
This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 1 of 22
f8 and f9 Specification Version 1.0

ETSI/SAGE
Specification

Version: 1.0
Date: 23rd December 1999

Specification of the 3GPP Confidentiality and
Integrity Algorithms

Document 1: f8 and f9 Specification

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 2 of 22
f8 and f9 Specification Version 1.0

Blank Page

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 3 of 22
f8 and f9 Specification Version 1.0

PREFACE

This specification has been prepared by the 3GPP Task Force, and gives a detailed
specification of the 3GPP confidentiality algorithm f8, and the 3GPP integrity algorithm f9.

This document is the first of four, which between them form the entire specification of the
3GPP Confidentiality and Integrity Algorithms:

• Specification of the 3GPP Confidentiality and Integrity Algorithms.
Document 1: f8 and f9 Algorithm Specifications.

• Specification of the 3GPP Confidentiality and Integrity Algorithms.
Document 2: KASUMI Algorithm Specification.

• Specification of the 3GPP Confidentiality and Integrity Algorithms.
Document 3: Implementors’ Test Data.

• Specification of the 3GPP Confidentiality and Integrity Algorithms.
Document 4: Design Conformance Test Data.

The normative part of the specification of the f8 (confidentiality) and f9 (integrity) algorithms
is in the main body of this document. The annexes to this document are purely informative.
Annex 1 contains illustrations of functional elements of the algorithm, while Annex 2
contains an implementation program listing of the cryptographic algorithm specified in the
main body of this document, written in the programming language C.

The normative part of the specification of the block cipher (KASUMI) on which they are
based is in the main body of Document 2. The annexes of that document, and Documents 3
and 4 above, are purely informative.

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 4 of 22
f8 and f9 Specification Version 1.0

Blank Page

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 5 of 22
f8 and f9 Specification Version 1.0

TABLE OF CONTENTS

1. OUTLINE OF THE NORMATIVE PART ... 8

2. INTRODUCTORY INFORMATION... 8
2.1. Introduction... 8
2.2.Notation... 8
2.3.List of Variables.. 9

3. CONFIDENTIALITY ALGORITHM f8 ... 11
3.1. Introduction... 11
3.2. Inputs and Outputs.. 11
3.3.Components and Architecture... 11
3.4. Initialisation .. 12
3.5.Keystream Generation... 12
3.6.Encryption/Decryption.. 13

4. INTEGRITY ALGORITHM f9 .. 14
4.1. Introduction... 14
4.2. Inputs and Outputs.. 14
4.3.Components and Architecture... 14
4.4. Initialisation .. 15
4.5.Calculation .. 15

ANNEX 1 Figures of the f8 and f9 Algorithms... 17

ANNEX 2 Simulation Program Listing... 19
Header file ... 19
Function f8 ... 19
Function f9 ... 21

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 6 of 22
f8 and f9 Specification Version 1.0

REFERENCES

[1] 3rd Generation Partnership Project; Technical Specification Group Services and
System Aspects; 3G Security; Security Architecture (3G TS 33.102 version 3.2.0)

[2] 3rd Generation Partnership Project; Technical Specification Group Services and
System Aspects; 3G Security; Cryptographic Algorithm Requirements; (3G TS 33.105
version 3.1.0)

[3] Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 1: f8 and f9 specifications.

[4] Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 2: KASUMI Specification.

[5] Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 3: Implementors’ Test Data.

[6] Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 4: Design Conformance Test Data.

[7] Information technology – Security techniques – Message Authentication Codes
(MACs). ISO/IEC 9797-1:1999

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 7 of 22
f8 and f9 Specification Version 1.0

NORMATIVE SECTION

This part of the document contains the normative specification of the Confidentiality and
Integrity algorithms.

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 8 of 22
f8 and f9 Specification Version 1.0

1. OUTLINE OF THE NORMATIVE PART

Section 2 introduces the algorithms and describes the notation used in the subsequent
sections.

Section 3 specifies the confidentiality algorithm f8.

Section 4 specifies the integrity algorithm f9.

2. INTRODUCTORY INFORMATION

2.1. Introduction

Within the security architecture of the 3GPP system there are two standardised algorithms: A
confidentiality algorithm f8, and an integrity algorithm f9. These algorithms are fully
specified here. Each of these algorithms is based on the KASUMI algorithm that is specified
in a companion document[4]. KASUMI is a block cipher that produces a 64-bit output from a
64-bit input under the control of a 128-bit key.

The confidentiality algorithm f8 is a stream cipher that is used to encrypt/decrypt blocks of
data under a confidentiality key CK . The block of data may be between 1 and 5114 bits long.
The algorithm uses KASUMI in a form of output-feedback mode as a keystream generator.

The integrity algorithm f9 computes a 32-bit MAC (Message Authentication Code) of a given
input message using an integrity key IK . The approach adopted uses KASUMI in a form of
CBC-MAC mode.

2.2. Notation

2.2.1. Radix

We use the prefix 0x to indicate hexadecimal numbers.

2.2.2. Conventions

We use the assignment operator ‘=’ , as used in several programming languages.
When we write

<variable> = <expression>

we mean that <variable> assumes the value that <expression> had before the
assignment took place. For instance,

x = x + y + 3
means

(new value of x) becomes (old value of x) + (old value of y) + 3.

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 9 of 22
f8 and f9 Specification Version 1.0

2.2.3. Bit/Byte order ing

All data variables in this specification are presented with the most significant bit (or byte) on
the left hand side and the least significant bit (or byte) on the right hand side. Where a
variable is broken down into a number of sub-strings, the left most (most significant) sub-
string is numbered 0, the next most significant is numbered 1 and so on through to the least
significant.

For example an n-bit MESSAGE is subdivided into 64-bit substrings MB0,MB1…MBi so if
we have a message:

0x0123456789ABCDEFFEDCBA987654321086545381AB594FC28786404C50A37…

we have:

MB0 = 0x0123456789ABCDEF
MB1 = 0xFEDCBA9876543210
MB2 = 0x86545381AB594FC2
MB3 = 0x8786404C50A37…

In binary this would be:

000000010010001101000101011001111000100110101011110011011110111111111110…

with MB0 = 0000000100100011010001010110011110001001101010111100110111101111
MB1 = 1111111011011100101110101001100001110110010101000011001000010000
MB2 = 1000011001010100010100111000000110101011010110010100111111000010
MB3 = 1000011110000110010000000100110001010000101000110111…

2.2.4. List of Symbols

= The assignment operator.

⊕ The bitwise exclusive-OR operation

|| The concatenation of the two operands.

KASUMI[x]k The output of the KASUMI algorithm applied to input value x
using the key k.

X[i] The i th bit of the variable X. (X = X[0] || X[1] || X[2] || …..).

Y i The i th block of the variable Y. (Y = Y0 || Y1 || Y2 || ….).

2.3. List of Var iables

A, B are 64-bit registers that are used within the f8 and f9 functions to hold
intermediate values.

BEARER a 5-bit input to the f8 function.

BLKCNT a 64-bit counter used in the f8 function.

BLOCKS an integer variable indicating the number of successive applications of
KASUMI that need to be performed, for both the f8 and f9 functions.

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 10 of 22
f8 and f9 Specification Version 1.0

CK a 128-bit confidentiality key.

COUNT a 32-bit time variant input to both the f8 and f9 functions.

DIRECTION a 1-bit input to both the f8 and f9 functions indicating the direction of
transmission (uplink or downlink).

FRESH a 32-bit random input to the f9 function.

IBS the input bit stream to the f8 function.

IK a 128-bit integrity key.

KM a 128-bit constant that is used to modify a key. This is used in both the f8
and f9 functions. (It takes a different value in each function).

KS[i] is the i th bit of keystream produced by the keystream generator.

KSBi is the i th block of keystream produced by the keystream generator. Each
block of keystream comprises 64 bits.

LENGTH is an input to the f8 and f9 functions. It specifies the number of bits in the
input bitstream (1-5114).

MAC-I is the 32-bit message authentication code (MAC) produced by the integrity
function f9.

MESSAGE is the input bitstream of LENGTH bits that is to be processed by the f9
function.

OBS the output bit streams from the f8 function.

PS is the input padded string processed by the f9 function.

REGISTER is a 64-bit value that is used within the f8 function.

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 11 of 22
f8 and f9 Specification Version 1.0

3. CONFIDENTIALITY ALGORITHM f8

3.1. Introduction

The confidentiality algorithm f8 is a stream cipher that encrypts/decrypts blocks of data
between 1 and 5114 bits in length.

3.2. Inputs and Outputs

The inputs to the algorithm are given in table 1, the output in table 2:

Parameter Size (bits) Comment

COUNT 32 Frame dependent input COUNT[0]…COUNT[31]

BEARER 5 Bearer identity BEARER[0]…BEARER[4]

DIRECTION 1 Direction of transmission DIRECTION[0]

CK 128 Confidentiality key CK[0]….CK[127]

LENGTH X181 The number of bits to be encrypted/decrypted
(1-5114)

IBS 1-5114 Input bit stream IBS[0]….IBS[LENGTH-1]

Table 1. f8 inputs

Parameter Size (bits) Comment

OBS 1-5114 Output bit stream OBS[0]….OBS[LENGTH-1]

Table 2. f8 output

3.3. Components and Architecture

(See fig 1 Annex A)

The keystream generator is based on the block cipher KASUMI that is specified in [4].
KASUMI is used in a form of output-feedback mode and generates the output keystream in
multiples of 64-bits.

The feedback data is modified by static data held in a 64-bit register A, and an (incrementing)
64-bit counter BLKCNT.

1 X18 is a parameter whose value is yet to be defined. In the sample C-code we treat LENGTH as a
32-bit integer.

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 12 of 22
f8 and f9 Specification Version 1.0

3.4. Initialisation

In this section we define how the keystream generator is initialised with the key
variables before the generation of keystream bits.

We set the 64-bit register A to COUNT || BEARER || DIRECTION || 0…0

(left justified with the right most 26 bits set to 0).

i.e. A = COUNT[0]…COUNT[31] BEARER[0]…BEARER[4] DIRECTION[0] 0…0

We set counter BLKCNT to zero.

We set the key modifier KM to 0x55555555555555555555555555555555

We set KSB0 to zero.

One operation of KASUMI is then applied to the register A, using a modified version of the
confidentiality key.

A = KASUMI[A]CK ⊕ KM

3.5. Keystream Generation

Once the keystream generator has been initialised in the manner defined in section 3.4, it is
ready to be used to generate keystream bits. The plaintext/ciphertext to be
encrypted/decrypted consists of LENGTH bits (1-5114) whilst the keystream generator
produces keystream bits in multiples of 64 bits. Between 0 and 63 of the least significant bits
are discarded from the last block depending on the total number of bits required by
LENGTH.

So let BLOCKS be equal to (LENGTH/64) rounded up to the nearest integer. (For instance,
if LENGTH = 128 then BLOCKS = 2; if LENGTH = 129 then BLOCKS = 3.)

To generate each keystream block (KSB) we perform the following operation:

For each integer n with 1
�

n � BLOCKS we define:

KSBn = KASUMI[A ⊕ BLKCNT ⊕ KSBn-1]CK

 where BLKCNT = n-1

The individual bits of the keystream are extracted from KSB1 to KSBBLOCKS in turn, most
significant bit first, by applying the operation:

For n = 1 to BLOCKS, and for each integer i with 0 ≤ i ≤ 63 we define:

KS[((n-1)*64)+i] = KSBn[i]

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 13 of 22
f8 and f9 Specification Version 1.0

3.6. Encryption/Decryption

Encryption/decryption operations are identical and are performed by the exclusive-OR of the
input data (IBS) with the generated keystream (KS).

For each integer i with 0 ≤ i ≤ LENGTH-1 we define:

OBS[i] = IBS[i] ⊕ KS[i]

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 14 of 22
f8 and f9 Specification Version 1.0

4. INTEGRITY ALGORITHM f9

4.1. Introduction

The integrity algorithm f9 computes a Message Authentication Code (MAC) on an input
message under an integrity key IK . The message may be between 1 and 5114 bits in length.

For ease of implementation the algorithm is based on the same block cipher (KASUMI) as is
used by the confidentiality algorithm f8.

4.2. Inputs and Outputs

The inputs to the algorithm are given in table 3, the output in table 4:

Parameter Size (bits) Comment

COUNT-I 32 Frame dependent input COUNT-I[0]…COUNT-I[31]

FRESH 32 Random number FRESH[0]…FRESH[31]

DIRECTION 1 Direction of transmission DIRECTION[0]

IK 128 Integrity key IK[0]…IK[127]

LENGTH X192 The number of bits to be ‘MAC’d

MESSAGE LENGTH Input bit stream

Table 3. f9 inputs

Parameter Size (bits) Comment

MAC-I 32 Message authentication code MAC-I[0]…MAC-I[31]

Table 4. f9 output

4.3. Components and Architecture

(See fig 2 Annex A)

The integrity function is based on the block cipher KASUMI that is specified in [4].
KASUMI is used in a chained mode to generate a 64-bit digest of the message input. Finally
the leftmost 32-bits of the digest are taken as the output value MAC-I .

2 X19 is a parameter whose value is yet to be defined. In the sample C-code we treat LENGTH as a
32-bit integer.

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 15 of 22
f8 and f9 Specification Version 1.0

4.4. Initialisation

In this section we define how the integrity function is initialised with the key variables before
the calculation commences.

We set the working variables: A = 0
and B = 0

We set the key modifier KM to 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

We concatenate COUNT, FRESH, MESSAGE and DIRECTION. We then append a single
‘1’ bit, followed by between 0 and 63 ‘0’ bits so that the total length of the resulting string PS
(padded string) is an integral multiple of 64 bits, i.e.:

PS = COUNT[0]…COUNT[31] FRESH[0]…FRESH[31] MESSAGE[0]…
MESSAGE[LENGTH-1] DIRECTION[0] 1 0*

Where 0* indicates between 0 and 63 ‘0’ bits.

4.5. Calculation

We split the padded string PS into 64-bit blocks PSi where:

PS = PS0 || PS1 || PS2 || …. || PSBLOCKS-1

We perform the following operations for each integer n with 0 � n � BLOCKS-1:

A = KASUMI[A ⊕ PSn] IK

B = B ⊕ A

Finally we perform one more application of KASUMI using a modified form of the integrity
key IK .

B = KASUMI[B] IK ⊕ KM

The 32-bit MAC-I comprises the left-most 32 bits of the result.

MAC-I = lefthalf[B]

i.e. For each integer i with 0 ≤ i ≤ 31 we define:

MAC-I [i] = B[i].

Bits B[32]…B[63] are discarded.

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 16 of 22
f8 and f9 Specification Version 1.0

INFORMATIVE SECTION

This part of the document is purely informative and does not form part of the normative
specification of KASUMI.

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 17 of 22
f8 and f9 Specification Version 1.0

ANNEX 1
Figures of the f8 and f9 Algor ithms

COUNT || BEARER || DIRECTION || 0…0

A

CK

BLKCNT=0

KASUMICK KASUMICKKASUMICK

KS[0]…KS[63] KS[64]…KS[127] KS[128]…KS[191]

KASUMI

KASUMICK ⊕ KM

BLKCNT=1 BLKCNT=2 BLKCNT=BLOCKS-1

Figure 1: f8 Keystream Generator

Note: BLKCNT is specified as a 64-bit counter so there is no ambiguity in the expression
A ⊕ BLKCNT ⊕ KSBn-1 where all operands are of the same size. In a practical
implementation where the key stream generator is required to produce no more than
5114 bits (80 keystream blocks) only the least significant 7 bits of the counter need to
be realised.

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 18 of 22
f8 and f9 Specification Version 1.0

COUNT || FRESH || M E S S A G E || DIRECTION || 1 || 0 … 0

KASUMI KASUMI KASUMIIK IK IK IK KASUMI

KASUMIIK ⊕ KM

MAC-I (left 32-bits)

PS0 PS1 PS2 PSBLOCKS-1

Figure 2 f9 Integrity function

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 19 of 22
f8 and f9 Specification Version 1.0

ANNEX 2
Simulation Program L isting

Header file

/*---
 * Kasumi.h
 ---/

typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;

/*----- a 64-bit structure to help with endian issues -----*/

typedef union {
u32 b32[2];
u16 b16[4];
u8 b8[8];

} REGISTER64;

/*------------- prototypes --------------------------------*/

void KeySchedule(u8 *key);
void Kasumi(u8 *data);
u8 * f9(u8 *key,int count,int fresh, int dir,u8 *data,int length);
void f8(u8 *key,int count,int bearer,int dir,u8 *data,int length);

Function f8

/*---
 * F8 - Confidentiality Algorithm
 *---
 *
 * A sample implementation of f8, the 3GPP Confidentiality
 * algorithm.
 *
 * This has been coded for clarity, not necessarily for
 * efficiency.
 *
 * This will compile and run correctly on both Intel
 * (little endian) and Sparc (big endian) machines.
 *
 * Version 1.0 05 November 1999
 *
 ---/

#include "kasumi.h"
#include <stdio.h>

/*---
 * f8()
 * Given key, count, bearer, direction, data,
 * and bit length encrypt the bit stream
 ---/
void f8(u8 *key, int count, int bearer, int dir, u8 *data, int length)
{

REGISTER64 A; /* the modifier */
REGISTER64 temp; /* The working register */
int i, n;
u8 ModKey[16]; /* Modified key */
u16 blkcnt; /* The block counter */

/* Start by building our global modifier */

temp.b32[0] = temp.b32[1] = 0;
A.b32[0] = A.b32[1] = 0;

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 20 of 22
f8 and f9 Specification Version 1.0

/* initialise register in an endian correct manner*/

A.b8[0] = (u8) (count>>24);
A.b8[1] = (u8) (count>>16);
A.b8[2] = (u8) (count>>8);
A.b8[3] = (u8) (count);
A.b8[4] = (u8) (bearer<<3);
A.b8[4] |= (u8) (dir<<2);

/* Construct the modified key and then "kasumi" A */

for(n=0; n<16; ++n)
ModKey[n] = (u8)(key[n] ^ 0x55);

KeySchedule(ModKey);

Kasumi(A.b8); /* First encryption to create modifier */

/* Final initialisation steps */

blkcnt = 0;
KeySchedule(key);

/* Now run the block cipher */

while(length > 0)
{

/* First we calculate the next 64-bits of keystream */

/* XOR in A and BLKCNT to last value */

temp.b32[0] ^= A.b32[0];
temp.b32[1] ^= A.b32[1];
temp.b8[7] ^= blkcnt;

/* KASUMI it to produce the next block of keystream */

Kasumi(temp.b8);

/* Set <n> to the number of bytes of input data *
 * we have to modify. (=8 if length <= 64) */

if(length >= 64)
n = 8;

else
n = (length+7)/8;

/* XOR the keystream with the input data stream */

for(i=0; i<n; ++i)
*data++ ^= temp.b8[i];

length -= 64; /* done another 64 bits */
++blkcnt; /* increment BLKCNT */

}
}

/*---
 * e n d o f f 8 . c
 ---/

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 21 of 22
f8 and f9 Specification Version 1.0

Function f9

/*---
 * F9 - Integrity Algorithm
 *---
 *
 * A sample implementation of f9, the 3GPP Integrity
 * algorithm.
 *
 * This has been coded for clarity, not necessarily for
 * efficiency.
 *
 * This will compile and run correctly on both Intel
 * (little endian) and Sparc (big endian) machines.
 *
 * Version 1.0 05 November 1999
 *
 ---/

#include "kasumi.h"
#include <stdio.h>

/*---
 * f9()
 * Given key, count, fresh, direction, data,
 * and message length, calculate the hash value
 ---/
u8 *f9(u8 *key, int count, int fresh, int dir, u8 *data, int length)
{

REGISTER64 A; /* Holds the CBC chained data */
REGISTER64 B; /* Holds the XOR of all KASUMI outputs */
u8 FinalBit[8] = {0x80, 0x40, 0x20, 0x10, 8,4,2,1};
u8 ModKey[16];
static u8 mac_i[4]; /* static memory for the result */
int i, n;

/* Start by initialising the block cipher */

KeySchedule(key);

/* Next initialise the MAC chain. Make sure we *
 * have the data in the right byte order. *
 * <A> holds our chaining value... *
 * is the running XOR of all KASUMI o/ps */

for(n=0; n<4; ++n)
{

A.b8[n] = (u8)(count>>(24-(n*8)));
A.b8[n+4] = (u8)(fresh>>(24-(n*8)));

}
Kasumi(A.b8);
B.b32[0] = A.b32[0];
B.b32[1] = A.b32[1];

/* Now run the blocks until we reach the last block */

while(length >= 64)
{

for(n=0; n<8; ++n)
A.b8[n] ^= *data++;

Kasumi(A.b8);
length -= 64;
B.b32[0] ^= A.b32[0]; /* running XOR across */
B.b32[1] ^= A.b32[1]; /* the block outputs */

}

/* Process whole bytes in the last block */

n = 0;
while(length >=8)
{

A.b8[n++] ^= *data++;
length -= 8;

}

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 22 of 22
f8 and f9 Specification Version 1.0

/* Now add the direction bit to the input bit stream *
 * If length (which holds the # of data bits in the *
 * last byte) is non-zero we add it in, otherwise *
 * it has to start a new byte. */

if(length)
{

i = *data;
if(dir)

i |= FinalBit[length];
}
else

i = dir ? 0x80 : 0;

A.b8[n++] ^= (u8)i;

/* Now add in the final ’1’ bit. The problem here *
 * is if the message length happens to be n*64-1. *
 * If so we need to process this block and then *
 * create a new input block of 0x8000000000000000. */

if((length==7) && (n==8)) /* then we’ve filled the block */
{

Kasumi(A.b8);
B.b32[0] ^= A.b32[0]; /* running XOR accross */
B.b32[1] ^= A.b32[1]; /* the block outputs */

A.b8[0] ^= 0x80; /* toggle first bit */
i = 0x80;
n = 1;

}
else
{

if(length == 1) /* we finished off the last byte */
i = 0x80; /* so start a new one..... */

else if(length == 0) /* we added a new byte of "dir" */
{

A.b8[n-1] ^= 0x40;
i |= 0x40;

}
else
{

A.b8[n-1] ^= FinalBit[length+1];
i |= FinalBit[length+1];

}
}

Kasumi(A.b8);
B.b32[0] ^= A.b32[0]; /* running XOR across */
B.b32[1] ^= A.b32[1]; /* the block outputs */

/* Final step is to KASUMI what we have using the *
 * key XORd with 0xAAAA..... */

for(n=0; n<16; ++n)
ModKey[n] = (u8)*key++ ^ 0xAA;

KeySchedule(ModKey);
Kasumi(B.b8);

/* We return the left-most 32-bits of the result */

for(n=0; n<4; ++n)
mac_i[n] = B.b8[n];

return(mac_i);
}

/*---
 * e n d o f f 9 . c
 ---/

	TEXT: - Subject to a Restricted Usage Undertaking

