This document is only for use within 3GPP

ETSI/SAGE Version: 1.0
Specification Date: 23 December 1999

Specification of the 3GPP Confidentiality and
Integrity Algorithms

Document 1:f8 and f9 Specification

3GPP Confidentiality and Integrity Algorithms page 1 of 22
f8 and f9 Spedfication Version 1.0 - Subject to a Restricted Usage Undertaking

Thisdocument isonly for use within 3GPP

Blank Page

3GPP Confidentiaity and Integrity Algorithms page 2 of 22
f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

Thisdocument isonly for use within 3GPP

PREFACE

This specification has been prepared by the 3GPP Task Force, and gives a detailed
specification of the 3GPP confidentidity algorithm f8, and the 3GPP integrity algorithm 9.

This document is the first of four, which between them form the entire specification of the
3GPP Confidentiaity and Integrity Algorithms:

» Specification of the 3GPP Confidentiality and Integrity Algorithms.
Document 1: 8 and f9 Algorithm Specifications.

» Specification of the 3GPP Confidentiality and Integrity Algorithms.
Document 2: KASUMI Algorithm Specification.

» Specification of the 3GPP Confidentiality and Integrity Algorithms.
Document 3: Implementors’ Test Data.

» Specification of the 3GPP Confidentiality and Integrity Algorithms.
Document 4: Design Conformance Test Data.

The normative part of the specification of the f8 (confidentiality) and f9 (integrity) algorithms
isin the main body of this document. The annexes to this document are purely informative.
Annex 1 containsillustrations of functional elements of the algorithm, while Annex 2
contains an implementation program listing of the cryptographic agorithm specified in the
main body of this document, written in the programming language C.

The normative part of the specification of the block cipher (KASUMI) on which they are
based isin the main body of Document 2. The annexes of that document, and Documents 3
and 4 above, are purely informative.

3GPP Confidentiaity and Integrity Algorithms page 3 of 22
f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

Thisdocument isonly for use within 3GPP

Blank Page

3GPP Confidentiaity and Integrity Algorithms page 4 of 22
f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

Thisdocument isonly for use within 3GPP

TABLE OF CONTENTS
1. OUTLINE OF THE NORMATIVE PART ...ocoiiiiiteiircseisese s 8
2. INTRODUCTORY INFORMATIONciiiitiiirtiniriereeiesistesesie e see e se e sesse e seenesnas 8
P2 I [10 L8 o1 o o OSSPSR 8
P22 N[0 = o] o OSSPSR 8
2.3, List Of Variahl@s.......cceeeeiieee et 9
3. CONFIDENTIALITY ALGORITHM f8 ..ottt 11
T80 I g 11 0o 8 1 o o BSOSO P PSSR 11
3.2, 1NPULS GNG OULPULS ...ttt eee e e e ste e seeseeeneesseeeestesneeseesaeeneesaeeseensenns 11
3.3. Components and ArChiteCIUIe............ooeeoeiieere e e 11
A INITTAIISAIION ...ttt bbb e 12
3.5, KeyStream GENEFaliON.........ccceiuiieeriiitieiee e seese e eaeste e ste e eeesre e estesreenaesnesseensenns 12
3.6. ENCIyptiON/DECIYPLION.......eeeieie ettt ettt ee e seeseeeneesneeneeee e 13
4. INTEGRITY ALGORITHM ..ottt 14
g T 1 g (oo (0o (o o F SR P U PT PSS 14
4.2, INPULS BN OULPULS ...ttt e see e eseesteseeeeesnesseessesneeneeseeeneensens 14
4.3. Components and ArChITECLUNE..........coi et 14
N U= 1K= o] o ST PT P PPR 15
T O o1 = 1 o o RS UPRS 15
ANNEX 1 Figures of thef8 and f9 AIQOrithms...........oov i 17
ANNEX 2 Simulation Program LiStiNg.......ccccveceeriiirie e seeie s see e e 19
HEBAEY TIl@ ...ttt st 19
0010 o g 2 19
00701 o I P 21
3GPP Confidentiaity and Integrity Algorithms page 5 of 22

f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

Thisdocument isonly for use within 3GPP

REFERENCES

[1] 3rd Generation Partnership Project; Technical Specification Group Services and
System Aspects; 3G Security; Security Architecture (3G TS 33.102 version 3.2.0)

[2] 3rd Generation Partnership Project; Technical Specification Group Services and
System Aspects; 3G Security; Cryptographic Algorithm Requirements; (3G TS 33.105
version 3.1.0)

[3] Specification of the 3GPP Confidentidity and Integrity Algorithms;
Document 1: f8 and f9 specifications.

[4] Specification of the 3GPP Confidentidity and Integrity Algorithms;
Document 2: KASUMI Specification.

[5] Specification of the 3GPP Confidentidity and Integrity Algorithms;
Document 3: Implementors’ Test Data.

[6] Specification of the 3GPP Confidentidity and Integrity Algorithms;
Document 4: Design Conformance Test Data.

[7] Information technology — Security techniques — Message Authentication Codes
(MACs). ISO/IEC 9797-1:1999

3GPP Confidentiaity and Integrity Algorithms page 6 of 22
f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

Thisdocument isonly for use within 3GPP

NORMATIVE SECTION

This part of the document contains the normative specification of the Confidentiality and
Integrity algorithms.

3GPP Confidentiaity and Integrity Algorithms page 7 of 22
f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

2.1

2.2.

2.2.1.

222.

Thisdocument isonly for use within 3GPP

OUTLINE OF THE NORMATIVE PART

Section 2 introduces the algorithms and describes the notation used in the subsequent
sections.

Section 3 specifies the confidentiaity algorithm f8.

Section 4 specifies the integrity algorithm f9.

INTRODUCTORY INFORMATION

Introduction

Within the security architecture of the 3GPP system there are two standardised algorithms: A
confidentiality algorithm 8, and an integrity algorithm f9. These algorithms are fully
specified here. Each of these algorithmsis based on the KASUM | agorithm that is specified
in a companion document[4]. KASUM1 is ablock cipher that produces a 64-bit output from a
64-bit input under the control of a 128-hit key.

The confidentiality algorithm f8 is a stream cipher that is used to encrypt/decrypt blocks of
dataunder a confidentiality key CK. The block of data may be between 1 and 5114 bits long.
The algorithm uses KASUM | in aform of output-feedback mode as a keystream generator.

The integrity algorithm f9 computes a 32-bit MAC (Message Authentication Code) of a given

input message using an integrity key |K. The approach adopted uses KASUMI in aform of
CBC-MAC mode.

Notation

Radix

We use the prefix Ox to indicate hexadecimal numbers.
Conventions

We use the assignment operator ‘=’, as used in several programming languages.
When we write
<variable> = <expression>

we mean that <variable> assumes the value that <expression> had before the
assignment took place. For instance,

X=X+y+3
means
(new value of x) becomes (old value of x) + (old value of y) + 3.
3GPP Confidentiaity and Integrity Algorithms page 8 of 22

f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

2.2.3.

224.

2.3.

Thisdocument isonly for use within 3GPP

Bit/Byte ordering

All data variables in this specification are presented with the most significant bit (or byte) on
the left hand side and the least significant bit (or byte) on the right hand side. Wherea
variable is broken down into anumber of sub-strings, the left most (most significant) sub-
string is numbered O, the next most significant is numbered 1 and so on through to the least
significant.

For example an n-bit MESSAGE is subdivided into 64-bit substrings MB,,MB;...MB; so if
we have a message:

0x0123456789ABCDEFFEDCBA 987654321086545381A B594FC28786404C50A37...
we have:

M B, = 0x0123456789ABCDEF
MB; = OXFEDCBA9876543210
M B, = 0x86545381AB594FC2
M B3 = 0x8786404C50A37...

In binary this would be:

000000010010001101000101011001111000100110101011110011011110111111111110...

with M B, = 0000000100100011010001010110011110001001101010111100110111101111
MB; =1111111011011100101110101001100001110110010101000011001000010000
M B, = 1000011001010100010100111000000110101011010110010100111111000010
M B3 = 1000011110000110010000000100110001010000101000110111...

List of Symbols

= The assignment operator.

O The bitwise exclusive-OR operation

II The concatenation of the two operands.

KASUMI[X]x Theoutput of the KASUM I agorithm applied to input value x

using the key k.
X[i] Thei™ bit of the variable X. (X = X[0] || X[1] || X[2] || -....).
Y Thei™block of thevariableY. (Y = Yol Y1 || Y2]).

List of Variables

A, B are 64-bit registers that are used within the f8 and f9 functions to hold
intermediate val ues.

BEARER a5-bit input to the f8 function.

BLKCNT a64-hit counter used in the f8 function.

BLOCKS an integer variable indicating the number of successive applications of
KASUMI that need to be performed, for both the f8 and f9 functions.

3GPP Confidentiaity and Integrity Algorithms page 9 of 22
f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

Thisdocument isonly for use within 3GPP

CK
COUNT

DIRECTION

FRESH
IBS

IK

KM

KSIi]
KSB,

LENGTH

MAC-I

MESSAGE

OBS
PS
REGISTER

a 128-hit confidentiality key.
a 32-bit time variant input to both the f8 and f9 functions.

a 1-bit input to both the f8 and f9 functions indicating the direction of
transmission (uplink or downlink).

a 32-bit random input to the f9 function.
the input bit stream to the f8 function.
a 128-bit integrity key.

a 128-hit constant that is used to modify akey. Thisisused in both the f8
and f9 functions. (It takes a different valuein each function).

isthei™ bit of keystream produced by the keystream generator.

isthei™ block of keystream produced by the keystream generator. Each
block of keystream comprises 64 hits.

isan input to the f8 and f9 functions. It specifies the number of bitsin the
input bitstream (1-5114).

is the 32-bit message authentication code (MAC) produced by the integrity
function f9.

istheinput bitstream of LENGTH bits that isto be processed by the f9
function.

the output bit streams from the f8 function.
isthe input padded string processed by the f9 function.
isa64-bit value that is used within the f8 function.

3GPP Confidentiaity and Integrity Algorithms

f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

page 10 of 22

3.1

3.2.

3.3.

Thisdocument isonly for use within 3GPP

CONFIDENTIALITY ALGORITHM {8

Introduction

The confidentiality algorithm f8 is a stream cipher that encrypts/decrypts blocks of data
between 1 and 5114 bitsin length.

Inputs and Outputs

The inputs to the algorithm are given in table 1, the output in table 2:

Parameter Size (bits) | Comment

COUNT 32 | Frame dependent input COUNTI[0]...COUNT[31]

BEARER 5 | Bearer identity BEARER[0]...BEARER[4]

DIRECTION 1 | Direction of transmission DIRECTION[OQ]

CK 128 | Confidentidity key CK]0]....CK[127]

LENGTH X18" | The number of bits to be encrypted/decrypted
(1-5114)

IBS 1-5114 | Input bit stream IBS[0]....IBS[LENGTH-1]

Table 1. f8 inputs
Parameter Size (bits) | Comment
OBS 1-5114 | Output bit stream OBS[0]....OBS[LENGTH-1]

Table 2. {8 output

Components and Ar chitecture
(Seefigl Annex A)

The keystream generator is based on the block cipher KASUMI that is specifiedin [4].
KASUMI isused in aform of output-feedback mode and generates the output keystream in
multiples of 64-bits.

The feedback datais modified by static data held in a 64-bit register A, and an (incrementing)
64-bit counter BLKCNT.

1 X18 is aparameter whose valueis yet to be defined. In the sample C-code we treat LENGTH asa
32-bit integer.

3GPP Confidentiaity and Integrity Algorithms page 11 of 22
f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

3.4.

3.5.

Thisdocument isonly for use within 3GPP

Initialisation

In this section we define how the keystream generator is initialised with the key
variables before the generation of keystream bits.

We set the 64-bit register A to COUNT || BEARER || DIRECTION || 0...0

(left justified with the right most 26 bits set to 0).

i.e. A= COUNTI[0]...COUNT[31] BEARER[(]...BEARER[4] DIRECTION[0] 0...0
We set counter BLKCNT to zero.

We set the key modifier KM to 0x55555555555555555555555555555555

We set KSB, to zero.

One operation of KASUM | isthen applied to the register A, using a modified version of the
confidentiality key.

AzKASUMI[A]CKDKM

Keystream Generation

Once the keystream generator has been initialised in the manner defined in section 3.4, it is
ready to be used to generate keystream bits. The plaintext/ciphertext to be
encrypted/decrypted consists of LENGTH bits (1-5114) whilst the keystream generator
produces keystream bits in multiples of 64 bits. Between 0 and 63 of the |east significant bits
are discarded from the last block depending on the total number of bits required by
LENGTH.

So let BLOCK S be equal to (LENGTH/64) rounded up to the nearest integer. (For instance,
if LENGTH =128then BLOCKS=2; if LENGTH =129 then BLOCK S = 3.)

To generate each keystream block (K SB) we perform the following operation:
For each integer n with 1 < n < BLOCK S we define:
KSB,=KASUMI[A O BLKCNT O KSBy.1]ck
where BLKCNT =n-1

Theindividual bits of the keystream are extracted from K SB; to K SBg__ocks in turn, most
significant bit first, by applying the operation:

For n=1to BLOCKS, and for each integer i with 0 <i < 63 we define:

K S[((n-1)*64)+i] = K SB.[i]

3GPP Confidentiaity and Integrity Algorithms page 12 of 22
f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

Thisdocument isonly for use within 3GPP

3.6. Encryption/Decryption

Encryption/decryption operations are identical and are performed by the exclusive-OR of the
input data (IBS) with the generated keystream (K S).

For each integeri withO<i < LENGTH-1 we define:

OBSi] = I1BS[i] O K]

3GPP Confidentiaity and Integrity Algorithms page 13 of 22
f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

4.1.

4.2.

4.3.

Thisdocument isonly for use within 3GPP

INTEGRITY ALGORITHM f9

Introduction

The integrity algorithm f9 computes a M essage A uthentication Code (MAC) on an input
message under an integrity key | K. The message may be between 1 and 5114 bitsin length.

For ease of implementation the algorithm is based on the same block cipher (KASUMI) asis

used by the confidentiality algorithm 8.

Inputs and Outputs

The inputs to the algorithm are given in table 3, the output in table 4:

Parameter Size (bits) | Comment
COUNT-I 32 | Frame dependent input COUNT-I[0]...COUNT-I[31]
FRESH 32 | Random number FRESHI[O]...FRESH[31]
DIRECTION 1 | Direction of transmission DIRECTION[Q]
IK 128 | Integrity key 1K[0]...IK[127]
LENGTH X19? | The number of bitsto be‘MAC'd
MESSAGE LENGTH | Input bit stream
Table 3. f9 inputs
Parameter Size (bits) | Comment
MAC-I 32 | Message authentication code MAC-1[0]...MAC-I[31]

Table 4. f9 output

Components and Architecture

(Seefig2 Annex A)

The integrity function is based on the block cipher KASUM | that is specified in [4].

KASUMI isused in achained mode to generate a 64-bit digest of the message input. Finally

the leftmost 32-bits of the digest are taken as the output value MAC-I.

2 X19 is a parameter whose valueis yet to be defined. In the sample C-code we treat LENGTH asa

32-bit integer.

3GPP Confidentiaity and Integrity Algorithms
f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

page 14 of 22

4.4,

4.5.

Thisdocument isonly for use within 3GPP

Initialisation

In this section we define how the integrity function isinitialised with the key variables before
the calculation commences.

0
0

We set the working variables: A
and B

We set the key modifier KM to OXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
We concatenate COUNT, FRESH, MESSAGE and DIRECTION. We then append asingle
‘1’ bit, followed by between 0 and 63 ‘0’ bits so that the total length of the resulting string PS
(padded string) is an integral multiple of 64 bits, i.e.:

PS= COUNT[0]...COUNT[31] FRESH[0]...FRESH[31] MESSAGE[O]...
MESSAGE[LENGTH-1] DIRECTION[0] 1 O

Where 0 indicates between 0 and 63 ‘0’ bits.

Calculation
We split the padded string PS into 64-bit blocks PS where:
PS=PS || PS.||PS|| || PSsLocks1
We perform the following operations for each integer n with0 <n <BLOCKS-1:

A =KASUMI[A OPS, ik
B=BOA

Finally we perform one more application of KASUMI using a modified form of the integrity
key IK.

B =KASUMI[B Jik okm
The 32-bit MAC-I comprises the left-most 32 bits of the result.
MAC-I = lefthalf[B]
i.e. For each integer i with 0<i < 31 wedefine:
MAC-I[i] = B[i].

Bits B[32]...B[63] are discarded.

3GPP Confidentiaity and Integrity Algorithms page 15 of 22

f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

Thisdocument isonly for use within 3GPP

INFORMATIVE SECTION

This part of the document is purely informative and does not form part of the normative
specification of KASUMI.

3GPP Confidentiaity and Integrity Algorithms page 16 of 22
f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

Thisdocument isonly for use within 3GPP

ANNEX 1
Figuresof thef8 and f9 Algorithms

COUNT || BEARER || DIRECTION || 0...0

v

CKOKM —p KASUMI

v

A
BLKCNT=0 g BLKCNT=1 BLKCNT=2 BLKCNT=BLOCKS-1

i

v i
i
[}

CK —p{ KASUMI CK —p{ KASUMI CK —p{ KASUMI ! CK —pl KASUMI

|
: i

v v v

KS[0]...KS[63] KS[64]...KS[127] KS[128]...KS[191]

Figure 1: f8 Keystream Generator

Note: BLKCNT is specified as a 64-bit counter so there is no ambiguity in the expression
A 0O BLKCNT O KSB,,.; where all operands are of the same size. In apractica
implementation where the key stream generator is required to produce no more than
5114 bits (80 keystream blocks) only the least significant 7 bits of the counter need to
be realised.

3GPP Confidentiaity and Integrity Algorithms page 17 of 22
f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

Thisdocument isonly for use within 3GPP

COUNT|FRESH || MESSAGE | DIRECTION || 1|0 ... 0
v v voov v
PSO PSl PSZ l:)SBLOCKSl
IK P KASUMI IK P KASUMI IK P KASUMI | 1K P KASUMI
\ 9.4 Q. S

IK OKM P KASUMI

v

MAC-I (Ieft 32-bits)

Figure 2 f9 Integrity function

3GPP Confidentiaity and Integrity Algorithms
f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

page 18 of 22

Thisdocument isonly for use within 3GPP

ANNEX 2
Simulation Program Listing

Header file
% o eeeaeaaa-s
* Kasumi . h
K o o o o o e m e e e = */
typedef unsigned char usg;
typedef unsigned short ulé6;
t ypedef unsigned int u32;
[*----- a 64-bit structure to help with endian issues ----- */
typedef wunion {

u32 b32[2];

ulé bi6[4];

u8 b8[8];
} REG STER64;
A LR prototypes -------------------"-"-"-"-"--------- */
voi d KeySchedul e(u8 *key);
voi d Kasumi (u8 *data);
u8 * f9(u8 *key,int count,int fresh, int dir,u8 *data,int length);
void f8(u8 *key,int count,int bearer,int dir,u8 *data,int length);
Function f8
| % eeeeaeaaa-s
* F8 - Confidentiality Al gorithm
K o o o o o e m =
*
* A sanple inplementation of f8, the 3GPP Confidentiality
* algorithm
*
* This has been coded for clarity, not necessarily for
* efficiency.
*
* This will conpile and run correctly on both Intel
* (little endian) and Sparc (bi g endian) machi nes.
*
* Version 1.0 05 Novemnber 1999
*
K o o o e m e m e m e e e e . m— - */
#i ncl ude "kasum . h"
#i ncl ude <stdio. h>
K o o o o e =
* £8()
* G ven key, count, bearer, direction, data,
* and bit length encrypt the bit stream
K o o o o o e m = *
void f8(u8 *key, int count, int bearer, int dir, u8 *data, int length)

REG STER64 A; /* the nodifier */

REGQ STER64 t enp; /* The working register */

int i, n;

u8 ModKey[16]; /* Modified key */

ul6é bl kent; /* The bl ock counter */

[* Start by building our global nodifier */

tenmp. b32[0] = tenp.b32[1] = O;

A. b32[0] = A b32[1] = 0;
3GPP Confidentiaity and Integrity Algorithms page 19 of 22

f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

Thisdocument isonly for use within 3GPP

/* initialise register in an endian correct manner*/

A . b8[0] = (u8) (count>>24);
A b8[1] = (u8) (count>>16);
A b8[2] = (u8) (count>>8);
A.b8[3] = (u8) (count);

A b8[4] = (u8) (bearer<<3);
A b8[4] |= (u8) (dir<<2);

/* Construct the nodified key and then "kasum " A */
for(n=0; n<16; ++n)
ModKey[n] = (u8) (key[n] ~ 0x55);
KeySchedul e(MbdKey);
Kasum (A.b8); /* First encryption to create nodifier */
/* Final initialisation steps */

bl kent = 0;
KeySchedul e(key);

/* Now run the block cipher */
while(length > 0)
/* First we calculate the next 64-bits of keystream */
/* XOR in A and BLKCNT to |ast value */
tenp. b32[0] ~= A b32[0];
tenp. b32[1] ~= A b32[1];
tenp. b8[7] "= blkent;
/* KASUM it to produce the next block of keystream */
Kasum (tenp. b8);

/* Set <n> to the nunber of bytes of input data *
* we have to modify. (=8 if length <= 64) */

if(length >= 64)
n=28;
el se

n = (length+7)/8;

/* XOR the keystreamwith the input data stream*/
for(i=0; i<n; ++i)

*data++ "= tenp.b8[i];
| ength -= 64; /* done another 64 bits */

} ++bl kent ; /* increment BLKCNT * [
}
| o e aa
* end o f f 8. c ,
3GPP Confidentiaity and Integrity Algorithms page 20 of 22

f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

Thisdocument isonly for use within 3GPP

Function f9

| o e
* F9 - Integrity Algorithm

K o e o e m e m e m e e e m— -
*

* A sanple inplenmentation of f9, the 3GPP Integrity

* algorithm

*

* This has been coded for clarity, not necessarily for

* efficiency.

*

* This will conpile and run correctly on both Intel

* (little endian) and Sparc (bi g endian) nachi nes.

*

* Version 1.0 05 Novenber 1999

*

*

#i
#i

us
{

ncl ude "kasum . h"
ncl ude <stdio. h>

G ven key, count, fresh, direction, data,
and nessage | ength, cal cul ate the hash val ue

*f9(u8 *key, int count, int fresh, int dir, u8 *data, int

REG STER64 A; /* Holds the CBC chai ned data

REG STER64 B; /* Holds the XOR of all KASUM outputs
u8 FinalBit[8] = {0x80, 0x40, 0x20, 0x10, 8,4,2,1};

u8 ModKey[16];

static u8 mac_i[4]; [/* static nenory for the result */
int i, n;

/[* Start by initialising the block cipher */
KeySchedul e(key);

/* Next initialise the MAC chain. Make sure we *
* have the data in the right byte order. *
* <A> hol ds our chaining val ue... *
* is the running XOR of all KASUM o/ ps */

for(n=0; n<4; ++n)

A. b8[n]
A. b8[n+4]

(u8) (count >>(24- (n*8)));
(u8) (fresh>>(24-(n*8))):

Kasum (A. b8);
B. b32[0] A. b32[0];
B. b32[1] A b32[1];

/* Now run the blocks until we reach the | ast bl ock */
while(length >= 64)
{

for(n=0; n<8; ++n)

A b8[n] A= *data++;
Kasum (A. b8);

| ength -= 64;
B. b32[0] ~= A b32[0]; /* running XOR across */
B. b32[1] "= A b32[1] /* the block outputs */

}

/* Process whole bytes in the last block */

n = 0;
while(length >=8)

A b8[n++] ~= *dat a++;
| ength -= 8;

| ength)

*/
*/

3GPP Confidentiaity and Integrity Algorithms
f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

page 21 of 22

Thisdocument isonly for use within 3GPP

/* Now add the direction bit to the input bit stream *
* |f length (which holds the # of data bits in the *
* |ast byte) is non-zero we add it in, otherw se *
* it has to start a new byte. */
if(length)
{

i = *data;

if(dir)

i |= FinalBit[length];

el se

i =dir ? 0x80 : O;
A b8[n++] ~= (u8)i;
/* Now add in the final "1 bit. The problem here

* is if the nessage | ength happens to be n*64-1. *
* |If so we need to process this block and then *
* create a new i nput bl ock of 0x8000000000000000. */

if((length==7) & & (n==8)) /* then we've filled the block */
{

Kasumi (A b8);
.b32[0] ~= A.b32[0];

B /* running XOR accross */
B. b32[1] ~= A b32[1]; /* the block outputs */

A. b8[0] "~= 0x80; /* toggle first bit */

i = 0x80;

n =1,

el se
i f(Iength = 1) /* we finished off the |ast byte*/
i = 0x80; /* so start a new one.....
else if(Iength == 0) /* we added a new byte of "dir" */

A b8[n-1] ~= 0x40;

i | = 0x40;
}
el se
{
A . b8[n-1] ~= FinalBit[length+1];
i |=F |nal Bit[| ength+1];
}
}
Kasum (A. b8);
B. b32[0] ~= A b32[0]; /* running XOR across */
B. b32[1] ~= A b32[1]; /* the bl ock outputs */

/* Final step is to KASUM what we have using the *
* key XORd with OXAAAA */

for(n=0; n<l1l6; ++n)
ModKey[n] = (u8)*key++ ™ OxAA
KeySchedul e(MbdKey);
Kasum (B. b8);
/* We return the left-nost 32-bits of the result */

for(n=0; n<4; ++n)
mac_i[n] = B.b8[n];

return(mac_i);

3GPP Confidentiaity and Integrity Algorithms
f8 and f9 Specification Version 1.0 - Subject to a Restricted Usage Undertaking

page 22 of 22

	TEXT: - Subject to a Restricted Usage Undertaking

