generic Tactdairhation
Message Format (GTIMF). Teller contains anothel, taritten in C, that can decode
them to “human readable” form, but it's very difflcto use that tool and Agent SMITH
together and correlate the results.

The fourth phase was to parse the external GTIM&sages into true human readable
form. (The Teller tool parsed the fields and pn¢sd them numerically, with no
interpretation.) The GTIMF specification documethis meaning of each field, so we
wrote a parser to display fully-interpreted messagehe specification of the GTIMF
protocol in Tcl is very flexible and could be egsitended to other formats. It took less
than a week of real time to design, code, test,dmudiment the GTIMF parser!

The final SMITH tool has been very well received andely used. System engineers
use it to explore various “What if?” scenarios. vBlepers use it to debug other Teller
changes being proposed or implemented. Tester$ tasprovide repeatable stimulus

during system integration and qualification tests.

