

November 97 -- 1 -- nifty

nifty
a Network Traffic Flow Analyser

Version 4.1

Nevil Brownlee

Information Technology Systems & Services
The University of Auckland

Auckland, New Zealand

November 1997

The information which nifty uses and displays is generated by a NeTraMet
traffic meter; readers should consult the NeTraMet documentation for

definitions and explanations of the terminology used here.

1. Introduction
nifty is a network traffic flow analyser, i.e. a program which monitors the network segment
to which a NeTraMet traffic meter is attached and displays information to help you
understand how the traffic is flowing on that network.

1.1. Overview

The traffic flow data which nifty analyses is gathered by a network traffic meter, i.e. by a
copy of NeTraMet running on a DOS (PC) or Unix host attached to the network segment of
interest. In terms of the Realtime Traffic Flow Measurement (RTFM) architecture, nifty is a
combined meter reader, manager and analysis application.

November 97 -- 2 -- nifty

nifty is an X/Motif program. This means that it runs on a Unix system which supports X
Windows and Motif, and produces a display on the nifty user's hosts system. For
example, I have built and tested the nifty program on Irix (Silicon Graphics) and Solaris
(Sun) Unix systems; to access the Unix system I normally use X-Win32, an X Windows
client on a PC running Microsoft Windows 95.

nifty displays a log-log plot which is updated after each 'sample,' i.e. each time the
NeTraMet meter is read. Flow duration is plotted on the abscissa (X axis). The meter
records the times the first and last packets of every flow were seen, so flow duration can
be determined with centisecond (SNMP TimeTick) resolution.

The flows to be observed by the meter are specified in a rule set, nifty reads this from a
rule file and downloads its rules to the meter.

A variety of different plots can be generated - the user chooses the required plot using a
simple menu interface. For each sample nifty chooses a number of the busiest flows, and
plots them using their FlowKind attribute value as a plot symbol.

2. Flow Analysis

2.1. Data collection

Nifty collects data from a NeTraMet meter, which makes it similar in function to NeMaC,
NeTraMet's manager and collector. In this manual I often refer to 'samples.' A 'sample' is
the collection of flow data read from the meter during a data collection. The interval (in
seconds) between collections (the 'sample interval') is specified by nifty's -c command-line
option.

When nifty starts up it may download a rule set to the meter. This rule set specifies which
flows are of interest, and which attributes will be reported on the 'format line.' The 'format
line' describes the information to be displayed for a flow being pointed at by the cursor
when the left mouse button is pressed.

In principle any rule set could be used by nifty but nifty does impose one restriction, as
follows. nifty uses the FlowKind attribute for each flow as the symbol to be used when the
flow appears on a plot. This can be any ASCII character (enclosed in apostrophes), or
one of the following special plot symbols:

0 = dot
1 = diamond
2 = plus
3 = square

A sample rule file, rules.x_ip, is provided for use with nifty. A listing of this rule set
appears an appendix to this manual. It specifies that the following attributes for IP flows
are of interest:

Protocol type (UDP, IP, ..)
SourcePeerAddress and DestPeerAddress
TransType (port number)
SourceTransAddress and DestTransAddress

Non-IP flows are also collected, but they are simply aggregated by protocol type, e.g. all
Novell packets produce a single 'Novell' flow.

The format line displays the attributes listed above. Note that the 'count' attributes for the
flow are commented out of the format line, as indicated below

November 97 -- 3 -- nifty

 # FirstTime LastTime
 # ToPDUs ToOctets " " FromPDUs FromOctets " "
 # FlowRuleSet FlowIndex " | "

These attributes are always read by nifty for every flow which was active during a sample
interval. Their values are used to determine which flows are to be plotted.

rules.x_ip also specifies (using Pushto rule actions) the plot symbol for each flow. For IP
flows rules.x_ip selects a well-known port as the destination, and sets a suitable plot
symbol. For example, FTP flows use 'F', nntp flows use 'N', WWW flows use 'W,' etc.
Flows which have no well-known ports use a diamond. Clicking on plotted diamonds will
display the format line, so you can see what the actual port numbers are. Non-IP flows
are plotted as a square. For these the format line will show the Ethernet packet type; see
the NeTraMet manual for details of its 'other' protocol feature.

2.2. Selecting the samples

Once the rule set has been downloaded and is being used by the meter, nifty can collect
samples of flow data. Each sample includes data for every flow which was active during
the sample interval, i.e. every flow for which the meter observed one or more packets.

The meter stores its flow data in a 'flow table,' the maximum size of which is specified by a
command-line parameter when the meter is started up. nifty reads this maximum size
from the meter, and initialises its own table with the same number of flows.

The nifty table is similar to that on the meter, except that it includes extra attributes which
hold the number of packets and bytes in each direction for the last sample collected for
this flow. These are similar to the 'rate' attributes computed by the fd_filter program.

nifty maintains one further attribute for each flow: the number of samples since the flow
was last active. A flow will remain in nifty's flow table until the meter re-uses its memory;
the time required for this to happen will depend on how active the network is. The 'last
active' attribute is used to select the colour used to plot a flow. The colour range contains
eight colours:

black, navy, blue, green, orange, red, magenta, purple.

Black is used for the flows active during the most recent sample, navy for the second-to-
last sample, and so on down to purple for flows last active eight or more samples ago.
This makes it easy to see which are the active flows on a plot, as well as allowing those
which have recently been active to be easily discerned.

When selecting which samples should be searched for flows to plot, nifty offers three
choices. These are:

Last sample Points are selected from the last sample only.

Recent samples Points are selected from the last eight samples

All samples Points are selected from all samples, i.e. the whole
of nifty's flow table

I find the recent samples plots most useful, since they allow me time to look at (and think
about) flows which appear only briefly, and also allow inactive flows to disappear from the
plots after a reasonable time (eight sample intervals).

November 97 -- 4 -- nifty

2.3. Which flows are 'interesting?'

nifty aims to analyse the traffic flows observed by the meter, and to produce plots which
will allow a user to discern the ones which are 'interesting.' This begs the question, "which
flows are interesting?" So far three classes of 'interesting' flows have been suggested to
me:

a. Flows between pairs of non-well-known ports. The most common cause of
these are passive FTP transfers, where a remote FTP server specifies the
port which a local FTP client should open to retrieve data.

b. Long-term, high-volume flows. These are interesting because they tie up
capacity on links, reducing the capacity available to other users. As an initial
assumption, any flow which continues for more than about 20 minutes is
worth investigating.

c. Short-term, 'bursty' flows. These are interesting because they can flood
router input queues, causing packets for other flows to be discarded (and
later re-sent). They are hard to detect because they only appear briefly.
Bursts of a few thousand packets in one second can be generated by some
programs. These are usually just badly configured; if they persist, they
should be investigated.

If you have further suggestions for 'interesting' flows, please send them to me, or to the
RTFM WG mailing list (addresses at the end of this manual).

2.4. nifty plots

The nifty plots are designed to be interesting in themselves, and to help in spotting your
'interesting' flows. Type a) flows (non-well-known ports) are plotted using a small
diamond. You should develop a rule file which specifies suitable ASCII characters for all
the well-known ports which are 'uninteresting' for your network.

When specifying a plot via the menu options, you may specify the ordinate (packets or
bytes) and the metric (rate, count or percent). This provides six different types of plot:

Packet Rate Number of packets per second, estimated from the counts and
times observed for the last sample. This plot is most useful for
observing type c) flows (short bursts.)

Packet Count Total number of packets seen.

Packet Percent Flow packet rate as a percentage of total observed packet rate for
the last sample.

Byte Rate Number of bytes per second, estimated from the counts and times
observed for the last sample.

Byte Count Total number of bytes seen. This plot is most useful for observing
type a) flows (long term, high volume).

Byte Percent Flow byte count as a percentage of total observed bytes for the last
sample.

Note that in all the above plots the rates and counts include all the flow's packets, i.e. they
are the sum of the 'to' packets (source-to-destination) and the 'from' packets (destination-
to-source). It is often interesting to see the 'from' and 'to' counts separately; this can be
done for individual flows using mouse buttons 2 and 3 (see below for details).

November 97 -- 5 -- nifty

3. nifty user's guide

3.1. Installation

Since nifty is an X/Motif program it requires the X and Motif libraries for compilation and
execution. The NeTraMet distribution file - NeTraMet.tar.gz - provides separate directory
trees for various operating systems, e.g. sg for Irix, solaris for Solaris, etc. Each
subdirectory contains a make file; nifty is built by the Make files in the manager/
subdirectories. Before building nifty you should inspect the Make file, and make sure that
the X and Motif library locations (compile and execute time) are correct for your system.

A copy of nifty is included in the Irix and Solaris object files (Irix.tar.gz and Solaris.tar.gz);
these were created using the distribution make files.

With the version 4.1 release, a new directory tree - autoconf/ - is provided, allowing you to
build all of the NeTraMet programs using GNU autoconfigure. Instructions for doing this
are given in the the autoconf/INSTALL file.

If you are already using X applications on your workstation, nifty should run without further
effort. If not, you will need to set up an X environment - you should seek help from your
system support staff to do this.

Like NeMaC, nifty is an SNMPv2 client. It opens a UDP port so as to connect to the
NeTraMet meter, and it doesn't need any special privileges to do this. It does, however,
need access to a copy of the meter MIB; it is simplest to provide this by setting the
MIBTXT variable to indicate the location of the MIB file. See the NeTraMet manual for
details of this.

3.2. Command line options

nifty's command line options are specified as usual, i.e. each option starts with a hyphen,
a letter indicating the options, then any parameters required by the option.

The options most important for nifty are:

-c nnn Specifies the required collection interval in seconds. When
choosing a collection interval, remember that you need time to
examine each plot - a minimum of 60s seems sensible.

-r fff Tells nifty to download the rule set from file fff, and to use that
format statement in that file to generate the 'format line' displayed
when button 1 is pressed.

-L fff Specifies that nifty should write its log (including records selected
by the 'logging' menu options) to the file named fff.

-n nnn Tells nifty that nnn flows should be plotted for each sample. The
default is 30.

The remaining options have the same meaning that they do for NeMaC; see the
NeTraMet/NeMaC manual for further details.

-l Lists nifty's rule set while it is being downloaded.

-s Indicates that the rule set file is to be checked for syntax, but not
downloaded to the meter. nifty exits after performing the syntax
check.

-a sss Indicates the lag required for samples. Collections occur sss
seconds after the 'synchronised' times, e.g. -c60 -a5 would request
nifty to collect flow data at 5 seconds after every minute.

November 97 -- 6 -- nifty

-u Indicates that collections are to be 'unsynchronised,' i.e. they will
be performed immediately after the rule set is downloaded, and at
intervals specified by the -c option thereafter. The default is
'synchronised.'

-g sss Specifies the NeTraMet meter's garbage collection interval.

-m pppp Specifies the UDP port to use for communication with the
NeTraMet meter. By default this is port 161 (SNMP).

-h pp Specifies the NeTraMet meter's high water mark.

-i sss Specifies the NeTraMet meter's inactivity time.

-o pp Specifies the NeTraMet meter's flood mark.

Following the options, the name of a meter and its write SNMP community should
appear on the command line. nifty must use a meter's write community, because it
sets the meter's LastCollectTime variable to tell it that a collection has been started.
Failure to use the write community will not prevent nifty from getting started, but it will
prevent the meter from recovering memory space from inactive flows!

For example

nifty -c120 -r rules.x_ip 130.216.234.237 test

would cause nifty to begin analysing flow data from meter 130.216.234.237 with write
SNMP community 'test'. The rule file 'rules.x_ip' would be read and downloaded to
the meter, and that meter's flow data would be collected every two minutes and used
to generate a plot.

From version 4.1, the NeTraMet meter is able to run more than one rule set at the
same time. For example, you can run a 'nifty' rule set while another 'daily logging' rule
set continues to run normally. The meter uses 'Owner Names' to help distinguish its
rule sets. You can specify an Owner Name for nifty by specifying it on the command
line, after the write community name, e.g.

nifty -c120 -r rules.x_ip 130.216.234.237 test Net-Ops

The Owner Name is an alphameric string with a maximum length of 16 characters. It
may contain any characters except a blank. In the example above we used Net-
Ops for nifty's Owner Name. If an Owner Name is not specified, 'nifty' is used.

When nifty execution terminates normally (using the 'exit' menu item, closing nifty's
window, or by interrupting nifty using the Control-C key), nifty will stop its rule set from
executing, and delete it from the meter. This leaves the meter continuing to run its
other rule sets, with no trace remaining of nifty's rule sets or the flows it measured.

If two users wish to run nifty at the same time, they need to agree to use different
Owner Names, otherwise both might use 'Nifty' by default, which is bound to cause
confusion!

3.3. nifty display

Once nifty is running, it displays a window as shown below. This is a standard X/Motif
window (with its name at the top, a go-away box, etc), a menu bar, a plot area and a
status line. These are described in the following sections.

November 97 -- 7 -- nifty

3.3.1. Menu bar

The menu bar appears at the top of nifty's display. It provides access to a tree of menus
which allow you to specify exactly what you want nifty to do. The menu options are
described in detail in the next chapter (nifty options).

nifty's default (startup) settings are:

• no logging

• display packet rate packet rate for recent samples

• axes 900 pps vs 15 minutes

• display IP addresses in numeric (dotted quad) form

Note that when you change the requested display, e.g. from packet rate to total bytes, the
axis scales are not changed automatically. Instead you must change them (using the 'plot'
menu) to produce a sensible display. Points which lie off the axes are plotted at the top or
bottom of the display.

From time to time - at the specified collection intervals - nifty pauses to read flow data from
the meter. During these collections nifty displays a 'wrist watch' cursor to indicate that it is
busy, and will not respond to mouse clicks. I have found that mouse clicks at such times
can often cause nifty to crash on my system. One way to minimise this problem is to use
a fairly long collection interval, say 120 seconds; this gives plenty of time to look at the
screen, click on any 'interesting' flows, etc.

3.3.2. Plot area

The central part of nifty's display is the plot area, where the plots specified by the menu
options are displayed, and refreshed after each data collection. The title of the plot
appears in the upper right area of the plot; it clearly indicates exactly what is being plotted.
The ordinate (Y axis) units appear at the top left of the screen, and the abscissa (X axis)
units appear at the lower right.

November 97 -- 8 -- nifty

3.3.3. Status line

The lower part of nifty's display is a status line, which is used to display information to the
user, as follows:

• When the display is initialised, the status shows version information

• After each data collection, a summary of that sample is shown

• After a mouse click in the plot area, the information about the flow nearest the
cursor is shown (details are given in the next section)

3.4. Mouse Buttons

Nifty uses a normal X/Motif window, which responds to the ordinary 'window
housekeeping' actions. For example, clicking on the 'go away' box will terminate nifty, and
dragging on the bottom right-hand corner of the window will resize it.

Once nifty is running you can use the mouse to move the on-screen (arrow) cursor so that
it points to a flow on the display. You may then click one of the three mouse buttons; nifty
will determine which flow is closest to the cursor, then display some information about it on
the status line. There are three possibilities:

Button 1 (left) co-ordinates and format line:. the flow's co-ordinates use the same
units as the axes; the contents of the format line are specified in the
rule set which nifty is using.

Button 2 (centre) packets: total number of forward and backward packets seen for the
flow, and the number of forward and backward packets seen for the
last sample of the flow.

Button 3 (right) bytes: total number of forward and backward bytes seen for the flow,
and the number of forward and backward bytes seen for the last
sample of the flow.

4. nifty menus

4.1. File
4.1.1. Logging

••Sample Log records are written each time nifty reads flow data from
the NeTraMet meter

••Points A log record is written whenever the user clicks Button 1 (the
left button) on a displayed data point. This record contains
the co-ordinates of the point and the flow data as specified by
the rule set's FORMAT statement

••None No log records are written by nifty

4.1.2. Peer Address

••IP Address IP addresses are displayed as numbers, i.e. as four integers
separated by dots

••Domain Name IP addresses are displayed as domain names; nifty looks
them up in the DNS

4.1.3. Quit

November 97 -- 9 -- nifty

Shuts nifty down. Equivalent to clicking the 'go-away' box on
nifty's Window

4.2. Options
4.2.1. Ordinate

••Bytes Use bytes when selecting flows to plot; the Y axis will be used
for byte counts or bit rates (bps)

••Packets Use packets when selecting flows to plot; the Y axis will be
used for packet counts or packet rates (pps)

4.2.2. Metric

••Rate Display plots showing packet rate (pps) or bit rate (bps) for
flows

••Count Display plots showing total packet (pkt) or byte (MB) counts
for flows

••Percent Display plots showing the percentage contribution of selected
flows to the total packet or byte counts

4.2.3. Selection

••Last sample No log records are written by nifty

••Recent samples No log records are written by nifty

••All samples No log records are written by nifty

4.3. Plot
.3.1. X axis

••100 s Sets X scale 1 to 100 seconds

••15 m Sets X scale 1 to 900 seconds

••2 h Sets X scale 1 to 120 minutes

4.3.2. Y axis

••40 Sets Y scale 0.1 to 40

••900 Sets Y scale 1 to 900

••9k Sets Y scale 100 to 9,000

••90k Sets Y scale 1,000 to 90,000

••900k Sets Y scale 10,000 to 900,000

••9M Sets Y scale 100,000 to 10,000,000

••90M Sets Y scale 1,000,000 to 90,000,000

5. Appendix: rules.x_ip rule set
 # 1200, Sun 26 May 96
 #
 # Rules to look at IP packets, pushing all flow attributes
 #
 # Nevil Brownlee, ITSS Technology Development, The University of Auckland
 #

November 97 -- 10 -- nifty

 SET 2
 #
 RULES
 SourcePeerType & 255 = dummy: Ignore, 0;
 SourcePeerType & 255 = IP: PushtoAct, IP_pkt;
 SourcePeerType & 255 = Other: PushToAct, other_pkt;
 #
 Null & 0 = 0: GotoAct, Next; # Not IP or Other
 FlowKind & 255 = 3: PushtoAct, Next; # Plot as SQUARE
 SourcePeerType & 255 = 0: PushPkttoAct, Next;
 SourceInterface & 255 = 0: CountPkt, 0;
 #
 other_pkt: # We want to know ethertype/LSAP (in source/dest Peer)
 FlowKind & 255 = 3: PushtoAct, Next; # Plot as SQUARE
 SourcePeerAddress & 255.255 = 0: PushPktToAct, Next;
 DestPeerAddress & 255.255 = 0: CountPkt, 0;
 #
 IP_pkt:
 SourceTransType & 255 = tcp: Pushto, tcp_udp;
 SourceTransType & 255 = udp: Pushto, tcp_udp;
 Null & 0 = 0: GotoAct, Next; # Not TCP or UDP
 SourceTransType & 255 = 0: PushPkttoAct, Next;
 FlowKind & 255 = 3: PushtoAct, count_IP; # Plot as SQUARE
 #
 tcp_udp:
 SourceTransAddress & 255.255 = domain: Retry, 0; # Want WKP as dest
 SourceTransAddress & 255.255 = 79: Retry, 0;
 SourceTransAddress & 255.255 = ftp: Retry, 0;
 SourceTransAddress & 255.255 = ftpdata: Retry, 0;
 SourceTransAddress & 255.255 = gopher: Retry, 0;
 SourceTransAddress & 255.255 = 113: Retry, 0;
 SourceTransAddress & 255.255 = 513: Retry, 0;
 SourceTransAddress & 255.255 = 138: Retry, 0;
 SourceTransAddress & 255.255 = nntp: Retry, 0;
 SourceTransAddress & 255.255 = 2049: Retry, 0;
 SourceTransAddress & 255.255 = ntp: Retry, 0;
 SourceTransAddress & 255.255 = 110: Retry, 0;
 SourceTransAddress & 255.255 = 515: Retry, 0;
 SourceTransAddress & 255.255 = smtp: Retry, 0;
 SourceTransAddress & 255.255 = snmp: Retry, 0;
 SourceTransAddress & 255.255 = 1080: Retry, 0; # UA socks gateway
 SourceTransAddress & 255.255 = telnet: Retry, 0;
 SourceTransAddress & 255.255 = www: Retry, 0;
 SourceTransAddress & 255.255 = 8080: Retry, 0; # UA WWW proxy
 SourceTransAddress & 255.255 = 6000: Retry, 0;
 #
 DestTransAddress & 255.255 = domain: GotoAct, c_domain;
 DestTransAddress & 255.255 = 79: GotoAct, c_finger;
 DestTransAddress & 255.255 = ftp: GotoAct, c_ftp;
 DestTransAddress & 255.255 = ftpdata: GotoAct, c_ftpdata;
 DestTransAddress & 255.255 = gopher: GotoAct, c_gopher;
 DestTransAddress & 255.255 = 113: GotoAct, c_imap;
 DestTransAddress & 255.255 = 513: GotoAct, c_login;
 DestTransAddress & 255.255 = 138: GotoAct, c_netbios;
 DestTransAddress & 255.255 = nntp: GotoAct, c_news;
 DestTransAddress & 255.255 = 2049: GotoAct, c_nfs;
 DestTransAddress & 255.255 = ntp: GotoAct, c_ntp;
 DestTransAddress & 255.255 = 110: GotoAct, c_pop;
 DestTransAddress & 255.255 = 515: GotoAct, c_printer;
 DestTransAddress & 255.255 = smtp: GotoAct, c_smtp;
 DestTransAddress & 255.255 = snmp: GotoAct, c_snmp;
 DestTransAddress & 255.255 = 1080: GotoAct, c_socks; # UA socks
 DestTransAddress & 255.255 = telnet: GotoAct, c_telnet;
 DestTransAddress & 255.255 = www: GotoAct, c_www;
 DestTransAddress & 255.255 = 8080: GotoAct, c_www; # UA WWW proxy
 DestTransAddress & 255.255 = 6000: GotoAct, c_xwin;
 #
 Null & 0 = 0: GotoAct, c_tcp_udp; # 'Unusual' port
 #
 c_domain:
 FlowKind & 255 = 'D': PushtoAct, count_IP;

November 97 -- 11 -- nifty

 c_ftp:
 c_ftpdata:
 FlowKind & 255 = 'F': PushtoAct, count_IP;
 c_imap:
 FlowKind & 255 = 'I': PushtoAct, count_IP;
 c_news:
 FlowKind & 255 = 'N': PushtoAct, count_IP;
 c_pop:
 FlowKind & 255 = 'P': PushtoAct, count_IP;
 c_smtp:
 FlowKind & 255 = 'M': PushtoAct, count_IP;
 c_socks:
 FlowKind & 255 = 'S': PushtoAct, count_IP;
 c_telnet:
 FlowKind & 255 = 'T': PushtoAct, count_IP;
 c_www:
 FlowKind & 255 = 'W': PushtoAct, count_IP;
 c_xwin
 FlowKind & 255 = 'X': PushtoAct, count_IP;
 #
 c_finger:
 c_gopher:
 c_login:
 c_netbios:
 c_nfs
 c_ntp:
 c_printer:
 c_snmp:
 #
 c_tcp_udp:
 Null & 0 = 0: Goto, Next; # Not a well-known TCP or UDP port
 SourceTransType & 255 = tcp: GotoAct, c_tcp;
 Null & 0 = 0: GotoAct, c_udp;
 c_udp:
 FlowKind & 255 = 2: PushtoAct, count_IP; # Plot as PLUS
 c_tcp:
 FlowKind & 255 = 1: PushtoAct, count_IP; # Plot as DIAMOND
 #
 count_IP:
 SourceInterface & 255 = 0: PushPkttoAct, Next;
 SourcePeerAddress & 255.255.255.255 = 0: PushPkttoAct, Next;
 DestPeerAddress & 255.255.255.255 = 0: PushPkttoAct, Next;
 SourceTransAddress & 255.255 = 0: PushPkttoAct, Next;
 DestTransAddress & 255.255 = 0: CountPkt, 0;
 #
 #
 FORMAT
 # FirstTime LastTime
 # ToPDUs ToOctets " " FromPDUs FromOctets " "
 # FlowRuleSet FlowIndex " | "
 SourcePeerType SourcePeerAddress " -> " DestPeerAddress " "
 SourceTransType SourceTransAddress " -> " DestTransAddress;
 #
 #
 STATISTICS
 #
 # end of file

6. Author's Address
Please send any comments, suggestions, bug reports to me, Nevil Brownlee, i.e.

n.brownlee@auckland.ac.nz

Ideas for 'interesting' flows, new kinds of plot, etc, etc. should be posted to the RTFM
Working Group's mailing list,

rtfm@auckland.ac.nz

