
REFERENCE MANUAL

NeTraMet & NeMaC

Network Traffic Meter & NeTraMet Manager/Collector

Version 4.3

Nevil Brownlee

Information Technology Systems & Services
The University of Auckland

Auckland, New Zealand

June 1999

PREFACE

It is a pleasure to write this preface to Nevil Brownlee's introductory
documentation for NeTraMet and NeMaC. The system, which collects
accounting data for network traffic, has already proved to be a gold-
mine (in the figurative sense), providing information about network
traffic flows and activity patterns which are invaluable in reaching a
better understanding of network usage.

Dr John C. B. White
Director, Computer Centre
University of Auckland
October 199

CONTENTS

1.1. Operating Environments 1
1.2. Traffic Flows 1
1.3. The Traffic Flow Meter MIB 2

2.1. Program Development Environment 2
2.2. Data Structures: Flow and Rule Tables 3
2.3. Meter Memory Management 3
2.4. Optimising the Rule Table 4
2.5. The Meter's Outer Block 4
2.6. Matching the Rules 4
2.7. SNMP: Getting and Setting Variables 5
2.8. Supporting Multiple Meter Readers 5
2.9. Recovering Bulk Flow Data 5

3.1 Introduction 6
3.2. Adjacent attributes 6
3.3. IP attributes 6
3.4. DECnet attributes 7
3.5. Novell IPX attributes 8
3.6. EtherTalk attributes 8
3.7. CLNS attributes 9
3.8. 'Other' attributes 9
3.9. General attributes 10

4.1. Information Records 11
4.2. Sample Flow Data File 11
4.3. Flow Data Features 13

5.1. Introduction 13
5.2. Rule file Syntax 13

5.2.1.RuleSet Statement 14
5.2.2.Rules Section 14
5.2.3.Format Statement 16
5.2.4.Statistics Statement 16
5.2.5.Include Statement 17

CONTENTS ii

1. Introduction 1

2. Implementation Details 2

3. Flow Attributes 6

4. Flow Data Files 10

5. Writing Rule Files 13

5.3. Rule Files 17
5.3.1.rules.default 17
5.3.2.rules.sample 18
5.3.3.rules.gateway 19
5.3.4.rules.broadcast 20
5.3.5.rules.ipport 21
5.3.6.rules.manage 22
5.3.7.rules.lan 26

6.1. Overview of NeMaC 27
6.2. Command Line Options 27
6.3. Configuration File Format 30
6.4. Restarting Flow Data Files 31

7.1. Command Line Options 31
7.2. PC Screen Display 32
7.3. Keyboard Commands 33
7.4. PC Statistics Display 33
7.5. PC Flow Table Information Display 34
7.6. Configuring Waterloo TCP for NeTraMet 34
7.7. Sample AUTOEXEC.BAT file 35
7.8. Differences between PC and Unix versions of NeTraMet 35

8.1. Copyright Statement 36
8.2. Distribution Files 36

Nevil Brownlee is the Director, Technology Development, of The University of Auckland's
Information Technology Systems & Services group, and is responsible for support and
development of the University's campus network, which has about 6,000 connected hosts.
He co-ordinates Kawaihiko, the New Zealand Universities' network, and is active within the
IETF, especially on the Realtime Traffic Flow Measurement (RTFM) Working Group. He
holds a Ph.D. degree in Atmospheric Physics.

6. NeMaC Users' Guide 27

7. NeTraMet Users' Guide 31

8. NeTraMet Distribution 36

9. Installation 36

10. NeTraMet's Future 38

11. Acknowledgments 39

12. References 39

29/06/99 -- 1 -- NeTraMet Manual

1. Introduction
NeTraMet is a meter for network traffic flows (see below for definitions), and is the first
implementation of the Realtime Traffic Flow Measurement (RTFM) Working Group's
Measurement Architecture. This is outlined in RFC 1272, "Internet Accounting
Background," and has three components:

• meters, i.e. small hosts which are attached to a network segment and
measure traffic flowing on that segment;

• meter readers, which retrieve information from meters;

• managers, which instruct meters as to which flows they should measure and
meter readers as to which meters they should collect from, at what intervals.

A meter reader can collect flow data from many meters, and each meter may have its data
retrieved by several meter readers. Traffic flows of interest are defined by user-specified
sets of rules.

1.1. Operating Environments

This release of NeTraMet runs on a Solaris, SunOS, Irix or Linux host, using libpcap to
observe Ethernet packet headers, or on a PC using a CRYNWYR packet driver. The PC
implementation can be used with a 25 MHz 386SX, where it will handle about 1250
packets per second, and can cope with peak traffic bursts of up to 2250 packets per
second for several seconds at a time. On a 40 MHz 486 NeTraMet will handle 3000 pps
peaks. On a 60 MHz Pentium with a PCI-bus card NeTraMet can easily handle a steady
load of 6,000 packets per second.

This release also includes NeMaC (NeTraMet Manager/Collector), a combined manager
and collector program. It runs on Unix systems, and is in use on Solaris, SunOS, Irix,
Linux, DEC Unix, AIX and HPUX systems.

GNU autoconfig is used to build Makefiles for all the NeTraMet programs, which makes it
very straightforward to create and install the NeTraMet programs on a Unix system.

1.2. Traffic Flows

A traffic flow is a stream of packets exchanged between two network hosts, which we refer
to as the flow's source and destination. Flows are bi-directional in that packets and bytes
can be counted in the 'to' (source to destination) and 'from' (destination to source)
directions.

The 'identity' of a flow is determined by the address attributes of its two hosts, and these
attributes can be of three kinds:

adjacent (link layer)
peer (network layer)
transport (transport layer)

When NeTraMet is being used to meter on an Ethernet, adjacent addresses will be
Ethernet addresses.

A peer address can be an IP address, a DECnet phase IV address, a Novell network
number, an EtherTalk address or a CLNS NSAP, these being the five protocols currently
understood by NeTraMet.

29/06/99 -- 2 -- NeTraMet Manual

A transport address contains specifications for details within the peer protocol. For IP
these are the protocol type and source and destination port numbers, and similar kinds of
detail are defined for the other protocols.

Within the meter a flow is implemented as a data structure containing the attributes of its
source and destination, its packet and byte counters, the times it was first and last
observed, and other information used for control purposes.

The meter could simply create flows for every possible combination of source and
destination attributes it observes, but this would quickly exhaust its memory. Instead the
meter uses a set of rules to decide which flows are of interest, and other packets are
ignored.

Each rule tests one attribute of a flow, using a mask to specify which bits are of interest.
In this way a tree of rules can be built up to classify packets into flows; each packet can
then be 'counted' in its appropriate flow. If this is all that the rules specify, no further
information about the flow is retained in the meter.

If more detail is required, the rules can instruct the meter to 'tally' the packet, i.e, create
many sub-flows instead of a single flow. For example they might determine that a packet
has come from a class B IP source, then tally it into flows for each of the source network's
class C subnets. Tallying in this style is implemented by using rules to extract information
from the packet using wider masks than those which were used in earlier rules - examples
of rules files which do this are given below.

NeTraMet can also count packets and bytes for protocols it does not understand. All such
packets are effectively aggregated together in a single flow, which has the peer type
Other.

1.3. The Traffic Flow Meter MIB

The Internet Accounting Group produced an Internet Draft describing its proposed
Accounting Meter Services MIB, which used the number Experimental.99. This MIB, now
known as the RTFM Traffic Meter MIB, has been assigned a proper Object Identifier by
IANA; it is mib-2 40.

The draft was discussed over several IETF meetings until the Working Group became
dormant in March 1993, and informally at meetings and via the Group's mailing list since
then. A copy of the current version – which NeTraMet implements – is included with this
release. It defines all of the MIB variables mentioned in this documentation.

The Realtime Traffic Flow Measurement Working Group has produced RFC 2064, 'Traffic
Flow Measurement: Meter MIB,' which has since been updated in further Internet Drafts.
This improved version of the Traffic Flow Meter MIB is implemented in version 4.1 of
NeTraMet.

2. Implementation Details

2.1. Program Development Environment

NeTraMet was developed on a PC using Borland's Turbo C, Turbo Assembler and
interactive development environment. Turbo Make was used to organise the system, with
Make files specifying how the various system components are created.

Waterloo C provided a good PC implementation of TCP/IP, and was used to provide UDP
transport for SNMP packets. Waterloo C interfaces with Ethernet via a CRYNWR packet
driver. I extended the packet interface to support monitoring by running the Ethernet card
in promiscuous mode and copying packet headers into a rotating buffer.

29/06/99 -- 3 -- NeTraMet Manual

An early version of CMU SNMP was used for communication between NeTraMet and
NeMaC. This was ported to the PC, and extended to support SET operations on
character and (16-bit) integer variables.

From late 1995 I began work on using SNMPv2C instead of SNMP, which involved taking
CMU SNMPv2 and removing the 'SNMP Security' extensions from it so as to leave only
community-based security.

At about the same time I was able to port NeTraMet to run within OC3MON, an ATM traffic
monitor system developed by NLANR and MCI. This involved moving to Borland C++
version 4.5 and Borland's DOS PowerPack 32-bit environment. As well as the OC3MON
version of NeTraMet, this has allowed me to produce a 32-bit DOS version of the meter.

2.2. Data Structures: Flow and Rule Tables

Host addresses (adjacent, peer and transport) and their masks are held in a structure
called a key. A flow is a larger structure which contains two keys, one each for source and
destination host. General attributes are stored as variables within a flow, and there is a
link field to enable flows to be linked together. Space for flows is allocated dynamically
from a pool of flows. The flow table is implemented as an array of pointers to flows; a
FlowIndex is an index into this array.

Rules are implemented in a smaller structure. Space for the rule table is allocated as a
single block of memory.

The first time a flow is observed a count action is executed. The meter allocates space for
the flow, assigns it a FlowIndex, and enters it in a count table, which is implemented as a
single large hash table. The meter maintains a table of pointers to the count table; these
are the primary means of accessing flow data.

2.3. Meter Memory Management

Once a flow has been created it could continue to exist indefinitely. In time, however, the
meter will run out of space for new flows. To deal with this problem NeTraMet uses an
incremental garbage collector.

At regular intervals specified by the GarbageCollectInterval variable the garbage collector
procedure is invoked. This searches through the flow table looking for flows which might
be recovered. To control the resources consumed by garbage collection there are limits
on the number of in-use and idle flows which the garbage collector may inspect – these
are the parameters described in the 'PC Statistics display' section below.

To decide whether a flow can be recovered, the garbage collector considers how long it
has been inactive (no packets in either direction), and when its data was last collected. If
it has been collected at least once since its LastTime, it may be recovered. This alogrithm
is implemented using a variable called GarbageCollectTime, which normally contains the
meter's UpTime when the collection before last was started.

Should flows not be collected often enough the meter could run out of space. This is
prevented by having a low-priority background process check the percentage of flows
active and compare it with the HighWaterMark variable. If the percentage of active flows
is greater than the high-water mark, GarbageCollectTime is incremented by the current
value of the InactivityTimeout variable. The effect of this is that if a collector fails
NeTraMet will continue to create flows until HighWaterMark is exceeded, then recover the
oldest flows to maintain sufficient free memory.

The MIB specifies that a meter should switch to using an 'standby' rule table if the
percentage of flows active rises above HighWaterMark. The MIB also specifies that the
meter should take some action when the active flow percentage rises above FloodMark;

29/06/99 -- 4 -- NeTraMet Manual

NeTraMet switches to the default rule set in this case. The values of the memory
management variables mentioned above can all be set by NeMaC – it should be possible
to tune them to work effectively in nearly all cases.

2.4. Optimising the Rule Table

Rules are commonly tested in sequence until a successful match selects a new index into
the rule table. Testing a packet against a long list of addresses is thus a sequential
search, which would be slow. To improve rule testing performance NeTraMet performs
flow analysis of a new rule table, looking for groups of rules which test the same attribute
using the same mask. Groups which have more than four rules are organised into small
hash tables – these can effectively be tested with a hash computation and a single
compare.

When a packet arrives at the meter its attributes are copied into the next available slot of
the meter's rotating input buffer, ready for later matching against the rules. If the packet's
peer type can never be matched by the rules, it is simply discarded (before its other
attributes are copied). To implement this the meter maintains a table indicating which peer
types are tested by the current rule set; this table can be displayed on the meter's screen
at any time. Similarly, if the current rule set doesn't require adjacent addresses they are
not copied into the input buffer.

2.5. The Meter's Outer Block

MeTraMet's outer block is a single loop which implements four asynchronous processes.
These are – in decreasing priority order –

• Handle SNMP requests. Process these and send SNMP responses.

• Monitor Ethernet packets (including NeTraMet SNMP requests and responses).
Test each against the active rule set(s) and count as required.

• Handle keyboard commands. Test the keyboard once each second, and
process any incoming keystrokes.

• Memory Management. Attempt to recover memory, as described above.
GarbageCollectInterval is set to 5 seconds by default, and HighWaterMark is
tested every 30 seconds.

2.6. Matching the Rules

When a packet arrives at the meter two key data structures are built, one for its source
and one for its destination. An attempt is made to match the packet against the current
rule set with the keys in source-to-destination order; if this succeeds the packet is counted.

If the match fails, the keys are interchanged and the packet is tested against the rules
again. If it fails this time it is discarded.

A third possibility is that the packet matched a count rule, but its flow was not yet present
in the count table. Since it might already have been seen travelling in the opposite
direction the match is retried with the keys interchanged. If this fails the flow is added into
the count table with its keys in source-to-destination order.

This algorithm means that you can use symmetrical counts (i.e. counts having identical
masks in both directions) if you don't care about flow direction. Alternatively you may write
rules which enforce a particular source-to-destination order. Examples of these are given
in the section on writing rule files below.

29/06/99 -- 5 -- NeTraMet Manual

2.7. SNMP: Getting and Setting Variables

The code for getting and setting SNMP variables was developed from CMU's snmpvars.c
file. I have modified this to use a binary search to find object identifiers as required,
replacing the original linear search.

Simple procedures for setting character, (16-bit) integer and (32-bit) long variables are
used when no special action is required. Special actions, e.g. updating
GarbageCollectTime when the LastCollectTime variable is set, are implemented as
individual procedures.

From version 4.1, 64-bit counters (64-bit unsigned) are used for packet and byte counters.
This allows for higher-speed network links, and (more commonly) allows the meter to run
for longer periods without counter roll-over.

2.8. Supporting Multiple Meter Readers

A rather unusual requirement for the accounting meter is the ability to support
asynchronous collection of flow data by many meters simultaneously. This is described in
the MIB by using rule set number and last-active time filter, as indexes to the flow table,
allowing it to inspect only those flows belonging to a specified rule set and created or
active since a specified time. This time is passed to the meter as one component of an
object identifier; you can view this as a parameter being passed to the GET procedure
which implements the creation or activity table.

Another aspect of having multiple collectors is that one of them may collect performance
statistics. One possibility would be to have one meter collecting flow data every 15
minutes, a second collecting flow data every hour, and a third collecting performance
statistics (but not flow data) every minute.

2.9. Recovering Bulk Flow Data

One vital element of an accounting meter is that it must be possible to retrieve flow data in
an efficient manner. SNMP can be inefficient for this purpose, since every value retrieved
is accompanied by its object identifier. To retrieve a long value (four bytes) can require a
further 12 or more bytes of object identifier!

NeTraMet versions 2 and 3 solved this problem by using SNMP opaque objects to pass
many values back to NeMaC as a single unit. The MIB defines an object called a Column
Blob to do this. A Column Blob is a three-dimensional SNMP object, the dimensions being
a 'column' number, a LastTime value and a FlowIndex. NeMaC views the flow table as a
matrix with a column for each flow attribute. It can retrieve values of a particular attribute
for all flows active since a specified time, starting at a given row of the flow table and
recalling column blobs in sequence down a column.

NeMaC 2 & 3 took this idea a little further. The user specifies which attributes are to be
collected using a Format statement in the rule file. NeMaC used the Format to decide
which columns are required, then retrieved column blobs for each attribute starting at the
first row of the flow table. The resulting collected flows were written to disk, then the
process was repeated starting at the row after the last collected row, and so on.

The maximum column blob size was chosen to fit into a 500-byte SNMP packet, which can
carry from 50 to 60 attribute values (together with their flow numbers). As an example, if
we wished to collect 10 attributes for 1000 flows, this required only 10 x 20 = 200 SNMP
packets. To minimise network loading, NeMaC pauses for a few milliseconds after each
SNMP request.

With version 4.1, the new RFC 2064 Meter MIB introduced the notion of a 'flow data
package.' This is a list of attribute values for a flow, retrieved from the meter via a single

29/06/99 -- 6 -- NeTraMet Manual

SNMP GET request. Using SNMPv2's GETBULK request, a series of packages can be
retrieved within a single (1500-byte) SNMP packet. This provides a data retrieval method
with about the same level of overhead as the older column blobs, except that using 1500-
byte packets rather than 500-byte ones reduces the number of packets needed. More
important, all the attribute values for a flow are retrieved at the same time, which was not
the case using column blobs. This provides a significant improvement for programs such
as nifty, which need consistent data for each flow.

3. Flow Attributes

3.1 Introduction

A flow's attributes may be conveniently arranged into five groups: adjacent address, peer
address, transport address, subscriber and general. Since NeTraMet can't determine
subscriber information merely by watching the packets passing by, subscriber attributes
are not currently implemented. A meter running in a network access server would,
however, be able to implement them.

Adjacent address attributes are described in the Adjacent Attributes section; they are the
same for all of the peer address types.

Peer and transport addresses, however, are different for each of the peer protocols. They
are therefore explained together in the sections on IP, DECnet, Novell IPX and EtherTalk.
The attributes which give a flow's peer and transport address type are SourcePeerType
and SourceTransType. SourcePeerType and DestPeerType are synonyms, as are
SourceTransType and DestTransType. If the meter were implemented on a gateway the
source- and dest- types could be different, but this is impossible on a single network
segment.

3.2. Adjacent attributes

NeTraMet's initial implementation only supports passive interfaces. This means that each
flow has the same adjacent type for its two directions, i.e. SourceAdjacentType and
DestAdjacentType have the same value.

The SourceAdjacentAddress and DestAdjacentAddress attributes are the Ethernet MAC
addresses of the source and destination hosts. These are written as six hexadecimal
bytes separated by hyphens, e.g. 00-00-C0-00-13-A5. They may be entered in this form,
or as six decimal bytes separated by dots.

SourceAdjacentMask and DestAdjacentMask may be used in rules to test fields within
adjacent addresses. They are written and entered in the same form as adjacent
addresses.

3.3. IP attributes

SourcePeerType and DestPeerType = 1

IP in this context means IP version 4, which nm_rc displays as IP4. IP version 6 was
implemented in version 4.3 of NeTraMet (to enable this one must make NeTraMet
using the V6 compile-time option); its PeerType value is 2.

SourcePeerAddress and stPeerAddress
IP addresses of the flow's two hosts, written as four decimal bytes separated by dots
and entered in the same way, e.g. 130.216.234.237.

29/06/99 -- 7 -- NeTraMet Manual

SourcePeerMask and DestPeerMask
Address masks for tests; in the same form as peer addresses.

DSCodePoint
The Differentiated Service Code Point (0..63) from the IP packet header. Note that
because the header carries only a single code point a flow can’t have separate
Source- and Dest- CodePoint Attributes.

SourceTransType and DestTransType
Protocol field from the IP packet header. The values of these are given in RFC
1700, Assigned Numbers. Common values are:

1 = ICMP 17 = UDP
6 = TCP 18 = OSPF

These names can be used for them in rule files.

If the TransType is TCP or UDP, the SourceTransAddress and DestTransAddress
contain the flow's source and destination port numbers. Many of their values are
given in RFC 1700, Assigned Numbers. Common values are

20 = FTP-DATA 70 = GOPHER
21 = FTP 80 = WWW
23 = TELNET 119 = NNTP
25 = SMTP 123 = NTP
53 = DOMAIN 161 = SNMP

These names can be also be used for them in rule files

NeTraMet copes with fragmented IP packets as follows. All fragments contain
peeraddresses and transport protocol type, so these attributes are handled normally.
The first fragment of a packet is assumed to contain a complete UDP or TCP
header, so transport addresses (IP port numbers) should be set correctly.
Fragments other than the first don't have the header information, so their transport
addresses are set to zero.

If the TransType is ICMP, then SourceTransAddress contains the ICMP type and
DestTransAddress contains the ICMP code. For a description of these see Comer,
"Internetworking with TCP/IP." Common values are:

0 = echo reply 5 = redirect
3 = destination unreachable 8 = echo request

SourceTransMask and DestTransMask
Like SourceTransType, these are 16-bit fields, which are written as a single integer,
and can be entered in this form or as two decimal bytes separated by a dot, e.g.
255.255 or 65535.

3.4. DECnet attributes

SourcePeerType and DestPeerType = 13

SourcePeerAddress and DestPeerAddress
DECnet Phase IV addresses of the flow's two hosts, written as four decimal bytes
separated by dots and entered in the same way, e.g.4.1.150.0. The first byte is the
DECnet Area Number, the next two are the (16-bit) DECnet Host Number and the
last byte is always zero.

29/06/99 -- 8 -- NeTraMet Manual

SourceTransType and DestTransType
DECnet Phase IV protocol type, which has the following values:

14 = data + discard 11 = router hello
6 = data 9 = level 2 routing
7 = level 1 routing 13 = endnode hello

SourceTransAddress and DestTransAddress
Always zero for DECnet.

3.5. Novell IPX attributes

SourcePeerType and DestPeerType = 11

SourcePeerAddress and DestPeerAddress
IPX network numbers of the flow's two hosts, written as four decimal bytes separated
by dots and entered in the same way, e.g. 130.216.0.28. Novell network numbers
are assigned by the network administrator; at the University of Auckland we use a
Novell Server's IP address as its network number.

A full IPX host address is the combination of its network number and Ethernet
address. Because the default configuration of NeTraMet limits peer addresses to a
maximum of four bytes, it can in general only handle IPX network numbers. For a
host on the same network segment as its server the adjacent address provides that
host's Ethernet address but this is not the case for IPX packets from another
segment, which have the adjacent address of the router through which they arrived.

NeTraMet can also use full (10-byte) IPX addresses. This is implemented by the
compile-time option FULL_IPX; you will need to change the make files and then
recompile NeTraMet and NeMaC to do this.

NeTraMet understands four forms of encapsulation for IPX packets: Raw 802.3 (with
FF FF in the two bytes following the frame length), 802.2 (with SSAP = 0E and
DSAP = 0E), 802.2 SNAP and Ethernet II (with type = 8137). Raw 802.3 is the
default encapsulation for Novell 3.xx.

SourceTransType and DestTransType
XNS protocol type. Possible values are given in RFC 1700, e.g:

1 = routing information 5 = sequenced packet
4 = packet exchange 17 = Netware Core Protocol

SourceTransAddress and DestTransAddress
Source and destination IPX port numbers. These include

1105 = NCP (Netware Core Protocol)
1106 = SAP (Service Advertising Protocol)
1107 = RIP (Routing Information Protocol)

Further details of Netware communications protocols are given in "Netware
Communications Processes."

3.6. EtherTalk attributes

SourcePeerType and DestPeerType = 12

SourcePeerAddress and DestPeerAddress
AppleTalk addresses of the flow's two hosts, written as four decimal bytes separated
by dots and entered in the same way, e.g. 0.129.251.0. The first two bytes are the
host's AppleTalk (16-bit) network number, the third is its node number (dynamically
assigned when it starts up) and the fourth is always zero.

29/06/99 -- 9 -- NeTraMet Manual

SourceTransType and DestTransType
AppleTalk DDP protocol type. Some common values are:

1 = RTMP 5 = RTMP
2 = NBP 6 = ZIP
3 = ATP 7 = ADSP
4 = EP

SourceTransAddress and DestTransAddress
Source and destination AppleTalk socket numbers. These are two-byte numbers;
the socket numbers are the low-order byte and the high-order byte is zero.

Details of the AppleTalk protocols are given in the book "Inside Macintosh."

3.7. CLNS attributes

SourcePeerType and DestPeerType = 3

CLNS is implemented by the compile-time option CLNS, which is set by default. The
large size of NSAP addresses reduces the number of flows which will fit into PC
memory – if you don't want NeTraMet to handle CLNS you will need to change the
make files and then recompile NeTraMet and NeMaC.

SourcePeerAddress and DestPeerAddress

NSAP addresses of the flow's two hosts, written as (up to) 20 hexadecimal bytes
separated by hyphens. They may be entered in this form or as decimal bytes
separated by dots.

SourceTransType and DestTransType
CLNS packet type. The most common value is 28, which means 'data.'

SourceTransAddress and DestTransAddress
Always zero for CLNS.

Details of the CLNS protocol are given in ISO standard 8473.

3.8. 'Other' attributes

SourcePeerType and DestPeerType = 6

Packets for protocols other than those described in sections 3.3 to 3.7 are handled
by NeTraMet as 'other' packets. Their Peer attributes are described below, and their
Transport attributes are all set to zero.

Rule files may be written to count 'other' packets so as to discover what types of
traffic are running on a network segment. If you do this, be aware that the PC
NeTraMet generates 'dummy' packets when the network is quiet (it uses these to
measure the PC processor utilisation). 'Dummy' packets are a special case of 'other'
packets, so your rule file should test for 'dummy' packets and discard them before it
tests for 'other' packets.

SourcePeerAddrress

 Ethernet II type field from the packet, written as two hexadecimal bytes separated
by a hyphen.

DestPeerAddress

LSAP field from the packet header (for 802.3 packets), zero for other packets.
Written as two hexadecimal bytes separated by a hyphen.

29/06/99 -- 10 -- NeTraMet Manual

3.9. General attributes

General attributes are those which relate to a traffic flow itself, rather than to its end-point
addresses, and are available for all flows. They include:

SourceInterface, DestInterface
Interfaces corresponding to the flow's source and destination adjacent addresses.
The interfaces NeTraMet is to monitor are specified using command-line options;
interface 1 is the first one specified, 2 the second, and so on.

SourceClass, DestClass, FlowClass
SourceKind, DestKind, FlowKind

These six attributes are not extracted from the packet. Instead they are set by the
meter during packet processing by executing PushRuleto actions in the rules. They
allow a rule set to save information which has been built up during packet matching.
For example SourceClass and DestClass could be set to indicate whether the
source and dest are local, national or international host addresses.

FlowIndex
(1-origin) index of the flow within NeTraMet's table of flows.

FlowRuleSet
Number of the rule set the meter was using when the flow was observed.

ToOctets, FromOctets
Number of bytes observed in the 'to' (source to destination) and 'from' direction for
this flow.

ToPDUs, FromPDUs
Number of packets observed in the 'to' (source to destination) and 'from' direction for
this flow.

FirstTime
Time (in 1/100 second ticks from the time the meter started executing) at which this
flow was first observed by the meter.

LastTime
Time (units as above) at which a packet was last observed for this flow.

MatchingStoD
This is an attribute which belongs to the meter itself rather than to a flow. Its value is
1 when a packet is being matched in Source-to-Destination ('wire') order.

4. Flow Data Files
By default, NeMaC produces files of flow data information with names like ccu2.flows.007.
This would be the seventh file of flow data collected from NeTraMet running on the host
ccu2. Before opening a flow data file NeMaC inspects its current working directory and
selects the lowest sequence number not already used for this purpose. Alternatively the
user may specify the name(s) of the flow data file(s) NeMaC is to write.

There are two kinds of records in a flow data file: flow records and information records.
Each flow record is simply a sequence of attribute values separated by separators (if these
were specified – see the Format Statement section below) or spaces, and terminated by a
newline.

Since Version 2.2 the NeTraMet distribution has included two utility programs which
process flow data files:

29/06/99 -- 11 -- NeTraMet Manual

fd_filter Computes data rates, i.e. the differences between successive
samples in a flow data file

fd_extract Creates a simple 'column list' file from a flow data file for input to
other programs, e.g. gnuplot

These programs are fully described in the fd_utils manual.

4.1. Information Records

Information records all start with a cross-hatch. The file's first record begins with ##, and
identifies the file as being a file of data from NeTraMet. It records NeMaC's parameters
and the time this collection was started.

The file's second record begins with #Format: and is a copy of the Format statement used
by NeMaC to collect the data. Note that any separators specified in the Format statement
appear in the data file directly, not as C-language strings.

Version 4.1 of NeTraMet allowed the meter to run multiple rule sets; this means that the
'rule set number' attribute indicates a row in the meter's RuleInfo table, which is chosen at
random by NeMaC when it downloads a rule set. To allow Analysis Applications to
associate the rule set numbers in a flow data file with the rule sets which produced them, a
new information record was added, the 'Ruleset' record. The format of this is

#Ruleset: nn setname rfname owner

The fields are

nn rule set number, as it appears in flow data records

setname Name of the rule set, from its SET statement.
For v3 and v4 this can only be an integer

rfname Name of the rule file, e.g. rules.x_ip

owner Owner name for this rule set

The rest of the file is a sequence of collected data sets. Each of these starts with a #Time:
record, giving the time of day the collection was started, the meter name, and the range of
meter times this collection represents. These from and to times are meter UpTimes, i.e.
they are times in hundredths of seconds since the meter commenced operation.

If meter statistics were requested, they appear in a #Stats: record following the #Time:
one. The statistics are given as a list of variable names and corresponding values. The
variable names are:

aps = average packets/second frc = flows recovered
apb = average packet backlog gci = garbage collection interval (seconds)
mps = maximum packets/second rpp = rules matched per packet
mpb = maximum packet backlog tpp = counts per packet

lsp = number of packets lost cpt = compares per count
avi = average processor idle % tts = total count tables allocated

mni = minimum processor % tsu = count tables in use
fiu = flows in use

After its data records the end of each data set is indicated by an #EndData record.

4.2. Sample Flow Data File

A sample flow data file appears below. Most of the flow records have been deleted, but
lines of dots show where they were.

29/06/99 -- 12 -- NeTraMet Manual

##NeTraMet v3.2: -c300 -r rules.lan -e rules.default
 test_meter -i eth0 4000 flows starting at 12:31:27 Wed 1 Feb 1995
#Format: flowruleset flowindex firsttime sourcepeertype sourcepeeraddress
destpeeraddress topdus frompdus tooctets fromoctets
#Time: 12:31:27 Wed 1 Feb 1995 130.216.14.251 Flows from 1 to 3642
#Stats: aps=478 apb=11 mps=636 mpb=48 lsp=0 avi=97.3 mni = 93.4 fiu=44 frc=0
gci=5 rpp=1.9 tpp=0.0 cpt=1.0 tts=1024 tsu=38
1 2 13 5 31.32.0.0 33.34.0.0 1138 0 121824 0
1 3 13 2 11.12.0.0 13.14.0.0 4215 0 689711 0
1 4 13 7 41.42.0.0 43.34.0.0 1432 0 411712 0
1 5 13 6 21.22.0.0 23.24.0.0 8243 0 4338744 0
3 6 3560 2 130.216.14.0 130.216.3.0 0 10 0 1053
3 7 3560 2 130.216.14.0 130.216.76.0 59 65 4286 3796
3 8 3560 7 0.0.255.0 1.144.200.0 0 4 0 222
3 9 3560 2 130.216.14.0 130.216.14.0 118 1 32060 60
3 10 3560 6 130.216.0.28 130.216.0.192 782 1 344620 66
3 11 3560 7 0.0.255.0 0.128.113.0 0 1 0 73
3 12 3560 5 59.3.13.0 4.1.152.0 1 1 60 60
3 13 3560 7 0.128.94.0 0.129.27.0 2 2 120 158
3 14 3560 5 59.3.40.0 4.1.153.0 2 2 120 120
3 15 3560 5 0.0.0.0 4.1.153.0 0 1 0 60
.
3 43 3560 7 0.128.42.0 0.128.43.0 0 1 0 60
3 44 3560 7 0.128.42.0 0.128.41.0 0 1 0 60
3 45 3560 7 0.128.42.0 0.129.2.0 0 1 0 60
3 46 3560 5 4.1.152.0 59.2.208.0 2 2 120 120
3 47 3560 5 59.3.46.0 4.1.150.0 2 2 120 120
3 48 3560 5 4.1.152.0 59.2.198.0 2 2 120 120
3 49 3560 5 0.0.0.0 59.2.120.0 0 1 0 60
3 50 3664 5 4.1.152.0 59.2.214.0 0 1 0 60
3 51 3664 5 0.0.0.0 4.2.142.0 0 1 0 60
3 52 3664 5 4.1.153.0 59.3.45.0 4 4 240 240
#EndData
#Time: 12:36:25 Wed 1 Feb 1995 130.216.14.251 Flows from 3641 to 33420
#Stats: aps=349 apb=16 mps=1357 mpb=537 lsp=0 avi=97.3 mni = 93.4 fiu=480
frc=0 gci=5 rpp=2.4 tpp=1.2 cpt=1.2 tts=1024 tsu=328
3 6 3560 2 130.216.14.0 130.216.3.0 0 21 0 2378
3 7 3560 2 130.216.14.0 130.216.76.0 9586 7148 1111118 565274
3 8 3560 7 0.0.255.0 1.144.200.0 0 26 0 1983
3 9 3560 2 130.216.14.0 130.216.14.0 10596 1 2792846 60
3 10 3560 6 130.216.0.28 130.216.0.192 16589 1 7878902 66
3 11 3560 7 0.0.255.0 0.128.113.0 0 87 0 16848
3 12 3560 5 59.3.13.0 4.1.152.0 20 20 1200 1200
3 13 3560 7 0.128.94.0 0.129.27.0 15 14 900 1144
3 14 3560 5 59.3.40.0 4.1.153.0 38 38 2280 2280
3 15 3560 5 0.0.0.0 4.1.153.0 0 30 0 1800
3 16 3560 5 4.1.152.0 59.2.189.0 20 20 1200 1200
3 17 3560 5 0.0.0.0 59.2.141.0 0 11 0 660

3 476 26162 7 0.129.113.0 0.128.37.0 0 1 0 82
3 477 27628 7 0.128.41.0 0.128.46.0 1 1 543 543
3 478 27732 7 0.128.211.0 0.128.46.0 1 1 543 543
3 479 31048 7 0.128.47.0 2.38.221.0 1 1 60 60
3 480 32717 2 202.14.100.0 130.216.76.0 0 4 0 240
3 481 32717 2 130.216.76.0 130.216.3.0 0 232 0 16240
#EndData
#Time: 12:41:25 Wed 1 Feb 1995 130.216.14.251 Flows from 33419 to 63384
#Stats: aps=415 apb=17 mps=1780 mpb=542 lsp=0 avi=97.3 mni = 93.4 fiu=567
frc=0 gci=5 rpp=1.8 tpp=1.0 cpt=1.3 tts=1024 tsu=372
3 6 3560 2 130.216.14.0 130.216.3.0 51 180 3079 138195
3 7 3560 2 130.216.14.0 130.216.76.0 21842 18428 2467693 1356570
3 8 3560 7 0.0.255.0 1.144.200.0 0 30 0 2282
3 9 3560 2 130.216.14.0 130.216.14.0 24980 1 5051834 60
3 10 3560 6 130.216.0.28 130.216.0.192 20087 1 8800070 66
3 11 3560 7 0.0.255.0 0.128.113.0 0 164 0 32608
3 12 3560 5 59.3.13.0 4.1.152.0 41 41 2460 2460
3 14 3560 5 59.3.40.0 4.1.153.0 82 82 4920 4920
3 15 3560 5 0.0.0.0 4.1.153.0 0 60 0 3600

29/06/99 -- 13 -- NeTraMet Manual

4.3. Flow Data Features

Several features of the Flow data are worthy of note:

• Collection times overlap slightly between samples. This allows for flows
which were created after the collection started, and makes sure that flows are
not missed from a collection.

• The rule set may change during a run. This will happen when the meter
switches from a 'current' rule set to its 'standby' rule set.

• FlowIndexes may be reused by the meter once their flows have been
recovered by the garbage collector. The combination of FlowRuleSet,
FlowIndex and StartTime are needed to identify a flow uniquely.

• Packet and Byte counters are 32-bit unsigned integers, and are never reset
by the meter. Computing the counts occurring within a collection interval will
require taking the difference between the collected count and its value when
the flow was last collected. Note that counter wrap-around can be allowed for
by simply performing an unsigned subtraction and ignoring any carry.

• In the sample flow data file above I have used double spaces as separators
between the flow identifiers, peer addresses, packet counts and byte counts.

5. Writing Rule Files

5.1. Introduction

A rule file is a file of ASCII text which contains information needed by an accounting meter
and by a collector. This includes a rule set number, a rule table, a format specification and
a statistics request. A rule set is simply a table of rules, identified by its rule set number.
An accounting meter can have up to ten rule sets in memory, allowing its manager to
switch between them simply by setting the value of the CurrentRuleSet MIB variable.

NeTraMet has one rule set built in; it is the default rule set, which is set number 1. This
allows NeTraMet to be active as soon as it starts up, and it provides a default rule set
which it can use while other rule sets are downloaded by its manager. The default rule set
can't be changed by the manager.

NeTraMet version 4.2 introduced SRL, the Simple Ruleset Language and its compiler.
SRL is a well-structured high-level language for creating rulesets – one writes an SRL
program to specify the flows to be metered and the attributes to be collected for them.
The SRL compiler produces flow data files which NeMaC can read and download to a
NeTraMet meter. The rest of this chapter describes these rule files, but it is much easier
to create them using SRL than it is to do so by hand. See the SRL Manual for more
information.

5.2. Rule file Syntax

The syntax for rule files is given below in the form of railway diagrams, and detailed
examples are given in the following sections. Note that NeMaC's parser is extremely
simple-minded – although it does a good job on valid rule files it has very poor error
recovery!

Each statement in a rule file starts at the beginning of a line and ends with a semicolon.
A cross-hatch character marks the end of a line; all characters following a cross-hatch on
a line are ignored by the scanner.

29/06/99 -- 14 -- NeTraMet Manual

NeMaC's scanner looks for keywords, numbers and addresses. Keywords are shown in
the railway diagrams in upper case, but case is ignored by the scanner. Keywords,
including attribute names, must be given in full – abbreviations are not allowed.

Rules File

Rules section

Include statement

RuleSet statement

Format statement

Statistics statement

A rule file contains one or more of five possible elements, which may appear in any order
in the file. The case of characters is not significant within rule files.

5.2.1. RuleSet Statement

RuleSet statement

;SET setnbr

The RuleSet statement supplies a name for the rule set, which can be seen when a
meter's rUleset table is displayed.

In versions 2 and 3 the RuleSet statement specified which entry in the meter's ruleset
table this rule set would occupy.

In version 4.1 the entry is chosen randomly. NeMaC reads it from the meter and puts it
into a #Ruleset record of flow data files.

5.2.2. Rules Section

RULES Rule statementLabel

Rule statement

attribute & mask = value : ;action , index

The Rules section specifies the rule table for a rule set, and requests NeMaC to download
it to the meter.

It starts with the keyword RULES, followed by a series of Rule statements, one for each
rule. Each rule has five components, which must appear in the correct order. These are:

Attribute
The name of the attribute to be tested by this rule. Any of the address attributes
may be used, but not the mask or general attributes. The Null attribute may also be
used, in which case the rule will always succeed.
In addition a meter 'variable' may be tested. There are five of these, named v1, v2,
.. v5, each of which can hold the name of an address attribute. A variable's value is
set by an 'assign' action (see below).
When a variable appears as the attribute of a rule, its value specifies the PDU
attribute to be tested. e.g. if v1 had been assigned SourcePeerAddress as its value,
a rule with v1 as its attribute would actually test SourcePeerAddress.

29/06/99 -- 15 -- NeTraMet Manual

Mask
Specifies a mask which is ANDed with the attribute's value from an incoming packet.
Must be the same length (number of bytes) as the attribute value.
Note that if a rule's mask is zero it will always succeed. This can be useful for rules
with 'assign' actions, since it allows them to have meter variables for their attributes.

Value
Specifies the value to be compared with the masked value from an incoming packet.
If the compare fails the next rule is tested, otherwise the rule's Action is performed.

Action
Action to be performed if the rule's value is matched. Possible actions are:

Ignore Stop rule matching and return a 'succeed' result. This means the
incoming packet will not be counted, i.e. it will be ignored.

NoMatch Stop rule matching and return a 'fail' result. This allows the meter to
interchange the source and destination attributes then retry the
match. 'Retry' may be used as a synonym for 'NoMatch.'

Count Count this packet in the count table specified by this rule's Index.
Attribute and mask values for a flow are taken from the 'pattern
stack,' in the same order as they were pushed during rule
processing. The user must ensure that every flow in a count table
uses the same set of masks, i.e. was created by the same sequence
of PushRuleto and/or PushPktto actions. The attribute values will of
course be different for each counted flow.

CountPkt Executes a PushPktto action (see below), then a Count action (see
above).

Return Return from a rule-matching subroutine, using this rule's Index as an
offset. The return rule index is popped from the 'return' stack, and
the index is added to it, specifying a 'target' rule. The target rule's
Action is executed immediately, as though that rule's test had just
succeeded. The overall effect is that rule-matching subroutines may
return a result as well as pushing matched attributes onto the pattern
stack.

GoSub Call a rule-matching subroutine. The index of the next rule to be
tested is set to this rule's Index, and the meter pushes this rule's
Index onto a 'return' stack.

GoSubAct Same as GoSub, except that the target rule's Action is executed
immediately. It's test is assumed to have succeeded.

Assign The attribute value specified by this rule's Value is assigned to the
variable specified by this rule's Attribute. Note that since Assign and
AssignAct use the rule Value in an unusual way they should never
perform a test; instead they should always be executed as the result
of a Return, GoSubAct. AssignAct, GotoAct, PushRuletoAct or
PuskPkttoAct action.

AssignAct Same as Assign, except that the target rule's Action is executed
immediately. It's test is assumed to have succeeded.

GoTo Set the index of the next rule to be tested to this rule's index.

GoToAct Same as Goto, except that execution of the target rule starts with its
action, not its test.

29/06/99 -- 16 -- NeTraMet Manual

PushRuleto Save this rule's attribute name, mask and value on the 'pattern stack'
and set the index of the next rule to be tested to this rule's Index.
The pattern stack records the rules which were correctly matched;
this information is used by a count action to construct flows

PushRuletoAct Same as PushRuleto, except that execution of the target rule
starts with its action, not its test. For compatibility with earlier
versions NeMaC treats Pushto and PushtoAct as synonyms for
PushRuleto and PushRuletoAct.

PushPktto Save this rule's attribute name and mask, and the masked value
from the packet on the 'pattern stack.' Set the index of the next rule
to be tested to this rule's Index. Value will always be zero, hence
PushPktto and PushPkttoAct rules should never perform a test;
instead they should always be executed as the result of a Return,
GoSubAct. AssignAct, GotoAct, PushRuletoAct or PuskPkttoAct
action.

PushPkttoAct Same as PushPktto, except that execution of the target rule starts
with its action, not its test.

Index
This is a parameter for Action; see above for its various uses.

Rule numbers are 1-origin indexes to their corresponding tables. These numbers may be
used directly, but it can be difficult to do this accurately. The simplest way to do this is to
include the rule number in a comment attached to each statement.

Rules may also be labelled and referred to by their labels, which is very much easier! A
label must appear at the beginning of a rule file line, and may contain characters, digits
and underscores. NeMaC checks labels for consistency, flagging missing or duplicated
labels.

Where a label is needed for 'the next rule' the reserved word next may be used, removing
the need to create a label.

5.2.3. Format Statement

Format statement

attributeFORMAT ;

separator

The Format statement specifies the format of rule data lines in a NeMaC Flow Data file.

It starts with the FORMAT keyword, which is followed by a list of flow attributes, in the
order they are to appear in the Flow Data file.

5.2.4. Statistics Statement

Statistics statement

;STATISTICS

The Statistics statement tells NeMaC to collect meter performance statistics each time it
collects flow data, and to write it to the flow data file. NeMaC sets NeTraMet's statistics
variables to zero after reading their values.

Caution: since NeTraMet zeroes the statistics each time they are read, only one of the rule
sets running on a meter should have a Statistics statement!

29/06/99 -- 17 -- NeTraMet Manual

5.2.5. Include Statement

Include statement

INCLUDE ;filename

An include statement allows a rule file to use other rule files. When the NeMaC parser
encounters one it saves its position in the current rule file and switches to the file
specified. When it reaches the end of the included file it switches back and continues with
the earlier file. Include files may be nested up to five deep.

It is useful to have rule-matching subroutines, especially large or complicated ones, in
separate files, so that they can be easily used in many other rule files.
5.3. Rule Files

This section gives a few examples of rule files, with comments on what they do and why
they were written as they are.

I have found it simplest, when developing a new rule file, to proceed as follows:

• Use labels for any rule which is referred to by another rule. This is much easier
than using explicit rule numbers. Remember that the reserved word next means 'the next
rule,' and use it to avoid labelling consecutive rules.

• Check the rule file by using NeMaC's syntax check (-s -v and -l) options, piping
NeMaC's output to a file. Compare the syntax check output with the rule file using two
windows in your favourite file editor.

5.3.1. rules.default
1445, Mon 9 Jan 95
#
Default rule file for NeTraMet (built in to the meter)
#
Nevil Brownlee, Computer Centre, The University of Auckland
#
SET 1
#
RULES
 SourcePeerType & 255 = dummy: Ignore, 0; # Ignore meter's dummy pkts
 Null & 0 = 0: GotoAct, Next;
 SourcePeerType & 255 = 0: CountPkt, 0;
#
end of file

This is the default rule set, which is built in to the meter and can't be changed. It provides
rule set 1 which produces a set of flows, one for each of the peer types which NeTraMet
understands.

The first line throws away dummy packets. Dummy packets are generated and processed
by the meter when it has no real work to do; the proportion of the time the meter spends
processing dummy packets is its measured % idle time.

The second rule is needed so that the third rule's test is never executed. It tests the Null
attribute, which always succeeds, so the GotoAct action is always executed. If the second
rule was not there, SourcePeerType would be compared with 0. That test would fail, and
since there are no more rules, no packets would ever match.

29/06/99 -- 18 -- NeTraMet Manual

5.3.2. rules.sample
1412, Thu 9 Feb 95
#
Rule specification file to tally IP net <-> IP net,
tally DECnet and Novell and aggregate EtherTalk
#
Nevil Brownlee, Computer Centre, University of Auckland
#
SET 2
#
RULES
 SourcePeerType & 255 = IP: Pushto, IP_pkt;
 SourcePeerType & 255 = Novell: Pushto, Novell_pkt;
 SourcePeerType & 255 = EtherTalk: Pushto, Apple_pkt;
 SourcePeerType & 255 = DECnet: Pushto, DEC_pkt;
 Null & 0 = 0: Ignore, 0;

The first part of this rule table determines the peer protocol type. IP, Novell, EtherTalk and
DECnet packets cause the meter to push their SourcePeertype, then jump to their
protocol's labelled group of rules. The last rule above Other protocols are discarded by
the 'Ignore' rule.

IP_pkt:
 SourcePeerAddress & 192.0.0.0 = 192.0.0.0: Goto, low_C;
 SourcePeerAddress & 192.0.0.0 = 128.0.0.0: Goto, low_B;
 SourcePeerAddress & 192.0.0.0 = 64.0.0.0: Goto, low_A;
 SourcePeerAddress & 192.0.0.0 = 0.0.0.0: Goto, low_A;
 Null & 0 = 0: GotoAct, other;
low_A:
 DestPeerAddress & 192.0.0.0 = 192.0.0.0: GotoAct, A_C;
 DestPeerAddress & 192.0.0.0 = 128.0.0.0: GotoAct, A_B;
 DestPeerAddress & 192.0.0.0 = 64.0.0.0: GotoAct, A_A;
 DestPeerAddress & 192.0.0.0 = 0.0.0.0: GotoAct, A_A;
 Null & 0 = 0: GotoAct, other;
low_B:
 DestPeerAddress & 192.0.0.0 = 192.0.0.0: GotoAct, B_C;
 DestPeerAddress & 192.0.0.0 = 128.0.0.0: GotoAct, B_B;
 DestPeerAddress & 192.0.0.0 = 64.0.0.0: GotoAct, B_A;
 DestPeerAddress & 192.0.0.0 = 0.0.0.0: GotoAct, B_A;
 Null & 0 = 0: GotoAct, other;
low_C:
 DestPeerAddress & 192.0.0.0 = 192.0.0.0: GotoAct, C_C;
 DestPeerAddress & 192.0.0.0 = 128.0.0.0: GotoAct, C_B;
 DestPeerAddress & 192.0.0.0 = 64.0.0.0: GotoAct, C_A;
 DestPeerAddress & 192.0.0.0 = 0.0.0.0: GotoAct, C_A;
 Null & 0 = 0: GotoAct, other;

This part of the rule table handles IP packets. The first two bits of the packet's source
peer address are examined to decide whether it is class A, B or C. For each of these
cases the first two bits of the destination peer address is tested to determine its address
class. Each of the nine possible pairs of address classes causes a jump to a pair of rules
(below) which pushes the packet's source and destination peer addresses. Any other
addresses, such as multicast addresses, cause a jump to the rules labelled 'other,' where
its full (32-bit) source and destination addresses are pushed. Once the source and
destination addresses have been pushed, the rule labelled 'count_pkt' counts the packet.

other:
 SourcePeerAddress & 255.255.255.255 = 0: PushPkttoAct, Next;
 DestPeerAddress & 255.255.255.255 = 0: PushPkttoAct, count_pkt;
A_C:
 SourcePeerAddress & 255.0.0.0 = 0: PushPkttoAct, Next;
 DestPeerAddress & 255.255.255.0 = 0: PushPkttoAct, count_pkt;
A_B:
 SourcePeerAddress & 255.0.0.0 = 0: PushPkttoAct, Next;
 DestPeerAddress & 255.255.0.0 = 0: PushPkttoAct, count_pkt;
A_A:
 SourcePeerAddress & 255.0.0.0 = 0: PushPkttoAct, Next;
 DestPeerAddress & 255.0.0.0 = 0: PushPkttoAct, count_pkt;

29/06/99 -- 19 -- NeTraMet Manual

B_C:
 SourcePeerAddress & 255.255.0.0 = 0: PushPkttoAct, Next;
 DestPeerAddress & 255.255.255.0 = 0: PushPkttoAct, count_pkt;
B_B:
 SourcePeerAddress & 255.255.0.0 = 0: PushPkttoAct, Next;
 DestPeerAddress & 255.255.0.0 = 0: PushPkttoAct, count_pkt;
B_A:
 SourcePeerAddress & 255.255.0.0 = 0: PushPkttoAct, Next;
 DestPeerAddress & 255.0.0.0 = 0: PushPkttoAct, count_pkt;
C_C:
 SourcePeerAddress & 255.255.255.0 = 0: PushPkttoAct, Next;
 DestPeerAddress & 255.255.255.0 = 0: PushPkttoAct, count_pkt;
C_B:
 SourcePeerAddress & 255.255.255.0 = 0: PushPkttoAct, Next;
 DestPeerAddress & 255.255.0.0 = 0: PushPkttoAct, count_pkt;
C_A:
 SourcePeerAddress & 255.255.255.0 = 0: PushPkttoAct, Next;
 DestPeerAddress & 255.0.0.0 = 0: PushPkttoAct, count_pkt;
#
count_pkt:
 Null & 0 = 0: Count, 0; # Source and Dest Peer Address pushed above

Note that the above rules make no attempt to impose any order on source and destination
addresses. When a packet appears which is the first of a new traffic flow, its source will
be the source for the flow.

Novell_pkt:
 SourcePeerAddress & 255.255.255.255 = 0: PushPktToAct, Next;
 DestPeerAddress & 255.255.255.255 = 0: CountPkt, 0;
#
Apple_pkt:
 Null & 0 = 0: Count, 0; # No detail for Ethertalk
#
DEC_pkt:
 SourcePeerAddress & 255.255.255.0 = 0: PushPktToAct, Next;
 DestPeerAddress & 255.255.255.0 = 0: CountPkt, 0;

These actions aggregate EtherTalk and tally Novell and DECnet packets. The tallies push
the entire peer address in each case. This instructs the meter to create flows for every
possible pair of peer addresses.

STATISTICS
#
FORMAT FlowRuleSet FlowIndex FirstTime " "
 SourcePeerType SourcePeerAddress DestPeerAddress " "
 ToPDUs FromPDUs " " ToOctets FromOctets;
#
end of file

The Format statement specifies the attributes to be collected from the meter. It uses
double spaces to separate the attributes into four groups.

5.3.3. rules.gateway
1700, Wed 8 Feb 95
#
Rule specification file to tally traffic to/from ccr1
#
Nevil Brownlee, Computer Centre, University of Auckland
#
SET 3
#
RULES
 DestAdjacentAddress & FF-FF-FF-FF-FF-FF = AA-00-04-00-F4-ED:
 Goto, gateway;
 Null & 0 = 0: Retry, 0;
gateway:
 SourcePeerType & 255 = IP: Pushto, ip_pkt;
 Null & 0 = 0: Ignore, 0;
#
ip_pkt:
 SourcePeerAddress & 255.255.0.0 = 130.216.0.0: Goto, low_C; # Auckland

29/06/99 -- 20 -- NeTraMet Manual

 SourcePeerAddress & 192.0.0.0 = 192.0.0.0: Goto, low_C;
low_B:
 DestPeerAddress & 192.0.0.0 = 128.0.0.0: GotoAct, B_B;
 DestPeerAddress & 192.0.0.0 = 192.0.0.0: GotoAct, B_C;
 Null & 0 = 0: GotoAct, B_A;

This rule set was intended for metering traffic through a gateway Ethernet, which had a
router with Ethernet Ethernet address AA-00-04-00-F4-ED providing our connection to the
Internet. The first rule above tests each packet's DestAdjacentAddress to see whether its
destination is on the far side of the router. If it is, the rule labelled gateway will be tested
next, otherwise the 'retry' rule is executed, allowing the meter to interchange source and
destinations and try again. If the match fails on the second try the packet is ignored.

The rest of this rule file is very similar to rules.sample above.

5.3.4. rules.broadcast
1445, Wed 8 Feb 95
#
Rule specification file to tally broadcast packets
#
Nevil Brownlee, Computer Centre, University of Auckland
#
SET 4
#
RULES
 DestAdjacentAddress & FF-FF-FF-FF-FF-FF = FF-FF-FF-FF-FF-FF:
 GotoAct, broadcast;
 Null & 0 = 0 : Retry, 0; # Try other direction

This rule set looks for Ethernet broadcast packets, by testing their DestAdjacentAddress.
Broadcasts are tallied using the group of rules labelled broadcast (see below).

The second rule is very important, and is needed because of the way count tables are
handled. Consider an incoming packet. If the first matches it is a broadcast packet and is
tallied. If this (broadcast) flow is already in the count table it is counted, and the job is
done. If it's not, Count doesn't put it in immediately (because it may already be there with
its source and destination swapped), and the match fails. The packet is matched again;
but rule 1 and rule 2 both fail. In this situation the meter remembers that it was a count
which caused the first failure so the match is tried a third time, this time forcing the count
to add the flow.

broadcast:
 SourceAdjacentAddress & FF-FF-FF-FF-FF-FF = 0: PushPkttoAct, Next;
 DestAdjacentAddress & FF-FF-FF-FF-FF-FF = 0: PushPkttoAct, Next;
 SourcePeerType & 255 = 0: PushPkttoAct, Next;
 SourcePeerAddress & 255.255.255.255 = 0: PushPkttoAct, Next;
 DestPeerAddress & 255.255.255.255 = 0: PushPkttoAct, Next;
 SourceTransType & 255 = 0: PushPkttoAct, Next;
 SourceTransAddress & 255.255 = 0: PushPkttoAct, Next;
 DestTransAddress & 255.255 = 0: CountPkt, 0;

This group of rules pushes all the adjacent, peer and transport addresses from the packet.
Notice that since we don't want any of the tests to be performed (they would fail) we use
the 'toAct' form of 'PushPkt.' The last rule pushed the DestTransAddress and counts the
packet. This example demonstrates how to collect a large amount of detail without
explicitly testing each required attribute.

IP protocols BOOTP (ports 67 and 68) and RIP (port 520) are common sources of IP
broadcast packets. Remember that ARP is not an IP protocol, so NeTraMet will see ARP
packets as 'other' packets.

29/06/99 -- 21 -- NeTraMet Manual

5.3.5. rules.ipport
1240, Thu 9 Feb 95
#
Rule specification file to tally IP packets by port nbr
#
Nevil Brownlee, Computer Centre, University of Auckland
#
SET 5
#
RULES
 SourcePeerType & 255 = IP: Pushto, ip_pkt;
 SourcePeerType & 255 = dummy: Ignore, 0; # Ignore meter's dummy pkts
 Null & 0 = 0: GotoAct, Next;
 SourcePeerType & 255 = 0: CountPkt, 0; # Count packet types

IP packets cause the meter to jump to the rule labelled ip_pkt. Other packet types are
counted by peer type; this is the same as the meter's default rule set (rules.default above).

ip_pkt:
 SourceTransType & 255 = tcp: Pushto, tcp_udp;
 SourceTransType & 255 = udp: Pushto, tcp_udp;
 SourceTransType & 255 = icmp: Pushto, c_trans_only;
 SourceTransType & 255 = ospf: Pushto, c_trans_only;
 Null & 0 = 0: GotoAct, t_bad; # Unknown transport type
#
tcp_udp: s_news:
 SourceTransAddress & 255.255 = nntp: PushtoAct, c_trans_source;
 DestTransAddress & 255.255 = nntp: GotoAct, s_news;
s_smtp:
 SourceTransAddress & 255.255 = smtp: PushtoAct, c_trans_source;
 DestTransAddress & 255.255 = smtp: GotoAct, s_smtp;

The transport type is tested first. TCP and UDP packets jump to the tcp_udp label. ICMP
and OSPF routing packets jump to c_trans_only, where they are tallied by transport type.
Unknown packet types jump to t_bad where all their attributes are tallied.

s_domain:
 SourceTransAddress & 255.255 = domain: PushtoAct, c_trans_source;
 DestTransAddress & 255.255 = domain: GotoAct, s_domain;
s_telnet:
 SourceTransAddress & 255.255 = telnet: PushtoAct, c_trans_source;
 DestTransAddress & 255.255 = telnet: GotoAct, s_telnet;
s_ftp_ctrl:
 SourceTransAddress & 255.255 = ftp: PushtoAct, c_trans_source;
 DestTransAddress & 255.255 = ftp: GotoAct, s_ftp_ctrl;
s_ftp_data:
 SourceTransAddress & 255.255 = ftpdata: PushtoAct, c_trans_source;
 DestTransAddress & 255.255 = ftpdata: GotoAct, s_ftp_data;
#
 Null & 0 = 0: GotoAct, t_bad; # 'Unusual' port
#
t_bad: # End of packet testing
 SourceTransAddress & 255.255 = 0: PushPkttoAct, Next;
 DestTransAddress & 255.255 = 0: PushPkttoAct, Next;
 SourceTransType & 255 = 0: CountPkt, 0;
c_trans_source: # SourceTransAddress already pushed
 SourceTransType & 255 = 0: CountPkt, 0;
c_trans_only:
 SourceTransType & 255 = 0: CountPkt, 0;
#
FORMAT FlowRuleSet FlowIndex FirstTime " "
 SourcePeerType
 SourceTransType SourceTransAddress DestTransAddress " "
 ToPDUs ToOctets FromPDUs FromOctets;
#
STATISTICS
#
end of file

For each of the specified port types the DestTransAddress is tested. If the test succeeds, the
DestTransAddress (IP port number) is pushed, and the packet is counted at c_trans_source.

29/06/99 -- 22 -- NeTraMet Manual

If that fails, the SourceTransAddress is tested. Success there causes the preceding rule's
action to be executed. The effect of this is to push the protocol's port number in
SourceTransAddress, regardless of which direction the packet was travelling.

The overall effect of this rule set is to classify IP traffic into a small group of common traffic
types by testing for their well-known port numbers.

5.3.6. rules.manage
1550, Thu 9 Feb 95
#
Rule specification file to tally traffic for Auckland, using four
groups of sites: UA-depts, Local, NZ and World
#
Nevil Brownlee, Computer Centre, University of Auckland
#
SET 6
#
RULES
 SourcePeerType & 255 = IP: Pushto, IP_pkt;
 Null & 0 = 0 : Ignore, 0; # Ignore other packet types

This rule set meters our gateway Ethernet, providing summary information about four groups
of IP networks: Auckland University departments, locally-connected networks, New Zealand
networks, and the rest of the world.

dest_local:
 v1 & 0 = SourcePeerAddress: AssignAct, Next;
 Null & 0 = 0: Gosub, Auckland_nets;
 Null & 0 = 0: Goto, c_pkt; # 1 Dept -> dept-local
 Null & 0 = 0: GotoAct, t_bad; # 2 UA, not in list of OK subnets -> UA-local
 Null & 0 = 0: Ignore, 0; # 3 Local -> Ignore local-local
 Null & 0 = 0: Retry, 0; # 4 Not UA or local -> Want local as source
#
dest_UA:
 SourcePeerAddress & 255.255.0.0 = 130.216.0.0: Ignore, 0; # Ignore UA-UA
 Null & 0 = 0 : Retry, 0; # Want Auckland as source
#
IP_pkt:
 DestPeerAddress & 255.255.0.0 = 130.216.0.0: Pushto, dest_UA; # Auckland
 Null & 0 = 0: GotoAct, Next;
 v1 & 0 = DestPeerAddress: AssignAct, Next;
 Null & 0 = 0: Gosub, Auckland_nets;
 Null & 0 = 0: Ignore, 0; # 1 dest UA department
 Null & 0 = 0: Ignore, 0; # 2 dest UA
 Null & 0 = 0: GotoAct, dest_local; # 3 dest Local
#
 v1 & 0 = SourcePeerAddress: AssignAct, Next; # 4 dest NZ or world
 Null & 0 = 0: Gosub, Auckland_nets;
 Null & 0 = 0: GotoAct, src_dept; # 1 source Dept
 Null & 0 = 0: GotoAct, t_bad; # 2 source UA, not an OK subnet
 Null & 0 = 0: GotoAct, src_local; # 3 source Local
 Null & 0 = 0: GotoAct, t_bad; # 4 Not local, unexpected transit

Once a packet has been identified as carrying IP, we reach label IP_pkt. If its destination
and source are both Auckland the packet is ignored. If its destination is Auckland but its
source is not the match fails; this forces Auckland to be the source of a flow.

The subroutine Auckland_nets is called to test the packet's destination. This returns 1,2,3 or
4 depending on which group the destination belongs to, and pushes the DestPeerAddress on
the pattern stack.

If the destination is a locally-connected network control passes to Dest_local, where
Auckland_nets is called again to determine the packet's source. Local-to-local packets are
ignored, Auckland-to-local packets are counted (by going to c_pkt) and packets with a local
destination fail, forcing local nets to be the source for flows to nets other than Auckland.

29/06/99 -- 23 -- NeTraMet Manual

src_dept:
 v1 & 0 = DestPeerAddress: AssignAct, Next;
 Null & 0 = 0: Gosub, Tuia_proximal;
 DestPeerAddress & 255.255.0 = 130.216.0 : Ignore, 0; # 1 Auckland
 DestPeerAddress & 255.255.0 = 132.181.0 : Pushto, c_pkt; # 2 Canterbury
 DestPeerAddress & 255.255.0 = 131.203.0 : Pushto, c_pkt; # 3 Gracefield
 DestPeerAddress & 255.255.0 = 141.158.0 : Pushto, c_pkt; # 4 Invermay
 DestPeerAddress & 255.255.0 = 161.65.0 : Pushto, c_pkt; # 5 Lincoln CRI
 DestPeerAddress & 255.255.0 = 130.123.0 : Pushto, c_pkt; # 6 Massey
 DestPeerAddress & 255.255.255 = 192.88.85 : Pushto, c_pkt; # 7 MoRST
 DestPeerAddress & 255.255.0 = 161.29.0 : Pushto, c_pkt; # 8 Mt Albert
 DestPeerAddress & 255.255.255 = 192.122.171: Pushto, c_pkt; # 9 Nat Lib
 DestPeerAddress & 255.255.255 = 192.84.253 : Pushto, c_pkt; # 10 Netway
 DestPeerAddress & 255.255.0 = 139.80.0 : Pushto, c_pkt; # 11 Otago
 DestPeerAddress & 255.255.0 = 160.4.0 : Pushto, c_pkt; # 12 Ruakura
 DestPeerAddress & 255.255.255 = 202.12.76 : Pushto, c_pkt; # 13 Taranaki
 DestPeerAddress & 255.255.0 = 130.195.0 : Pushto, c_pkt; # 14 VUW
 DestPeerAddress & 255.255.0 = 130.217.0 : Pushto, c_pkt; # 15 Waikato
 DestPeerAddress & 255.255.255 = 192.111.102: Pushto, c_pkt; # 16 Wallaceville
 DestPeerAddress & 255.255.0 = 140.200.0 : Pushto, c_pkt; # 17 Tuia
 DestPeerAddress & 255.0.0 = 253.0.0 : Pushto, c_pkt; # 18 Unconnected
 DestPeerAddress & 255.0.0 = 254.0.0 : Pushto, c_pkt; # 19 World
 #
src_local:
 v1 & 0 = DestPeerAddress: AssignAct, Next;
 Null & 0 = 0: Gosub, Tuia_proximal;
 DestPeerAddress & 255 = 252.0.0 : Pushto, c_pkt; # 1 Auckland
 DestPeerAddress & 255 = 252.0.0 : Pushto, c_pkt; # 2 Canterbury
 DestPeerAddress & 255 = 252.0.0 : Pushto, c_pkt; # 3 Gracefield
 DestPeerAddress & 255 = 252.0.0 : Pushto, c_pkt; # 4 Invermay
 DestPeerAddress & 255 = 252.0.0 : Pushto, c_pkt; # 5 Lincoln CRI
 DestPeerAddress & 255 = 252.0.0 : Pushto, c_pkt; # 6 Massey
 DestPeerAddress & 255 = 252.0.0 : Pushto, c_pkt; # 7 MoRST
 DestPeerAddress & 255 = 252.0.0 : Pushto, c_pkt; # 8 Mt Albert
 DestPeerAddress & 255 = 252.0.0 : Pushto, c_pkt; # 9 Nat Lib
 DestPeerAddress & 255 = 252.0.0 : Pushto, c_pkt; # 10 Netway
 DestPeerAddress & 255 = 252.0.0 : Pushto, c_pkt; # 11 Otago
 DestPeerAddress & 255 = 252.0.0 : Pushto, c_pkt; # 12 Ruakura
 DestPeerAddress & 255 = 252.0.0 : Pushto, c_pkt; # 13 Taranaki
 DestPeerAddress & 255 = 252.0.0 : Pushto, c_pkt; # 14 VUW
 DestPeerAddress & 255 = 252.0.0 : Pushto, c_pkt; # 15 Waikato
 DestPeerAddress & 255 = 252.0.0 : Pushto, c_pkt; # 16 Wallaceville
 DestPeerAddress & 255 = 253.0.0 : Pushto, c_pkt; # 18 Unconnected
 DestPeerAddress & 255 = 254.0.0 : Pushto, c_pkt; # 19 World
 DestPeerAddress & 255.255 = 140.200: Pushto, c_pkt; # 17 Tuia

If the source is an Auckland department or a local network, subroutine Tuia_proximal is
called to determine whether the destination is a New Zealand net or not. Tuia_proximal
returns values from 1 to 19; for local sources the destination is reduced to either New
Zealand (network 252.0.0.0) or World (network 254.0.0.0), but for Auckland departments the
destination network (which is the gateway site to which it connects) is pushed onto the
pattern stack..

c_pkt:
 SourceTransType & 255 = tcp: Pushto, tcp_udp;
 SourceTransType & 255 = udp: Pushto, tcp_udp;
 SourceTransType & 255 = icmp: Pushto, c_trans_only;
 SourceTransType & 255 = ospf: Pushto, c_trans_only;
 Null & 0 = 0: GotoAct, t_bad; # Unknown transport type
#
tcp_udp: s_news:
 SourceTransAddress & 255.255 = nntp: PushtoAct, c_trans_source;
 DestTransAddress & 255.255 = nntp: GotoAct, s_news;
s_smtp:
 SourceTransAddress & 255.255 = smtp: PushtoAct, c_trans_source;
 DestTransAddress & 255.255 = smtp: GotoAct, s_smtp;
s_domain:
 SourceTransAddress & 255.255 = domain: PushtoAct, c_trans_source;
 DestTransAddress & 255.255 = domain: GotoAct, s_domain;
s_telnet:
 SourceTransAddress & 255.255 = telnet: PushtoAct, c_trans_source;

29/06/99 -- 24 -- NeTraMet Manual

 DestTransAddress & 255.255 = telnet: GotoAct, s_telnet;
s_ftp_ctrl:
 SourceTransAddress & 255.255 = ftp: PushtoAct, c_trans_source;
 DestTransAddress & 255.255 = ftp: GotoAct, s_ftp_ctrl;
s_ftp_data:
 SourceTransAddress & 255.255 = ftpdata: PushtoAct, c_trans_source;
 DestTransAddress & 255.255 = ftpdata: GotoAct, s_ftp_data;
#
 Null & 0 = 0: GotoAct, t_bad; # 'Unusual' port
#
t_bad: # End of packet testing
 SourceTransAddress & 255.255 = 0: PushPkttoAct, Next;
 DestTransAddress & 255.255 = 0: PushPkttoAct, Next;
 SourceTransType & 255 = 0: CountPkt, 0;
c_trans_source: # SourceTransAddress already pushed
 SourceTransType & 255 = 0: CountPkt, 0;
c_trans_only:
 SourceTransType & 255 = 0: CountPkt, 0;

The rules starting at c_pkt test the transport attributes of IP packets, so as to count
separately various types of traffic. ICMP packets are tested for and counted first. News,
Mail, Domain and Telnet packets are identified by their port number as either source or
destination; transport type is not tested, so these may be either UDP or TCP.

Any packets which don't belong to the categories of interest above are tallied by the t_bad
action.

Auckland local nets
#
Auckland_nets:
 v1 & 255.255.255.0 = 130.216.1.0 : PushtoAct, A_dept; # Computer Centre
 v1 & 255.255.255.0 = 130.216.3.0 : PushtoAct, A_dept; # Auckland DMZ
 v1 & 255.255.255.0 = 130.216.5.0 : PushtoAct, A_dept; # Eng Science
 v1 & 255.255.255.0 = 130.216.7.0 : PushtoAct, A_dept; # Physics
 v1 & 255.255.255.0 = 130.216.11.0 : PushtoAct, A_dept; # Medical School
 v1 & 255.255.255.0 = 130.216.12.0 : PushtoAct, A_dept; # Pharmacology
 v1 & 255.255.255.0 = 130.216.14.0 : PushtoAct, A_dept; # Commerce
 v1 & 255.255.255.0 = 130.216.15.0 : PushtoAct, A_dept; # Mathematics
 v1 & 255.255.255.0 = 130.216.21.0 : PushtoAct, A_dept; # Chemistry
 v1 & 255.255.255.0 = 130.216.26.0 : PushtoAct, A_dept; # S.B.S.
 v1 & 255.255.255.0 = 130.216.33.0 : PushtoAct, A_dept; # Computer Science
 v1 & 255.255.255.0 = 130.216.34.0 : PushtoAct, A_dept; # Computer Science
 v1 & 255.255.255.0 = 130.216.73.0 : PushtoAct, A_dept; # Law
#
 v1 & 255.255.255.0 = 192.156.165.0 : PushtoAct, A_local; # DECUSLINK
 v1 & 255.255.255.0 = 192.251.230.0 : PushtoAct, A_local; # CLEARFIELD
 v1 & 255.255.255.0 = 202.12.104.0 : PushtoAct, A_local; # DSE
 v1 & 255.255.255.0 = 202.12.105.0 : PushtoAct, A_local; # FPNET
 v1 & 255.255.255.0 = 202.14.100.0 : PushtoAct, A_local; # STATUS
 v1 & 255.255.255.0 = 202.14.102.0 : PushtoAct, A_local; # KCBBS
 v1 & 255.255.255.0 = 202.14.216.0 : PushtoAct, A_local; # MANUKAU
 v1 & 255.255.255.0 = 202.14.217.0 : PushtoAct, A_local; # MALEFICARUM
 v1 & 255.255.255.0 = 202.14.252.0 : PushtoAct, A_local; # NETBLK-CRAYCOM
 v1 & 255.255.255.0 = 202.14.253.0 : PushtoAct, A_local; # NETBLK-CRAYCOM
 v1 & 255.255.255.0 = 202.14.254.0 : PushtoAct, A_local; # NETBLK-CRAYCOM
#
 v1 & 255.255.0.0 = 156.62.0.0 : PushtoAct, A_local; # ATINET
 v1 & 255.255.0.0 = 130.216.0.0 : Return, 2; # University of Auckland
#
 Null & 0 = 0 : Return, 4; # Not dept or local
#
A_dept:
 Null & 0 = 0 : Return, 1; # UofA department
#
A_local:
 Null & 0 = 0 : Return, 3; # Auckland local
#
NZ nets (checked by traceroute from Auckland), Tue 19 Oct 93
#
132.160.0.0 PACCOM
140.200.0.0 KAWAIHIKO

29/06/99 -- 25 -- NeTraMet Manual

#
Class B nets
#
Tuia_proximal: # Auckland B
 v1 & 255.255.0.0 = 130.216.0.0 : Return, 1; # AUCKLAND
 v1 & 255.255.0.0 = 156.62.0.0 : Return, 1; # ATINET
Canterbury B
 v1 & 255.255.0.0 = 132.181.0.0 : Return, 2; # CANTERBURY
 v1 & 255.255.0.0 = 138.75.0.0 : Return, 2; # LINCOLN-LAN-1

 v1 & 255.255.0.0 = 153.111.0.0 : Return, 2; # CCCNET2
 v1 & 255.255.0.0 = 165.84.0.0 : Return, 2; # CHCHPOLY-NET

Class C nets
Auckland C
 v1 & 255.255.255.0 = 192.156.165.0: Return, 1; # DECUSLINK
 v1 & 255.255.255.0 = 192.251.230.0: Return, 1; # CLEARFIELD
 v1 & 255.255.255.0 = 202.12.104.0 : Return, 1; # DSE
 v1 & 255.255.255.0 = 202.12.105.0 : Return, 1; # FPNET
 v1 & 255.255.255.0 = 202.14.100.0 : Return, 1; # STATUS
 v1 & 255.255.255.0 = 202.14.102.0 : Return, 1; # KCBBS
 v1 & 255.255.255.0 = 202.14.216.0 : Return, 1; # MANUKAU
 v1 & 255.255.255.0 = 202.14.217.0 : Return, 1; # MALEFICARUM
 v1 & 255.255.255.0 = 202.14.252.0 : Return, 1; # NETBLK-CRAYCOM
 v1 & 255.255.255.0 = 202.14.253.0 : Return, 1; # NETBLK-CRAYCOM
 v1 & 255.255.255.0 = 202.14.254.0 : Return, 1; # NETBLK-CRAYCOM
Canterbury C
 v1 & 255.255.255.0 = 192.73.21.0 : Return, 2; # TUIA-DSIR-1
 v1 & 255.255.255.0 = 192.101.16.0 : Return, 2; # CHMEDS
 v1 & 255.255.255.0 = 192.122.180.0: Return, 2; # WAIRCNET

 v1 & 255.255.255.0 = 202.20.76.0 : Return, 18; # SANS
 v1 & 255.255.255.0 = 202.20.102.0 : Return, 18; # AGCTRL
 v1 & 255.255.255.0 = 202.20.103.0 : Return, 18; # AGLINC
 v1 & 255.255.255.0 = 202.20.104.0 : Return, 18; # AGGRASS
#
 Null & 0 = 0 : Return, 19; # Not an NZ net

#

FORMAT FlowRuleSet FlowIndex FirstTime " "
 SourcePeerType SourcePeerAddress DestPeerAddress " "
 SourceTransType SourceTransAddress DestTransAddress " "
 ToPDUs FromPDUs " " ToOctets FromOctets;
#
STATISTICS # Collect meter statistics
#
end of file

The Format statement specifies the attributes to be collected. These include the transport
addresses, allowing for analysis of the traffic by IP service. The meter's performance
statistics will also be collected.

29/06/99 -- 26 -- NeTraMet Manual

5.3.7. rules.lan
1705, Thu 9 Feb 95
#
Rule specification file to tally Local Area Network traffic
#
Nevil Brownlee, Computer Centre, University of Auckland
#
SET 7
#
RULES
 SourcePeerType & 255 = IP: PushtoAct, IP_pkt;
 SourcePeerType & 255 = Novell: PushtoAct, Novell_pkt;
 SourcePeerType & 255 = EtherTalk: PushtoAct, Apple_pkt;
 SourcePeerType & 255 = DECnet: PushtoAct, DEC_pkt;
 Null & 0 = 0: Ignore, 0;
#
IP_pkt: # Tally IP traffic by (Class C) subnet
 SourcePeerAddress & 255.255.255.0 = 0: PushPktToAct, Next;
 DestPeerAddress & 255.255.255.0 = 0: CountPkt, 0;
#
Novell_pkt: # Tally Novell traffic by network number and port
 SourcePeerAddress & 255.255.255.255 = 0: PushPktToAct, Next;
 DestPeerAddress & 255.255.255.255 = 0: PushPktToAct, Next;
 SourceTransAddress & 255.255 = 0: PushPktToAct, Next;

 DestTransAddress & 255.255 = 0: PushPktToAct, Next;
 SourceTransType & 255 = 0: CountPkt, 0;
#
DEC_pkt:
 SourceTransType & 255 = 38: PushtoAct, DEC_hosts;
 SourceTransType & 255 = 6: PushtoAct, DEC_hosts;
 SourceTransType & 255 = 46: PushtoAct, DEC_hosts;
 SourceTransType & 255 = 14: PushtoAct, DEC_hosts;
#
 Null & 0 = 0: GotoAct, Next # Tally DECnet non-data packets by type
 SourceTransType & 255 = 0: CountPkt, 0;
#
DEC_hosts: # Tally DECnet data by host
 SourcePeerAddress & 255.255.255 = 0: PushPkttoAct, Next;
 DestPeerAddress & 255.255.255 = 0: CountPkt, 0;
#
Apple_pkt:
 SourceTransType & 255 = 3: PushtoAct, Apple_hosts;
 Null & 0 = 0: GotoAct, Next # Tally EtherTalk by DDP type
 SourceTransType & 255 = 0: CountPkt, 0;
#
Apple_hosts: # Tally EtherTalk data by host
 SourcePeerAddress & 255.255.255 = 0: PushPkttoAct, Next;
 DestPeerAddress & 255.255.255 = 0: CountPkt, 0;
#
STATISTICS
#
FORMAT FlowRuleSet FlowIndex FirstTime " "
 SourcePeerType SourcePeerAddress DestPeerAddress " "
 SourceTransType SourceTransAddress DestTransAddress " "
 ToPDUs FromPDUs " " ToOctets FromOctets;
#
end of file

This rule set meters traffic on a busy Local Area Network. It attempts to tally each of four
protocols by transport type so as to measure the amount of traffic flowing for each of these.
In addition data transport flows are tallied by peer address pairs so as to determine which
pairs of hosts generate the greatest proportion of total network traffic.

29/06/99 -- 27 -- NeTraMet Manual

6. NeMaC Users' Guide

6.1. Overview of NeMaC

NeMaC is a combined manager and collector for the NeTraMet meter. It is a simple Unix
program, written in a simple and straightforward way. It is intended to provide control for
NeTraMet, so as to make the initial NeTraMet implementation a useful and effective
monitoring tool. Later versions will make the coding more elegant, add more features and
so on.

If only one meter is to be controlled, all the arguments can be placed on the command
line, which is useful when testing new meters and/or rule files. If several meters are to be
controlled, default values for the options can be specified on the command line, and the
particular parameter values required for each meter can be specified by records in a
configuration file.

While NeMaC is running it produces a log file, recording any unusual events observed for
any of the meters being controlled. The name of this log file is NeMaC.log.nnn, where nnn
is a sequence number starting from 001. When NeMaC starts it scans the current
directory for NeMaC log files, then uses the next available sequence number. In this way
the log files are preserved through successive runs of NeMaC.

In the same way, when NeMaC starts controlling a meter it opens a 'flows' file. The name
of this file is meter-name.flows.nnn. 'meter-name' is the name used to reach the meter via
IP; it may be an IP address (e.g. 130.216.234.234) or a host name (provided NeMaC can
get its address from a name server). For example the third run of NeMaC controlling
meter 130.216.234.234 would produce a flows file called 130.216.234.234.flows.003.

6.2. Command Line Options

NeMaC's command line options are specified as usual, i.e. each option starts with a
hyphen, a letter indicating the options, then any parameters required by the option.

If NeMaC is invoked without any options, it will display a summary of the available options.

The options are:

-b mibfile Gives the name of the MIB file. Default is to read mib.txt from the
current directory, or the file specified by the MIBTXT environment
variable.

-c nnn Specifies the required collection interval in seconds. If nnn is zero
NeMaC will download rule file(s) to the meter, then exit without
collecting any flow data.

-e rulefile Gives the name of a rule file to be read, downloaded to one or more
meters and set up to be those meter's standbyy rule set.
Configuration file records may override this for individual meters.

-f cfgfile Gives the name of NeMaC's configuration file, i.e. the file it will read to
determine which meters will be managed and have flow data collected
from them. Its default name is NeMaC.cfg.

-g sss Specifies NeTraMet's garbage collection interval in seconds.

-h pp Sets NeTraMet's HighWaterMark as a percentage of the available flow
space, for each manager task, i.e. for every configuration file record..
NeTraMet's default value is 0% - the meter does not test for high
water.

29/06/99 -- 28 -- NeTraMet Manual

-i sss Specifies NeTraMet's InactivityTimeout interval in seconds.
NeTraMet's default value is 600 seconds.

-k nnn Specifies the required keepalive interval in seconds. Every nnn
seconds NeMaC will check that the specified meter is running. If it
has restarted, NeMaC will download the rule file to it.

-l Requests NeMaC to list the rule file(s) as they are processed.

-m .ppp Specifies the UDP port to use for communication with the NeTraMet
meter. By default this is port 161 (SNMP).

-o pp Sets NeTraMet's FloodMark as a percentage of the available flow
space. NeTraMet's default value is 95%.

-p For each collection flow data files (as well as log files) will be opened,
data appended to them, then they will be closed. If you move or
rename a closed flow data file a new one (with the old name) will be
created by the next collection. This is a superset of the -P option.

This is an alternative to using NeMaC's older 'flag file' method.

Still another alternative is to send a SIGUSR1 signal; this will cause
NeMaC to start a new flow data file

-r rulefile Gives the name of a rule file to be read and downloaded to one or
more meters. Configuration file records may override this for
individual meters.

-s Tells NeMaC that the rule file is to be read and checked for syntax,
but not downloaded to a meter.

-t This option is for testing – it provides extra diagnostic output from
NeMaC.

-u Specifies that samples should be unsynchronised, i.e. that they
should be made every collection interval (-c seconds) after NeMaC
starts up.

-v Asks NeMaC to run in 'verbose' mode. This produces a display of
meter status information on the screen at each collection from every
meter.

-w nn Specifies download level. nn = 0 (the default) downloads rules on
meter startup and after a meter restart. nn = 1 downloads only after a
meter restart, and nn = 2 never downloads.

-x Don't write anything to the meter. Use this if you use a second copy
of NeMaC (or nm_rc) to collect from a single meter. Allowing two
collectors to write allows the meter to recover memory for flows after
they've been collected by only one of the two collectors.

-E Specifies the timeout (in seconds) for rEader rows in the meter. If
collections stop (e.g. because a manager has failed), the meter will
delete the row (i.e. forget about the meter reader) after this time. The
default is 0, which means that reader rows will never time out.

-F name Specifies the name of the flow data file NeMaC is to write.

-L name Specifies the name of the log file NeMaC is to write.

-P Open-append-close to NeMaC's log file. This is a subset of the
-p option.

29/06/99 -- 29 -- NeTraMet Manual

-Y name Tells NeMaC to write messages to the Unix syslog. name is used to
identify the resulting syslog records. Compile-time variable
LOG_LOCAL must be set to enable this option.

Following the options, the name of a meter and its write SNMP community may
appear on the command line. In this case, NeMaC will begin managing the specified
meter. If NeMaC can find a configuration file, the meter information in that file will
override any given on the command line. NeMaC must use a meter's write
community, because it sets the meter's LastCollectTime variable to tell it that a
collection has been started.

For example

NeMaC -c120 -r rules.sample 130.216.234.237 test

would cause NeMaC to begin managing meter 130.216.234.237 with write SNMP
community 'test'. The rule file 'rules.sample' would be read and downloaded to the
meter, and that meter's flow data would be collected every two minutes and written to
a file called 130.216.234.237.flows.00x, where 00x was the next available sequence
number.

From version 4.1, the NeTraMet meter is able to run more than one rule set at the
same time. The meter uses 'Owner Names' to help distinguish its rule sets. You can
specify an Owner Name for NeMaC by specifying it on the command line, or any line
of a configuration file, after the write community name, e.g.

NeMaC -c300 -r rules.sample my_meter test2 Net-Ops

The Owner Name is an alphameric string with a maximum length of 16 characters. It
may contain any characters except a blank. In the example above we used Net-Ops
for NeMaC's Owner Name. If an Owner Name is not specified, 'NeMaC' is used.

The above command would cause NeMaC to begin collecting flow data from meter
'my_meter' with write SNMP community 'test2'. The rule file 'rules.sample' would be
read and downloaded to the meter, and that meter's flow data would be collected and
written to the flow data file every five minutes.

If two users wish to run NeMaC at the same time, they need to agree to use different
Owner Names, otherwise both might use 'NeMaC' by default, which is bound to cause
confusion!

When NeMaC is shut down gracefully (by a SIGTERM or SIGINT signal) it shuts down
all the tasks it is running on all its meters, without collecting the flow data from those
tasks.

When NeMaC execution stops for any other reason, NeMaC cannot stop any of its
rule sets executing on any of the meters it is controlling. Instead, they continue to run
until NeMaC restarts. At that point, NeMaC reads the meters’ ruleset tables. The
'download level' (-w 1) option can be used to avoid reloading existing rulesets; flows
belonging to them will be read. By default (-w 0), NeMaC will delete any rulesets (and
the flows they have created) before downloading the rulesets and starting them
running.

Again

NeMaC -s -l -r rules.special > syntax.special

would cause NeMaC to perform a syntax check on the rule file 'rules.special,' writing a
listing of the file during the syntax check. Output from this operation is directed to a
file called 'syntax.special' for later inspection.

29/06/99 -- 30 -- NeTraMet Manual

By default collections are synchronised, i.e. after the first one the next collection time
is rounded up to the next multiple of the collection time. e.g. for quarter-hour samples
(-c900) they occur at 0, 15, 30 and 45 minutes past each hour. The accuracy of this
timing is somewhat limited, and will depend - among other factors - on whether
NeMaC has more than one meter to manage and on how many flows each meter has
active.

6.3. Configuration File Format

The name of the configuration file is specified by the -f command line option (above). If
this option is not used, 'NeMaC.cfg' is used as the default name. If NeMaC can find the
configuration file it will read it and start controlling meter(s) as specified in the configuration
records; otherwise it assumes that only one meter is to be controlled, and that all options
are specified on the command line.

Each record in a configuration file may contain the following options:

-c nnn Specifies the meter's collection interval in seconds.

-e rulefile Gives the name of the ‘standby’ rule file to be used for this meter.

-g sss Specifies the meter's garbage collection interval in seconds.

-h pp Sets the meter's HighWaterMark for this record as a percentage of the
available flow space.

-i sss Specifies the meter's InactivityTimeout interval in seconds.

-k nnn Specifies the meter's keepalive interval in seconds.

-n nnn Specifies the meter's Sampling Rate. The meter will only process one
out of every nnn packets. Default value is 1, i.e. all packets are
processed..

-o pp Sets the meter's FloodMark as a percentage of the available flow
space.

-r rulefile Gives the name of the rule file to be used for this meter.

Following the options, the name of a meter and its write SNMP community must
appear on the configuration record.

Since NeMaC command-line parameters can displayed by any user via the Unix ps
command, you should always specify write community names in a configuration file.
Each record in a configuration file specifies meter parameters which override the
default values or the ones specified on the NeMaC command line. NeMaC uses the
meter name 'default' to indicate that this record contains default values for following
records. For example

./NeMaC -f nm-config

tells NeMaC to read the file 'nm-config,' which contains the following records

-c900 -p -rrules.mynet default
meter1 write-1
meter2 write-2

-c300 meter3 write-3

This starts three meters; all run rules.mynet, and append to their flow data files.
meter1 and meter2 are to be collected every 15 minutes, and meter3 every 5
minutes.

29/06/99 -- 31 -- NeTraMet Manual

6.4. Restarting Flow Data Files

Once NeMaC is running it continues to sample its specified meters, producing a
corresponding set of flow data files, until NeMaC's execution stops. As part of its
operation NeMaC periodically looks to see whether a file called NeMaC.flag exists. If it
does, NeMaC closes all its flow data files and opens new ones.

As an example of this, consider a traffic monitoring system which is to produce daily flow
data files for a meter called example.meter. If there were initially no flow data files in
NeMaC's directory, it would start by creating one called example.meter.log.001, and
commence writing samples to it. One could then set up a chron job to be run at midnight
every day which renames example.meter.log.001 to something like
example.meter.monday, then touches NeMaC.flag. This will create an empty file called
NeMaC.flag; when NeMaC sees this it will close the old flow data file (now called
example.meter.monday) and open a new flow data file called example.meter.log .001.

An alternative to the above 'flag file' scheme is to use the -P option to tell NeMaC it should
close the flag file after writing the data from a collection, then open it again so as to
append data to it for later collections. This allows you to ename the flow data file; NeMaC
will create a new flow data file for it's next collection.

If you find NeMaC's default method of naming flow data and log files limiting in any way,
you can specify the names yourself using the -F and -L options.

7. NeTraMet Users' Guide

7.1. Command Line Options

NeTraMet is started from the command line like any other program. Command line
options are specified in a Unix-like way, i.e. each option starts with a hyphen, then a letter
indicating the option, and any parameters it requires.

If NeTraMet is invoked without any options, it will display a summary of the available
options.

The options are:

-f nnn Sets the maximum number of flows to nnn. The default for this is 4000; it
may be sensible to use a smaller number on the PC if you are using a
large rule set.

-i ifn Tells NeTraMet which interface to monitor. If this is not specified libpcap
chooses the default Ethernet network interface. Up to four interfaces
may be specified for the Unix and PC meters. For the Unix meter, ifn is
the interface name, e.g. le0. For the PC meter it is the software interrupt
number in decimal, e.g. 96 = 0x60.

-I ifn Tells PC NeTraMet to use the specified interface for IP communication,
but not to monitor it. If this option is used, up to three other interfaces
may be monitored.

-k Disables the keyboard. If your PC has a BIOS which will start without a
keyboard connected, use this option to tell NeTraMet there is no
keyboard. If you are running NeTraMet as an unattended background
process under Unix you should disable the keyboard.

-l Specifies that the meter should use the length field from IP headers for
the number of bytes in an IP packet. Default is to use the MAC
(hardware) packet size.

29/06/99 -- 32 -- NeTraMet Manual

-m ppp Specifies the UDP port to use for communication with meter readers
such as NeMaC. By default this is port 161 (SNMP).

-n nnn Sets the meter's Sampling Rate. The meter will only process one out of
every nnn packets. Default value is 1, i.e. all packets are processed.

-p nnn Sets the size of NeTraMet's buffer for incoming packet headers. The
default size is 1024 packet headers.

-r rsc Specifies a read SNMP community for NeTraMet. Only one read
community may be specified.

-s Disables the screen display. If NeTraMet's screen will never be looked
at, it makes sense not to spend processor cycles on maintaining a
display.

-u nnn Allocates space in the meter for a maximum of nnn rules (total for all
rulesets in the meter). Default is 2000 rules.

-w wsc Specifies that NeTraMet's write SNMP community is to be wsc.
The default for this is private. Note that the write community must not be
the same as the read community.

7.2. PC Screen Display

The display has three main areas; the top left corner is the 'status' area, the bottom left is
the 'history' area, and the right-hand half displays a strip chart showing network utilisation.

• The Status Area is updated every second to indicate the time, number of packets
(p=), bytes (b=), and utilisation % (u=) for that second. It shows the maximum
packet backlog (q=), i.e. the maximum length of the queue of uncounted packets
during the second. The meter has buffer space for 1024 packets, so this parameter
gives a good indication of the meter's ability to handle the current packet load. The
Status Area also shows the active flows % (a=). Since this takes significant
resources to compute it is only checked every 30 seconds.

• The History Area displays messages about the meter's operations. These are
written on the bottom line of the area, which is then scrolled up one line. The
messages are time-stamped, so this area tells you what the meter, manager and
collector have been doing recently.

• Every ten seconds a new line of the chart is displayed on the bottom of the strip
chart showing the minimum, average and maximum utilisation per second. The
minimum is marked with a <, maximum with a > and the average with a *. The scale
of the utilisation chart is normally 0 to 30% in 1% steps, but the 'h' keyboard
command can be used to halve it, i.e. change it to 0 to 60% in 2% steps. The chart
is scrolled up the screen as each line is displayed, so that it always shows the
network utilisation for the last 250 seconds.

29/06/99 -- 33 -- NeTraMet Manual

7.3. Keyboard Commands

If the keyboard is enabled, i.e. the -k option did not appear on its startup command line,
pressing a key will perform various functions, as follows:

a Display 'manager tAsk' information table

b Display 'bad packets' counts

e Display 'meter rEader' information table

f Display flow table statistics. These include active and inactive flows, as well as
information about collection times and collector IP addresses.

h Set/reset half-scale for utilisation strip chart

m Display meter's memory usage

p Display list of protocols meter is currently recognising. This will depend on the
current rule table

s Display meter performance statistics. These are explained further in the next
section.

t Display time in 1/100s intervals from meter startup

u Display 'rUleset' information table

v Display meter version info

z Set meter statistics variables to zero

? Display help (summary of keyboard commands)

ESC Stop metering, exit to DOS.

7.4. PC Statistics Display

The statistics displayed (console 's' command) are as follows:

Meter Statistics ..
 Av pkt/s 275, av pkt backlog 1
 Max pkt/s 818, max pkt backlog 3
 Idle time av 99.1, min 96.5 %
 66 flows active (max 3200)
 0.5 rules/pkt, 0.2 counts/pkt
 1.0 compares/count

Meter statistics are computed using counters which are updated every second. These
counters can be set to zero by the manager, or by pressing the 'z' key. NeMaC, if
instructed by the rule set, can read the statistics variables then set their counters to zero
each time it collects the flow data. The statistics are provided so as to evaluate the
meter's performance on various hardware configurations, network traffic loads and rule
tables. A brief explanation of each is given here.

'Packets per Second' gives the average and maximum packet rates observed since the
statistics counters were last set to zero.

'Packet Backlog' refers to the maximum length of the queue of packets received but not
yet processed by the meter. The maximum queue length is 1024; packets received when
the buffer is full are counted as lost packets, then discarded. The LostPacket count can
be displayed by pressing the 'b' key.

NeTraMet's highest-priority process attempts to take packets from the input queue, up to a
maximum of 400 at a time. This prevents its lower-priority processes such as the

29/06/99 -- 34 -- NeTraMet Manual

keyboard handler from being blocked indefinitely. If there are no packets in the queue a
dummy packet is generated and passed to the packet matching routine, where it is
counted. The 'Idle Time' measurements are the ratio of dummy packets to total packets
(i.e. dummy + real packets) processed by the meter.

'Flows Active' here means flows which currently hold valid flow data which has not been
collected. Once flows become inactive their space can be recovered by the garbage
collector. If the meter runs out of space for new flows the garbage collector will reclaim
the oldest inactive flows first.

'Rules per packet' and 'Counts per Packet' show how many rules were tested and how
many count actions were performed for each packet. Counts are implemented using hash
tables for the flows; the number of 'Compares per Count' gives an indication of how long
the hash chains have become.

7.5. PC Flow Table Information Display

The statistics displayed (console 'f' command) are as follows:

Flow Table Info ..
 Collection times:
 130.216.3.1 32 s, 2 s
 InactTime 600, HighWater 65, Flood 95
 CurrentRuleSet 2, EmergencyRuleSet 0
 Flows: 56 active, 94 used, 3200 max
 0 recovered (GC: 10 s, 32 flow)
 Creating 2.000 flow/s
 Recovering 0.000 flow/s

'Collection Times' gives information about collectors gathering flow data from this meter.
The collector's IP address appears first, followed by the elapsed time since the last
collection (2 seconds above) and the collection before that. Inactive flows (older than 32
seconds above) may be recovered by the garbage collector.

The next two lines show the current values of the meter's memory management
parameters.

The 'Flows' line shows the maximum number of flows (NeTraMet's -f command-line
parameter), the number in use (active and inactive) and the number active.

'Flows Recovered' shows the number of flows reclaimed by the garbage collector since the
statistics counters were last set to zero. The garbage collector is controlled by two
parameters, which are displayed after the GC: label. The first of these is the interval in
seconds between invocations of the garbage collector. Its default value is 5, but it can be
changed by the manager. The other parameter are the number of flows tested by the
garbage collector each time it is invoked. These cannot be changed by the user.

The last two lines show the rate the flows are created (by the rules in response to
incoming packets) and recovered (by the garbage collector).

7.6. Configuring Waterloo TCP for NeTraMet

Waterloo TCP stores its configuration data in a file called WATTCP.CFG. For use with
NeTraMet it is simplest to place this file in the same directory as NeTraMet itself

A sample WATTCP.CFG file is included in the NeTraMet distribution. This will need to be
edited to specify the IP Address, Subnet Mask, Default Gateway and Domain Name for
NeTraMet at the location where you intend to run it. The file is in plain ASCII text, and it is
obvious which lines need to be modified.

29/06/99 -- 35 -- NeTraMet Manual

7.7. Sample AUTOEXEC.BAT file
wd8003e 0x60 5 0x300 0xD800
NeTraMet -r remote -w Net*Manager

The first line above starts the packet driver for a Western Digital Ethernet card, using
hardware interrupt (IRQ) 5, I/O address 0x300, shared memory address 0xd800 and
packet interrupt 0x60. NeTraMet searches the interrupt vector when it starts up, which
allows you to use any valid packet interrupt address. For Versions 2.2,above 2.2,3.5,
NeTraMet can handle up to four packet drivers.

The second line starts NeTraMet, specifying that it is to have read SNMP andcommunity
'remote', andthat its write communityis 'Net*Manager'. The screen and keyboard are
enabled by default, and the meter will use the default maximum of 4,000 flows.

7.8. Differences between PC and Unix versions of NeTraMet

On the PC a packet driver is used to access each network interface. If no interface is
specified NeTraMet uses the first packet driver it finds as the interface to monitor. On Unix
the default network interface will be monitored by default. On a PC or Unix system you
may use the -i command-line option to specify which interface(s) to monitor.

The PC version of the meter runs on a system with a dedicated screen and keyboard, and
hence will respond to keyboard commands, and provides a continuously-updated status
display.

The Unix versions are intended to run as background processes on a multi-user system.
When starting NeTraMet as a background process, don't forget to use the '-k' option to
prevent it trying to read from stdin.

In the same way the Unix version doesn't provide a status display. If its screen is enabled
it will display history messages as events occur, but that is the full extent of its screen
output.

Some of the PC statistics variables have been specifically designed to monitor the
hardware performance of the PC, so they are not relevant to Unix. In particular, packet
backlog statistics are not implemented for Unix. Other statistics, such as processor
utilisation, use Unix system calls to gather the requested information.

Apart from the above comments about screen and keyboard, the two versions are
identical. From the performance point of view there is one further feature of the Unix
version; it is not limited by the PC's arcane memory models, so that it can handle more
flows than the PC (which has a limit of about 4500). This problem was greatly reduced
when it became possible to make a 32-bit PC meter – since then both Unix and 32-bit PC
meters are limited only by the fact that FlowIndexes are 32-bit values!

29/06/99 -- 36 -- NeTraMet Manual

8. NeTraMet Distribution

8.1. Copyright Statement

NeTraMet is free software, distributed under the terms of the GNU General Public License.
A copy of this is provided with the NeTraMet software distribution files.

8.2. Distribution Files

The NeTraMet distribution files include the following:

*.pdf
Documentation files for NeTraMet, in Adobe Portable Document Format (PDF)

NeTraMet43.tar.gz
NeTraMet documentation, including example rule files and the Meter Services MIB
Source code for CMU SNMP, NeTraMet, nifty, srl, NeMaC, etc.

ntm43-pc.zip
Executable files for PC NeTraMet meters (32-bit, OCxMON and 16-bit)

ntm43-src.zip
Source and Make files for PC NeTraMet meters

Solaris.tar.gz
Solaris binary files for the NeTraMet programs

Irix.tar.gz
Irix binary files for the NeTraMet programs

Linux.tar.gz
linux binary files for the NeTraMet programs

9. Installation

On a Unix system:

Create a directory for NeTraMet and place the NeTraMet.tar.gz file there. Uncompress
it and unpack it; this will create directories and place NeTraMet's files in them as
follows:

./README Introduction } Read these two files

./INSTALL Install instructions } before continuing !

./documentation/
NeTraMet/ NeTraMet documentation
Examples/ rule files
 srl/ SRL programs
snmp/ CMU SNMP documentation

./mib/ Traffic Meter MIB

./src/
snmplib/ CMU SNMP library source
apps/ CMU SNMP applications source
meter/ NeTraMet source
manager/ NeMaC source
srl/ SRL compiler source

29/06/99 -- 37 -- NeTraMet Manual

The Unix meter uses libpcap to observe packet headers. libpcap is available from

ftp://ftp.ee.lbl.gov/libpcap-*.tar.gz

Install it on your machine, i.e. build the libpcap.a file and either install it as a system file
or simply copy it into the NeTraMet’s src/meter directory.

There are several compile-time options for the NeTraMet programs, including:

CLNS Reset by default Allows NeTraMet to meter CLNS packets

FULL_IPX Reset by default Tells NeTraMet to use full (10-byte) IPX peer addresses,
instead of just (4-byte) network numbers

V6 Reset by default Allows NeTraMet to recognise and handle IPv6 packets

These options should be set for all the NeTraMet programs by editing the configure file
before running it to build the programs, or (if you have some experience with GNU
autoconfigure) by editing the configure.in file then using autoconfig to create a new
configure file from it.

Instructions for building the NeTraMet programs are given in the INSTALL file.
NeTraMet is built in the meter directory, NeMaC in the manager directory and srl in the
srl directory.

Once the programs are built you can begin to use them, as follows ..

Copy NeTraMet and NeMaC to the location where they will be used. NeTraMet opens
a UDP port for SNMP; make sure it has sufficient privilege to do this. NeMaC doesn't
need special privilege, but it needs access to the mib.txt file (in the /mib directory). Set
an environment variable to specify this, e.g.

setenv MIBTXT /usr/local/NeTraMet/mib/mib.txt

Decide on write community names for each meter you intend to run. Start the meters.

Create rule files for each meter. If there are many of these it will be sensible to create a
configuration file with an entry for each of them. Start NeMaC.

On a PC:

Full instructions for setting up the PC versions of NeTraMet are included in the ntm*-
pc.zip file, including run-time support files for the 32-bit version. The distribution file
includes full source for Joel Apisdorf’s OCxMON traffic measurement system; this
provides the 32-bit environment for the NeTraMet meters.

If you wish to compile and link NeTraMet yourself, copy ntm*-src.zip to your PC and
unzip to create directories and place files into them as follows:

/wattcp Waterloo TCP library source
/snmplib CMU SNMP library source
/netramet NeTraMet source
/.. Other OCxMON source files
/ntm32 32-bit meter Makefiles
/ntmoc OCxMON meter Makefiles
/ntm16 16-bit meter Makefiles

29/06/99 -- 38 -- NeTraMet Manual

To create one of the versions of NeTraMet cd into the appropriate directory, e.g. ntm32
for the 32-bit meter. Build the snmp and Waterloo TCP libraries, then build the meter
as follows:

make –f snmp
make –f wattcp
make

10. NeTraMet's Future
This document describes the current version of NeTraMet; it will doubtless improve and
grow. Please report any bugs or problems you encounter to me directly,
n.brownlee@auckland.ac.nz.

There is a NeTraMet Users' mailing list; any comments, suggestions, enquiries, etc will be
welcome. To send a message to the list, send it to netramet@auckland.ac.nz. To
subscribe to the list send a message to majordomo@auckland.ac.nz with the body

 subscribe netramet your.address@domain

Discussion about the Realtime Traffic Flow Measurement (RTFM) Architecture will
continue on the Working Group's mailing list, rtfm@auckland.ac.nz. If you are interested
in network traffic measurement please join this list by sending a message to
majordomo@auckland.ac.nz with the body

 subscribe rtfm your.address@domain

The RTFM Working Group maintains a WWW page at

http://www.auckland.ac.nz/net/Internet/rtfm

I would appreciate user feedback and reports of your experiences with it, in particular:

• Performance of various configurations of PC and Unix meters on different networks.

• Ports of NeTraMet or NeMaC to other operating systems.

• Developments of programs for processing flow data files, e.g. to produce an input file
for a statistics package.

• SRL programs. How hard or easy did you find it to create rule files for your metering
requirements using SRL? Were there things you wanted to do but couldn't? Did you
discover any particularly elegant programming techniques for metering your network?

• Suggestions for new features in existing NeTraMet programs, or ideas for new
programs which could form part of the NeTraMet system.

Please post 'experience' reports and suggestions to the NeTraMet Mailing List .

29/06/99 -- 39 -- NeTraMet Manual

11. Acknowledgments
Many people have contributed to the development of NeTraMet. I wish to record my
thanks particularly to those who participated in the early discussions of the Internet
Accounting Working Group, which developed the Internet Accounting Architecture.
Thanks to:

Cyndi Mills and Greg Ruth (BBN) Co-chairs to March 93
Kathy Robertson (Concord Communications), George Abe (infoNet)
Marshall Rose (Dover Beach Consulting)

NeTraMet is the first implementation of the RTFM Working Group's draft Meter Services
MIB. My colleagues here at Auckland have contributed many hours of discussion
throughout NeTraMet's development. Special thanks to:

John White, Russell Fulton, Murray Johns
Wilson Yan
Sig HandelMan, Stephen Stibler

Making the OCxMON version of NeTraMet would not have been possible without the
support and encouragement of the OCxMON team at MCI, especially

Joel Apisdorf, Rick Wilder

Since NeTraMet's initial release in October 1993 many people have reported bugs,
suggested improvements, supplied information about protocols and contributed patches to
the source code. Special thanks to:

Nicolai Guba (BT Labs)
Mika Hautanieni (Helsinki University of Technology)
Steven Heitmeyer (Oregon State University)
Kevin Hoadley (JANET)
Jacek Kowalski (Telstra Research)
Scott Marcus (BBN)
Tran Phan Anh (University of Kansas)

12. References
"ISO 8473: Information Processing Systems – Data Communications –

Protocol for providing the Connectionless-mode Network Service," 1992

"RFC 1700: Assigned Numbers," J. Reynolds, J. Postel,
October 1994

"RFC 1272: Internet Accounting: Background," C. Mills, D. Hirsh, G. Ruth,
November 1991

"Internetworking with TCP/IP Vol 1 (2nd Edition), " Comer, D,
Prentice Hall, 1991

"Inside AppleTalk (2nd Edition)," Sidhu, Andrews and Opppenheimer,
Addison Wesley, 1990

"Netware Communications Processes," Netware Application Notes,
September 1990

