Linux Assembly HOWTO

Konstantin Boldyshev

Linux Assembly

<konst(@linuxassemblv.org>
Francois—-Rene Rideau

Tunes project
<fare@tunes.org>
0.6g Edition
Version 0.6g
Copyright © 1999-2006 Konstantin Boldyshev
Copyright © 1996-1999 Francois—Rene Rideau

$Date: 2006/02/11 08:26:26 $

This is the Linux Assembly HOWTO, version 0.6g. This document describes how to program in assembly
language using free programming tools, focusing on development for or from the Linux Operating System,
mostly on IA-32 (i386) platform. Included material may or may not be applicable to other hardware and/or

software platforms.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1; with no Invariant Sections, with no Front—Cover Texts, and no

Back—Cover texts.

http://linuxassembly.org
mailto:konst@linuxassembly.org
http://tunes.org
mailto:fare@tunes.org

Linux Assembly HOWTO

Table of Contents

Chapter 1. Introduction 1
L1 1e@al BIUID. ..ottt ettt e bt e bt e bt e bt e nbeesbe e sbeeebeesbeenes 1
| B R0 (40 (s KOOSR 1
Chapter 2. Do you need assembly? 3
2 I S Ce I s Lo A e 4 TSRS 3
2.1.1. The advantages of ASSEIMDIN.....ccueiiuiiiiiiieiieeee ettt ettt 3
2.1.2. The disadvantages of ASSEMDIY.....cceiruirrtiirieiieieeeete ettt 3

P R T N o) 11151 | USSR SRR 4
2.2. HOW t0 NOT USE ASSEIMIDLY. .veeuvieutieiietieieerteeitt ettt ettt e st e bt e b e bt e bt e sbeesbeesbeesbee bt e sbeesbeesbeenbeenses 4
2.2.1. General procedure to achieve efficient COe.currrrirriirierieriene et 4
2.2.2. Languages with Optimizing COMPILELS.ceoveetierieiriiiriieniieiee ettt 5
2.2.3. General procedure to Speed YOUL COAE TP .eeueeteerierrieenieentienieesieesieesteenteesieesbeeseeesieesbeenseennes 5
2.2.4. Inspecting compiler—generated COAE.eururrruirriirirrierieiet ettt ettt 5
2.3. LinuxX and aSSEIMDIY. ...ccueeiiiiieiietieteet ettt ettt b e bbbt bt e bt bt e bt e nbeeas 6
Chapter 3. Assemblers 7
3.1. GCC ININE ASSEIMDIY. . .eeuttitietietiettetee et ettt ettt et et e bt e bt e bt e bt e sbe e s bt e sbeesbe e bt e sbeesbeesbeenbeannes 7
3.1.1. Where to find GCC........eeeeeeiieeeeeeeeeeeee ettt e e et e e e e e e eesaaae e e e e e seenaaaeeeeeesssnranneeeas 7
3.1.2. Where to find docs for GCC ININE ASIN . .uuueviiieiieeeiiiieeeeeeeeeeee e e e e e e e e eeeaaereeeeeeeeaaaeeeeeas 7
3.1.3. Invoking GCC to build proper inline assembly COeccceerierernienienienieniesee e 7
3.1.4. MACTO SUDDOTE...eeuvteeutieeniieeniteeniteeeteeeteeetee ettt enateesabeesabeesabeeebeeenseeesabeesabeesabeesabaeensaeensseesareens 8
R €N PSRRI 9
R B (1= (= (018 111« 15 L SRR 9
3.2.2. What iS thisS ATET SYIEAKeecveeteerteerteenteenteenieenteenteesteesteenteesbeenbeesteesbeesbeesbeenseesbeesbeesseenseenss 9
3.2.3. TNEEL SYIEAK. c.veeuteeueeeuteeiteeuteeite et et et et e eateeabe et e eaeeeateeateeateeabeeabeeaeeemteeaeesateeabeembeemeeeatesatesnteeas 10
I T L oYU 1 170 Yo [P RRRR 10
3.2.5. MACTO SUDDOIE. - euteuteeuteeuteeuteeute et et eateeateeateeabeeaeeeateeateeateeabesabeeaseemteeaeesateeateembeeneeeneesasesnseaas 10
B3 N ASM it e e e e e e e e ea———— e e e e e e e ———taeeeaaa———tteeeea i ———eeeeeeaataaeeeeseanraae 11
3.3.1. Where to fid INASM......uueiiiiiieeeeeeeee ettt e e e et e s s e eaaae e e e s eseaabeseeeeessnnneaneeeas 11

R T Y 0 L0 L (01 PR 11

3.4, Other ASSEIMDIETSceiiiureieiieeeeeetteeeee e e eeeee et e e e e e eeae e e e e eeeeeaaaeeeeeeeeasaaaeeeeessessaaseeesesssnstaneeeessannrenes 11
I N L 1 YT 11
R N\ TR 12
I T 2N 3. SRR 12
3.4.4. OSIMPA (SHASM) ..ottt ettt e e e e et e e e e s e eaaaeeeeesesesaabareeeessssnsraneeeas 12
BA.S. AASMuceeeeeeeeeeeee et e e e e e ——— e e e s e e ————e e e e e e —arreeeeeaarraaaeeas 13
I Y N D TN .Y TR 13
R 5 | 5 TR 13
I T 12N 5 TSR 13
349, BIe€ PaASCAL.....ccueeeeiiei ettt e et e st e e e e e et e e e e e enrranreeas 14
3.4.10. Win32F0rth aSSEIMDIET.......ccciviiirieiieeieeciieeeee et e e e e e e e e e et e ee e e e s easaaneeeas 14

R S B T X< YRR RTTTT 14
3.4.12. Non—free and/or Non—32bit X86 aSSEMDIETS.........uuviiieiiiiriieieeee e eeereree e 15
Chapter 4. Metaprogramming 16
O I 25 = 0 1 1. BB =) o VTN 16

BT CPP ottt e a bt bt et r e ne e en 16

Linux Assembly HOWTO

Table of Contents

Chapter 4. Metaprogramming

4.1.3. Macroprocessing with your own filter
4.2. Metaprogramming.........cceeeeeeeesueenveennens
4.2.1. Backends from compilers

4.2.2. The New—Jersey Machine—Code Toolkit
423 . TUNES. ..o

Chapter S. Calling conventions

R I 051110 ST

5.1.1. Linking t0 GCC.....cooeevieienennen.
5.1.2. ELF vs a.out problems.................

5.1.3. Direct Linux syscalls........cc.........
5.1.4. Hardware 1/O under Linux

5.1.5. Accessing 16-bit drivers from Linux/i386
5.2. DOS and Windows........coeeeeevveeeeeeeennnen

5.3. Yourown OS.......coooviiiiiiiiieieeeeeeeeeeenne

Chapter 6. Quick start

18
18
18
18
18
20
21
21
22

23

6.1. Introduction.......ccceeeueuememeeeeeeeeeeeeeeeeeeeens

6.2. Hello, worldl.....cooeeeeeiiiieieieeeeeeeeeeeees

6.2.1. Program layout.........cceeeerueeeeennen.
6.2.2. NASM (hello.asm)......cceeeeeeennnnnen

23
23
23
23
23
24
24
24
25
25

Chapter 7. Resources.

T POINEETS. ..cooviiviiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeean
7.2. Mailing list.......ccooeerienienienieneenen,

Chapter 8. Frequently Asked Questions

27
27
27

28

Appendix A. History.

34

Appendix B. Acknowledgements.

37

Appendix C. Endorsements

38

Appendix D. GNU Free Documentation License

39

Chapter 1. Introduction

&) You can skip this chapter if you are familiar with HOWTOs, or just hate to read all this
assembly—unrelated crap.

1.1. Legal Blurb

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License Version 1.1; with no Invariant Sections, with no Front—Cover Texts, and no
Back—Cover texts. A copy of the license is included in the GNU Free Documentation License appendix.

The most recent official version of this document is available from the Linux Assembly and LDP sites. If you
are reading a few—months—old copy, consider checking the above URLs for a new version.

1.2. Foreword

This document aims answering questions of those who program or want to program 32-bit x86 assembly
using free software, particularly under the Linux operating system. At many places Universal Resource
Locators (URL) are given for some software or documentation repository. This document also points to other
documents about non—free, non—x86, or non—32-bit assemblers, although this is not its primary goal. Also
note that there are FAQs and docs about programming on your favorite platform (whatever it is), which you
should consult for platform—specific issues, not related directly to assembly programming.

Because the main interest of assembly programming is to build the guts of operating systems, interpreters,
compilers, and games, where C compiler fails to provide the needed expressiveness (performance is more and
more seldom as issue), we are focusing on development of such kind of software.

If you don't know what free software is, please do read carefully the GNU General Public License (GPL or
copyleft), which is used in a lot of free software, and is the model for most of their licenses. It generally
comes in a file named COPYING (or COPYING . LIB). Literature from the Free Software Foundation (FSF)
might help you too. Particularly, the interesting feature of free software is that it comes with source code
which you can consult and correct, or sometimes even borrow from. Read your particular license carefully and
do comply to it.

1.3. Contributions

This is an interactively evolving document: you are especially invited to ask questions, to answer questions, to
correct given answers, to give pointers to new software, to point the current maintainer to bugs or deficiencies
in the pages. In one word, contribute!

To contribute, please contact the maintainer.
&) At the time of writing, it is Konstantin Boldyshev and no more Francois—Rene Rideau (since version

0.5). I (Fare) had been looking for some time for a serious hacker to replace me as maintainer of this
document, and am pleased to announce Konstantin as my worthy successor.

Chapter 1. Introduction 1

http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://linuxassembly.org/howto.html
http://tldp.org/docs.html
http://www.gnu.org/philosophy/
http://www.gnu.org/copyleft/gpl.html
http://www.fsf.org

Linux Assembly HOWTO

1.4. Translations

Korean translation of this HOWTO is avalilable at http://kldp.org/HOWTO/html/Assembly_HOWTO/.
Turkish translation of this HOWTO is available at http://belgeler.org/howto/assembly—howto.html.
Incomplete Russian translation is available at

http://volgograd.lug.ru/wiki/GrableVodstvo/articles/AssemblelnLinux/. Also, there was a French translation
of the early HOWTO versions, but I can't find it now.

Chapter 1. Introduction

http://kldp.org/HOWTO/html/Assembly-HOWTO/
http://belgeler.org/howto/assembly-howto.html
http://volgograd.lug.ru/wiki/GrableVodstvo/articles/AssembleInLinux/

Chapter 2. Do you need assembly?

Well, I wouldn't want to interfere with what you're doing, but here is some advice from the hard—earned
experience.

2.1. Pros and Cons

2.1.1. The advantages of Assembly
Assembly can express very low—level things:

® you can access machine—dependent registers and I/O

¢ you can control the exact code behavior in critical sections that might otherwise involve deadlock
between multiple software threads or hardware devices

¢ you can break the conventions of your usual compiler, which might allow some optimizations (like
temporarily breaking rules about memory allocation, threading, calling conventions, etc)

¢ you can build interfaces between code fragments using incompatible conventions (e.g. produced by
different compilers, or separated by a low—level interface)

® you can get access to unusual programming modes of your processor (e.g. 16 bit mode to interface
startup, firmware, or legacy code on Intel PCs)

¢ you can produce reasonably fast code for tight loops to cope with a bad non—optimizing compiler (but
then, there are free optimizing compilers available!)

¢ you can produce hand—optimized code perfectly tuned for your particular hardware setup, though not
to someone else's

¢ you can write some code for your new language's optimizing compiler (that is something what very
few ones will ever do, and even they not often)

¢ i.e. you can be in complete control of your code

2.1.2. The disadvantages of Assembly

Assembly is a very low—level language (the lowest above hand—coding the binary instruction patterns). This
means

¢ it is long and tedious to write initially

® it is quite bug—prone

e your bugs can be very difficult to chase

¢ your code can be fairly difficult to understand and modify, i.e. to maintain

e the result is non—portable to other architectures, existing or upcoming

¢ your code will be optimized only for a certain implementation of a same architecture: for instance,
among Intel-compatible platforms each CPU design and its variations (relative latency,
through—output, and capacity, of processing units, caches, RAM, bus, disks, presence of FPU, MMX,
3DNOW, SIMD extensions, etc) implies potentially completely different optimization techniques.
CPU designs already include: Intel 386, 486, Pentium, PPro, PII, PIII, PIV; Cyrix 5x86, 6x86, M2;
AMD K35, K6 (K6-2, K6-III), K7 (Athlon, Duron). New designs keep popping up, so don't expect
either this listing and your code to be up—to—date.

¢ you spend more time on a few details and can't focus on small and large algorithmic design, that are
known to bring the largest part of the speed up (e.g. you might spend some time building very fast
list/array manipulation primitives in assembly; only a hash table would have sped up your program

Chapter 2. Do you need assembly? 3

Linux Assembly HOWTO

much more; or, in another context, a binary tree; or some high—level structure distributed over a
cluster of CPUs)

¢ a small change in algorithmic design might completely invalidate all your existing assembly code. So
that either you're ready (and able) to rewrite it all, or you're tied to a particular algorithmic design

® On code that ain't too far from what's in standard benchmarks, commercial optimizing compilers
outperform hand—coded assembly (well, that's less true on the x86 architecture than on RISC
architectures, and perhaps less true for widely available/free compilers; anyway, for typical C code,
GCC is fairly good);

® And in any case, as moderator John Levine says on comp.compilers,

"compilers make it a lot easier to use complex data structures,
and compilers don't get bored halfway through
and generate reliably pretty good code."

They will also correctly propagate code transformations throughout the whole (huge) program when
optimizing code between procedures and module boundaries.

2.1.3. Assessment

All in all, you might find that though using assembly is sometimes needed, and might even be useful in a few
cases where it is not, you'll want to:

¢ minimize use of assembly code

¢ encapsulate this code in well-defined interfaces

¢ have your assembly code automatically generated from patterns expressed in a higher—level language
than assembly (e.g. GCC inline assembly macros)

¢ have automatic tools translate these programs into assembly code

¢ have this code be optimized if possible

¢ All of the above, i.e. write (an extension to) an optimizing compiler back—end.

Even when assembly is needed (e.g. OS development), you'll find that not so much of it is required, and that
the above principles retain.

See the Linux kernel sources concerning this: as little assembly as needed, resulting in a fast, reliable,
portable, maintainable OS. Even a successful game like DOOM was almost massively written in C, with a
tiny part only being written in assembly for speed up.

2.2. How to NOT use Assembly

2.2.1. General procedure to achieve efficient code

As Charles Fiterman says on comp.compilers about human vs computer—generated assembly code:

The human should always win and here is why.
First the human writes the whole thing in a high level language.

Second he profiles it to find the hot spots where it spends its time.
Third he has the compiler produce assembly for those small sections of cod

Chapter 2. Do you need assembly? 4

Linux Assembly HOWTO

Fourth he hand tunes them looking for tiny improvements over the machine ¢

The human wins because he can use the machine.

2.2.2. Languages with optimizing compilers

Languages like ObjectiveCAML, SML, CommonLISP, Scheme, ADA, Pascal, C, C++, among others, all
have free optimizing compilers that will optimize the bulk of your programs, and often do better than
hand—coded assembly even for tight loops, while allowing you to focus on higher—level details, and without
forbidding you to grab a few percent of extra performance in the above—mentioned way, once you've reached
a stable design. Of course, there are also commercial optimizing compilers for most of these languages, too!

Some languages have compilers that produce C code, which can be further optimized by a C compiler: LISP,
Scheme, Perl, and many other. Speed is fairly good.

2.2.3. General procedure to speed your code up

As for speeding code up, you should do it only for parts of a program that a profiling tool has consistently
identified as being a performance bottleneck.

Hence, if you identify some code portion as being too slow, you should

e first try to use a better algorithm;

e then try to compile it rather than interpret it;

e then try to enable and tweak optimization from your compiler;

¢ then give the compiler hints about how to optimize (typing information in LISP; register usage with
GCQC; lots of options in most compilers, etc).

e then possibly fallback to assembly programming

Finally, before you end up writing assembly, you should inspect generated code, to check that the problem
really is with bad code generation, as this might really not be the case: compiler—generated code might be
better than what you'd have written, particularly on modern multi—pipelined architectures! Slow parts of a
program might be intrinsically so. The biggest problems on modern architectures with fast processors are due
to delays from memory access, cache—misses, TLB—misses, and page—faults; register optimization becomes
useless, and you'll more profitably re—think data structures and threading to achieve better locality in memory
access. Perhaps a completely different approach to the problem might help, then.

2.2.4. Inspecting compiler-generated code

There are many reasons to inspect compiler—generated assembly code. Here is what you'll do with such code:

¢ check whether generated code can be obviously enhanced with hand—coded assembly (or by tweaking
compiler switches)

e when that's the case, start from generated code and modify it instead of starting from scratch

* more generally, use generated code as stubs to modify, which at least gets right the way your
assembly routines interface to the external world

e track down bugs in your compiler (hopefully the rarer)

The standard way to have assembly code be generated is to invoke your compiler with the —S flag. This works

Chapter 2. Do you need assembly? 5

Linux Assembly HOWTO

with most Unix compilers, including the GNU C Compiler (GCC), but YMMV. As for GCC, it will produce
more understandable assembly code with the ~fverbose—asm command-line option. Of course, if you
want to get good assembly code, don't forget your usual optimization options and hints!

2.3. Linux and assembly

As you probably noticed, in general case you don't need to use assembly language in Linux programming.
Unlike DOS, you do not have to write Linux drivers in assembly (well, actually you can do it if you really
want). And with modern optimizing compilers, if you care of speed optimization for different CPU's, it's much
simpler to write in C. However, if you're reading this, you might have some reason to use assembly instead of
C/C++.

You may need to use assembly, or you may want to use assembly. In short, main practical (need) reasons of
diving into the assembly realm are small code and libc independence. Impractical (want), and the most often
reason is being just an old crazy hacker, who has twenty years old habit of doing everything in assembly
language.

However, if you're porting Linux to some embedded hardware you can be quite short at the size of whole
system: you need to fit kernel, libc and all that stuff of (filelfindltextlshletc.) utils into several hundreds of
kilobytes, and every kilobyte costs much. So, one of the possible ways is to rewrite some (or all) parts of
system in assembly, and this will really save you a lot of space. For instance, a simple httpd written in
assembly can take less than 600 bytes; you can fit a server consisting of kernel, httpd and ftpd in 400 KB or
less... Think about it.

Chapter 2. Do you need assembly? 6

Chapter 3. Assemblers
3.1. GCC Inline Assembly

The well-known GNU C/C++ Compiler (GCC), an optimizing 32—bit compiler at the heart of the GNU
project, supports the x86 architecture quite well, and includes the ability to insert assembly code in C
programs, in such a way that register allocation can be either specified or left to GCC. GCC works on most
available platforms, notably Linux, *BSD, VSTa, OS/2, *DOS, Win*, etc.

3.1.1. Where to find GCC
GCC home page is http://gcc.gnu.org.

DOS port of GCC is called DJGPP.

There are two Win32 GCC ports: cygwin and mingw

There is also an OS/2 port of GCC called EMX; it works under DOS too, and includes lots of unix—emulation

library routines. Look around the following site: ftp:/ftp.leo.org/pub/comp/os/os2/leo/gnu/emx+gec/.

3.1.2. Where to find docs for GCC Inline Asm

The documentation of GCC includes documentation files in TeXinfo format. You can compile them with TeX
and print then result, or convert them to . info, and browse them with emacs, or convert them to . html, or
nearly whatever you like; convert (with the right tools) to whatever you like, or just read as is. The .info
files are generally found on any good installation for GCC.

The right section to look foris C Extensions::Extended Asm::

Section Invoking GCC::Submodel Options::1386 Options:: might help too. Particularly, it
gives the 1386 specific constraint names for registers: abcdSDB correspond to $eax, $ebx, $ecx, $edx,
%esi, $edi and %ebp respectively (no letter for $esp).

The DJGPP Games resource (not only for game hackers) had page specifically about assembly, but it's down.
Its data have nonetheless been recovered on the DIGPP site, that contains a mine of other useful information:

http://www.delorie.com/djgpp/doc/brennan/.

GCC depends on GAS for assembling and follows its syntax (see below); do mind that inline asm needs
percent characters to be quoted, they will be passed to GAS. See the section about GAS below.

Find /lots of useful examples in the 1inux/include/asm-1386/ subdirectory of the sources for the
Linux kernel.

3.1.3. Invoking GCC to build proper inline assembly code

Because assembly routines from the kernel headers (and most likely your own headers, if you try making your
assembly programming as clean as it is in the linux kernel) are embedded in extern inline functions,
GCC must be invoked with the —0O flag (or —~02, —03, etc), for these routines to be available. If not, your code

Chapter 3. Assemblers 7

http://gcc.gnu.org
http://www.delorie.com/djgpp/
http://www.cygwin.com
http://www.mingw.org
ftp://ftp.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/
http://www.delorie.com/djgpp/doc/brennan/

Linux Assembly HOWTO

may compile, but not link properly, since it will be looking for non—inlined extern functions in the libraries
against which your program is being linked! Another way is to link against libraries that include fallback
versions of the routines.

Inline assembly can be disabled with —fno-asm, which will have the compiler die when using extended
inline asm syntax, or else generate calls to an external function named asm () that the linker can't resolve. To
counter such flag, —fasm restores treatment of the asm keyword.

More generally, good compile flags for GCC on the x86 platform are
gce —02 —fomit—frame—pointer —W —Wall

-02 is the good optimization level in most cases. Optimizing besides it takes more time, and yields code that
is much larger, but only a bit faster; such over—optimization might be useful for tight loops only (if any),
which you may be doing in assembly anyway. In cases when you need really strong compiler optimization for
a few files, do consider using up to —06.

-fomit-frame-pointer allows generated code to skip the stupid frame pointer maintenance, which
makes code smaller and faster, and frees a register for further optimizations. It precludes the easy use of
debugging tools (gdb), but when you use these, you just don't care about size and speed anymore anyway.

-W -Wall enables all useful warnings and helps you to catch obvious stupid errors.

You can add some CPU-specific -m4 86 or such flag so that GCC will produce code that is more adapted to
your precise CPU. Note that modern GCC has ~mpent ium and such flags (and PGCC has even more),
whereas GCC 2.7.x and older versions do not. A good choice of CPU—specific flags should be in the Linux
kernel. Check the TeXinfo documentation of your current GCC installation for more.

-m386 will help optimize for size, hence also for speed on computers whose memory is tight and/or loaded,
since big programs cause swap, which more than counters any "optimization" intended by the larger code. In
such settings, it might be useful to stop using C, and use instead a language that favors code factorization,
such as a functional language and/or FORTH, and use a bytecode— or wordcode— based implementation.

Note that you can vary code generation flags from file to file, so performance—critical files will use maximum
optimization, whereas other files will be optimized for size.

To optimize even more, option -mregparm=2 and/or corresponding function attribute might help, but might
pose lots of problems when linking to foreign code, including libc. There are ways to correctly declare foreign
functions so the right call sequences be generated, or you might want to recompile the foreign libraries to use
the same register—based calling convention...

Note that you can add make these flags the default by editing file
/usr/lib/gcc-1ib/i486-1inux/2.7.2.3/specs or wherever that is on your system (better not
add -W -Wall there, though). The exact location of the GCC specs files on system can be found by gee —v.

3.1.4. Macro support

GCC allows (and requires) you to specify register constraints in your inline assembly code, so the optimizer
always know about it; thus, inline assembly code is really made of patterns, not forcibly exact code.

Chapter 3. Assemblers 8

http://goof.com/pcg/

Linux Assembly HOWTO

Thus, you can put your assembly into CPP macros, and inline C functions, so anyone can use it in as any C
function/macro. Inline functions resemble macros very much, but are sometimes cleaner to use. Beware that in
all those cases, code will be duplicated, so only local labels (of 1 : style) should be defined in that asm code.
However, a macro would allow the name for a non local defined label to be passed as a parameter (or else,
you should use additional meta—programming methods). Also, note that propagating inline asm code will
spread potential bugs in them; so watch out doubly for register constraints in such inline asm code.

Lastly, the C language itself may be considered as a good abstraction to assembly programming, which
relieves you from most of the trouble of assembling.

3.2. GAS

GAS is the GNU Assembler, that GCC relies upon.

3.2.1. Where to find it

Find it at the same place where you've found GCC, in the binutils package. The latest version of binutils is
available from http://sources.redhat.com/binutils/.

3.2.2. What is this AT&T syntax

Because GAS was invented to support a 32—-bit unix compiler, it uses standard AT&T syntax, which
resembles a lot the syntax for standard m68k assemblers, and is standard in the UNIX world. This syntax is
neither worse, nor better than the Intel syntax. It's just different. When you get used to it, you find it much
more regular than the Intel syntax, though a bit boring.

Here are the major caveats about GAS syntax:

® Register names are prefixed with %, so that registers are $eax, $d1 and so on, instead of just eax,
d1, etc. This makes it possible to include external C symbols directly in assembly source, without any
risk of confusion, or any need for ugly underscore prefixes.

® The order of operands is source(s) first, and destination last, as opposed to the Intel convention of
destination first and sources last. Hence, what in Intel syntax is mov eax, edx (move contents of
register edx into register eax) will be in GAS syntax mov %$edx, $eax.

® The operand size is specified as a suffix to the instruction name. The suffix is b for (8-bit) byte, w for
(16-bit) word, and 1 for (32-bit) long. For instance, the correct syntax for the above instruction
would have been movl %$edx, $eax. However, gas does not require strict AT&T syntax, so the
suffix is optional when size can be guessed from register operands, and else defaults to 32—bit (with a
warning).

¢ Immediate operands are marked with a $ prefix, as in add1l $5, $eax (add immediate long value 5
to register $eax).

® Missing operand prefix indicates that it is memory—contents; hence movl $foo, $eax puts the
address of variable foo into register $eax, but movl foo, $eax puts the contents of variable foo
into register $eax.

¢ Indexing or indirection is done by enclosing the index register or indirection memory cell address in
parentheses, as in testb $0x80, 17 ($ebp) (test the high bit of the byte value at offset 17 from
the cell pointed to by $ebp).

Chapter 3. Assemblers 9

http://sources.redhat.com/binutils/

Linux Assembly HOWTO

Note: There are few programs which may help you to convert source code between AT&T and Intel
assembler syntaxes; some of the are capable of performing conversion in both directions.

GAS has comprehensive documentation in TeXinfo format, which comes at least with the source distribution.
Browse extracted . info pages with Emacs or whatever. There used to be a file named gas.doc or as.doc
around the GAS source package, but it was merged into the TeXinfo docs. Of course, in case of doubt, the
ultimate documentation is the sources themselves! A section that will particularly interest you is Machine
Dependencies: :1386-Dependent::

Again, the sources for Linux (the OS kernel) come in as excellent examples; see under
linux/arch/1386/ the following files: kernel/* .S, boot/compressed/*.S, math-emu/*.S.

If you are writing kind of a language, a thread package, etc., you might as well see how other languages (
OCaml, Gforth, etc.), or thread packages (QuickThreads, MIT pthreads, LinuxThreads, etc), or whatever else
do it.

Finally, just compiling a C program to assembly might show you the syntax for the kind of instructions you
want. See section Do you need assembly? above.

3.2.3. Intel syntax

Good news are that starting from binutils 2.10 release, GAS supports Intel syntax too. It can be triggered with
.intel_syntax directive. Unfortunately this mode is not documented (yet?) in the official binutils

manual, so if you want to use it, try to examine http://www.Ixhp.in—berlin.de/lhpas86.html, which is an
extract from AMD 64bit port of binutils 2.11.

3.2.4. 16-bit mode

Binutils (2.9.1.0.25+) now fully support 16—bit mode (registers and addressing) on 1386 PCs. Use .codel6
and . code32 to switch between assembly modes.

Also, a neat trick used by several people (including the oskit authors) is to force GCC to produce code for
16-bit real mode, using an inline assembly statement asm (" . codel 6\n"). GCC will still emit only 32-bit
addressing modes, but GAS will insert proper 32-bit prefixes for them.

3.2.5. Macro support

GAS has some macro capability included, as detailed in the texinfo docs. Moreover, while GCC recognizes
. s files as raw assembly to send to GAS, it also recognizes . S files as files to pipe through CPP before
feeding them to GAS. Again and again, see Linux sources for examples.

GAS also has GASP (GAS Preprocessor), which adds all the usual macroassembly tricks to GAS. GASP
comes together with GAS in the GNU binutils archive. It works as a filter, like CPP and M4. I have no idea on
details, but it comes with its own texinfo documentation, which you would like to browse (info gasp), print,
grok. GAS with GASP looks like a regular macro—assembler to me.

Chapter 3. Assemblers 10

http://para.inria.fr/
http://www.jwdt.com/~paysan/gforth.html
http://www.lxhp.in-berlin.de/lhpas86.html

Linux Assembly HOWTO

3.3. NASM

The Netwide Assembler project provides cool 1386 assembler, written in C, that should be modular enough to
eventually support all known syntaxes and object formats.

3.3.1. Where to find NASM

http://nasm.sourceforge.net, http://sourceforge.net/projects/nasm/

Binary release on your usual metalab mirror in devel/lang/asm/ directory. Should also be available as
.rpmor .deb in your usual Linux distribution.

3.3.2. What it does

The syntax is Intel-style. Comprehensive macroprocessing support is integrated.

Supported object file formats are bin, aout, coff, elf, as86, obj (DOS), win32, rdf (their own
format).

NASM can be used as a backend for the free LCC compiler (support files included).

Unless you're using BCC as a 16—bit compiler (which is out of scope of this 32—bit HOWTO), you should
definitely use NASM instead of say AS86 or MASM, because it runs on all platforms.

-, NASM comes with a disassembler, NDISASM.

Its hand—written parser makes it much faster than GAS, though of course, it doesn't support three bazillion
different architectures. If you like Intel—style syntax, as opposed to GAS syntax, then it should be the
assembler of choice...

Note: There are few programs which may help you to convert source code between AT&T and Intel
assembler syntaxes; some of the are capable of performing conversion in both directions.

3.4. Other Assemblers

There are other assemblers with various interesting and outstanding features which may be of your interest as
well.

- They can be in various stages of development, and can be non—classic/high—level/whatever else.

3.4.1. AS86

AS86 is a 80x86 assembler (16—bit and 32-bit) with integrated macro support. It has mostly Intel-syntax,
though it differs slightly as for addressing modes. Some time ago it was used in a several projects, including
the Linux kernel, but eventually most of those projects have moved to GAS or NASM. AFAIK, only ELKS
continues to use it.

Chapter 3. Assemblers 11

http://nasm.sourceforge.net
http://sourceforge.net/projects/nasm/

Linux Assembly HOWTO

AS86 can be found at http://www.cix.co.uk/~mayday/, in bin86 package with linker (1d86), or as separate
archive. Documentation is available as the man page and as.doc from the source package. When in doubt, the
source code itself is often a good doc: though it is not very well commented, the programming style is
straightforward. You might try to see how as86 is(was) used in ELKS, LILO, or Tunes 0.0.0.25...

F A completely outdated version 0.4 of AS86 is distributed by HJLu just to compile the Linux kernel
versions prior to 2.4, in a package named bin86, available in any Linux GCC repository. But |
advise no one to use it for anything else but compiling Linux. This version supports only a hacked
minix object file format, which is not supported by the GNU binutils or anything, and it has a few
bugs in 32-bit mode, so you really should better keep it only for compiling Linux.

&) Using AS86 with BCC

Here's the GNU Makefile entry for using BCC to transform . s asm into both a.out . o object and . 1
listing:

%.0 %.1: %.s

bcec -3 -G -¢ -A-d -A-1 -A$*.1 -o $*.0 S$<
Remove the .1, -A-1, and -A$*. 1, if you don't want any listing. If you want something else than
a.out, you can examine BCC docs about the other supported formats, and/or use the objcopy utility from
the GNU binutils package.

3.4.2. YASM

YASM is a complete rewrite of the NASM assembler under the GNU GPL (some portions are under the
"new" BSD License). It is designed from the ground up to allow for multiple syntaxes to be supported (eg,
NASM, TASM, GAS, etc.) in addition to multiple output object formats. Another primary module of the
overall design is an optimizer module.

It looks promising; it is under heavy development, and you may want to take part. See
http://www.tortall.net/projects/vasm/.

3.4.3. FASM

FASM (flat assembler) is a fast, efficient 80x86 assembler that runs in 'flat real mode'. Unlike many other
80x86 assemblers, FASM only requires the source code to include the information it really needs. It is written
in itself and is very small and fast. It runs on DOS/Windows/Linux and can produce flat binary, DOS EXE,
Win32 PE, COFF and Linux ELF output. See http://flatassembler.net.

3.4.4. OSIMPA (SHASM)

osimpa is an assembler for Intel 80386 processors and subsequent, written entirely in the GNU Bash
command interpreter shell. The predecessor of osimpa was shasm. osimpa is much cleaned up, can create
useful Linux ELF executables, and has various HLL-like extensions and programmer convenience
commands.

It is (of course) slower than other assemblers. It has its own syntax (and uses its own names for x86 opcodes)

Fairly good documentation is included. Check it out: ftp://linux01.gwdg.de/pub/cl. IeNUX/interim/. Probably
you'll not use it on regular basis, but at least it deserves your interest as an interesting idea.

Chapter 3. Assemblers 12

http://www.cix.co.uk/~mayday/
http://www.tortall.net/projects/yasm/
http://flatassembler.net
ftp://linux01.gwdg.de/pub/cLIeNUX/interim/

Linux Assembly HOWTO

3.4.5. AASM

Aasm is an advanced assembler designed to support several target architectures. It has been designed to be
easily extended and, should be considered as a good alternative to monolithic assembler development for each
new target CPUs and binary file formats.

Aasm should make assembly programming easier for developer, by providing a set of advanced features
including symbol scopes, an expressions engine, big integer support, macro capability, numerous and accurate
warning messages... Its dynamic modular architecture enables Aasm to extend its set of features with plug—ins
by taking advantages of dynamic libraries.

The input module supports Intel syntax (like nasm, tasm, masm, etc.). The x86 assembler module supports all
opcodes up to P6 including MMX, SSE and 3DNow! extensions. F-CPU and SPARC assembler modules are

under development. Several output modules are available for ELF, COFF, IntelHex, and raw binary formats.

http://savannah.nongnu.org/projects/aas

3.4.6. TDASM

The Table Driven Assembler (TDASM) is a free portable cross assembler for any kind of assembly language.
It should be possible to use it as a compiler to any target microprocessor using a table that defines the
compilation process.

It is available from http://www.penguin.cz/~niki/tdasm/.

3.4.7. HLA

HLA is a High Level Assembly language. It uses a high level language like syntax (similar to Pascal, C/C++,
and other HLLs) for variable declarations, procedure declarations, and procedure calls. It uses a modified
assembly language syntax for the standard machine instructions. It also provides several high level language
style control structures (if, while, repeat..until, etc.) that help you write much more readable code.

HLA is free and comes with source, Linux and Win32 versions available. On Win32 you need MASM and a
32-bit version of MS—link on Win32, on Linux you nee GAS, because HLA produces specified assembler
code and uses that assembler for final assembling and linking.

3.4.8. TALC
TALC is another free MASM/Win32 based compiler (however it supports ELF output, does it?).

TAL stands for Typed Assembly Language. It extends traditional untyped assembly languages with typing
annotations, memory management primitives, and a sound set of typing rules, to guarantee the memory safety,
control flow safety,and type safety of TAL programs. Moreover, the typing constructs are expressive enough
to encode most source language programming features including records and structures, arrays, higher—order
and polymorphic functions, exceptions, abstract data types, subtyping, and modules. Just as importantly, TAL
is flexible enough to admit many low—level compiler optimizations. Consequently, TAL is an ideal target
platform for type—directed compilers that want to produce verifiably safe code for use in secure mobile code
applications or extensible operating system kernels.

Chapter 3. Assemblers 13

http://savannah.nongnu.org/projects/aasm/
http://www.penguin.cz/~niki/tdasm/
http://webster.cs.ucr.edu/AsmTools/HLA/
http://www.cs.cornell.edu/talc/

Linux Assembly HOWTO

3.4.9. Free Pascal
Free Pascal has an internal 32—bit assembler (based on NASM tables) and a switchable output that allows:
¢ Binary (ELF and coff when crosscompiled .0) output
* NASM
* MASM
e TASM
e AS (aout,coff, elf32)
The MASM and TASM output are not as good debugged as the other two, but can be handy sometimes.

The assembler's look and feel are based on Turbo Pascal's internal BASM, and the IDE supports similar
highlighting, and FPC can fully integrate with gcc (on C level, not C++).

Using a dummy RTL, one can even generate pure assembler programs.

3.4.10. Win32Forth assembler

Win32Forth is a free 32—bit ANS FORTH system that successfully runs under Win32s, Win95, Win/NT. It
includes a free 32—bit assembler (either prefix or postfix syntax) integrated into the reflective FORTH
language. Macro processing is done with the full power of the reflective language FORTH; however, the only
supported input and output contexts is Win32For itself (no dumping of . ob j file, but you could add that

feature yourself, of course). Find it at ftp://ftp.forth.org/pub/Forth/Compilers/native/windows/Win32For/.

3.4.11. Terse

Terse is a programming tool that provides THE most compact assembler syntax for the x86 family! However,
it is evil proprietary software. It is said that there was a project for a free clone somewhere, that was
abandoned after worthless pretenses that the syntax would be owned by the original author. Thus, if you're
looking for a nifty programming project related to assembly hacking, I invite you to develop a terse—syntax
frontend to NASM, if you like that syntax.

As an interesting historic remark, on comp.compilers,
1999/07/11 19:36:51, the moderator wrote:
"There's no reason that assemblers have to have awful syntax. About

30 years ago I used Niklaus Wirth's PL360, which was basically a S/360
assembler with Algol syntax and a a little syntactic sugar like while

loops that turned into the obvious branches. It really was an
assembler, e.g., you had to write out your expressions with explicit
assignments of values to registers, but it was nice. Wirth used it to
write Algol W, a small fast Algol subset, which was a predecessor to
Pascal. As is so often the case, Algol W was a significant
improvement over many of its successors. —-John"

Chapter 3. Assemblers 14

http://www.freepascal.org
ftp://ftp.forth.org/pub/Forth/Compilers/native/windows/Win32For/
http://www.terse.com

Linux Assembly HOWTO

3.4.12. Non-free and/or Non-32bit x86 assemblers

You may find more about them, together with the basics of x86 assembly programming, in the Raymond

Moon's x86 assembly FAQ.

Note that all DOS—based assemblers should work inside the Linux DOS Emulator, as well as other similar
emulators, so that if you already own one, you can still use it inside a real OS. Recent DOS—based assemblers
also support COFF and/or other object file formats that are supported by the GNU BFD library, so that you
can use them together with your free 32-bit tools, perhaps using GNU objcopy (part of the binutils) as a
conversion filter.

Chapter 3. Assemblers 15

Chapter 4. Metaprogramming

Assembly programming is a bore, but for critical parts of programs.

You should use the appropriate tool for the right task, so don't choose assembly when it does not fit; C,
OCaml, perl, Scheme, might be a better choice in the most cases.

However, there are cases when these tools do not give fine enough control on the machine, and assembly is
useful or needed. In these cases you'll appreciate a system of macroprocessing and metaprogramming that
allows recurring patterns to be factored each into one indefinitely reusable definition, which allows safer
programming, automatic propagation of pattern modification, etc. Plain assembler often is not enough, even
when one is doing only small routines to link with C.

4.1. External filters

Whatever is the macro support from your assembler, or whatever language you use (even C!), if the language
is not expressive enough to you, you can have files passed through an external filter with a Makefile rule like
that:

%.8 %.S other_dependencies
S(FILTER) S$(FILTER_OPTIONS) < $< > $Q@
41.1. CPP

CPP is truly not very expressive, but it's enough for easy things, it's standard, and called transparently by
GCC.

As an example of its limitations, you can't declare objects so that destructors are automatically called at the
end of the declaring block; you don't have diversions or scoping, etc.

CPP comes with any C compiler. However, considering how mediocre it is, stay away from it if by chance
you can make it without C.

4.1.2. M4

M4 gives you the full power of macroprocessing, with a Turing equivalent language, recursion, regular
expressions, etc. You can do with it everything that CPP cannot.

See macro4th (this4th) or the Tunes 0.0.0.25 sources as examples of advanced macroprogramming using m4.

However, its disfunctional quoting and unquoting semantics force you to use explicit continuation—passing
tail-recursive macro style if you want to do advanced macro programming (which is remindful of TeX ——
BTW, has anyone tried to use TeX as a macroprocessor for anything else than typesetting ?). This is NOT
worse than CPP that does not allow quoting and recursion anyway.

The right version of M4 to get is GNU m4 1.4 (or later if exists), which has the most features and the least

bugs or limitations of all. m4 is designed to be slow for anything but the simplest uses, which might still be ok
for most assembly programming (you are not writing million—lines assembly programs, are you?).

Chapter 4. Metaprogramming 16

ftp://ftp.forth.org/pub/Forth/Compilers/native/unix/this4th.tar.gz
ftp://ftp.tunes.org/pub/tunes/obsolete/dist/tunes.0.0.0/tunes.0.0.0.25.src.zip

Linux Assembly HOWTO

4.1.3. Macroprocessing with your own filter

You can write your own simple macro—expansion filter with the usual tools: perl, awk, sed, etc. It can be
made rather quickly, and you control everything. But, of course, power in macroprocessing implies "the hard

"

way".

4.2. Metaprogramming

Instead of using an external filter that expands macros, one way to do things is to write programs that write
part or all of other programs.

For instance, you could use a program outputting source code

® to generate sine/cosine/whatever lookup tables,

® to extract a source—form representation of a binary file,

¢ to compile your bitmaps into fast display routines,

® to extract documentation, initialization/finalization code, description tables, as well as normal code
from the same source files,

¢ to have customized assembly code, generated from a perl/shell/scheme script that does arbitrary
processing,

e to propagate data defined at one point only into several cross—referencing tables and code chunks.

® etc.

Think about it!

4.2.1. Backends from compilers

Compilers like GCC, SML/NJ, Objective CAML, MIT-Scheme, CMUCL, etc, do have their own generic
assembler backend, which you might choose to use, if you intend to generate code semi—automatically from
the according languages, or from a language you hack: rather than write great assembly code, you may instead
modify a compiler so that it dumps great assembly code!

4.2.2. The New-Jersey Machine-Code Toolkit

There is a project, using the programming language Icon (with an experimental ML version), to build a basis
for producing assembly—manipulating code. See around http://www.eecs.harvard.edu/~nr/toolki

4.2.3. TUNES

The TUNES Project for a Free Reflective Computing System is developing its own assembler as an extension
to the Scheme language, as part of its development process. It doesn't run at all yet, though help is welcome.

The assembler manipulates abstract syntax trees, so it could equally serve as the basis for a assembly syntax
translator, a disassembler, a common assembler/compiler back—end, etc. Also, the full power of a real
language, Scheme, make it unchallenged as for macroprocessing/metaprogramming.

Chapter 4. Metaprogramming 17

http://www.eecs.harvard.edu/~nr/toolkit/
http://www.tunes.org

Chapter 5. Calling conventions

5.1. Linux

5.1.1. Linking to GCC

This is the preferred way if you are developing mixed C—asm project. Check GCC docs and examples from
Linux kernel . S files that go through gas (not those that go through as86).

32-bit arguments are pushed down stack in reverse syntactic order (hence accessed/popped in the right order),
above the 32-bit near return address. $ebp, $esi, $edi, $ebx are callee—saved, other registers are
caller—saved; $eax is to hold the result, or $edx: $eax for 64—bit results.

FP stack: I'm not sure, but I think result is in st (0), whole stack caller—saved. The SVR4 1386 ABI specs at
http://www.caldera.com/developer/devspecs/ is a good reference point if you want more details.

Note that GCC has options to modify the calling conventions by reserving registers, having arguments in
registers, not assuming the FPU, etc. Check the 1386 . info pages.

Beware that you must then declare the cdecl or regparm (0) attribute for a function that will follow
standard GCC calling conventions. See C Extensions: :Extended Asm: : section from the GCC info
pages. See also how Linux defines its asml inkage macro...

5.1.2. ELF vs a.out problems
Some C compilers prepend an underscore before every symbol, while others do not.
Particularly, Linux a.out GCC does such prepending, while Linux ELF GCC does not.

If you need to cope with both behaviors at once, see how existing packages do. For instance, get an old Linux
source tree, the Elk, gt