THE DEFINITIVE GUIDES TO THE
X WINDOW SYSTEM

VOLUME SIX B

Motif Reference Manual

for Motif 2.1

Open Source Edition

Antony Fountain and Paula Ferguson

Motif Reference Manual, Open Source Edition
by Antony Fountain and Paula Ferguson

December 2001

Copyright 0O 1993, 2000, 2001 O’Reilly & Associates, Inc. and Antony Fountain. This
material may be distributed only subject to the terms and conditions set forth in the
Open Publication License, v1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

This is a modified version of the Motif Reference Manual, Second Edition, published
by O’Reilly & Associates in February 2000. The source files for the Second Edition can
be found at http://www.oreilly.com/openbook/motif/. A description of the
modifications is contained in the Preface to the Open Source Edition.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and O’Reilly & Associates, Inc. was aware of a trademark claim, the designations have
been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

Published by:
-~ IMPERIAL

IS_T SOFTWARE

TECHNOLOGY

Imperial Software Technology Limited
Kings Court

185 Kings Road

Reading

Berkshire RG1 4EX

Tel: +44 118 958 7055

Fax: +44 118 958 9005

email: sales@ist.co.uk

URL: http://www.ist.co.uk

Contents

Preface Y
Section 1 - Motif Functionsand Macros 1
Section 2 - Motif and Xt WidgetClasses 557
Section3-MrmFunctions i 961
Section4-MrmClients......... 999
Section5-UILFileFormat. 1033
Section6-UlL Data TYPeSot 1053
Section 7-UILFunctions i 1113
Appendix A - Function Summaries., 1125
AppendixB-DataTypes, 1159
Appendix C - Table of Motif Resources 1199
Appendix D Tableof UILObjects 1225
Appendix E - New Features in Motif2.0and 2.1 1233

Motif Reference Manual iii

Contents

Motif Reference Manual

Preface

Preface to the Open Source Edition

Many thanks to all at O’Reilly and Associates for releasing this, Volume 6B, and the
companion Volume 6A, the Motif Programming Manual, in open source. Both have
been extensively revised for Motif 2.1; this, the Motif Reference Manual, has had
several alterations to the 2nd edition as printed:

« all the function prototypes and examples have been converted to strict ANSI format

» the UIL sections have been restored

* the Xt Session Shell is documented

* many bug patches have been folded in

* new examples have been added to Motif 2.1 procedure sections

» the book sources have been converted from the original troff into FrameMaker and PDF
formats

Removing the UIL portions from the original printed second edition was a hard
decision; the Motif 2.1 toolkit was a much expanded library since previous versions of
the book, and something had to give - the book was over a thousand pages as it was.
However, an electronic copy does not have the same space restrictions as the printed
tome, and so these materials, originally in the Motif 1.2 version of the manual, have
been restored. They also have been reworked for Motif 2.1.

Antony J. Fountain

Preface to the Second Edition

What to put in, and what to leave out, of this update to the Motif Reference Manual
was the hardest decision of all. The guiding principle has been to consider for whom
this material is intended. This is a Programmer’s Reference, and not a Widget Author’s
handbook. Accordingly, those aspects of the new Trait mechanisms which an
application programmer needs to know have been included, but the Xme utilities have
not. Specifying a Trait as a well-defined piece of behaviour which a widget supports,
it is enough to know which traits a Widget Class supports, and how this affects objects
in the widget instance hierarchy. How a Trait is implemented, and which methods are
associated with the given Trait, are generally the domain of the widget author. Hence
it is recorded that the VendorShell holds the XmQTspecifyRenderTableTrait, and that
this means that widget classes further down the widget instance hierarchy inherit
default Render Table information from the VendorShell. This is all that the Application
Programmer needs to know: the rest is silence.

Motif Reference Manual \

Preface

Conversely, the Motif Input Method utilities have been included. Although mostly
defined originally in the Motif 1.2 release, and although the Motif widget classes
generally handle connections to an Input Method when and where this is required, there
is an important exception. The Motif Drawing Area does not register itself with an Input
Method automatically, and hence anyone who needs to directly implement
internationalized input for this widget class most certainly would need to know about
the XmIm functions. The World does not all speak English: for these reasons, the XmIm
functions are included in the Manual.

A brief note concerning the status of Motif as the premier Unix toolkit. A number of
alternative toolkits have arisen, particularly in the Linux domain, which offer an X-based
windowing system for the Unix, and other, platforms. | refer principally to the likes of
Qt, and GTK+. These on the whole dispense with the Xt layer, in order to provide small,
lightweight GUI components which are, from the application programmer’s perspective,
relatively easy to port to non-Unix domains. Although admirable in many ways, these
suffer from one crucial drawback, precisely because Xt has been excluded: there is no
object component model associated with any of the objects which can be created in an
interfacel. Compare and contrast with something like JavaBeans, where a GUI builder
can be designed which can dynamically load and query objects from whatever source,
and from thence inspect the attributes of the object, construct resource panels, and
generate code for the components, all without any external configuration. Based on Xt,
Moatif also has this important property: I can in principle dynamically load into my GUI
builder any third party component, construct an internal attribute list, present resource
panels for object configuration to the user, and from there generate source code. Just by
interrogating the widget class. All the commercial GUI builders available for Motif
support this.

The newer alternative Linux toolkits do not have this introspective quality. Writing GUI
builders happens to be what | do for a living: sad to say, | cannot write one for these
toolkits precisely because these is no component model at the object level. Not
surprisingly, no third party component market exists for the toolkits either: there is no
GUI builder into which these components can be dynamically slotted. Each needs the
other, but there is nothing which allows them to talk. In the absence of either a
commercial component market, or a dynamic GUI builder, there remains serious
qguestion marks concerning the scalability of the alternative toolkits, whatever merits
they hold. The only alternatives are to write all the code by hand, or pass control of the

1.True at the moment of writing. It is still true that all the information required to dynamically introspect an object’s entire
resource set, particularly if user-defined and not built-in to the basic set, is not completely forthcoming. Introspecting
third party components remains troublesome for a dynamic GUI builder.

Vi Motif Reference Manual

Preface

application to a private piece of hobbyware which masquerades as a support
environment. Ironically, the advent of Java has cemented Motif: the JDK relies on Motif
for the native implementation on the Unix platform. Until such time as a native toolkit
surfaces which has this important introspective property, Motif remains what it has
long been, the only native toolkit for Unix which supports large scale internationalized
applications.!

About the Motif Toolkit

The Motif toolkit, from the Open Software Foundation (OSF), is based on the X Toolkit
Intrinsics (Xt), which is the standard mechanism on which many of the toolkits written
for the X Window System are based. Xt provides a library of user-interface objects
called widgets and gadgets, which provide a convenient interface for creating and
manipulating X windows, colormaps, events, and other cosmetic attributes of the
display. In short, widgets can be thought of as building blocks that the programmer
uses to construct a complete application.

However, the widgets that Xt provides are generic in nature and impose no user-
interface policy whatsoever. Providing the look and feel of an interface is the job of a
user-interface toolkit such as Motif. Motif provides a complete set of widgets that are
designed to implement the application look and feel specified in the Motif Style Guide
and the Motif Application Environment Specification. The Motif toolkit also includes a
library of functions for creating and manipulating the widgets and other aspects of the
user interface.

The Motif toolkit has other components in addition to the widget set and related
functions. Motif provides a User Interface Language (UIL) for describing the initial
state of a user interface. UIL is designed to permit rapid prototyping of the user
interface for an application. The Motif Resource Manager (Mrm) functions provide the
interface between C language application code and UIL. Motif also provides the Motif
Window Manager (mwm). The appearance and behavior of this window manager is
designed to be compatible with the appearance and behavior of the Motif widget set.

About This Manual

This manual contains reference material on the Motif toolkit. This edition is based on
Motif 2.1, which is the latest major release of the Motif toolkit. Motif 1.2 is based on

1.The contents of this paragraph were true at the moment of writing. There is now a commercial GUI builder for the
Linux toolkits; whether it survives in a free software environment remains to be seen. It is still true that the large scale
commercial concerns continue to use Motif for their native Unix toolkit.

Motif Reference Manual Vi

Preface

Release 6 of the Xlib and Xt specifications (X11R6). This release of Motif provides many
new features, including new widget classes and several new functions. In order to cover
all of the material, it became necessary to split Volume Six into two separate manuals, a
programming manual and a reference manual. Volume Six A is the Motif Programming
Manual and Volume Six B is the Motif Reference Manual.

This manual is part of the sixth volume in the O’Reilly & Associates X Window System
Series. It includes reference pages for each of the Motif functions and macros, for the
Motif and Xt Intrinsics widget classes, for the Mrm functions, for the Motif clients, and
for the UIL file format, data types, and functions. A permuted index and numerous quick
reference appendices are also provided.

Volume Six B includes reference pages for all of the new functions and widgets in Motif
2.0 and 2.1. When the functionality of an existing routine or widget has changed in Motif
2.0 or 2.1, the reference page explains the differences between the two versions. Volume
Six B also provides a complete set of reference material for UIL and Mrm, which was not
covered in the previous edition.

Volumes Six A and B are designed to be used together. Volume Six A provides a
complete programmer’s guide to the Motif toolkit. Each chapter of the book covers a
particular component of the Motif toolkit. Each chapter includes basic tutorial material
about creating and manipulating the component, intermediate-level information about
the configurable aspects of the component, and any advanced programming topics that
are relevant. The chapters also provide numerous programming examples.

To get the most out of the examples in Volume Six A, you will need the exact calling
sequences of each function from Volume Six B. To understand fully how to use each of
the routines described in Volume Six B, all but the most experienced Motif programmers
will need the explanations and examples in Volume Six A.

While the Motif toolkit is based on Xt, the focus of this manual is on Motif itself, not on
the X Toolkit Intrinsics. Reference pages for the Xt widget classes are included here to
provide a complete picture of the widget class hierarchy. Many reference pages mention
related Xt routines, but the functionality of these routines is not described. Detailed
information about Xt is provided by Volume 4, X Toolkit Intrinsics Programming Manual,
Motif Edition, and Volume 5, X Toolkit Intrinsics Reference Manual.

How This Manual is Organized

Volume Six B is desighed to make it easy and fast to look up virtually any fact about the
Motif toolkit. It contains reference pages and numerous helpful appendices.

viii Motif Reference Manual

Preface

The book is organized as follows:

Preface

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

Section 7

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Index

Motif Reference Manual

Describes the organization of the book and the conventions it fol-
lows.

Motif Functions and Macrqsontains reference pages for all of
Motif functions and macros.

Motif and Xt Widget Classgsontains reference pages for the
widget classes defined by the Motif toolkit and the X Toolkit Intrin-
sics.

Mrm Functions contains reference pages for the Motif Resource
Manager functions that are used in conjuctions with the User Inter-
face Language.

Motif Clients contains reference pages for the Motif clientsim
uil, andxmbind

UIL File Format, contains reference pages that describe the file for-
mat of a User Interface Language module.

UIL Data Typescontains reference pages for the data types sup-
ported by the User Interface Language.

UIL Functions contains reference pages for the User Interface Lan-
guage functions.

Function Summarigeprovides quick reference tables that list each
Motif function alphabetically and also by functional groups.

Data Typeslists and explains in alphabetical order the structures,
enumerated types, and other typedefs used for arguments to Motif
and Mrm functions.

Table of Motif Resourcelsts all of the resources provided by
Motif and Xt widget classes, along with their types and the classes
that define them.

Table of UIL Objectdlists all of the objects supported by the User
Interface Language, along with their corresponding Motif widget
classes.

New Features in Motif 1,2ists the new functions, widget classes,
and widget resources in Motif 1.2.

Should help you to find what you need to know.

Preface

Assumptions

This book assumes that the reader is familiar with the C programming language and
the concepts and architecture of the X Toolkit, which are presented in Volume 4, X
Toolkit Intrinsics Programming Manual, Motif Edition, and Volume 5, X Toolkit Intrinsics
Reference Manual. A basic understanding of the X Window System is also useful. For
some advanced topics, the reader may need to consult Volume 1, Xlib Programming
Manual, and Volume 2, Xlib Reference Manual.

Related Documents

The following books on the X Window System are available from O’Reilly &
Associates, Inc.:

Volume Zero X Protocol Reference Manual

Volume One Xlib Programming Manual

Volume Two Xlib Reference Manual

Volume Three X Window System User’s Guide, Motif Edition
Volume Four X Toolkit Intrinsics Programming Manual, Motif
Edition

Volume Five X Toolkit Intrinsics Reference Manual

Volume Six A Motif Programming Manual

Volume Seven XView Programming Manuabith accompany-

ing reference volume.

Volume Eight X Window System Administrator's Guide
PHIGS Programming Manual

PHIGS Reference Manual

PEXIib Programming Manual

PEXIlib Reference Manual

Quick Reference The X Window System in a Nutshell

Programming Supplement for Release 6 of the X Window System

Conventions Used in This Book

Italic is used for:

Motif Reference Manual X

Preface

* UNIX pathnames, filenames, program names, user command names, options for user
commands, and variable expressions in syntax sections.
* New terms where they are defined.

Constant Width Font is used for:

* Anything that would be typed verbatim into code, such as examples of source code and
text on the screen.

» Variables, data structures (and fields), symbols (defined constants and bit flags), functions,
macros, and a general assortment of anything relating to the C programming language.

« All functions relating to Motif, Xt, and Xlib.

* Names of subroutines in example programs.

Constant Width Italic Font is used for:

* Arguments to functions, since they could be typed in code as shown but are arbitrary
names that could be changed.

Helvetica Italic is used for:
» Titles of examples, figures, and tables.
Boldface is used for:

« Chapter headings, section headings, and the names of buttons and menus.

We'd Like to Hear From You

We have tested and verified all of the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing:

O’Reilly & Associates, Inc.

103 Morris Street, Suite A
Sebastopol, CA 95472

1-800-998-9938 (in the US or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

Motif Reference Manual Xi

Preface

Acknowledgements

This book developed out of the realization that it would be impossible to update the
first edition of Volume Six to cover Motif 1.2 without dividing the original book into
two books. Dan Heller, David Flanagan, Adrian Nye, and Tim O’Reilly all provided
valuable suggestions on how best to expand the original reference appendices into a
full-fledged reference manual.

The Motif reference pages in this book are based on the reference appendices from the
first edition, which were developed by Daniel Gilly. His work meant that | didn’t have
to start from scratch, and thus saved many hours of toil. The OSF/Motif reference
material also provided a helpful foundation from which to explore the complexities of
the Motif toolkit. Many of the Motif examples in the book were borrowed from the first
edition of Volume Six. These example were written by Dan Heller, although they have
been updated for Motif 1.2

Dave Brennan, of HaL Computer Systems, took on the unenviable task of learning
everything there is to know about UIL and Mrm, so that he could write the UIL
reference material. He did a great job.

Adrian Nye deserves special recognition for freeing me to work on this project, when
I’m sure that he had other projects he would have liked to send my way. | don’t think
either one of us had any idea how involved this update project would become. The
other inhabitants of the "writer’s block" at O’Reilly & Associates, Valerie Quercia,
Linda Mui, and Ellie Cutler, provided support that kept me sane while | was working
on the book. Extra gratitude goes to Linda Mui for her work on the cross references and
the reference tables; her knowledge of various tools prevented me from doing things
the hard way. Tim O’Reilly also provided editorial support that improved the quality
of the reference material.

Special thanks go to the people who worked on the production of this book. The final
form of this book is the work of the staff at O’Reilly & Associates. The authors would
like to thank Chris Reilly for the figures, Ellie Cutler for indexing, Lenny Muellner for
tools support, Eileen Kramer for copy editing and production of the final copy, and
Clairemarie Fisher O’Leary for final proofing and printing. Thanks also to Donna
Woonteiler for her patience in answering my questions and helping me to understand
the production process.

Despite the efforts of all of these people, the authors alone are responsible for any
errors or omissions that remain.

Paula M. Ferguson

Motif Reference Manual Xii

Preface

Acknowledgements to the Motif 2.1 Edition

Many thanks to all at IST who gave me the time and opportunity to perform this work.
I would like to thank all those who reviewed the material, which in a Reference Manual
of this type is a tedious but necessary task: a very big "Thank You" to Andy Bartlett
who took the trouble of sitting down with the Motif sources whilst pouring over every
technical detail, and to Tricia Lovell who reviewed the format at particularly short
notice.

A special thanks also to Richard Offer and Doug Rand from Silicon Graphics, and
Mark Riches for casting expert and independent eyes over the materials. | would also
like to thank Andy Lovell and Derek Lambert for allowing and freeing me up to
perform the task. To the rest of the company, who have had to wait whilst yet another
batch of print jobs ran to completion, all I can say is "Sorry".

A very big “Thank You” indeed to all at O’Reilly for allowing me to undertake this
important task, and especially to Paula Ferguson, my editor: | could not have done this
without you.

But to my wife Emma, who put up with some seriously late nights over a long period,
goes the biggest "Thank You" of all. This would not have happened without any of you,
and | am extremely grateful.

Antony J. Fountain

Acknowledgements to the Open Source Edition

Again, many thanks to all at IST who helped me convert the original troff to Frame and
PDF formats. A special thank you to Denise Huxtable who enlightened me on the
mysteries of Reference Pages, Indexes, and Tables of Contents. Denise also performed
much of the cross-referencing in the manual. Thank you also to Ruth Lambert, who
showed me how to mark up the document sources.

Again, avery big “Thank You” to all at O’Reilly, and Paula Fergusson in particular, for
helping this open source edition come about.

And again, to my wife Emma: a big kiss, and I’'ll be home real soon now.

Antony J. Fountain

Motif Reference Manual xiii

Section 1 - Motif Functions and Macros

This page describes the format and contents of each reference page in Section 1,
which covers the Motif functions and macros.

Name
Function — a brief description of the function.
Synopsis
This section shows the signature of the function: the names and types of the argu-
ments, and the type of the return value. If header file othexianiXm.h>is
needed to declare the function, it is shown in this section as well.
Inputs
This subsection describes each of the function arguments that pass information to
the function.
Outputs
This subsection describes any of the function arguments that are used to return
information from the function. These arguments are always of some pointer type,
so you should use the C address-of operator (&) to pass the address of the varia-
ble in which the function will store the return value. The names of these argu-
ments are sometimes suffixed witfeturnto indicate that values are returned in
them. Some arguments both supply and return a value; they will be listed in this
section and in the "Inputs" section above. Finally, note that because the list of
function arguments is broken into "Input" and "Output" sections, they do not
always appear in the same order that they are passed to the function. See the
function signature for the actual calling order.
Returns
This subsection explains the return value of the function, if any.
Availability
This section appears for functions that were added in Motif 2.0 and later, and also
for functions that are now superseded by other, preferred, functions.
Description
This section explains what the function does and describes its arguments and
return value. If you've used the function before and are just looking for a
refresher, this section and the synopsis above should be all you need.
Usage

This section appears for most functions and provides less formal information
about the function: when and how you might want to use it, things to watch out
for, and related functions that you might want to consider.

Motif Reference Manual 1

Motif Functions and Macros

Example
This section appears for some of the most commonly used Motif functions, and
provides an example of their use.

Structures
This section shows the definition of any structures, enumerated types, typedefs,
or symbolic constants used by the function.

Procedures
This section shows the syntax of any prototype procedures used by the function.

See Also
This section refers you to related functions, widget classes, and clients. The num-
bers in parentheses following each reference refer to the sections of this book in
which they are found.

2 Motif Reference Manual

Motif Functions and Macros XmActivateProtocol

Name
XmActivateProtocol — activate a protocol.

Synopsis
#include <Xm/Protocols.h>

void XmActivateProtocol (Widgethell Atom property Atom protoco)

Inputs
shell - Specifies the widget associated with the protocol property.

property - Specifies the property that holds the protocol data.
protocol - Specifies the protocol atom.

Description
XmActivateProtocol () activates the specified protocol. If the shell is real-
ized,XmActivateProtocol () updates its protocol handlers and the specified
property. If the protocol is active, the protocol atom is stored in property; if the
protocol is inactive, the protocol atom is not stored in property.

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmActivateProtocol () makes the shell able to respond to ClientMessage
events that contain the specified protocol. Before you can activate a protocol, the
protocol must be added to the shell wittnAddProtocols (). Protocols are
automatically activated when they are added. The inverse routmmBeacti-
vateProtocol ().

See Also
XmActivateWMProtocol (1), XmAddProtocols (1) XmDeactivate-
Protocol (1), XminternAtom (1), VendorShell (2).

Motif Reference Manual 3

XmActivateWMProtocol Motif Functions and Macros

Name

Synopsis

XmActivateWMProtocol — activate the XA_ WM_PROTOCOLS protocol.

#include <Xm/Protocols.h>

void XmActivateWMProtocol (Widgeshell Atom protocol)

Inputs

shell - Specifies the widget associated with the protocol property.
protocol - Specifies the protocol atom.

Description

Usage

See Also

XmActivateWMProtocol () is a convenience routine that calls\Acti-
vateProtocol () with property set to XA WM_PROTOCOL, the window
manager protocol property.

The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. Before you can activate the
protocols, they must be added to the shell WithAddProtocols () or XmAd-
dWMProtocols (). Protocols are automatically activated when they are added.
The inverse routine EmDeactivateWMProtocol ().

XmActivateProtocol (1), XmAddProtocols (1),
XmAddWMProtocols (1), XmDeactivateWMProtocol (1),
XminternAtom (1), VendorShell (2).

Motif Reference Manual

Motif Functions and Macros XmAddProtocolCallback

Name

Synopsis

XmAddProtocolCallback — add client callbacks to a protocol.

#include <Xm/Protocols.h>

void XmAddProtocolCallback (Widget shell
Atom property
Atom protocol
XtCallbackProc callback
XtPointer closure

Inputs

shell - Specifies the widget associated with the protocol property.

property - Specifies the property that holds the protocol data.

protocol - Specifies the protocol atom.

callback - Specifies the procedure to invoke when the protocol message
is received.

closure - Specifies any client data that is passed to the callback.

Description

Usage

See Also

XmAddProtocolCallback() adds client callbacks to a protocol. The routine veri-
fies that the protocol is registered, and if it is not, it calls XmAddProtocols().
XmAddProtocolCallback() adds the callback to the internal list of callbacks, so
that it is called when the corresponding client message is received.

A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
To communicate using a protocol, a client sends a ClientMessage event contain-
ing a property and protocol, and the receiving client responds by calling the asso-
ciated protocol callback routine. XmAddProtocolCallback() allows you to

register these callback routines.

XmAddProtocols (1), XmAddWMProtocolCallback (1),
XminternAtom (1), VendorShell (2).

Motif Reference Manual 5

XmAddProtocols Motif Functions and Macros

Name

Synopsis

XmAddProtocols — add protocols to the protocol manager.

#include <Xm/Protocols.h>

void XmAddProtocols (Widgeshell Atom property Atom *protocols Cardinal
num_protocoly

Inputs

shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocols Specifies a list of protocol atoms.
num_protocolsSpecifies the number of atoms in protocols.

Description

Usage

See Also

XmAddProtocols () registers a list of protocols to be stored in the specified
property of the specified shell widget. The routine adds the protocols to the pro-
tocol manager and allocates the internal tables that are needed for the protocol.

A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmAddProtocols () allows you to add protocols that can be understood by
your application. The inverse routinedmRemoveProtocols (). To commu-
nicate using a protocol, a client sends a ClientMessage event containing a prop-
erty and protocol, and the receiving client responds by calling the associated
protocol callback routine. UsémAddProtocolCallback () to add a call-

back function to be executed when a client message event containing the speci-
fied protocol atom is received.

XmAddProtocolCallback (1), XmAddwWMProtocols (1),
XminternAtom (1), XmRemoveProtocols (1), VendorShell (2).

Motif Reference Manual

Motif Functions and Macros XmAddTabGroup

Name
XmAddTabGroup — add a widget to a list of tab groups.

Synopsis

void XmAddTabGroup (Widgelb_group

Inputs
tab_group Specifies the widget to be added.

Availability
In Motif 1.1, XmAddTabGroup() is obsolete. It has been superceded by setting
XmNnavigationType to XmEXCLUSIVE_TAB_GROUP.

Description
XmAddTabGroup() makes the specified widget a separate tab group. This rou-
tine is retained for compatibility with Motif 1.0 and should not be used in newer
applications. If traversal behavior needs to be changed, this should be done
directly by setting the XmNnavigationType resource, which is defined by Man-
ager and Primitive.

Usage
A tab group is a group of widgets that can be traversed using the keyboard rather
than the mouse. Users move from widget to widget within a single tab group by
pressing the arrow keys. Users move between different tab groups by pressing
the Tab or Shift-Tab keys. If the tab_group widget is a manager, its children are
all members of the tab group (unless they are made into separate tab groups). If
the widget is a primitive, it is its own tab group. Certain widgets must not be
included with other widgets within a tab group. For example, each List, Scroll-
bar, OptionMenu, or multi-line Text widget must be placed in a tab group by
itself, since these widgets define special behavior for the arrow or Tab keys,
which prevents the use of these keys for widget traversal. The inverse routine is
XmRemoveTabGroup().

See Also
XmGetTabGroup (1), XmRemoveTabGroup(1),
XmManager(2), XmPrimitive (2).

Motif Reference Manual 7

XmAddToPostFromList Motif Functions and Macros

Name

Synopsis

XmAddToPostFromList — make a menu accessible from a widget.

#include <Xm/RowColumn.h>
void XmAddToPostFromList (Widgeheny Widgetwidge)

Inputs

menu Specifies a menu widget
widget Specifies the widget from which to make menu accessible

Availability

In Motif 2.0 and later, the function prototype is removed from RowColumn.h,
although there is otherwise no indication that the procedure is obsolete.

Description

Usage

See Also

XmAddToPostFromList () is a convenience function which makes menu
accessible from widget. There is no limit to how many widgets may share the
same menu. The event sequence required to popup the menu is the same in each
widget context.

Rather than creating a new and identical hierarchy for each context in which a
pulldown or popup menu is required, a single menu can be created and shared. If
the type of the menu is XmMENU_PULLDOWN, the value of the XmNsubMen-
uld resource of widget is set to menu. If the type of the menu is
XmMENU_POPUP, button and key press event handlers are added to widget in
order to post the menu.

There are implicit assumptions that widget is a CascadeButton or CascadeBut-
tonGadget when menu is XmMENU_PULLDOWN, and that widget is not a
Gadget when menu is XmMENU_POPUP. These are not checked by the proce-
dure.

XmGetPostedFromWidget (1), XmRemoveFromPostFromList (1),
XmCascadeButton (2), XmCascadeButtonGadget (2), XmGadget(2),
XmPopupMeny2), XmPulldownMenu (2), XmRowColumr{2).

Motif Reference Manual

Motif Functions and Macros XmAddWMProtocolCallback

Name
XmAddWMProtocolCallback — add client callbacks to an
XA _WM_PROTOCOLS protocol.

Synopsis
#include <Xm/Protocols.h>

void XmAddWMProtocolCallback (Widget shell
Atom protocol
XtCallbackProc callback
XtPointer closure

Inputs
shell Specifies the widget associated with the protocol property.

protocol Specifies the protocol atom.

callback Specifies the procedure to invoke when the protocol message
is received.

closure Specifies any client data that is passed to the callback.

Description
XmAddWMProtocolCallback () is a convenience routine that catsnAd-
dProtocolCallback () with property set to XA_ WM_PROTOCOL, the win-
dow manager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. To communicate using a pro-
tocol, a client sends a ClientMessage event containing a property and protocol,
and the receiving client responds by calling the associated protocol callback rou-
tine. XmAddWMProtocolCallback () allows you to register these callback
routines with the window manager protocol property. The inverse routine is
XmRemoveWMProtocolCallback ().

Example
The following code fragment shows the usXofAddWMProtocolCall-
back () to save the state of an application using the WM_SAVE_YOURSELF
protocol;

Atom wm_save_yourself;

wm_save_yourself = XInternAtom 1 (XtDisplay
(toplevel),

1.From Motif 2.0, XmInternAtom() is marked for deprecation.

Motif Reference Manual 9

XmAddWMProtocolCallback Motif Functions and Macros

"WM_SAVE_YOURSELF
", False);

XmAddWMProtocols (toplevel, &wm_save_yourself, 1);

XmAddWMProtocolCallback (toplevel,
wm_save_yourself,
save_state, toplevel);

save_statés a callback routine that saves the state of the application.

See Also
XmAddProtocolCallback (1), XminternAtom (1),
XmRemoveWMProtocolCallback (1), VendorShell (2).

10 Motif Reference Manual

Motif Functions and Macros XmAddWMProtocols

Name
XmAddWMProtocols — add the XA_WM_PROTOCOLS protocols to the proto-
col manager.

Synopsis
#include <Xm/Protocols.h>
void XmAddWMProtocols (Widgetshell Atom *protocols Cardinal
num_protocoly

Inputs

shell Specifies the widget associated with the protocol property.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmAddWMProtocols() is a convenience routine that calls XmAddProtocols()
with property set to XA_WM_PROTOCOL, the window manager protocol prop-
erty.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window manageénsAddWMProtocols ()
allows you to add this protocol so that it can be understood by your application.
The inverse routine EmRemoveWMProtocols (). To communicate using a
protocol, a client sends a ClientMessage event containing a property and proto-
col, and the receiving client responds by calling the associated protocol callback
routine. UseXmAddWMProtocolCallback () to add a callback function to
be executed when a client message event containing the specified protocol atom
is received.

Example

The following code fragment shows the useXahAddWMProtocols () to add the
window manager protocols, so that the state of an application can be saved using the
WM_SAVE_YOURSELF protocol:

Atom wm_save_yourself;

wm_save_yourself = XmInternAtom (XtDisplay
(toplevel),
"WM_SAVE_YOURSELF
", False);

XmAddWMProtocols (toplevel, &wvm_save_yourself, 1);

Motif Reference Manual 11

XmAddWMProtocols Motif Functions and Macros

XmAddWMProtocolCallback (toplevel,
wm_save_yourself,
save_state, toplevel);

save_state is a callback routine that saves the state of the application.

See Also
XmAddProtocols (1), XmAddWMProtocolCallback (1),
XminternAtom (1), XmRemoveWMProtocols (1), VendorShell (2).

12 Motif Reference Manual

Motif Functions and Macros XmCascadeButtonHighlight

Name

Synopsis

XmCascadeButtonHighlight, XmCascadeButtonGadgetHighlight — set the high-
light state of a CascadeButton.

#include <Xm/CascadeB.h>
void XmCascadeButtonHighlight (WidgeascadeButtorBooleanhighlight)
#include <Xm/CascadeBG.h>

void XmCascadeButtonGadgetHighlight (WidgescadeButtorBoolearhigh-
light)

Inputs

cascadeButton Specifies the CascadeButton or CascadeButtonGadget.
highlight Specifies the highlight state.

Description

Usage

See Also

XmCascadeButtonHighlight () sets the state of the shadow highlight
around the specifiechscadeButtarwhich can be a CascadeButton or a Cascade-
ButtonGadget.

XmCascadeButtonGadgetHighlight () sets the highlight state of the
specifiedcascadeButtarnwhich must be a CascadeButtonGadget.

Both routines draw the shadowhifghlightis True and erase the shadowigh-
light is False.

CascadeButtons do not normally display a shadow like other buttons, so the high-
light shadow is often used to show that the button is arkre@ascadeBut-
tonHighlight () andXmCascadeButtonGadgetHighlight () provide a

way for you to cause the shadow to be displayed.

XmCascadeButton (2), XmCascadeButtonGadget (2).

Motif Reference Manual 13

XmChangeColor Motif Functions and Macros

Name
XmChangeColor — update the colors for a widget.

Synopsis

void XmChangeColor (Widget widget, Pixel background)

Inputs
widget Specifies the widget whose colors are to be changed.

background Specifies the background color.

Description
XmChangeColor () changes all of the colors for the specified widget based on
the new background color. The routine recalculates the foreground color, the
select color, the arm color, the trough color, and the top and bottom shadow
colors and updates the corresponding resources for the widget.

Usage
XmChangeColor () is a convenience routine for changing all of the colors for a

widget, based on the background color. Without the routine, an application would

have to calKmGetColors () to get the new colors and then set the XmNfore-
ground, XmNtopShadowColor, XmNbottomShadowColor, XmNtroughColor,
XmNarmColor, XmNselectColor resources for the widget WitBetVal-

ues (). The XmNhighlightColor is set to the value of the XmNforeground.

XmChangeColor () callsXmGetColors () internally to allocate the required

pixels. In Motif 1.2 and earlier, this uses the default color calculation procedure

unless a customized color calculation procedure has been setm&ét-
ColorCalculation (). In Motif 2.0 and later, color calculation can be speci-
fied on a per-screen basis, and any specified XmNcolorCalculationProc

procedure of the XmScreen object associated with the widget is used in prefer-

ence.

See Also
XmGetColorCalculation(1), XmGetColors(1),
XmSetColorCalculation(1), XmScreen(2).

14 Motif Reference Manual

Motif Functions and Macros XmClipboardBeginCopy

Name
XmClipboardBeginCopy — set up storage for a clipboard copy operation.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardBeginCopy (Display display
Window window
XmString clip_label
Widget widget
VoidProc callback
long *item_id
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
clip_label Specifies a label that is associated with the data item.
widget Specifies the widget that receives messages requesting data that has
been passed by name.
callback Specifies the callback function that is called when the clipboard
needs data that has been passed by name.
Outputs
item_id Returns the ID assigned to the data item.
Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardBeginCopy () is a convenience routine that calls\Clip-
boardStartCopy () with identical arguments and with a timestamp of Cur-

rentTime.

Usage
XmClipboardBeginCopy () can be used to start a normal copy operation or a
copy-by-name operation. In order to pass data by namejdigetandcallback
arguments t&XmClipboardBeginCopy () must be specified.

Procedures

The VoidProc has the following format:

typedef void (*VoidProc) (Widgetvidget int *data_id int *private_id int
*reasor)

Motif Reference Manual 15

XmClipboardBeginCopy Motif Functions and Macros

See Also

16

The VoidProc takes four arguments. The first argunvedget is the widget
passed to the callback routine, which is the same widget as pa3saclip-
boardBeginCopy (). Thedata_idargument is the ID of the data item that is
returned byXmClipboardCopy () andprivate_idis the private data passed to
XmClipboardCopy().

Thereasonargument takes the value XmCR_CLIPBOARD_DATA_REQUEST,
which indicates that the data must be copied to the clipboard, or
XmCR_CLIPBOARD_DATA DELETE, which indicates that the client can

delete the data from the clipboard. Although the last three parameters are pointers
to integers, the values are read-only and changing them has no effect.

XmClipboardCancelCopy (1), XmClipboardCopy (1),
XmClipboardCopyByName (1), XmClipboardEndCopy (1),
XmClipboardStartCopy (1).

Motif Reference Manual

Motif Functions and Macros XmClipboardCancelCopy

Name
XmClipboardCancelCopy — cancel a copy operation to the clipboard.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardCancelCopy (Displaydisplay Windowwindow longitem_id
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
item_id Specifies the ID of the data item.
Returns

ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.

Description
XmClipboardCancelCopy () cancels the copy operation that is in progress
and frees temporary storage that has been allocated for the operation. The func-
tion returns ClipboardFail XmClipboardStartCopy () has not been called
or if the data item has too many formats.

Usage
A call toXmClipboardCancelCopy () is valid only between calls to
XmClipboardStartCopy () andXmClipboardEndCopy (). XmClip-
boardCancelCopy () can be called instead KmClipboardEndCopy ()
when you need to terminate a copying operation before it completes. If you have
previously locked the clipboardmClipboardCancelCopy () unlocks it, so
you should not calkmClipboardUnlock ().

See Also
XmClipboardBeginCopy (1), XmClipboardCopy (1),
XmClipboardEndCopy (1), XmClipboardStartCopy (1).

Motif Reference Manual 17

XmClipboardCopy Motif Functions and Macros

Name
XmClipboardCopy — copy a data item to temporary storage for later copying to
the clipboard.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardCopy (Display display
Window window
long item_id
char *format_name
XtPointer buffer,
unsigned long length
long private_id
long *data_id
Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
item_id Specifies the ID of the data item.
format_name Specifies the name of the format of the data item.
buffer Specifies the buffer from which data is copied to the clipboard.
length Specifies the length of the data being copied to the clipboard.
private_id Specifies the private data that is stored with the data item.
Outputs
data_id Returns an ID for a data item that is passed by name.
Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.
Description
XmClipboardCopy () copies the data item specified by buffer to temporary
storage. The data item is moved to the clipboard data structureXmah@lip-
boardEndCopy () is called. Thatem_idis the ID of the data item returned by
XmClipboardStartCopy () andformat_namaes a string that describes the
type of the data.
18 Motif Reference Manual

Motif Functions and Macros XmClipboardCopy

Usage

Example

Since the data item is not actually stored in the clipboardXmiClip-
boardEndCopy () is called, multiple calls to XmClipboardCopy() add data item
formats to the same data item or will append data to an existing format. The func-
tion returns ClipboardFail XmClipboardStartCopy () has not been called

or if the data item has too many formats.

XmClipboardCopy () is called between calls XmClipboardStart-

Copy() andXmClipboardEndCopy (). If you need to make multiple calls to
XmClipboardCopy () to copy a large amount of data, you should call
XmClipboardLock () to lock the clipboard for the duration of the copy opera-
tion.

When there is a large amount of clipboard data and the data is unlikely to be
retrieved, it can be copied to the clipboard by name. Since the data itself is not
copied to the clipboard until it is requested with a retrieval operation, copying by
name can improve performance. To pass data by nam&ne@lipboard-

Copy() with buffer specified as NULL. A unique number is returned in data_id
that identifies the data item for later use. When another application requests data
that has been passed by name, a callback requesting the actual data will be sent to
the application that owns the data and the owner must theXgalllipboard-
CopyByNameg() to transfer the data to the clipboard. Once data that is passed by
name has been deleted from the clipboard, a callback notifies the owner that the
data is no longer needed.

The following callback shows the sequence of calls needed to copy data to the
clipboard:

void to_clipbd (Widget widget,
XtPointer client _data,

XtPointer call_data)

long item_id = 0;

int status;

XmString clip_label,

char buffer[32];

Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

Motif Reference Manual 19

XmClipboardCopy Motif Functions and Macros

char *data = (char *) client_data;

(void) sprintf (buffer, "%s", data);

clip_label = XmStringCreatelLocalized ("Data");
[* start a copy; retry until unlocked */

do

status = XmClipboardStartCopy (dpy, window,
clip_label,

CurrentTime,
NULL, NULL,
&item_id);

while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data; retry until unlocked */
do {

status = XmClipboardCopy (dpy, window,
item_id, "STRING",
(XtPointer) buffer,

(unsigned long) strlen
(buffer) + 1,

(long) O, (long *) 0);
} while (status == ClipboardLocked);
/* end the copy; retry until unlocked */
do

status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);

See Also
XmClipboardBeginCopy (1), XmClipboardCancelCopy (1),
XmClipboardCopyByName (1), XmClipboardEndCopy (1),
XmClipboardStartCopy (1).

20 Motif Reference Manual

Motif Functions and Macros XmClipboardCopyByName

Name
XmClipboardCopyByName — copy a data item passed by name.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardCopyByName (Display dfsplay
Window window
long data_id
XtPointer buffer,
unsigned long length
long private_id
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
data_id Specifies the ID number assigned to the data item by XmClip-
boardCopy().
buffer Specifies the buffer from which data is copied to the clipboard.
length Specifies the length of the data being copied to the clipboard.
private_id Specifies the private data that is stored with the data item.
Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.
Description
XmClipboardCopyByName () copies the actual data to the clipboard for a data
item that has been previously passed by name. The data that is copied is specified
by buffer. Thedata_idis the ID assigned to the data itemXpClipboard-
Copy().
Usage

XmClipboardCopyByName () is typically used for incremental copying; new
data is appended to existing data with each cadht€lipboardCopyBy-

Namg). If you need to make multiple calls XanClipboardCopyByName ()

to copy a large amount of data, you should X&ailClipboardLock () to lock
the clipboard for the duration of the copy operation.

Copying by name improves performance when there is a large amount of clip-
board data and when this data is likely never to be retrieved, since the data itself
is not copied to the clipboard until it is requested with a retrieval operation. Data
is passed by name wh&mClipboardCopy () is called with éuffervalue of

NULL. When a client requests the data passed by name, the callback registered

Motif Reference Manual 21

XmClipboardCopyByName Motif Functions and Macros

by XmClipboardStartCopy () is invoked. Se&XmClipboardStart-
Copy() for more information about the format of the callback. This callback calls
XmClipboardCopyByName () to copy the actual data to the clipboard.

Example
The following XmCutPasteProc callback shows the usémtlipboard-
CopyByName() to copy data passed by name:

void copy_by _name (Widget widget,
long *data_id,
long *private_id;
int *reason)

Display *dpy = XtDisplay (toplevel);
Window window = XtWindow (toplevel);
int status;

char buffer[32];

if (*reason == XmCR_CLIPBOARD_DATA_REQUEST) {
(void) sprintf (buffer, "stuff");

do
status = XmClipboardCopyByName (dpy, win-
dow, *data_id,

(XtPointer) buffer,
(unsigned long)
strlen (buffer)+1,
*private_id);

while (status != ClipboardSuccess);

See Also
XmClipboardBeginCopy (1), XmClipboardCopy (1),
XmClipboardEndCopy (1), XmClipboardStartCopy ().

22 Motif Reference Manual

Motif Functions and Macros XmClipboardEndCopy

Name
XmClipboardEndCopy — end a copy operation to the clipboard.
Synopsis
#include <Xm/CutPaste.h>

int XmClipboardEndCopy (Displaydisplay Windowwindow longitem_id

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

item_id Specifies the ID of the data item.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by

another application, or ClipboardFail on failure.

Description
XmClipboardEndCopy () locks the clipboard, places data that has been accu-
mulated by calling<mClipboardCopy () into the clipboard data structure, and
then unlocks the clipboard. Titem_idis the ID of the data item returned by
XmClipboardStartCopy(). The function returns ClipboardFaXrifClip-
boardStartCopy () has not been called previously.

Usage
XmClipboardEndCopy () frees temporary storage that was allocated by
XmClipboardStartCopy (). XmClipboardStartCopy () must be called
beforeXmClipboardEndCopy (), which does not need to be called if
XmClipboardCancelCopy () has already been called.

Example
The following callback shows the sequence of calls needed to copy data to the
clipboard:

static void to_clipbd (Widget widget,
XtPointer client_data,
XtPointer call_data)

long item_id = 0;

int status;

XmString clip_label;

char buffer[32];

Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObiject (widget);

Motif Reference Manual 23

XmClipboardEndCopy Motif Functions and Macros

char *data = (char*) client_data;

(void) sprintf (buffer, "%s", data);
clip_label = XmStringCreatelLocalized ("Data);

[* start a copy; retry until unlocked */

do
status = XmClipboardStartCopy (dpy, window,
clip_label,
CurrentTime,
NULL, NULL,
&item_id);

while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data; retry until unlocked */
do
status = XmClipboardCopy (dpy, window,
item_id, "STRING",
(XtPointer) buffer,
(unsigned
long)strlen(buffer)+1,
0, NULL);
while (status == ClipboardLocked);

/* end the copy; retry until unlocked */

do
status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);

See Also
XmClipboardBeginCopy (1), XmClipboardCancelCopy (1),
XmClipboardCopy (1), XmClipboardCopyByName (1),
XmClipboardStartCopy (1).

24 Motif Reference Manual

Motif Functions and Macros XmClipboardEndRetrieve

Name
XmClipboardEndRetrieve — end a copy operation from the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardEndRetrieve (Displaydfsplay Windowwindow)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by

another application.

Description
XmClipboardEndRetrieve() ends the incremental copying of data from the clip-
board.

Usage
A call to XmClipboardEndRetrieve () is preceded by a call ¥mClip-
boardStartRetrieve (), which begins the incremental copy, and calls to
XmClipboardRetrieve (), which incrementally retrieve the data items from
clipboard storageXmClipboardStartRetrieve () locks the clipboard and
it remains locked untXmClipboardEndRetrieve () is called.

Example
The following code fragment shows the sequence of calls needed to perform an
incremental retrieve. Note that this code does not store the data as it is retrieved:

int status;

unsigned long received;

char buffer[32];

Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardStartRetrieve (dpy, window,
CurrentTime);

while (status == ClipboardLocked);

do {
[* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,

Motif Reference Manual 25

XmClipboardEndRetrieve Motif Functions and Macros

"STRING",
(XtPointer) buffer,
(unsigned long)
sizeof (buffer),
&received,

(long *) 0);
} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

See Also
XmClipboardRetrieve (1), XmClipboardStartRetrieve Q).

26 Motif Reference Manual

Motif Functions and Macros XmClipboardinquireCount

Name
XmClipboardinquireCount — get the number of data item formats available on
the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardinquireCount (Display display
Window window
int *count
unsigned long ax_length
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Outputs
count Returns the number of data item formats available for the data on

the clipboard.

max_length Returns the maximum length of data item format names.
Returns

ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by

another application, or ClipboardNoData if there is no data on the clipboard.

Description
XmClipboardinquireCount () returns the number of data formats available
for the current clipboard data item and the length of its longest format name. The
count includes the formats that were passed by name. If there are no formats
available, count is O (zero).

Usage
To inquire about the formats of the data on the clipboard, yoXmsdip-
boardIinquireCount () andXmClipboardinquireFormat () in con-
junction.XmClipboardinquireCount () returns the number of formats for
the data item andmClipboardinquireFormat () allows you to iterate
through all of the formats.

See Also
XmClipboardInquireFormat (2).

Motif Reference Manual 27

XmClipboardinquireFormat Motif Functions and Macros

Name
XmClipboardinquireFormat — get the specified clipboard data format name.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardinquireFormat (Display dfsplay
Window window
int index
XtPointer format_name_buf
unsigned long buffer_len
unsigned long ¢opied_len
Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
index Specifies the index of the format name to retrieve.
buffer_len Specifies the length of format_name_buf in bytes.
Outputs
format_name_buf Returns the format name.
copied_len Returns the length (in bytes) of the string copied to
format_name_buf.
Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, ClipboardTruncate if format_name_buf is not long enough
to hold the returned data, or ClipboardNoData if there is no data on the clipboard.
Description

XmClipboardinquireFormat () returns a format name for the current data
item in the clipboard. The format name returned is specified by index, where 1
refers to the first format. If index exceeds the number of formats for the data item,
thenXmClipboardInquireFormat () returns a value of O (zero) in the
copied_len argumenXmClipboardinquireFormat () returns the format
name in the format_name_buf argument. This argument is a buffer of a fixed
length that is allocated by the programmer. If the buffer is not large enough to
hold the format name, the routine copies as much of the format name as will fit in
the buffer and returns ClipboardTruncate.

28 Motif Reference Manual

Motif Functions and Macros XmClipboardinquireFormat

Usage
To inquire about the formats of the data on the clipboard, yoXmsdip-
boardInquireCount () andXmClipboardinquireFormat () in con-
junction.XmClipboardinquireCount () returns the number of formats for
the data item andmClipboardinquireFormat () allows you to iterate
through all of the formats.

See Also

XmClipboardinquireCount (2).

Motif Reference Manual 29

XmClipboardinquireLength Motif Functions and Macros

Name
XmClipboardinquireLength — get the length of the data item on the clipboard.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardinquireLength (Display display
Window window
char *format_name
unsigned long tength
Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
format_name Specifies the format name for the data.
Outputs
length Returns the length of the data item for the specified format.
Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardNoData if there is no data on the clipboard for
the requested format.
Description
XmClipboardinquireLength () returns the length of the data stored under
the specifiedormat_namdor the current clipboard data item. If no data is found
corresponding téormat_nameor if there is no item on the clipboaXinClip-
boardinquireLength () returns a length of O (zero). When a data item is
passed by name, the length of the data is assumed to be passed in a call to
XmClipboardCopy (), even though the data has not yet been transferred to the
clipboard.
Usage
XmClipboardinquireLength () provides a way for an application to find
out how much data is on the clipboard, so that it can allocate a buffer that is large
enough to retrieve the data with one calktaClipboardRetrieve 0.
Example
The following code fragment demonstrates how toXre€lipboardin-
quireLength () to retrieve all of the data on the clipboard:
int status;
unsigned long recvd, length;
30 Motif Reference Manual

Motif Functions and Macros XmClipboardinquireLength

char *data;
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObiject (widget);

do
status = XmClipboardinquireLength (dpy, window,
"STRING",
&length);
while (status == ClipboardLocked);
if (length 1= 0) {
data = XtMalloc ((unsigned) (length+1) * sizeof
(char));
do
status = XmClipboardRetrieve (dpy, window,
"STRING",
(XtPointer)
data,
(unsigned long)
length+1,
&recvd, (long *)
0);
while (status == ClipboardLocked);
if (status != ClipboardSuccess || recvd !=
length) {
XtWarning ("Failed to receive all clipboard
data");
}

See Also
XmClipboardRetrieve (2).

Motif Reference Manual

31

XmClipboardinquirePendingltems Motif Functions and Macros

Name

XmClipboardinquirePendingltems — get a list of pending data ID/private 1D
pairs.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardinquirePendingltems (Display display
Window window
char

*format_name
XmClipboardPendingList item_list
unsigned long &oun)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
format_name Specifies the format name for the data.

Outputs
item_list Returns an array of data_id/private_id pairs for the specified for-
mat.

count Returns the number of items in the item_list array.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by

another application.

Description

XmClipboardinquirePendingltems () returns for the specified
format_namaea list of pending data items, representedi&ia_idprivate_id

pairs. Thedata_idandprivate_idarguments are specified in the clipboard func-
tions for copying and retrieving. A data item is considered pending under these
conditions: the application that owns the data item originally passed it by name,
the application has not yet copied the data, and the data item has not been deleted
from the clipboard. If there are no pending items for the spedéifietat_name

the routine returns a count of 0 (zero). The application is responsible for freeing
the memory that is allocated B§mClipboardinquirePendingltems () to

store the list. Use XtFree() to free the memory.

Usage

32

An application should call XmClipboardinquirePendingltems() before exiting, to
determine whether data that has been passed by name should be copied to the
clipboard.

Motif Reference Manual

Motif Functions and Macros XmClipboardinquirePendingltems

Structures
The XmClipboardPendingList is defined as follows:

typedef struct {
long Datald;
long Privateld;
} XmClipboardPendingRec, *XmClipboardPendingList;

See Also
XmClipboardStartCopy (1).

Motif Reference Manual

33

XmClipboardLock Motif Functions and Macros

Name
XmClipboardLock — lock the clipboard.
Synopsis
#include <Xm/CutPaste.h>

int XmClipboardLock (Display display Windowwindow)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardLock () locks the clipboard on behalf of an application, which
prevents access to the clipboard by other applications. If the clipboard has
already been locked by another application, the routine returns ClipboardLocked.
If the same application has already locked the clipboard, the lock level is

increased.

Usage
An application useXmClipboardLock () to ensure that clipboard data is not
changed by calls to clipboard functions by other applications. An application
does not need to lock the clipboard between cadgn€lipboardStar-
tRetrieve () andXmClipboardEndRetrieve (), because the clipboard is
locked automatically between these cafimClipboardUnlock () allows
other applications to access the clipboard again.

See Also
XmClipboardEndCopy (1), XmClipboardEndRetrieve (D),
XmClipboardStartCopy (1), XmClipboardStartRetrieve (D),

XmClipboardUnlock ().

34 Motif Reference Manual

Motif Functions and Macros XmClipboardRegisterFormat

Name

Synopsis

XmClipboardRegisterFormat — register a new format for clipboard data items.

#include <Xm/CutPaste.h>

int XmClipboardRegisterFormat (Displagisplay char format_nameint
format_length

Inputs

display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().

format_name Specifies the string name for the format.

format_length Specifies the length of the format in bits (0, 8, 16, or 32).

Returns

ClipboardSuccess on success, ClipboardBadFormat if the format is not properly
specified, ClipboardLocked if the clipboard is locked by another application, or
ClipboardFail on failure.

Description

Usage

See Also

XmClipboardRegisterFormat () registers a new format having the speci-
fied format_namendformat_length XmClipboardRegisterFormat 0

returns ClipboardFail if the format is already registered with the specified length
or ClipboardBadFormat fbrmat_names NULL orformat_lengths not 0, 8,

16, or 32 bits.

XmClipboardRegisterFormat () is used by applications that support cut-
ting and pasting of arbitrary data types. Every format that is stored on the clip-
board needs to have a length associated with it, so that clipboard operations
between applications that run on platforms with different byte-swapping orders
function properly. Format types that are defined by the ICCCM are preregistered.
If format_lengths 0,XmClipboardRegisterFormat () searches through

the preregistered format types, and returns ClipboardSucdessi#t_namas

found, ClipboardFail otherwise.

If you are registering your own data structure as a format, you should choose an
appropriate name, and use 32 as the format size.

XmClipboardStartCopy (1).

Motif Reference Manual 35

XmClipboardRetrieve Motif Functions and Macros

Name
XmClipboardRetrieve — retrieve a data item from the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardRetrieve (Display display
Window window
char *format_name
XtPointer buffer,
unsigned long length
unsigned long Aum_bytes
long *private_id
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
format_name Specifies the format name for the data.
buffer Specifies the buffer to which the clipboard data is copied.
length Specifies the length of buffer.
Outputs
num_bytesReturns the number of bytes of data copied into buffer.
private_id Returns the private data that was stored with the data item.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by

another application, ClipboardTruncate if buffer is not long enough to hold the
returned data, or ClipboardNoData if there is no data on the clipboard for the
requested format.

Description
XmClipboardRetrieve () fetches the current data item from the clipboard
and copies it to the specified buffer. The format_name specifies the type of data
being retrieved. The num_bytes parameter returns the amount of data that is cop-
ied into buffer. The routine returns ClipboardTruncate when all of the data does
not fit in the buffer, to indicate that more data remains to be copied.

Usage
XmClipboardRetrieve () can be used to retrieve data in one large piece or in
multiple smaller pieces. To retrieve data in one chunkXgalClipboardin-
quireLength () to determine the size of the data on the clipboard. Multiple
calls toXmClipboardRetrieve () with the same format_name, between calls
to XmClipboardStartRetrieve () andXmClipboardEndRetrieve 0,

36 Motif Reference Manual

Motif Functions and Macros XmClipboardRetrieve

Example

See Also

copy data incrementally. Since the clipboard is locked by a cAlntGlip-
boardStartRetrieve (), it is suggested that your application call any clip-
board inquiry routines between this call and the first call to

XmClipboardRetrieve ()L

The following code fragment shows the sequence of calls needed to perform an
incremental retrieve. Note that this code does not store the data as it is retrieved:

int status;

unsigned long received;

char buffer[32];

Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardStartRetrieve (dpy, window,
CurrentTime);

while (status == ClipboardLocked);

do {
[* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,
"STRING",
(XtPointer) buffer,
(unsigned long)
sizeof (buffer),
&received,
(long *) 0);
} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

XmClipboardEndRetrieve (1), XmClipboardinquireLength (1),
XmClipboardLock (1), XmClipboardStartRetrieve D),
XmClipboardUnlock (1).

1.Erroneously given as ClipboardRetrieve() in 1st and 2nd editions.

Motif Reference Manual 37

XmClipboardStartCopy Motif Functions and Macros

Name

Synopsis

XmClipboardStartCopy — set up storage for a clipboard copy operation.

#include <Xm/CutPaste.h>

int XmClipboardStartCopy (Display display
Window window
XmString clip_label
Time timestamp
Widget widget
XmCutPasteProc callback
long *item_id

Inputs

display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().

window Specifies a window ID that identifies the client to the clip-
board.

clip_label Specifies a label that is associated with the data item.

timestamp Specifies the time of the event that triggered the copy opera-
tion.

widget Specifies the widget that receives messages requesting data
that has been passed by name.

callback Specifies the callback function that is called when the clip-
board needs data that has been passed by name.

Outputs

item_id Returns the ID assigned to the data item.

Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description

38

XmClipboardStartCopy () creates the storage and data structures that
receive clipboard data. During a cut or copy operation, an application calls this
function to initiate the operation. The data that is copied to the structures
becomes the next clipboard data item.

Several arguments ¥XmClipboardStartCopy () provide identifying infor-
mation. Thenvindowargument specifies the window that identifies the application
to the clipboard; an application should pass the same window ID to each clip-
board routine that it callsclip_labelassigns a text string to the data item that
could be used as the label for a clipboard viewing window. flinestamppassed

Motif Reference Manual

Motif Functions and Macros XmClipboardStartCopy

Usage

Example

to the routine must be a valid timestamp. Titeen_idargument returns a number
that identifies the data item. An application uses this number to specify the data
item in other clipboard calls.

Since copying a large piece of data to the clipboard can take a long time and it is
possible that the data will never be requested by another application, the clip-
board copy routines provide a mechanism to copy data by name. When a clip-
board data item is passed by name, the application does not need to copy the data
to the clipboard until it has been requested by another application. In order to
pass data by name, the widget and callback argumeXta@ipboard-

StartCopy () must be specifiedvidgetspecifies the ID of the widget that

receives messages requesting that data be passed by name. All of the message
handling is done by the clipboard operations, so any valid widget ID can be used.
callbackspecifies the procedure that is invoked when the clipboard needs the data
that was passed by name and when the data item is removed from the clipboard.
The callbackfunction copies the actual data to the clipboard ugmglip-
boardCopyByName ().

The following routines show the sequence of calls heeded to copy data by hame.
The to_clipbd callback shows the copying of data and copy_by name shows the
callback that actually copies the data:

void copy_by _name (Widget widget,
long *data_id,
long *private_id,
int *reason)

Display *dpy = XtDisplay (toplevel);
Window window = XtWindow (toplevel);
int status;

char buffer[32];

if (*reason == XmMCR_CLIPBOARD_DATA_REQUEST) {
(void) sprintf (buffer, "stuff");

do
status = XmClipboardCopyByName (dpy, win-
dow, *data_id,
(XtPointer) buffer,
(unsigned long)
strlen (buffer)+1,
*private_id);

Motif Reference Manual 39

XmClipboardStartCopy Motif Functions and Macros

while (status != ClipboardSuccess);

}

void to_clipbd (Widget widget,
XtPointer client_data,
XtPointer call_data)

unsigned long item_id = 0;

int status;

XmString clip_label;

Display *dpy = XtDisplayOfObject
(widget);

Window window = XtWindowOfObject
(widget);

unsigned long size = DATA_SIZE;

char *data = (char *) client_data;

clip_label = XmStringCreatelLocalized ("Data");

[* start a copy; retry until unlocked */
do
status = XmClipboardStartCopy (dpy, window,
clip_label,
CurrentTime,
widget,
copy_by_name,
&item_id);
while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data; retry until unlocked */
do
status = XmClipboardCopy (dpy, window,
item_id,
"STRING", NULL,
size, 0, NULL);
while (status == ClipboardLocked);

/* end the copy; retry until unlocked */

do
status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);

40 Motif Reference Manual

Motif Functions and Macros XmClipboardStartCopy

Procedures
The XmCutPasteProc has the following format:

typedef void (*XmCutPasteProc) (Widgetdget long *data_id long
*private_id int *reasor)

An XmCutPasteProc takes four arguments. The first argumilget is the
widget passed to the callback routine, which is the same widget as passed to
XmClipboardBeginCopy (). Thedata_idargument is the ID of the data item
that is returned b¥XmClipboardCopy () andprivate_idis the private data
passed tmClipboardCopy ().

Thereasonargument takes the value XmCR_CLIPBOARD_DATA REQUEST,
which indicates that the data must be copied to the clipboard, or
XmCR_CLIPBOARD_DATA DELETE, which indicates that the client can

delete the data from the clipboard. Although the last three parameters are pointers
to integers, the values are read-only and changing them has no effect.

See Also
XmClipboardBeginCopy (1), XmClipboardCancelCopy (1),
XmClipboardCopy(1) , XmClipboardCopyByName (1),
XmClipboardEndCopy (1), XmClipboardLock (1),
XmClipboardRegisterFormat (1), XmClipboardUndoCopy (1),
XmClipboardUnlock (1), XmClipboardWithdrawFormat (2).

Motif Reference Manual 41

XmClipboardStartRetrieve Motif Functions and Macros

Name
XmClipboardStartRetrieve — start a clipboard retrieval operation.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardStartRetrieve (Displaylisplay Windowwindow Timetimes-
tamp

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
timestamp Specifies the time of the event that triggered the retrieval opera-
tion.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardStartRetrieve () starts a clipboard retrieval operation by
telling the clipboard that an application is ready to start copying data from the
clipboard. XmClipboardStartRetrieve () locks the clipboard until
XmClipboardEndRetrieve () is called. Thavindowargument specifies the
window that identifies the application to the clipboard; an application should pass
the same window ID to each clipboard routine that it calls. filmestamppassed
to the routine must be a valid timestamp.

Usage
Multiple calls toXmClipboardRetrieve () with the saméormat_name
between calls tcmClipboardStartRetrieve () andXmClipboardEn-
dRetrieve (), copy data incrementally.

Example
The following code fragment shows the sequence of calls needed to perform an
incremental retrieve. Note that this code does not store the data as it is retrieved:

int status;

unsigned long received;

char buffer[32];

Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do

42 Motif Reference Manual

Motif Functions and Macros XmClipboardStartRetrieve

See Also

status = XmClipboardStartRetrieve (dpy, window,
CurrentTime);
while (status == ClipboardLocked);

do {
/* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,
"STRING",
(XtPointer) buffer,
(unsigned long)
sizeof (buffer),
&received,
(long *) 0);
} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

XmClipboardEndRetrieve (1), XmClipboardinquireCount),
XmClipboardinquireFormat (1), XmClipboardinquireLength D),
XmClipboardinquirePendingltems (1), XmClipboardLock (1),
XmClipboardRetrieve (1), XmClipboardUnlock ().

Motif Reference Manual 43

XmClipboardUndoCopy Motif Functions and Macros

Name
XmClipboardUndoCopy — remove the last item copied to the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardUndoCopy (Displaydisplay Windowwindow)
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardUndoCopy () deletes the item most recently placed on the clip-
board, provided that the application that originally placed the item has matching
values for display and window. If the values do not match, no action is taken. The
routine also restores any data item that was deleted from the clipboard by the call
to XmClipboardCopy ().

Usage
Motif maintains a two-deep stack of items that have been placed on the clip-
board. Once an item has been copied to the clipboard, the copy can be undone by
calling XmClipboardUndoCopy (). Calling this routine twice undoes the last
undo operation.

See Also
XmClipboardBeginCopy (1), XmClipboardCopy (1),
XmClipboardCopyByName (1), XmClipboardEndCopy (1),
XmClipboardStartCopy (1).

44 Motif Reference Manual

Motif Functions and Macros XmClipboardUnlock

Name
XmClipboardUnlock — unlock the clipboard.

Synopsis
#include <Xm/CutPaste.h>
int XmClipboardUnlock (Display display Windowwindow Boolean
remove_all_locKs

Inputs
display Specifies a connection to an X server; returned from
XOpenDisplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
remove_all_locks Specifies whether nested locks should be removed.
Returns

ClipboardSuccess on success or ClipboardFail if the clipboard is not locked or if
it is locked by another application.

Description
XmClipboardUnlock () unlocks the clipboard, which allows other applica-
tions to access it. If remove_all_locks is True, all nested locks are removed. If it
is False, only one level of lock is removed.

Usage

Multiple calls toXmClipboardLock () can increase the lock level, and nor-
mally, eachXmClipboardLock () call requires a corresponding call to
XmClipboardUnlock (). However, by setting remove_all_locks to True,
nested locks can be removed with a single call.

See Also
XmClipboardBeginCopy (1), XmClipboardCancelCopy (1),
XmClipboardEndCopy (1), XmClipboardEndRetrieve \(1)
XmClipboardLock (1), XmClipboardStartCopy (1),
XmClipboardStartRetrieve (2).

Motif Reference Manual 45

XmClipboardWithdrawFormat Motif Functions and Macros

Name
XmClipboardWithdrawFormat — indicate that an application does not want to
supply a data item any longer.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardWithdrawFormat (Displaydtsplay Windowwindow long
data_id

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
data_id Specifies the ID for the passed-by-name data item.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardWithdrawFormat () withdraws a data item that has been
passed by name from the clipboard. Ta¢a_idis the ID that was assigned to
the item when it was passed ¥ynClipboardCopy ().

Usage
Despite its name{mClipboardWithdrawFormat () does not remove a for-
mat specification from the clipboard. The routine provides an application with a
way to withdraw data of a particular format from the clipboard.

See Also
XmClipboardBeginCopy (1), XmClipboardCopy (1),
XmClipboardCopyByName (1), XmClipboardStartCopy (1).

46 Motif Reference Manual

Motif Functions and Macros XmComboBoxAdditem

Name
XmComboBoxAddltem — add a compound string to the ComboBox list.

Synopsis
#include <Xm/ComboBox.h>

void XmComboBoxAddltem (Widgewidget XmStringitem, int position
Booleanunique

Inputs
widget Specifies the ComboBox widget.

item Specifies the compound string that is added to the ComboBox list.
position Specifies the position at which to add the new item.
unigue Specifies whether the item must be unique in the list.

Availability
Motif 2.1 and later.

Description
XmComboBoxAddIltem() is a convenience routine that adds an item into a
ComboBox listXmComboBoxAddltem() inserts the specifieiteminto the list
component of the ComboBaxidgetat the specifiegosition A positionvalue of
1 indicates the first location in the listpasitionvalue of 2 indicates the second
location, and so forth. A value of 0 (zero) specifies the last location in the list. If
the value exceeds the current number of items in the listetinés silently
appended. ltiniqueis true, the item is only added if it does not already appear in
the list.

Usage
In order to use this routine, a compound string must be created for the item. The
routine callsXmListAddltemUnselected () to insert the item into the list
component. The ComboBox list takes a copy of the supplied item. It is the
responsibility of the programmer to reclaim the space by calling XmStringFree()
at an appropriate point.

See Also
XmComboBoxSelectltem (1), XmComboBoxSetltem (1),
XmComboBoxDeletePos (1), XmComboBoxUpdate(1), XmComboBox2).

Motif Reference Manual 47

XmComboBoxDeletePos Motif Functions and Macros

Name
XmComboBoxDeletePos — delete an item at the specified position from a Com-
boBox list.
Synopsis
#include <Xm/ComboBox.h>
void XmComboBoxDeletePos (Widgeidget int position
Inputs
widget Specifies the ComboBox widget.
position Specifies the position from which to delete an item.
Availability
Motif 2.1 and later.
Description
XmComboBoxDeletePos () removes the item at the specifipdsitionfrom the
ComboBox list. The first location within the list is at position 1, the second list
item is at position 2, and so forth.pdsitionvalue of O (zero) specifies the last
location in the list. If the ComboBox list does not have an item at the specified
position a warning message is displayed.
Usage
XmComboBoxDeletePos () is a convenience routine that allows you to remove
an item from a ComboBox list. The routine callsListDeletePos () on the
list component of the ComboBox.
See Also

XmComboBoxAddIitem(1), XmComboBoxSelectitem (1),
XmComboBoxSetltem (1), XmComboBoxUpdate(1), XmComboBox2).

48 Motif Reference Manual

Motif Functions and Macros XmComboBoxSelectltem

Name
XmComboBoxSelectltem — select an item from a ComboBox list.
Synopsis
#include <Xm/ComboBox.h>
void XmComboBoxSelectltem (Widgetidget XmStringitem)
Inputs
widget Specifies the ComboBox widget.
item Specifies the item that is to be selected.
Availability
Motif 2.1 and later.
Description
XmComboBoxSelectltem () selects the first occurrence of the specifieah
in the ComboBox list. If thétemis found within the list, the value is also inserted
into the ComboBox text field. Otherwise, a warning message is displayed.
Usage

XmComboBoxSelectltem () is a convenience routine that allows you to select
anitemin the ComboBox list. In order to use this routine, a compound string
must be created for tliem No ComboBox selection callbacks are invoked as a
result of calling this procedure. The routine internally céiisListSelect-

Pos() on the list component of the ComboBox, after performing a linear search
through the XmNitems of the list: tliem parameter is used only for the search
and is not directly used as the newly selected item. It is the responsibility of the
programmer to reclaim any allocated memory for the compound string item by
calling XmStringFree () at an appropriate time.

See Also
XmComboBoxAddItem(1), XmComboBoxDeletePos (1),
XmComboBoxSetltem (1), XmComboBoxUpdate(1), XmComboBox2).

Motif Reference Manual 49

XmComboBoxSetltem Motif Functions and Macros

Name
XmComboBoxSetltem — select and make visible an item from a ComboBox list.
Synopsis
#include <Xm/ComboBox.h>
void XmComboBoxSetltem (Widgetidget XmStringitem)
Inputs
widget Specifies the ComboBox widget.
item Specifies the item that is to be selected.
Availability
Motif 2.1 and later.
Description
XmComboBoxSetltem () selects the first occurrence of the speciftechin the
ComboBox list, and makes the selection the first visible item in the list. If the
itemis found within the list, the value is also inserted into the ComboBox text
field. Otherwise, a warning message is displayed.
Usage

XmComboBoxSetltem () is a convenience routine that allows you to select an
itemin the ComboBox. In order to use this routine, a compound string must be
created for thétem No ComboBox selection callbacks are invoked as a result of
calling this procedure. The routine internally cXliaListSelectPos () on

the list component of the ComboBox, after performing a linear search through
the XmNitems of the list: théemparameter is used only for the search and is not
directly used as the newly selected item. It is the responsibility of the program-
mer to reclaim any allocated memory for the compound string item by calling
XmStringFree () at an appropriate time.

See Also
XmComboBoxAddItem(1), XmComboBoxDeletePos (1),
XmComboBoxSelectltem (1), XmComboBoxUpdate(1), XmComboBox2).

50 Motif Reference Manual

Motif Functions and Macros XmComboBoxUpdate

Name
XmComboBoxUpdate — update the ComboBox list after changes to component
widgets.

Synopsis
#include <Xm/ComboBox.h>

void XmComboBoxUpdate (Widgetidge)

Inputs
widget Specifies the ComboBox widget.

Availability
Motif 2.0 and later.

Description
XmComboBoxUpdate() updates the ComboBox to reflect the state of compo-
nent child widgets. This may be required where the programmer has directly
modified the contents or resources of the ComboBox list component rather than
through resources and functions of the ComboBox itself.

Usage
XmComboBoxUpdate() is a convenience routine that synchronizes the internal
state of the ComboBox with that of the component list and text field. In particu-
lar, the value of XmNselectedPosition is reset to the value taken from the internal
list. In addition, if the text field is unchanged, the XmNitems and XmNitemCount
resources of the list are queried and used in conjunction with the recalculated
XmNselectedPosition to reset the ComboBox selected item.

This routine should be called, for example, when the component list is directly
manipulated to change the selected item without notifying the ComboBox
directly.

See Also
XmComboBoxAdditem(1), XmComboBoxSelectitem (1),
XmComboBoxSetltem (1), XmComboBoxDeletePos (1), XmComboBox2).

Motif Reference Manual 51

XmCommandAppendValue Motif Functions and Macros

Name
XmCommandAppendValue — append a compound string to the command.
Synopsis
#include <Xm/Command.h>
void XmCommandAppendValue (Widgeidget XmStringcommangl
Inputs
widget Specifies the Command widget.
command Specifies the string that is appended.
Description
XmCommandAppendValue() appends the specifiedmmando the end of the
string that is displayed on the command line of the specified Command widget.
Usage
XmCommandAppendValug() is a convenience routine that changes the value
of the XmNcommand resource of the Command widget. In order to use this rou-
tine, a compound string must be created forctramandThe widget internally
copiescommangand it is the responsibility of the programmer to reclaim any
allocated memory for the compound string at an appropriate time.
See Also

XmCommandSetValue(1), XmComman).

52 Motif Reference Manual

Motif Functions and Macros XmCommandError

Name
XmCommandError — display an error message in a Command widget.

Synopsis
#include <Xm/Command.h>

void XmCommandError (Widgetidget XmStringerror)

Inputs
widget Specifies the Command widget.

error Specifies the error message to be displayed.

Description
XmCommandError() displays an error message in the history region of the
specified Commanaidget Theerror string remains displayed until the next
command takes effect.

Usage
XmCommandError() displays thesrror message as one of the items in the
XmNhistoryltems list. When the next command is enteredettoe message is
deleted from the list. In order to use this routine, a compound string must be cre-
ated for theerror item. Thewidgetinternally copierror, and it is the responsi-
bility of the programmer to reclaim any allocated memory for the compound
string at an appropriate time.

See Also
XmComman@).

Motif Reference Manual 53

XmCommandGetChild Motif Functions and Macros

Name
XmCommandGetChild — get the specified child of a Command widget.
Synopsis
#include <Xm/Command.h>
Widget XmCommandGetChild (Widgetidget unsigned chachild)
Inputs
widget Specifies the Command widget.
child Specifies a type of child of the Command widget.
Returns
The widget ID of the specified child of the Command widget.
Availability
As of Moatif 2.0, the abstract child fetch routines in the toolkit are generally con-
sidered deprecated. AlthougtmCommandGetChild () continues to work, you
should prefeiXtNameToWidget () to access children of the XmCommand
component.
Description
XmCommandGetChild() returns the widget ID of the specified child of the Com-
mand widget.
Usage
Thechild XmDIALOG_COMMAND_TEXT specifies the command text entry
area, XmDIALOG_PROMPT_LABEL specifies the prompt label for the com-
mand line, XmDIALOG_HISTORY_LIST specifies the command history list,
and XmDIALOG_WORK_AREA specifies any work area child that has been
added to the Command widget. For more information on the different children of
the Command widget, see the manual page in Sectidot#f,and Xt Widget
Classes
Structures

The possible values for child are:

XmDIALOG_COMMAND_TEXT XmDIALOG_HISTORY_LIST
XmDIALOG_PROMPT_LABEL XmDIALOG_WORK_AREA

54 Motif Reference Manual

Motif Functions and Macros XmCommandGetChild

Widget Hierarchy
The following names are associated with the Command children:

“Selection” XmDIALOG_PROMPT_LABEL
“Text” XmDIALOG_COMMAND_TEXT
“ItemsList" XmDIALOG_HISTORY_LIST
See Also
XmComman@).

1.The Listis not a direct descendant of the Command widget, but of an intermediary ScrolledList. Therefore if fetching
the widget via XtNameToWidget(), you should use the value “*ItemsList”.

Motif Reference Manual 55

XmCommandSetValue Motif Functions and Macros

Name
XmCommandSetValue — replace the command string.

Synopsis
#include <Xm/Command.h>

void XmCommandSetValue (Widgetidget XmStringcommanl
Inputs

widget Specifies the Command widget.

command Specifies the string that is displayed.

Description
XmCommandSetValue() replaces the currently displayed command-line text
of the specifiedCommandvidget with the string specified byjommandSpecify-
ing a zero-length string clears the command line.

Usage
XmCommandSetValue() is a convenience routine that changes the value of the
XmNcommand resource of the Command widget. In order to use this routine, a
compound string must be created for tmmmandThewidgetinternally copies
command, and it is the responsibility of the programmer to reclaim any allocated
memory for the compound string at an appropriate time.

See Also
XmCommandAppendValug(1), XmComman@).

56 Motif Reference Manual

Motif Functions and Macros XmContainerCopy

Name

Synopsis

XmContainerCopy — copy the Container primary selection onto the clipboard.

#include <Xm/Container.h>

Boolean XmContainerCopy (Widgebntainer Timetimestampp

Inputs

container Specifies a Container widget.
timestamp Specifies the server time at which to modify the selection.

Returns

True if the Container selection is transferable to the clipboard, False otherwise.

Avalilability

Motif 2.0 and later.

Description

Usage

See Also

XmContainerCopy () copies the primary selection from a Container widget to
the clipboard. The primary selection of a Container widget consists of a set of
selected Container items.

If there are no selected Container items within container, or if the container
widget does not own the primary selection, or if container cannot gain ownership
of the clipboard selection, the function returns False.

XmContainerCopy () is a convenience routine that copies a Container primary
selection to the clipboard. The procedures identified by the XmNconvertCallback
list of the Container are called to transfer the selection: the selection member of
the XmConvertCallbackStruct passed to callbacks has the value CLIPBOARD,
and the parm member is set to XmCOPY. ¥ed ransfer (1) for specific

details of the XmConvertCallbackStruct, and of the Uniform Transfer Model
(UTM) in general.

XmContainerCut (1), XmContainerCopyLink (1),
XmContainerGetltemChildren (1), XmContainerPaste (1),
XmContainerPasteLink (1), XmContainerRelayout (1),
XmContainerReorder (1), XmTransfer (1), XmContainer (2).

Motif Reference Manual 57

XmContainerCopyLink Motif Functions and Macros

Name
XmContainerCopyLink — copy links to the Container primary selection onto the
clipboard.
Synopsis
#include <Xm/Container.h>
Boolean XmContainerCopyLink (Widgebntainer Timetimestampp
Inputs
container Specifies a Container widget.
timestamp Specifies a time stamp at which to modify the selection.
Returns
True if the Container selection is transferable to the clipboard, False otherwise.
Availability
Motif 2.0 and later.
Description
XmContainerCopyLink () copies links to the primary selection of a Con-
tainer widget onto the clipboard. The primary selection of a Container widget
consists of a set of selected Container items.
If there are no selected Container items within container, or if the container
widget does not own the primary selection, or if container cannot gain ownership
of the clipboard selection, the function returns False.
Usage
XmContainerCopyLink () is a convenience routine that copies links to a
Container primary selection to the clipboard. The procedures identified by the
XmNconvertCallback list of the Container are called, possibly many times: the
selection member of the XmConvertCallbackStruct passed to callbacks has the
value CLIPBOARD, and the parm member is set to XmLINK. &@drans-
fer (1) for specific details of the XmConvertCallbackStruct, and of the Uniform
Transfer Model (UTM) in general.
See Also
XmContainerCut (1), XmContainerCopy (1),
XmContainerGetltemChildren (1), XmContainerPaste (1),
XmContainerPasteLink (1), XmContainerRelayout (1),
XmContainerReorder (1), XmTransfer (1), XmContainer (2).
58 Motif Reference Manual

Motif Functions and Macros XmContainerCut

Name

Synopsis

XmContainerCut — cuts the Container primary selection onto the clipboard.

#include <Xm/Container.h>

Boolean XmContainerCut (Widgebntainer Timetimestampp

Inputs

container Specifies a Container widget.
timestamp Specifies the time at which to modify the selection.

Returns

True if the Container selection is transferable to the clipboard, False otherwise.

Availability

Motif 2.0 and later.

Description

Usage

See Also

XmContainerCut () cuts the primary selection from a Container widget onto
the clipboard. The primary selection of a Container widget consists of a set of
selected Container items.

If there are no selected Container items within container, or if the container
widget does not own the primary selection, or if container cannot gain ownership
of the clipboard selection, the function returns False.

XmContainerCut () is a convenience routine that moves a Container primary
selection onto the clipboard, then removes the primary selection. The procedures
identified by the XmNconvertCallback list of the Container are invoked to move
the selection to the clipboard: the selection member of the XmConvertCallback-
Struct passed to callbacks has the value CLIPBOARD, and the parm member is
setto XmMOVE. Thereafter, if the data was transferred, the convert callbacks are
invoked again to delete the primary selection: the selection member is set to
CLIPBOARD, and the target member is set to DELETE.) @®edransfer (1)

for specific details of the XmConvertCallbackStruantd of the Uniform Transfer
Model (UTM) in general.

XmContainerCopy (1), XmContainerCopyLink (1),
XmContainerGetltemChildren (1), XmContainerPaste (1),
XmContainerPasteLink (1), XmContainerRelayout (1),
XmContainerReorder (1), XmTransfer (1), XmContainer (2).

Motif Reference Manual 59

XmContainerGetltemChildren Motif Functions and Macros

Name

XmContainerGetltemChildren — find the children of a Container item.

Synopsis

#include <Xm/Container.h>

int XmContainerGetltemChildren (Widgebntainer Widgetitem WidgetList
*jtem__children

Inputs
container Specifies a Container widget.
item A child of the Container which holds the XmQTcontainerltem
trait.

Outputs
item_children The list of logical children associated with item

Returns
The number of logical children within tlitem_childrenlist.

Avalilability

Motif 2.0 and later.

Description

XmContainerGetltemChildren () constructs a list of Container items
which have item as a logical pareitém must hold the XmQTcontainerltem

trait: an IconGadget child of container, for example. A widget is a logical child of
item if the value of its constraint resource XmNentryParent is equal todtem.
tainer is the Container widget which hitssmas a child, and the list of logical
children of item is placed itlem_children The function returns the number of
logical children found.

Usage

60

XmContainerGetltemChildren () is a convenience routine which allo-
cates a WidgetList to contain the set of all Container children whose XmNen-
tryParent resource matches that of a desigrisged

If itemis NULL, or ifitemis not a child otontainer or ifitemhas no logical
children, thetem_childrenparameter is not set and the function returns O.

Storage for the returned WidgetList is allocated by the function, and it is the
responsibility of the programmer to free the memory uXitkgee () at an
appropriate point.

Motif Reference Manual

Motif Functions and Macros

See Also

XmContainerGetltemChildren

XmContainerCut (1), XmContainerCopy (1),

XmContainerCopyLink
XmContainerPasteLink
XmContainerReorder

Motif Reference Manual

(1), XmContainerPaste (1),
(1), XmContainerRelayout (1),
(1), XmContainer (2).

61

XmContainerPaste Motif Functions and Macros

Name
XmContainerPaste — pastes the clipboard selection into a Container.

Synopsis
#include <Xm/Container.h>

Boolean XmContainerPaste (Widgetntaine)

Inputs
container Specifies a Container widget.

Returns
True if the clipboard selection is transferable to the Container, False otherwise.
Availability
Motif 2.0 and later.
Description

XmContainerPaste () initiates data transfer of the clipboard primary selec-
tion to thecontainerwidget.

If data is transferred from the clipboard, the function returns True, otherwise
False.

Usage
XmContainerPaste () is a convenience routine that initiates copying of the
clipboard primary selection to a Container widget. The procedures identified by
the XmNdestinationCallback list of the Container are called: the selection mem-
ber of the XmDestinationCallbackStruct passed to callbacks has the value CLIP-
BOARD, and the operation member is set to XmCOPY.
XmContainerPaste () does not transfer data itself: it is the responsibility of
the programmer to supply a destination callback which will copy the clipboard
selection into the Container. SEmTransfer (1) for specific details of the
XmDestinationCallbackStruct, and of the Uniform Transfer Model (UTM) in
general.

See Also
XmContainerCut (1), XmContainerCopy (1),
XmContainerCopyLink (1), XmContainerGetltemChildren (1),
XmContainerPasteLink (1), XmContainerRelayout (1),
XmContainerReorder (1), XmTransfer (1), XmContainer (2).

62 Motif Reference Manual

Motif Functions and Macros XmContainerPasteLink

Name
XmContainerPasteLink — copies links from the clipboard selection into a Con-
tainer.
Synopsis
#include <Xm/Container.h>
Boolean XmContainerPasteLink (Widgsintaine)
Inputs
container Specifies a Container widget.
Returns
True if the clipboard selection is transferable to the Container, False otherwise.
Availability
Motif 2.0 and later.
Description
XmContainerPasteLink () initiates data transfer of the clipboard primary
selection to theontainerwidget.
If data is transferred from the clipboard, the function returns True, otherwise
False.
Usage
XmContainerPasteLink () is a convenience routine that initiates copying
links from the clipboard primary selection into a Container widget. The proce-
dures identified by the XmNdestinationCallback list of the Container are called:
the selection member of the XmDestinationCallbackStruct passed to callbacks
has the value CLIPBOARD, and the operation member is set to XmLINK.
XmContainerPasteLink () does not transfer data itself: it is the responsibil-
ity of the programmer to supply a destination callback which will link the clip-
board selection into the Container. SeaTransfer (1) for specific details of
the XmConvertCallbackStruct, and of the Uniform Transfer Model (UTM) in
general.
See Also

XmContainerCut (1), XmContainerCopy (1),
XmContainerCopyLink (1), XmContainerGetltemChildren (1),
XmContainerPaste (1), XmContainerRelayout (1),
XmContainerReorder (1), XmTransfer (1), XmContainer (2).

Motif Reference Manual 63

XmContainerRelayout Motif Functions and Macros

Name
XmContainerRelayout — force relayout of a Container widget.
Synopsis
#include <Xm/Container.h>
void XmContainerRelayout (Widgebntaine)
Inputs
container Specifies a Container widget.
Availability
Motif 2.0 and later.
Description
XmContainerRelayout () forces thecontainerwidget to recalculate the lay-
out of all Container items.
Usage

XmContainerRelayout () is a convenience routine that recalculates the grid
layout of a Container. The function has no effect if the widget is not realized, if
XmNlayoutType is not XmSPATIAL, or if XmNspatialStyle is XmNONE.

The function does not cause geometry management effects when performing the
relayout, although the Container window is completely cleared and redrawn if
the widget is realized.

XmContainerRelayout () utilizes the place_item method of the Container
widget class. If this is NULL in any derived classéimContainerRelayout ()
will have no effect upon the layout of Container items.

See Also
XmContainerCut (1), XmContainerCopy (1),
XmContainerCopyLink (1), XmContainerGetltemChildren (),
XmContainerPaste (1), XmContainerPasteLink (),
XmContainerReorder (1), XmContainer (2).

64 Motif Reference Manual

Motif Functions and Macros XmContainerReorder

Name

Synopsis

XmContainerReorder — reorder children of a Container.

#include <Xm/Container.h>

void XmContainerReorder (Widgebntainer WidgetListitem_list int
item_counk

Inputs

container Specifies a Container widget.
item_list Specifies a list of Container child widgets.
item_count Specifies the number of widgets in item_list.

Availability

Motif 2.0 and later.

Description

Usage

See Also

XmContainerReorder () reorders an item_list set of items of a Container.
item_count is the number of items within the item_list array.

XmContainerReorder () is a convenience routine that reorders Container
items according to the value of the XmNpositionindex constraint resource of
each item, using a quicksort algorithm. If the XmNlayoutType is XmOUTLINE
or XmDETAIL, the Container will subsequently relayout all the items within the
widget.

Neither relayout nor reorder is performedtém_counts less than or equal to 1;
there is no error checking performeditem_listto compare it with NULL, or to
ensure that it matches the number of items specifigiioy count

XmContainerCut (1), XmContainerCopy (1),
XmContainerCopyLink (1), XmContainerGetltemChildren (),
XmContainerPaste (1), XmContainerPasteLink (),
XmContainerRelayout (1), XmContainer (1).

Motif Reference Manual 65

XmConvertStringToUnits Motif Functions and Macros

Name
XmConvertStringToUnits — convert a string to an integer, optionally translating
the units.
Synopsis
int XmConvertStringToUnits (Screen séreen
String spec
int orientation
int unit_type
XtEnum *error_return)
Inputs
screen Specifies a pointer to the screen structure.
spec Specifies a value to be converted.
orientation Specifies whether to use horizontal or vertical screen reso-
lution. Pass either XmHORIZONTAL or XmVERTI-
CAL.
unit_type The units required for the result.
Outputs
error_return Returns the error status of the conversion.
Returns
The converted value.
Avalilability
Motif 2.0 and later.
Description
XmConvertStringToUnits () converts a stringpecinto an integer. The
conversion okpeds into the units specified ynit_type Resolution for the con-
version is determined from tlsereen andorientationdetermines whether the
horizontal or vertical screen resolution is used. The converted value is returned
by the function. Therror_returnparameter is set by the function to indicate any
error in the conversion process.
Usage

XmConvertStringToUnits () converts a string into an integer, translating
the units of the original string into those specified by unit_type. $d¢heenis
NULL, or if orientationis an invalid value, or if an invalighit_typeis supplied,

or if the stringspeds not parsable, the function returns 0 (zero), ardr_return

is set True. Otherwis@rror_returnis set False, and the function returns the con-
verted value.

The stringspecis assumed to be in the following format:

66 Motif Reference Manual

Motif Functions and Macros XmConvertStringToUnits

<float> <unit>

where <float> is a floating point number. The <unit> specification is optional: if
omitted, the default unit of XmPIXELS is used. Otherwise, <unit> is one of the
following strings:

pix pixel pixels
in inch inches
cm centimeter centimeters
mm millimeter millimeters
pt point points
fu font_unit font_units
Structures
The possible values for unit_type are:
XmPIXELS XmCENTIMETERS XmMILLIME-
TERS
Xm100TH_MILLIMETERS XmINCHES
Xm1000TH_INCHES
XmPOINTS Xm100TH_POINTS
XmFONT_UNITS
Xm100TH_FONT_UNITS
Example

The following are valid string specifications:

3.1415926 pix
-3.1 pt

6.3

0.3 font_units
1

See Also
XmConvertUnits (1), XmScreen (2).

Motif Reference Manual 67

XmConvertUnits Motif Functions and Macros

Name

Synopsis

XmConvertUnits — convert a value to a specified unit type.

int XmConvertUnits (Widget widget
int orientation
int from_unit_type
int from_value
int to_unit_type

Inputs

widget Specifies the widget for which to convert the data.

orientation Specifies the screen orientation that is used in the conver-
sion. Pass either XmHORIZONTAL or XmVERTICAL.

from_unit_type Specifies the unit type of the value that is being converted.

from_value Specifies the value that is being converted.

to_unit_type Specifies the new unit type of the value.

Returns

The converted value or 0 (zero) if the input parameters are not specified correctly.

Description

Usage

XmConvertUnits () converts the value specifiedfimm_valueinto the equiva-

lent value in a different unit of measurement. This function returns the resulting
value if successful; it returns 0 (zero) if widget is NULL or if incorrect values are
supplied for orientation or conversion unit argumeati®ntationmatters only

when conversion values are font units, which are measured differently in the hor-
izontal and vertical dimensions.

XmConvertUnits () allows an application to manipulate resolution-independ-
ent values. XmPIXELS specifies a normal pixel value,
Xm100TH_MILLIMETERS specifies a value in terms of 1/100 of a millimeter,
Xm1000TH_INCHES specifies a value in terms of 1/1000 of an inch,
Xm100TH_POINTS specifies a value in terms of 1/100 of a point (1/72 of an
inch), and Xm100TH_FONT_UNITS specifies a value in terms of 1/100 of a font
unit. A font unit has horizontal and vertical components which are specified by
the XmScreen resources XmNhorizontalFontUnit and XmNverticalFontUnit.

Structures

68

The possible values for from_unit_type and to_unit_type are:

XmPIXELS XmCENTIMETERS
XmMILLIMETERS Xm100TH_MILLIMETERS
XmINCHES Xm1000TH_INCHES

Motif Reference Manual

Motif Functions and Macros XmConvertUnits

XmPOINTS Xm100TH_POINTS
XmFONT_UNITS Xm100TH_FONT_UNITS

The values XmPOINTS, XmINCHES, XmCENTIMETERS, XmFONT_UNITS,
and XmMILLIMETERS are available in Motif 2.0 and later.

See Also
XmSetFontUnits (1), XmScreen (2).

Motif Reference Manual 69

XmCreate<Emphasis>Object<Default Para Font> Motif Functions and Macros

Name
XmCreat®bject— create an instance of a particular widget class or compound
object.

Synopsis

Simple Widgets
#include <Xm/ArrowB.h>
Widget XmCreateArrowButton (Widgg@arent char ‘name ArgList argy, Car-
dinalargc)

#include <Xm/ArrowBG.h>
Widget XmCreateArrowButtonGadget (Widgerent char ‘hame ArgList
argy, Cardinalargc)

#include <Xm/BulletinB.h>
Widget XmCreateBulletinBoard (Widgptarent char hame ArgList argy, Car-
dinalargc)

#include <Xm/CascadeB.h>
Widget XmCreateCascadeButton (Widgarent char ‘name ArgList argy,
Cardinalargc)

#include <Xm/CascadeBG.h>
Widget XmCreateCascadeButtonGadget (Widgmgeent char ‘hame ArgList
argy, Cardinalargc)

#include <Xm/Command.h>
Widget XmCreateCommand (Widgearent char *name ArgList argy, Cardinal
arge)

#include <Xm/ComboBox.h>

Widget XmCreateComboBox (Widgparent char *hame ArgList argy, Cardi-
nalargc)

Widget XmCreateDropDownComboBox (Widgmrent char *name ArgList
argy, Cardinalargc)

Widget XmCreateDropDownList (Widggrent char *name ArgList argy, Car-
dinalargc)

#include <Xm/Container.h>
Widget XmCreateContainer (Widgparent char *name ArgList argy, Cardinal
arge)

#include <Xm/DialogS.h>
Widget XmCreateDialogShell (Widgparent char *name ArgList argy, Cardi-
nalargc)

70 Motif Reference Manual

Motif Functions and Macros XmCreate<Emphasis>Object<Default Para Font>

#include <Xm/Draglcon.h>
Widget XmCreateDraglcon (Widgparent char ‘hame ArgList argy, Cardinal
argc)

#include <Xm/DrawingA.h>
Widget XmCreateDrawingArea (Widgparent char name ArgList argy, Car-
dinalargc)

#include <Xm/DrawnB.h>
Widget XmCreateDrawnButton (Widgparent char name ArgList argy, Car-
dinalargc)

#include <Xm/FileSB.h>
Widget XmCreateFileSelectionBox (Widgetrent char name ArgList argy,
Cardinalargc)

#include <Xm/Form.h>
Widget XmCreateForm (Widg@arent char name ArgList argy, Cardinal
argo)

#include <Xm/Frame.h>
Widget XmCreateFrame (Widgparent char ‘hame ArgList argy, Cardinal
argo)

#include <Xm/GrabShell.h>
Widget XmCreateGrabShell (Widgparent char *name ArgList argy, Cardinal
argo)

#include <Xm/IconG.h>
Widget XmCreatelconGadget (Widgedrent char name ArgList argy, Cardi-
nal argc)

#include <Xm/Label.h>
Widget XmCreatelLabel (Widggiarent char ‘hame ArgList argy, Cardinal
argc)

#include <Xm/LabelG.h>
Widget XmCreateLabelGadget (Widgedrent char *name ArgList argy, Cardi-
nal argc)

#include <Xm/List.h>
Widget XmCreateList (Widggtarent char *name ArgList argy, Cardinalargc)

#include <Xm/MainW.h>
Widget XmCreateMainWindow (Widggiarent char ‘hame ArgList argy, Car-
dinalargc)

#include <Xm/MenuShell.h>

Motif Reference Manual 71

XmCreate<Emphasis>Object<Default Para Font> Motif Functions and Macros

72

Widget XmCreateMenuShell (Widgparent char name ArgList argy, Cardi-
nal argc)

#include <Xm/MessageB.h>
Widget XmCreateMessageBox (Widg®irent char *name ArgList argy, Cardi-
nal argc)

#include <Xm/Notebook.h>
Widget XmCreateNotebook (Widgparent char *name ArgList argy, Cardinal
argc)

#include <Xm/PanedW.h>
Widget XmCreatePanedWindow (Widgedrent char name ArgList argy, Car-
dinalargc)

#include <Xm/PushB.h>
Widget XmCreatePushButton (Widgedrent char name ArgList argy, Cardi-
nal argc)

#include <Xm/PushBG.h>
Widget XmCreatePushButtonGadget (Widgatent char ‘hame ArgList argy,
Cardinalargc)

#include <Xm/RowColumn.h>

Widget XmCreateRowColumn (Widgparent char *name ArgList argy, Cardi-
nal argc)

Widget XmCreateRadioBox (Widgearent char *name ArgList argy, Cardinal
argc)

Widget XmCreateWorkArea (Widgetrent char name ArgList argy, Cardinal
argc)

#include <Xm/Scale.h>
Widget XmCreateScale (Widgparent char ‘name ArgList argy, Cardinal
argo)

#include <Xm/ScrollBar.h>
Widget XmCreateScrollBar (Widgetarent char name ArgList argy, Cardinal
argo)

#include <Xm/ScrolledW.h>
Widget XmCreateScrolledWindow (Widgearent char ‘hame ArgList argy,
Cardinalargc)

#include <Xm/SelectioB.h>
Widget XmCreateSelectionBox (Widgearent char hame ArgList argy, Car-
dinalargc)

Motif Reference Manual

Motif Functions and Macros XmCreate<Emphasis>Object<Default Para Font>

#include <Xm/Separator.h>
Widget XmCreateSeparator (Widgerent char *name ArgList argy, Cardinal
argo)

#include <Xm/SeparatoG.h>
Widget XmCreateSeparatorGadget (Widgatent char ‘hame ArgList argy,
Cardinalargc)

#include <Xm/SSpinB.h>
Widget XmCreateSimpleSpinBox (Widgearent char ‘hame ArgList argy,
Cardinalargc)

#include <Xm/SpinB.h>
Widget XmCreateSpinBox (Widgegrent char hame ArgList argy, Cardinal
argo)

#include <Xm/Text.h>
Widget XmCreateText (Widgetarent char "name ArgList argy, Cardinalargc)

#include <Xm/TextF.h>
Widget XmCreateTextField (Widgearent char ‘hame ArgList argy, Cardinal
argo)

#include <Xm/ToggleB.h>
Widget XmCreateToggleButton (Widgearent char ‘hame ArgList argy, Car-
dinalargc)

#include <Xm/ToggleBG.h>
Widget XmCreateToggleButtonGadget (Widgatent char name ArgList
argy, Cardinalargc)

Dialog Objects
#include <Xm/BulletinB.h>
Widget XmCreateBulletinBoardDialog (Widgearent char name ArgList
argy, Cardinalargc)

#include <Xm/FileSB.h>
Widget XmCreateFileSelectionDialog (Widgsirent char *name ArgList argy,
Cardinalargc)

#include <Xm/Form.h>
Widget XmCreateFormDialog (Widgparent char ‘hame ArgList argy, Cardi-
nalargc)

#include <Xm/MessageB.h>
Widget XmCreateErrorDialog (Widgearent char ‘name ArgList argy, Cardi-
nalargc)

Motif Reference Manual 73

XmCreate<Emphasis>Object<Default Para Font> Motif Functions and Macros

74

Widget XmCreatelnformationDialog (Widgparent char name ArgList argy,
Cardinalargc)

Widget XmCreateMessageDialog (Widgetrent char ‘hame ArgList argy,
Cardinalargc)

Widget XmCreateQuestionDialog (Widgedrent char ‘hame ArgList argy,
Cardinalargc)

Widget XmCreateTemplateDialog (Widgedrent char ‘hame ArgList argy,
Cardinalargc)

Widget XmCreateWarningDialog (Widgparent char ‘hame ArgList argy,
Cardinalargc)

Widget XmCreateWorkingDialog (Widgetarent char name ArgList argy,
Cardinalargc)

#include <Xm/SelectioB.h>

Widget XmCreatePromptDialog (Widgearent char ‘hame ArgList argy, Car-
dinalargc)

Widget XmCreateSelectionDialog (Widgedrent char name ArgList argy,
Cardinalargc)

#include <Xm/Command.h>
Widget XmCreateCommandDialog (Widgedrent char hame ArgList argy,
Cardinalargc)

Menu Objects

#include <Xm/RowColumn.h>

Widget XmCreateMenuBar (Widgparent char *name ArgList argy, Cardinal
arge)

Widget XmCreateOptionMenu (Widgparent char *name ArgList argy, Cardi-
nalargc)

Widget XmCreatePopupMenu (Widgedrent char ‘hame ArgList argy, Cardi-
nalargc)

Widget XmCreatePulldownMenu (Widgparent char ‘hame ArgList argy,
Cardinalargc)

Simple Menu Objects

#include <Xm/Xm.h>

Widget XmCreateSimpleCheckBox (Widgedrent char ‘hame ArgList argy,
Cardinalargc)

Widget XmCreateSimpleMenuBar (Widgadrent char ‘hame ArgList argy,
Cardinalargc)

Widget XmCreateSimpleOptionMenu (Widgerent char *name ArgList argy,
Cardinalargc)

Widget XmCreateSimplePopupMenu (Widgetrent char "name ArgList argy,
Cardinalargc)

Motif Reference Manual

Motif Functions and Macros XmCreate<Emphasis>Object<Default Para Font>

Widget XmCreateSimplePulldownMenu (Widgegtrent char name ArgList
argy, Cardinalargc)
Widget XmCreateSimpleRadioBox (Widgadrent char hame ArgList argy,
Cardinalargc)

Scrolled Objects
#include <Xm/List.h>
Widget XmCreateScrolledList (Widgptarent char hame ArgList argy, Cardi-
nalargc)

#include <Xm/Text.h>
Widget XmCreateScrolledText (Widgparent char ‘name ArgList argy, Cardi-

nalargc)

Inputs
parent Specifies the widget ID of the parent of the new widget.
name Specifies the string name of the new widget for resource lookup.
argv Specifies the resource name/value pairs used in creating the
widget.
argc Specifies the number of name/value pairargv.

Returns

The simple widget creation routines return the widget ID of the widget that is
created. The dialog creation routines return the widget ID of the widget that is
created as a child of the DialogShell. The menu creation routines return the
widget ID of the RowColumn widget that is created. The scrolled object creation
routines return the widget ID of the List or Text widget.

Avalilability
XmCreateDraglcon () andXmCreateTemplateDialog () are only avail-
able in Motif 1.2 and later.

XmCreateGrabShell (), XmCreatelconGadget (), XmCreateCom-
boBox (),

XmCreateDropDownComboBox (), XmCreateDropDownList (), XmCre-
ateNotebook (), XmCreateContainer (), andXmCreateSpinBox () are
available from Motif 2.0 onwards.

XmCreateSimpleSpinBox () is available from Motif 2.1 and onwards.

Description
The XmCreate *() routines are convenience routines for creating an instance of
a particular widget class or a particular compound object. Each creation routine
takes the same four arguments: plagents widget ID, thenameof the new
widget, a list of resource name/value pairs, and the number of name/value pairs.

Motif Reference Manual 75

XmCreate<Emphasis>Object<Default Para Font> Motif Functions and Macros

Usage

76

The simple creation routines create a single widget with the default resource set-
tings for the widget class, except fsdmCreateRadioBox () andXmCreate-
WorkArea (), which create specially configured RowColumn widgets.

The dialog creation routines are convenience routines for creating a particular
unmanaged widget as a child of a DialogShell. Férentargument specifies

the parent of the DialogShell am&mespecifies the string name of the particular
widget that is created. The name of the DialogShell is the string that results from
appending "_popup" to theameof the widget. The routines return the widget ID

of the widget that is created as the child of the DialogShell.

The menu creation routines are convenience routines for creating particular types
of menu objects. Each routine creates a RowColumn widget with specific
resource settings that configure the widget to operate as the particular type of
menu. XmCreatePopupMenu () andXmCreatePulldownMenu () create

the RowColumn widget as the child of a MenuShell.

Except forXmCreateSimpleSpinBox (), the simple menu creation routines
are convenience routines for creating particular configurations of RowColumn
widgets and their children. For examp¥enCreateSimpleCheckBox () cre-
ates a CheckBox with ToggleButtonGadgets as its children.

XmCreateScrolledList () andXmCreateScrolledText () are conven-
ience routines that create a List or Text widget as the child of a ScrolledWindow.
The parentargument specifies the parent of the ScrolledWindownantespec-
ifies the string name of the List or Text widget. Tiemeof the ScrolledWindow

is the string that results from appending "SW" tortameof the widget. The
routines return the widget ID of the List or Text widget.

Each widget or compound object that can be created wikmereate *() rou-

tine can also be created usiKtCreateWidget (). The simple Motif creation
routines are simply veneersXeCreateWidget (). The rest of the Motif cre-

ation routines create multiple widgets and/or set specific widget resources. In
order to useXtCreateWidget () to create these objects, you need to have a
complete understanding of the compound object that you are trying to create. For
more information on each widget and compound object that can be created, see
the appropriate manual page in Sectiomatif and Xt Widget Classes

Motif Reference Manual

Motif Functions and Macros XmCreate<Emphasis>Object<Default Para Font>

See Also

XmArrowButtonGadget(2), XmArrowButton(2),
XmBulletinBoardDialog(2), XmBulletinBoard(2),
XmCascadeButtonGadget(2), XmCascadeButton(2),
XmCheckBox(2), XmComboBox(2), XmCommand(2),
XmCommandDialog(2), XmContainer(2), XmDialogShell(2),
XmbDraglcon(2), XmDrawingArea(2), XmDrawnButton(2),
XmErrorDialog(2), XmFileSelectionBox(2),
XmFileSelectionDialog(2), XmFormDialog(2), XmForm(2),
XmFrame(2), XmGrabShell(2), XmlconGadget(2),
XminformationDialog(2), XmLabelGadget(2), XmLabel(2),
XmList(2), XmMainWindow(2), XmMenuBar(2),
XmMenuShell(2), XmMessageBox(2), XmMessageDialog(2),
XmNotebook(2), XmOptionMenu(2), XmPanedWindow(2),
XmPopupMenu(2), XmPromptDialog(2),
XmPulldownMenu(2), XmPushButtonGadget(2)
XmPushButton(2), XmQuestionDialog(2), XmRadioBox(2),
XmRowColumn(2), XmScale(2), XmScrollBar(2),
XmScrolledList(2), XmScrolledText(2),
XmScrolledWindow(2), XmSelectionBox(2),
XmSelectionDialog(2), XmSeparatorGadget(2),
XmSeparator(2), XmSpinBox(2), XmSimpleSpinBox(2),
XmTemplateDialog(2), XmTextField(2), XmText(2),
XmToggleButtonGadget(2), XmToggleButton(2),
XmWarningDialog(2), XmWorkingDialog(2).

Motif Reference Manual

77

XmCvtByteStreamToXmString Motif Functions and Macros

Name
XmCvtByteStreamToXmString — convert a byte stream to a compound string.

Synopsis

XmString XmCvtByteStreamToXmString (unsigned charaperty)

Inputs
property Specifies a byte stream.

Returns
An allocated compound string.

Availability
Motif 2.0 and later.

Description
XmCvtByteStreamToXmString () converts a stream of bytes to a compound
string. The function is typically used by the destination of a data transfer opera-
tion.

Usage
XmCvtByteStreamToXmString () converts a compound string in byte
stream format into an XmString. The function allocates storage for the returned
compound string, and it is the responsibility of the programmer to free the allo-
cated memory by callingmsStringFree () at an appropriate point.

See Also
XmCvtXmStringToByteStream (1), XmStringFree (1),

78 Motif Reference Manual

Motif Functions and Macros XmCvtCTToXmString

Name

XmCvtCTToXmString — convert compound text to a compound string.

Synopsis
XmString XmCvtCTToXmString (chart&x)

Inputs
text Specifies the compound text that is to be converted.

Returns
The converted compound string.

Description

XmCvtCTToXmsString () converts the specifig@xtstring from compound text
format, which is an X Consortium Standard define@€wmpound Text Encoding

to a Motif compound string. The routine assumes that the compound text is
NULL-terminated and NULLs within the compound text are handled correctly. If
text contains horizontal tabulation (HT) control characters, the result is unde-
fined. XmCvtCTToXmString () allocates storage for the converted compound
string. The application is responsible for freeing this storage using XmsString-

Free()
Usage

Compound text is an encoding that is designed to represent text from any locale.

Compound text strings identify their encoding using embedded escape

sequences. The compound text representation was standardized for X11R4 for
use as a text interchange format for interclient communication. An application
must callXtApplnitialize () before callingKmCvtCTToXmString (). The
conversion of compound text to compound strings is implementation dependent.

XmCvtCTToXmString () is the complement AmCvtXmStringToCT ().

See Also
XmCvtXmStringToCT (1).

Motif Reference Manual

79

XmCvtStringToUnitType Motif Functions and Macros

Name
XmCvtStringToUnitType — convert a string to a unit-type value.
Synopsis
void XmCvtStringToUnitType (XrmValuePtr args
Cardinal num_args
XrmValue *from_val
XrmValue *to_val
Inputs
args Specifies additional XrmValue arguments that are need to perform
the conversion.
num_args Specifies the number of items in args.
from_val Specifies value to convert.
Outputs
to_val Returns the converted value.
Availability

In Motif 1.2, XmCvtStringToUnitType () is obsolete. It has been super-
seded by a new resource converter that uses the RepType facility.

Description
XmCvtStringToUnitType () converts the string specified from_valto one
of the unit-type values: XmPIXELS, Xm100TH_MILLIMETERS,
Xm1000TH_INCHES, Xm100TH_POINTS, or Xm100TH_FONT_UNITS.
This value is returned ito_val

Usage
XmCvtStringToUnitType () should not be called directly; it should be
installed as a resource converter using the R3 roxttAeldConverter (). The
routine only needs to be installed if the XmNunitType resource for a widget is
being setin a resource file. In this caX¥epCvtStringToUnitType () must be
installed withXtAddConverter () before the widget is created. Use the fol-
lowing call toXtAddConverter () to install the converter:

XtAddConverter (XmRString, XmRUnitType, XmCvtStringToUnitType,
NULL, 0);

In Motif 1.2, the use cKmCvtStringToUnitType () as a resource converter
is obsolete. A new resource converter that uses the RepType facility has replaced
the routine.

See Also
XmGadget(2), XmManager(2), XmPrimitive (2).

80 Motif Reference Manual

Motif Functions and Macros XmCvtTextPropertyToXmStringTable

Name
XmCvtTextPropertyToXmStringTable — convert an XTextProperty to a Com-
pound String Table.
Synopsis
#include <Xm/TxtPropCv.h>
int XmCvtTextPropertyToXmStringTable (Display display
XTextProperty text_prop
XmStringTable
*str_table_return
int *count_return
Inputs
display Specifies the connection to the X server.
text_prop Specifies a pointer to an XTextProperty structure.
Outputs
str_table_return The XmStringTable array converted from text_prop.
count_return The number of XmStrings in str_table_return.
Returns
Success if the conversion succeeded, XLocaleNotSupported if the current locale
is unsupported, XConverterNotFound if no converter is available in the current
locale.
Avalilability
Motif 2.0 and later.
Description
XmCvtTextPropertyToXmStringTable () converts the data specified
within text_propinto an array of XmStrings, returned througtin_table_return
The number of XmStrings in the array is returnedaduant_return
Usage

The XmCvtTextPropertyToXmStringTable () function converts data
specified within an XTextProperty structure into an XmStringTable. The data to
be converted is the value membeteft_prop where value is an array of bytes,
consisting of a series of concatenated items, each NULL separated. The number
of such items is given by the nitems membetegt_prop The last item is termi-
nated by two NULL bytes. The interpretation of each item depends upon the
encoding member d@éxt_prop

If the encoding member ¢éxt_propis COMPOUND_TEXT, the data is con-
verted using the functiodmCvtCTToXmString (). If encoding is
COMPOUND_STRING, the data is converted using the functimCvt-

Motif Reference Manual 81

XmCvtTextPropertyToXmStringTable Motif Functions and Macros

ByteStreamToXmString (). Conversion requires that a converter has been
registered for the current locale, otherwise the function returns XConverterNot-
Found. If encoding is XA_STRING, each returned XmString is converted
throughXmStringGenerate () with a tag of "ISO8859-1" and a text type of
XmCHARSET_TEXT. If encoding is that of the current locale, each returned
XmsString is converted througkmStringGenerate () with a tag of
_MOTIF_DEFAULT_LOCALE, and atext type of XmMULTIBYTE_TEXT. For
other values of encoding, the function returns XLocaleNotSupported.

XmCvtTextPropertyToXmStringTable () returns allocated storage, and

it is the responsibility of the programmer to free the utilized memory at an appro-
priate point by freeing each element of the array throtmgBtringFree (),

and subsequently the array itself througkree ().

Structures

See Also

82

The XTextProperty structure is defined in <X11/Xutil.h> as follows:
typedef struct {
unsigned char *value; /$ame as Property routines */
Atom encoding; /*he property type */
int format; [* property data format: 8, 16, or 32.
unsigned long nitems; Mumber of data items in value */
} XTextProperty;

XmCvtByteStreamToXmsString (1), XmCvtCTToXmString (1),
XmStringFree (1), XmStringGenerate (1).

Motif Reference Manual

Motif Functions and Macros XmCvtXmStringTableToTextProperty

Name
XmCvtXmStringTableToTextProperty — convert an XmStringTable to an XText-
Property.
Synopsis
#include <Xm/TxtPropCv.h>
int XmCvtXmStringTableToTextProperty (Display dis-
play,
XmStringTable
string_table
int count
XmICCEncodingStyle style
XTextProperty
*prop_returr)
Inputs
display Specifies the connection to the X server.
string_table Specifies an array of compound strings.
count Specifies the number of compound stringstiing_table
style Specifies the encoding style from which to convert
string_table
Outputs
prop_return The XTextProperty structure converted fretring_table
Returns
Success if the conversion succeeded, XLocaleNotSupported if the current locale
is unsupported.
Avalilability
Motif 2.0 and later.
Description
XmCvtXmStringTableToTextProperty () is the inverse function to
XmCvtTextPropertyToXmStringTable (). It converts an array of com-
pound strings, specified lsyring_table into the elements of an XTextProperty
structure. The number of compound strings withinstineg_tableis given by
count
Usage

XmCvtXmStringTableToTextProperty () converts an XmStringTable
into the elements of an XTextProperty structure. The encoding member contains
an Atom representing the requesstge The value member contains a list of the

Motif Reference Manual 83

XmCvtXmStringTableToTextProperty Motif Functions and Macros

converted items, each separated by NULL bytes, and terminated by two NULL
bytes, the nitems member is the number of such items converted.

If styleis XmSTYLE_COMPOUND_STRING, encoding is
_MOTIF_COMPOUND_STRING, and value contains a list of XmStrings in
byte stream format.

If styleis XmSTYLE_COMPOUND_TEXT, encoding is COMPOUND_TEXT,
and value contains compound text items.

If styleis XmSTYLE_LOCALE, encoding is the Atom representing the encoding
for the current locale. value contains items converted into the current locale.

If styleis XmSTYLE_STRING, encoding is STRING, and value contains items
converted into ISO8859-1 strings.

If styleis XmSTYLE_TEXT, and all the XmStrings string_tableare converti-
ble into the encoding for the current locale, the function behaves as ttglegh
is XmSTYLE_LOCALE. Otherwise, the function behaves as thatgleis
XmSTYLE_COMPOUND_TEXT.

If styleis XmMSTYLE_STANDARD_ICC_TEXT, and all the XmStrings in
string_tableare convertible as though tiseyleis XmSTYLE_STRING, the func-
tion behaves as thougtyleis indeed XmSTYLE_STRING. Otherwise, the
function behaves as thougtyleis XmSTYLE_COMPOUND_TEXT.

XmCvtXmStringTableToTextProperty () returns XLocaleNotSupported
if the conversion cannot be performed within the current locale styléis not
valid. Otherwise, the function returns Success.

Structures
The XTextProperty structure is defined in <X11/Xutil.h> as follows:

typedef struct {
unsigned char *value; /$ame as Property routines */
Atom encoding; /[*property type */
int format; /* property data format: 8, 16, or 32
unsigned long nitems; fumber of data items in value */
} XTextProperty;

The possible values of the XmICCEncodingStyle parameter style are:

XmSTYLE_COMPOUND_STRING
XmSTYLE_COMPOUND_TEXT
XmSTYLE_LOCALE
XmSTYLE_STANDARD_ICC_TEXT
XmMSTYLE_STRING
XmSTYLE_TEXT

84 Motif Reference Manual

Motif Functions and Macros

See Also
XmCvtByteStreamToXmString

XmCvtXmStringTableToTextProperty

(1), XmCvtCTToXmString (1),

XmCvtTextPropertyToStringTable (1), XmStringFree (1),

XmStringGenerate (1).

Motif Reference Manual

85

XmCvtXmStringToByteStream Motif Functions and Macros

Name
XmCvtXmStringToByteStream — convert a compound string to byte stream for-
mat.
Synopsis
unsigned int XmCvtXmStringToByteStream (XmStristging, unsigned char
** prop_return
Inputs
string Specifies the compound string that is to be converted.
Outputs
prop_return The converted compound string in byte stream format.
Returns
The number of bytes in the byte stream.
Avalilability
Motif 2.0 and later.
Description
XmCvtXmStringToByteStream () converts a compound stristring into a
stream of bytes, returning the number of bytes required for the conversion. The
byte stream is returned prop_return The function is the inverse ®mCvt-
ByteStreamToXmString ().
Usage

XmCvtXmStringToByteStream () converts an XmString into byte stream
format. If prop_returnis not NULL, the function places intprop_returnthe con-
verted string, and returns its length in byteidp_returnis NULL, the number
of bytes is calculated and returned, but no conversion is performed.

XmCvtXmStringToByteStream () returns allocated storageprop_return
and it is the responsibility of the programmer to free the utilized memory at an
appropriate point by callingtFree ().

See Also
XmCvtByteStreamToXmString (1).

86 Motif Reference Manual

Motif Functions and Macros XmCvtXmStringToCT

Name

XmCvtXmStringToCT — convert a compound string to compound text.
Synopsis

char * XmCvtXmsStringToCT (XmStringtring)

Inputs
string Specifies the compound string that is to be converted.

Returns
The converted compound text string.

Description

XmCvtXmStringToCT () converts the specified Motif compousiting to a

string in X11 compound text format, which is described in the X Consortium

StandardCompound Text Encoding.
Usage

Compound text is an encoding that is designed to represent text from any locale.

Compound text strings identify their encoding using embedded escape

sequences. The compound text representation was standardized for X11R4 for

use as a text interchange format for interclient communicatimCvtXm-
StringToCT () is the complement ofmCvtCTToXmString ().

In Motif 1.2 and later, an application must not eathCvtXmStringToCT ()

until afterXtApplnitialize () is called, so that the locale is established cor-
rectly. The routine uses the font list tag of each compound string segment to
select a compound text format for the segment. A mapping between font list tags

and compound text encoding formats is stored in a registry.

If the compound string segment tag is associated with

XmFONTLIST_DEFAULT_TAG in the registry, the converter callmbTex-

tListToTextProperty () with the XCompoundTextStyle encoding style and
uses the resulting compound text for the segment. If the compound string seg-
ment tag is mapped to a registered MIT charset, the routine creates the compound
text using the charset as defined in the X Consortium Standard Compound Text
Encoding. If the compound string segment tag is associated with a charset that is
not XmFONTLIST_DEFAULT_TAG or a registered charset, the converter cre-

ates the compound text using the charset and the text as an "extended segment

with a variable number of octets per character. If the compound string segment
tag is not mapped in the registry, the result depends upon the implementation.

See Also
XmCvtCTToXmString (1), XmMapSegmentEncoding (1),
XmRegisterSegmentEncoding (1).

Motif Reference Manual

87

XmDeactivateProtocol Motif Functions and Macros

Name

Synopsis

XmDeactivateProtocol — deactivate a protocol.

#include <Xm/Protocols.h>

void XmDeactivateProtocol (Widgehell Atom property Atom protoco)

Inputs

shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocol Specifies the protocol atom.

Description

Usage

See Also

88

XmDeactivateProtocol () deactivates the specifipdotocol without
removing it. If the shell is realize¥mDeactivateProtocol () updates its
protocol handlers and the specifigdperty A protocol may be active or inac-
tive. If protocolis active, the protocol atom is storecpnoperty; if protocolis
inactive, the protocol atom is not stored in property.

A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmDeactivateProtocol () allows a client to temporarily stop participating

in the communication. The inverse routinXimActivateProtocol 0.

XmActivateProtocol (1), XmDeactivateWMProtocol (1),
XminternAtom (1), VendorShell (2).

Motif Reference Manual

Motif Functions and Macros XmDeactivateWMProtocol

Name
XmDeactivateWMProtocol — deactivate the XA_WM_PROTOCOLS protocol.

Synopsis
#include <Xm/Protocols.h>

void XmDeactivateWMProtocol (Widgshell Atom protoco)

Inputs
shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.

Description
XmDeactivateWMProtocol () is a convenience routine that caflsi\Deac-
tivateProtocol () with property set to XA WM_PROTOCOL, the window
manager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window manageénsDeactivateWMPro-
tocol () allows a client to temporarily stop participating in the communication
with the window manager. The inverse routinXisActivateWMProto-
col ().

See Also
XmActivateWMProtocol (1), XmDeactivateProtocol (D),
XminternAtom (1), VendorShell (2).

Motif Reference Manual 89

XmDestroyPixmap Motif Functions and Macros

Name
XmDestroyPixmap — remove a pixmap from the pixmap cache.
Synopsis
Boolean XmDestroyPixmap (Screescteen Pixmappixmap
Inputs
screen Specifies the screen on which the pixmap is located.
pixmap Specifies the pixmap.
Returns
True on success or False if there is no matcpixigpapandscreenin the cache.
Description
XmDestroyPixmap () removes the specifigiixmapfrom the pixmap cache
when it is no longer needed. A pixmap is not completely freed until there are no
further reference to it.
Usage

The pixmap cache maintains a per-client list of the pixmaps that are in use.
Whenever a pixmap is requested usimGetPixmap (), an internal reference
counter for the pixmap is incrementecKmbDestroyPixmap () decrements this
counter, so that when it reaches 0 (zero), the pixmap is removed from the cache.

See Also
XmGetPixmap (1), Xminstalllmage (1), XmUninstalllmage (1).

90 Motif Reference Manual

Motif Functions and Macros XmbDirectionMatch

Name
XmDirectionMatch — compare two directions.
Synopsis
Boolean XmDirectionMatch (XmDirectiodir _1, XmDirectiondir_2)
Inputs
dir_1 Specifies a direction.
dir_2 Specifies a direction to compare watin 1.
Returns
True if the directions match, otherwise False.
Availability
Motif 2.0 and later.
Description
XmbDirectionMatch () is a convenience function which compares two direc-
tion valuesdir_1 anddir_2, returning True or False, depending upon whether the
values are a logical match for each other.
Usage

An XmDirection consists of three parts: a horizontal component, a vertical com-
ponent, and an order of precedence between each. XmDirection values match if
both the horizontal components and vertical components of each are logically the
same, and the order between the components is the same. If one value does not
have a horizontal component, this always matches the horizontal component of
the other value. Similarly, if one value has no vertical component, the vertical
component in the other value is automatically considered to match. Where a
match is found between the directions, the function returns True, otherwise False.

For example, supposir_1is XmTOP_TO_BOTTOM_LEFT_TO_RIGHT.

This has a vertical component XmTOP_TO_BOTTOM, a horizontal component
XmLEFT_TO_RIGHT, the vertical component being first in the order of prece-
dence. Ifdir_2 is XmLEFT_TO_RIGHT, this has no vertical component, which
automatically matches the vertical componerdiofl. The horizontal compo-

nents are identical, and therefore the two directions are considered a match (it is
also a match iflir_1is XmLEFT_TO_RIGHT_TOP_TO_BOTTOM). Hir_2is
XmRIGHT_TO_LEFT, or XmTOP_TO_BOTTOM_RIGHT_TO_LEFT, no

match is found because the horizontal components differ, and the function returns
False. Ifdir_2is XmLEFT_TO_RIGHT_TOP_TO_BOTTOM, the function also
returns False because the horizontal and vertical components, although fully

specified and equal in value, have different orders of precedence.

Motif Reference Manual

91

XmDirectionMatch Motif Functions and Macros

Structures
Valid XmDirection values for each dir_1 anddir_2 are:

XmLEFT_TO_RIGHT XMRIGHT_TO_LEFT
XmBOTTOM_TO_TOP XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_RIGHT _TO_LEFT
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
XmLEFT_TO_RIGHT _BOTTOM_TO_TOP
XmRIGHT _TO_LEFT_BOTTOM_TO_TOP
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
XmRIGHT _TO_LEFT_TOP_TO_BOTTOM

See Also
XmDirectionMatchPartial (1),
XmDirectionToStringDirection (1),
XmStringDirectionToDirection (1),

92 Motif Reference Manual

Motif Functions and Macros XmbDirectionMatchPartial

Name
XmDirectionMatchPartial — partially compare two directions.
Synopsis
Boolean XmDirectionMatchPartial (XmDirectiahr_1, XmDirectiondir_2,
XmDirectionmash
Inputs
dir_1 Specifies a direction.
dir_2 Specifies another direction to compare wiith 1.
mask Specifies whether the horizontal component
(XmHORIZONTAL_MASK), vertical component
(XmVERTICAL_MASK), or the order of component precedence
(XmPRECEDENCE_MASK) is compared.
Returns
True if the directions match, otherwise False.
Availability
Motif 2.0 and later.
Description
XmDirectionMatchPartial () is a convenience function which compares
two direction valueg]ir_1 anddir_2 according to the comparison rule specified
in mask.
Usage

An XmDirection consists of three logical parts: a horizontal component, a verti-
cal component, and an order of precedence between each. The function compares
corresponding logical parts of two XmDirection valuesn#skis
XmHORIZONTAL_MASK, the horizontal components df 1 anddir_2 are
compared. limaskis XmVERTICAL_MASK, the vertical components are com-
pared. Ifmaskis XmPRECEDENCE_MASK, the order of precedence between

the horizontal and vertical components is compared. If one value does not have a
particular logical part, this always matches the logical part in the second value.
Where a match is found, the function returns True, otherwise False.

For example, supposir_1is XmTOP_TO_BOTTOM_LEFT_TO_RIGHT, and
thatdir_2 is XmBOTTOM_TO_TOP_LEFT_TO_RIGHT. thaskis
XmHORIZONTAL_MASK, the two values match because each has an equiva-
lent horizontal component (XmLEFT_TO_RIGHT).ntiaskis
XmMVERTICAL_MASK, there is no match because each has different vertical
components. Inaskis XmMPRECEDENCE_MASK, the two values are a match
because each has the vertical component before the horizontal.

Motif Reference Manual 93

XmDirectionMatchPartial Motif Functions and Macros

Structures
Valid XmDirection values for each dir_1 anddir_1 are:

XmLEFT_TO_RIGHT XMRIGHT_TO_LEFT
XmBOTTOM_TO_TOP XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_RIGHT _TO_LEFT
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
XmLEFT_TO_RIGHT _BOTTOM_TO_TOP
XmRIGHT _TO_LEFT_BOTTOM_TO_TOP
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
XmRIGHT _TO_LEFT_TOP_TO_BOTTOM

See Also
XmbDirectionMatch (1), XmDirectionToStringDirection (1),
XmStringDirectionToDirection (1),

94 Motif Reference Manual

Motif Functions and Macros XmDirectionToStringDirection

Name
XmDirectionToStringDirection — convert a direction to a string direction.

Synopsis
XmStringDirection XmDirectionToStringDirection (XmDirectialirection)

Inputs
direction Specifies the direction to be converted.
Returns

The equivalent XmStringDirection.

Availability
Motif 2.0 and later.

Description
XmDirectionToStringDirection () converts an XmDirection value spec-
ified bydirectioninto an XmStringDirection value.

Usage
XmDirectionToStringDirection () converts between the XmDirection
and XmStringDirection data types.directionhas a horizontal component, that
component is converted. If the horizontal component is XmLEFT_TO_RIGHT,
the function returns XmSTRING_DIRECTION_LEFT_TO_RIGHT. If the hori-
zontal component is XmRIGHT_TO_LEFT, the function returns
XmSTRING_DIRECTION_RIGHT_TO_LEFT. Iflirectionhas no horizontal
component, the function returns XmSTRING_DIRECTION_DEFAULT.
For example, iflirectionis XmRIGHT_TO_LEFT_TOP_TO_BOTTOM, the
horizontal component is XmRIGHT_TO_LEFT, and the return value is
XmSTRING_DIRECTION_RIGHT_TO_LEFT. Iflirectionis
XmBOTTOM_TO_TOP, the value has only a vertical component, and the func-
tion returns XmSTRING_DIRECTION_DEFAULT.

See Also
XmbDirectionMatch (1), XmDirectionMatchPartial (1),
XmStringDirectionToDirection (2).

Motif Reference Manual 95

XmDragCancel Motif Functions and Macros

Name
XmDragCancel — cancel a drag operation.

Synopsis
#include <Xm/DragDrop.h>

void XmDragCancel (Widgedragcontext

Inputs
dragcontext Specifies the ID of the DragContext object for the drag operation

that is being cancelled.

Description
XmDragCancel () cancels the drag operation that is in progress for the specified
dragcontesxtlf the DragContext has any actions pending, they are terminated.
The routine can only be called by the client that initiated the drag operation.
XmDragCancel () frees the DragContext object associated with the drag opera-
tion.

Usage
XmDragCancel () allows an initiating client to cancel a drag operation if it
decides that the operation should not continue for whatever reason. Calling
XmDragCancel () is equivalent to the user pressing KCancel during the drag.
The XmNdropStartCallback informs the initiating client of the cancellation by
setting the dropAction field to XmDROP_CANCEL. So that it can undo any
drag-under effects under the dynamic protocol, the receiving client gets an
XmCR_DROP_SITE_LEAVE_MESSAGE when the drag is cancelled.

See Also
XmDragStart (1), XmDragContext (2).

96 Motif Reference Manual

Motif Functions and Macros XmDragStart

Name

Synopsis

XmDragStart — start a drag operation.

#include <Xm/DragDrop.h>

Widget XmDragStart (Widgewidget XEvent *event ArgList arglist, Cardinal
argcoun)

Inputs

widget Specifies the widget or gadget that contains the data that is being
dragged.

event Specifies the event that caused the drag operation.

arglist Specifies the resource name/value pairs used in creating the Drag-
Context.

argcount Specifies the number of name/value pairs in arglist.

Returns

The ID of the DragContext object that is created.

Availability

In Motif 2.0 and laterXmDragStart () is subsumed into the Uniform Transfer
Model (UTM). The Motif widget classes do not cdthDragStart () directly,

but install the XmQTtransfer trait to provide data transfer and conversion, and
initiate the drag through UTM mechanisms which cghsDragStart () inter-
nally.

Description

Usage

XmDragStart () starts a drag operation by creating and returning a DragCon-
text object. The DragContext stores information that the toolkit needs to process
a drag transaction. The DragContext object is widget-like, in that it uses
resources to specify its attributes. The toolkit frees the DragContext upon com-
pletion of the drag and drop operation.

Thewidgetargument to{mDragStart () should be the smallest widget that
contains the source data for the drag operationeVagtthat starts the drag
operation must be a ButtonPress event. difgdist andargcountparameters work

as for any creation routine; any DragContext resources that are not set by the
arguments are retrieved from the resource database or set to their default values.

Motif supports the drag and drop model of selection actions. In a widget that acts
as a drag source, a user can make a selection and then drag the selection, using
BTransfer, to other widgets that are registered as drop sites. These drop sites can
be in the same application or another application.

Motif Reference Manual 97

XmDragStart Motif Functions and Macros

Example

98

The Text and TextField widgets, the List widget, and Label and its subclasses are
set up to act as drag sources by the toolkit. In order for another widget to act as a
drag source, it must have a translation for BTransfer. The action routine for the
translation callXmDragStart (), either directly or indirectly through the UTM,

to initiate the drag and drop operation.

The only DragContext resource that must be specified idmeBragStart () is

called is the XmNconvertProc procedure. This resource specifies a procedure of
type XtConvertSelectionincrProc that converts the source data to the format(s)
requested by the receiving client. The specification of the other resources, such as
those for operations and drag-over visuals, is optional. For more information
about the DragContext object, see the manual page in SechtwtiPand Xt

Widget Classés

The following routines show the useXiDragStart () in setting up a Scroll-

Bar to function as a drag source. When the ScrollBar is created, the translations
are overridden to invoke StartDrag when BTransfer is pressed. ConvertProc,
which is not shown here, is set up by StartDrag to perform the translation of the
scrollbar data into compound text format.

/*

» XmSCOMPOUND_TEXT is defined in Motif 2.0 and
later

*/

#ifndef XmSCOMPOUND_TEXT

#define XmSCOMPOUND_TEXT "COMPOUND_TEXT"
#endif /* XmSCOMPOUND_TEXT */

/* global variable */
Atom COMPOUND_TEXT;

/* start the drag operation */

static void StartDrag(Widget widget,
XEvent *event,
String *params,
Cardinal *num_params)
{

Arg args[10];
intn=0;
Atom exportList[1];

exportList{0] = COMPOUND_TEXT;

Motif Reference Manual

Motif Functions and Macros XmDragStart

XtSetArg (args[n], XmNexportTargets,

exportList); n++;

XtSetArg (args[n], XmNnumExportTargets, XtNumber
(exportList));

n++;

XtSetArg (args[n], XmNdragOperations,
XmDROP_COPY); n++;

XtSetArg (args[n], XmNconvertProc, ConvertProc);
n++;

XtSetArg (args[n], XmNclientData, widget); n++;

XmDragStart (widget, event, args, n);
}

/* define translations and actions */
static char dragTranslations[] =
"#override <Btn2Down>: StartDrag()";

static XtActionsRec dragActions|] =
{ {"StartDrag", (XtActionProc) StartDrag} };

void main (unsigned int argc, char **argv)
{
Arg args[10];
int n;
Widget top, bboard, scrollbar;
XtAppContext app;
XtTranslations parsed_trans;

XtSetLanguageProc (NULL, (XtLanguageProc) NULL,
NULL);

top = XtApplnitialize (&app, "Drag", NULL, O,
&argc, argv, NULL, NULL,
0);

COMPOUND_TEXT = XlnternAtom (XtDisplay (widget),

XmSCOMPOUND_TEXT,

False);
n=0;
bboard = XmCreateBulletinBoard (top, "bboard",
args, nj;

XtManageChild (bboard);

/* override button two press to start a drag */

Motif Reference Manual

99

XmDragStart

See Also

Motif Functions and Macros

parsed_trans = XtParseTranslationTable
(dragTranslations);

XtAppAddActions (app, dragActions, XtNumber
(dragActions));

n=0;

XtSetArg (args[n], XmNtranslations,
parsed_trans); n++;

XtSetArg (args[n], XmNorientation, XmHORIZON-
TAL); n++;

XtSetArg (args[n], XmNwidth, 100); n++;

scrollbar = XmCreateScrollBar (bboard, "scroll-
bar", args, n);

XtManageChild (scrollbar);

XtRealizeWidget (top);
XtAppMainLoop (app);

XmDragCancel (1), XmTransfer (1), XmDragContext (2).

100

Motif Reference Manual

Motif Functions and Macros XmDropSiteConfigureStackingOrder

Name

Synopsis

XmDropSiteConfigureStackingOrder — change the stacking order of a drop site.

#include <Xm/DragDrop.h>

void XmDropSiteConfigureStackingOrder (Widgdtiget Widgetsibling, Car-
dinal stack_modg

Inputs

widget Specifies the widget ID associated with the drop site.
sibling Specifies an optional widget ID of a sibling drop site.
stack_mode Specifies the stacking position. Pass either XmABOVE or
XmBELOW.

Description

Usage

See Also

XmDropSiteConfigureStackingOrder () changes the stacking order of a
drop site relative to its siblings. The routine changes the stacking order of the
drop site associated with the specifigidiget The stacking order is changed only

if the drop sites associated witvidgetandsiblingare siblings in both the widget
hierarchy and the drop site hierarchy. The parent of both of the widgets must be
registered as a composite drop site.

If siblingis specified, the stacking order of the drop site is changed relative to the
stack position of the drop site associated wiliing, based on the value of
stack_modelf stack_modés XmABOVE, the drop site is positioned just above
the sibling; ifstack_modés XmBELOW, the drop site is positioned just below
the sibling. Ifsibling is not specified, atack_mod®ef XmABOVE causes the

drop site to be placed at the top of the stack, whit¢eek_modef XmBELOW!
causes it to be placed at the bottom of the stack.

A drop site for drag and drop operations can be a composite drop site, which
means that it has children which are also drop sites. The stacking order of the
drop sites controls clipping of drag-under effects during a drag and drop opera-
tion. When drop sites overlap, the drag-under effects of the drop sites lower in the
stacking order are clipped by the drop sites above them, regardless of whether or
not the drop sites are active. You can ¥eeEDropSiteConfigure-

StackingOrder () to modify the stacking order. UsémDropSiteQueryS-
tackingOrder () to get the current stacking order.

XmDropSiteQueryStackingOrder(1),
XmDropSiteRegister(1), XmDropSite(2)

1.Erroneously given as BELOW in 1st and 2nd editions.

Motif Reference Manual 101

XmDropSiteEndUpdate Motif Functions and Macros

Name
XmDropSiteEndUpdate — end an update of multiple drop sites.

Synopsis
#include <Xm/DragDrop.h>
void XmDropSiteEndUpdate (Widgetidge)
Inputs

widget Specifies any widget in the hierarchy associated with the drop sites
that are to be updated.

Description
XmDropSiteEndUpdate () finishes an update of multiple drop sites. The
widgetparameter specifies a widget in the widget hierarchy that contains all of
the widgets associated with the drop sites being updated. The routineidges
to identify the shell that contains all of the drop sites.

Usage
XmDropSiteEndUpdate () is used withKXmDropSiteStartUpdate () and
XmDropSiteUpdate () to update information about multiple drop sites in the
DropSite registryXmDropSiteStartUpdate () starts the update processing,
XmDropSiteUpdate () is called multiple times to update information about
different drop sites, andmDropSiteEndUpdate () completes the processing.
These routines optimize the updating of drop site information. CaksBrop-
SiteStartUpdate () andXmDropSiteEndUpdate () can be nested recur-
sively.

See Also
XmDropSiteStartUpdate (1), XmDropSiteUpdate (1),
XmDropSite (2).

102 Motif Reference Manual

Motif Functions and Macros XmDropSiteQueryStackingOrder

Name
XmDropSiteQueryStackingOrder — get the stacking order of a drop site.
Synopsis
#include <Xm/DragDrop.h>
Status XmDropSiteQueryStackingOrder (Widgetwidget
Widget *parent_return
Widget **child_returns
Cardinal “*num_child_returnp
Inputs
widget Specifies the widget ID associated with a composite drop
site.
Outputs
parent_return Returns the widget ID of the parent of the specified
widget
child_returns Returns a list of the children wfidgetthat are registered
as drop sites.
num_child_returns Returns the number of childrendhild_returns
Returns
A non-zero value on success or 0 (zero) on failure.
Description
XmDropSiteQueryStackingOrder () retrieves information about the

stacking order of drop sites. For the specifigdget the routine returns its parent

and a list of its children that are registered as drop sites. The children are returned
in child_returns which lists the children in the current stacking order, with the
lowest child in the stacking order at the beginning of the list and the top child at
the end of the listkmDropSiteQueryStackingOrder () allocates storage

for the list of returned children. The application is responsible for managing this
storage, which can be freed usiXi-ree (). The routine returns a non-zero

value on success or 0 (zero) on failure.

Motif Reference Manual 103

XmDropSiteQueryStackingOrder Motif Functions and Macros

Usage

See Also

104

A drop site for drag and drop operations can be a composite drop site, which
means that it has children which are also drop sites. The stacking order of the
drop sites controls clipping of drag-under effects during a drag and drop opera-
tion. When drop sites overlap, the drag-under effects of the drop sites lower in the
stacking order are clipped by the drop sites above them, regardless of whether or
not the drop sites are active. UssmDropSiteQueryStackingOrder () to

get the current stacking order for a composite drop site. You catmideop-
SiteConfigureStackingOrder () to modify the stacking order.

Text, TextField, and Container widgets are automatically registered as drop sites
by the Motif toolkit.

XmDropSiteConfigureStackingOrder (),
XmDropSiteRegister (1), XmDropSite (2).

Motif Reference Manual

Motif Functions and Macros XmDropSiteRegister

Name

Synopsis

XmDropSiteRegister — register a drop site.

#include <Xm/DragDrop.h>
void XmDropSiteRegister (Widgetidget ArgList arglist, Cardinalargcoun}

Inputs

widget Specifies the widget ID that is to be associated with the drop site.
arglist Specifies the resource name/value pairs used in registering the drop
site.

argcount Specifies the number of name/value pairs in arglist.

Availability

In Motif 2.0 and laterXmDropSiteRegister () is subsumed into the Uniform
Transfer Model (UTM). The Motif widget classes do not ¥afiDropSi-
teRegister () directly, but initiate the site through UTM mechanisms which
call XmDropSiteRegister () internally. The callbacks specified by the
XmNdestinationCallback resource of a widget handle the data drop.

Description

Usage

XmDropSiteRegister () registers the specified widget as a drop site, which
means the widget has a drop site associated with it in the DropSite registry. Drop
sites are widget-like, in that they use resources to specify their attributes. The
arglist and argcount parameters work as for any creation routine; any drop site
resources that are not set by the arguments are retrieved from the resource data-
base or set to their default values. If the drop site is registered with XmNdrop-
SiteActivity set to XmDROP_SITE_ACTIVE and XmNdropProc set to NULL,

the routine generates a warning message.

Motif supports the drag and drop model of selection actions. In a widget that acts
as a drag source, a user can make a selection and then drag the selection, using
BTransfer, to other widgets that are registered as drop sites. The DropSite regis-
try stores information about all of the drop sites for a display. Text and TextField
widgets are automatically registered as drop sites when they are created. An
application can register other widgets as drop sites usm@ropSiteRegis-

ter (). Once a widget is registered as a drop site, it can participate in drag and
drop operations. A drop site can be removed from the registry Xigilgop-
SiteUnregister (). When a drop site is removed, the widget no longer partic-
ipates in drag and drop operations.

Motif Reference Manual 105

XmDropSiteRegister Motif Functions and Macros

Example

106

A drop site for drag and drop operations can be a composite drop site, which
means that it has children which are also drop sites. If the drop site being regis-
tered is a descendant of a widget that has already been registered as a drop site,
the XmNdropSiteType resource of the ancestor must be set to
XmDROP_SITE_COMPOSITE. A composite drop site must be registered as a
drop site before its descendants are registered. The stacking order of the drop
sites controls clipping of drag-under effects during a drag and drop operation.
When drop sites overlap, the drag-under effects of the drop sites lower in the
stacking order are clipped by the drop sites above them, regardless of whether or
not the drop sites are active. When a descendant drop site is registered, it is
stacked above all of its sibling drop sites that have already been registered.

The following routine shows the use ¥mDropSiteRegister () to register a
Label widget as a drop site. When a drop operation occurs in the Label, the Han-
dleDrop routine, which is not shown here, handles the drop:

/* global variable */
Atom COMPOUND_TEXT;

void main (unsigned int argc, char **argv)

{
Arg args[10];
int n;
Widget top, bb, label;
XtAppContext app;
Atom importList[1];
XtSetLanguageProc (NULL, (XtLanguageProc) NULL,
NULL);

top = XtApplnitialize (&app, "Drop", NULL, 0O,
&argc, argv, NULL, NULL,
0);
n=0;
bb = XmCreateBulletinBoard (top, "bb", args, n);
XtManageChild (bb);

COMPOUND_TEXT = XinternAtom (XtDisplay (top),
"COMPOUND_TEXT",

False);
n=0;
label = XmCreateLabel (bb, "Drop Here", args,
n);

Motif Reference Manual

Motif Functions and Macros XmDropSiteRegister

XtManageChild (label);

/* register the label as a drop site */
importList[0] = COMPOUND_TEXT;

n=0;

XtSetArg (args[n], XmNimportTargets,

importList); n++;

XtSetArg (args[n], XmNnumimportTargets, XtNumber
(importList)); n++;

XtSetArg (args[n], XmNdropSiteOperations,
XmDROP_COPY); n++;

XtSetArg (args[n], XmNdropProc, HandleDrop);

n++;

XmDropSiteRegister (label, args, n);

XtRealizeWidget (top);
XtAppMainLoop (app);

See Also
XmDropSiteConfigureStackingOrder (1),
XmDropSiteEndUpdate (1), XmDropSiteQueryStackingOrder
XmDropSiteRetrieve (1), XmDropSiteStartUpdate),
XmDropSiteUpdate (1), XmDropSiteUnregister),
XmTransfer (1), XmDisplay (2), XmDropSite (2), XmScreen(2).

Motif Reference Manual

@,

107

XmDropSiteRetrieve Motif Functions and Macros

Name
XmDropSiteRetrieve — get the resource values for a drop site.

Synopsis
#include <Xm/DragDrop.h>

void XmDropSiteRetrieve (Widgetidget ArgList arglist, Cardinalargcounj

Inputs
widget Specifies the widget ID associated with the drop site.

arglist Specifies the resource name/address pairs that contain the resource
names and addresses into which the resource values are stored.
argcount Specifies the number of name/value pairarglist.

Description
XmDropSiteRetrieve () gets the specified resources for the drop site associ-
ated with the specifiedidget Drop sites are widget-like, in that they use
resources to specify their attributes. Tdrglist andargcountparameters work as
for XtGetValues ().

Usage
XmDropSiteRetrieve () can be used to get the current attributes of a drop
site from the DropSite registry. The DropSite registry stores information about all
of the drop sites for a display. An initiating client can alsoXrs®ropSiteR-
etrieve () to retrieve information about the current drop site by passing the
DragContext for the operation to the routine. The initiator can access all of the

drop site resources except XmNdragProc and XmNdropRisiog this tech-
nique.

See Also
XmDropSiteRegister (1), XmDropSiteUpdate (1), XmDropSite (2).

1.Erroneously given as XmdropProc in 1st and 2nd editions.

108 Motif Reference Manual

Motif Functions and Macros XmDropSiteStartUpdate

Name
XmDropSiteStartUpdate — start an update of multiple drop sites.

Synopsis
#include <Xm/DragDrop.h>
void XmDropSiteStartUpdate (Widgetidge)
Inputs

widget Specifies any widget in the hierarchy associated with the drop sites
that are to be updated.

Description
XmDropSiteStartUpdate () begins an update of multiple drop sites. The
widgetparameter specifies a widget in the widget hierarchy that contains all of
the widgets associated with the drop sites being updated. The routineidges
to identify the shell that contains all of the drop sites.

Usage
XmDropSiteStartUpdate () is used withKmDropSiteUpdate () and
XmDropSiteEndUpdate () to update information about multiple drop sites in
the DropSite registryXmDropSiteStartUpdate () starts the update process-
ing, XmDropSiteUpdate () is called multiple times to update information
about different drop sites, adanDropSiteEndUpdate () completes the
processing. These routines optimize the updating of drop site information. Calls
to XmDropSiteStartUpdate () andXmDropSiteEndUpdate () can be
nested recursively.

See Also
XmDropSiteEndUpdate (1), XmDropSiteUpdate (1), XmDropSite (2).

Motif Reference Manual 109

XmDropSiteUnregister Motif Functions and Macros

Name
XmDropSiteUnregister — remove a drop site.

Synopsis
#include <Xm/DragDrop.h>
void XmDropSiteUnregister (Widgetidge)

Inputs
widget Specifies the widget ID associated with the drop site.

Description
XmDropSiteUnregister () removes the drop site associated with the speci-
fiedwidgetfrom the DropSite registry. After the routine is called, the widget can-
not be the receiver in a drag and drop operation. The routine frees all of the
information associated with the drop site.

Usage
Motif supports the drag and drop model of selection actions. In a widget that acts
as a drag source, a user can make a selection and then drag the selection, using
BTransfer, to other widgets that are registered as drop sites. Once a widget is
registered as a drop site wimDropSiteRegister (), it can participate in
drag and drop operations. Text and TextField widgets are automatically regis-
tered as drop sites when they are creafetDropSiteUnregister () pro-
vides a way to remove a drop site from the registry, so that the widget no longer
participates in drag and drop operations.

See Also
XmDropSiteRegister (1), XmDropSite (2).

110 Motif Reference Manual

Motif Functions and Macros XmDropSiteUpdate

Name
XmDropSiteUpdate — change the resource values for a drop site.

Synopsis
#include <Xm/DragDrop.h>
void XmDropSiteUpdate (Widgetidget ArgList arglist, Cardinalargcounj

Inputs

widget Specifies the widget ID associated with the drop site.
arglist Specifies the resource name/value pairs used in updating the drop
site.
argcount Specifies the number of name/value pairs in arglist.

Description
XmDropSiteUpdate () changes the resources for the drop site associated with
the specifiedvidget Drop sites are widget-like, in that they use resources to
specify their attributes. Tharglist andargcountparameters work as fottSet-
Values ().

Usage
XmDropSiteUpdate () can be used by itself to update the attributes of a drop
site. The routine can also be used WthDropSiteStartUpdate () and
XmDropSiteEndUpdate () to update information about multiple drop sites in
the DropSite registry.XmDropSiteStartUpdate () starts the update
processingXmDropSiteUpdate () is called multiple times to update informa-
tion about different drop sites, aXdnDropSiteEndUpdate () completes the
processing. The DropSite registry stores information about all of the drop sites
for a display. These routines optimize the updating of drop site information by
sending all of the updates at once, rather than processing each one individually.

See Also

XmDropSiteEndUpdate (1), XmDropSiteRegister (1),
XmDropSiteStartUpdate (1), XmDropSiteUnregister (D),
XmDropSite (2).

Motif Reference Manual 111

XmDropTransferAdd Motif Functions and Macros

Name
XmDropTransferAdd — add drop transfer entries to a drop operation.

Synopsis
#include <Xm/DragDrop.h>

void XmDropTransferAdd (Widget drop_transfer
XmDropTransferEntryRec transfers
Cardinal num_transfers

Inputs
drop_transfer Specifies the ID of the DropTransfer object to which the entries

are being added.
transfers Specifies the additional drop transfer entries.
num_transfer Specifies the number of drop transfer entrietsansfers

Availability
In Motif 2.0 and later, the drag and drop mechanisms are rationalized as part of
the Uniform Transfer Model. Motif widget classes do not XatiDropTrans-
ferAdd () directly, but call XmTransferValue() to transfer data to a destination.
XmTransferValue () callsXmDropTransferAdd () internally as the need
arises.

Description
XmDropTransferAdd () specifies a list of additional drop transfer entries that
are to be processed during a drop operationwiitigetargument specifies the
DropTransfer object associated with the drop operattiansfersis an array of
XmDropTransferEntryRec structures that specifies the targets of the additional
drop transfer operationsXmDropTransferAdd () can be used to modify the
DropTransfer object until the last call to the XmNtransferProc is made. After the
last call, the result of modifying the DropTransfer object is undefined.

Usage
The toolkit uses the DropTransfer object to manage the transfer of data from the
drag source to the drop site during a drag and drop operAtidbropTrans-
ferAdd () provides a way for a drop site to specify additional target formats after
a drop operation has started. The routine adds the entries to the XmNdropTrans-
fers resource. The attributes of a DropTransfer object can also be manipulated
with XtSetValues () andXtGetValues ().

112 Motif Reference Manual

Motif Functions and Macros XmDropTransferAdd

Structures
XmDropTransferEntryRec is defined as follows:
typedef struct {
XtPointer client_data; [tlata passed to the transfer p¥bc
Atom target; [*target format of the transfer*/

} XmDropTransferEntryRec, *XmDropTransferEntry;

See Also
XmDropTransferStart (1), XmTransfervalue (1),
XmDragContext (2), XmDropTransfer (2).

Motif Reference Manual

113

XmDropTransferStart Motif Functions and Macros

Name

Synopsis

XmDropTransferStart — start a drop operation.

#include <Xm/DragDrop.h>

Widget XmDropTransferStart (Widgetidget ArgList arglist, Cardinalarg-
coun)

Inputs

widget Specifies the ID of the DragContext object associated with the
operation.

arglist Specifies the resource name/value pairs used in creating the
DropTransfer.

argcount Specifies the number of name/value pairs in arglist.

Returns

The ID of the DropTransfer object that is created.

Availability

In Motif 2.0 and later, the drag and drop mechanisms are rationalized as part of
the Uniform Transfer ModeXmDropTransferStart () is called on request
internally as the need arises by the destination callback handlers, or through the
XmTransferValue () andXmTransferDone () functions.

Description

Usage

114

XmDropTransferStart () starts a drop operation by creating and returning a
DropTransfer object. The DropTransfer stores information that the toolkit needs
to process a drop transaction. The DropTransfer is widget-like, in that it uses
resources to specify its attributes. The toolkit frees the DropTransfer upon com-
pletion of the drag and drop operation.

Thewidgetargument tomDropTransferStart () is the DragContext object
associated with the drag operation. ‘Bnglist andargcountparameters work as

for any creation routine; any DropTransfer resources that are not set by the argu-
ments are retrieved from the resource database or set to their default values.

Motif 1.2 supports the drag and drop model of selection actions. In a widget that
acts as a drag source, a user can make a selection and then drag the selection,
using BTransfer, to other widgets that are registered as drop sites. These drop
sites can be in the same application or another application. The toolkit uses the
DropTransfer object to manage the transfer of data from the drag source to the
drop site. XmDropTransferStart() is typically called from within the XmNdrop-
Proc procedure of the drop site.

Motif Reference Manual

Motif Functions and Macros XmDropTransferStart

The attributes of a DropTransfer object can be manipulatedétgétVal-

ues () andXtGetValues () until the last call to the XmNtransferProc proce-
dure is made. You can also UseDropTransferAdd () to add drop transfer
entries to be processed. After the last call to XmNtransferProc, the result of using
the DropTransfer object is undefined. For more information about the Drop-
Transfer object, see the manual page in Sectidoff and Xt Widget Classes

Example
The following routine shows the useXxinDropTransferStart () in the
HandleDrop routine, which is the XmNdropProc procedure for a Label widget
that is being used as a drop site. The data transfer procedure TransferProc()
which presumably translates the data in the Label into compound text format, is
not shown.

/* global variable */
Atom COMPOUND_TEXT;

static void HandleDrop(Widget widget,
XtPointer client _data,
XtPointer call_data)

XmDropProcCallback DropData;
XmDropTransferEntryRec transferEntries[1];
XmDropTransferEntry transferList;

Arg args[10];

int n;

DropData = (XmDropProcCallback) call_data;
n=0;

if ((DropData->dropAction = XmDROP) ||
(DropData->operation = XmDROP_COPY)) {
XtSetArg (args[n], XmNtransferStatus,
XmTRANSFER_FAILURE);
n++;

}

else {
transferEntries[0].target = COMPOUND_TEXT,;
transferEntries[0].client_data = (XtPointer)
widget;
transferList = transferEntries;
XtSetArg (args[n], XmNdropTransfers, trans-
ferEntries); n++;
XtSetArg (args[n], XmNnumDropTransfers,

Motif Reference Manual 115

XmDropTransferStart Motif Functions and Macros

XtNumber (transferEntries)); n++;
XtSetArg (args[n], XmNtransferProc, Transfer-
Proc); n++;

}

XmDropTransferStart (DropData->dragContext,
args, nj;

}

See Also
XmDropTransferAdd (1), XmTransferValue (1), XmTransferDone (1),
XmDragContext (2), XmDropTransfer (2).

116 Motif Reference Manual

Motif Functions and Macros XmFileSelectionBoxGetChild

Name
XmFileSelectionBoxGetChild — get the specified child of a FileSelectionBox
widget.
Synopsis
#include <Xm/FileSB.h>
Widget XmFileSelectionBoxGetChild (Widgefidget unsigned chachild)
Inputs
widget Specifies the FileSelectionBox widget.
child Specifies the child of the FileSelectionBox widget. Possible values
are defined below.
Returns
The widget ID of the specified child of the FileSelectionBox.
Availability
From Motif 2.0,XmFileSelectionBoxGetChild () is deprecated code.
XtNameToWidget () is the preferred method of accessing children of the
widget.
Description
XmFileSelectionBoxGetChild () returns the widget ID of the specified
child of the FileSelectionBowidget
Usage

XmDIALOG_APPLY_BUTTON, XmDIALOG_CANCEL_BUTTON,
XmDIALOG_HELP_BUTTON, and XmDIALOG_OK_BUTTON specify the
action buttons in the widget. XmDIALOG_DEFAULT_BUTTON specifies the
current default button. XmDIALOG_DIR_LIST and
XmDIALOG_DIR_LIST_LABEL specify the directory list and its label, while
XmDIALOG_LIST and XmDIALOG_LIST_LABEL specify the file list and its
label. XmDIALOG_FILTER_LABEL and XmDIALOG_FILTER_TEXT spec-
ify the filter text entry area and its label, while XmDIALOG_TEXT and
XmDIALOG_SELECTION_LABEL specify the file text entry area and its label.
XmDIALOG_SEPARATOR specifies the separator and
XmDIALOG_WORK_AREA specifies any work area child that has been added
to the FileSelectionBox.

In Motif 2.0 and later, if the resource XmNpathMode is
XmPATH_MODE_RELATIVE, the directory pattern specification is displayed in
two text fields, rather than the single filter text entry area. When this is the case,
the pattern is displayed in the original filter text area, and the directory portion is
displayed in an additional text field called DirText. The Label associated with the

Motif Reference Manual 117

XmFileSelectionBoxGetChild Motif Functions and Macros

DirText child is called DirL. No corresponding mask has been defined to access

this extra text field or its Label througtmFileSelectionBoxGetChild 0:
XtNameToWidget () should be used to access the DirText widget ID when
required.

For more information on the different children of the FileSelectionBox, see the
manual page in Section Motif and Xt Widget Classes

Widget Hierarchy

As of Motif 2.0, most Motif composite child fetch routines are marked as depre-
cated. However, since it is not possible to fetch the
XmDIALOG_DEFAULT_BUTTON or XmDIALOG_WORK_AREA children

using a public interface except through XmSeIectionBoxGetCHild@z routine
should not be considered truly deprecated. For consistency with the preferred
new style, when fetching all other child values, consider giving preference to the
Intrinsics routine XtNameToWidget(), passing one of the following names as the
second parameter:

“Apply” (XmDIALOG_APPLY_BUTTON)

“Cancel” (XmDIALOG_CANCEL_BUTTON)

“OK” (XmDIALOG_OK_BUTTON)

“Separator” (XmDIALOG_SEPARATOR)

“Help” (XmDIALOG_HELP_BUTTON)

“Symbol” (XmDIALOG_SYMBOL_LABEL)
“Message” (XmDIALOG_MESSAGE_LABEL)
“*|temsList"? (XmDIALOG_LIST)

“ltems” (XmDIALOG_LIST_LABEL)

“Selection” (XmDIALOG_SELECTION_LABEL)
“Text” (XmDIALOG_TEXT)

“*DirList* 3 (XmDIALOG_DIR_LIST)

“Dir (XmDIALOG_DIR_LIST_LABEL)
“FilterLabel" (XmDIALOG_FILTER_LABEL)
“FilterText" (XmDIALOG_FILTER_TEXT)

“DirL" (no macro - must use XtNameToWidget()))
“DirText" (no macro - must use XtNameToWidget())

1.Called internally by XmFileSelectionBoxGetChild().
2.The “*" is important: the Files List is not a direct child of the SelectionBox, but of a ScrolledList.
3.As above; the Directories list is a child of a ScrolledWindow, not the SelectionBox itself.

118 Motif Reference Manual

Motif Functions and Macros XmFileSelectionBoxGetChild

CDE variants of the Motif 2.1 toolkit may support a ComboBox in place of the
Directory Text field (DirText). This is known as “DirComboBox”, and also has

no defined public macto

“DirComboBox” (no macro - must use XtNameToWidget())
Structures
The possible values for child are:
XmDIALOG_APPLY_BUTTON XmDIALOG_LIST
XmDIALOG_CANCEL_BUTTON XmDIALOG_LIST_LABEL
XmDIALOG_DEFAULT_BUTTON XmDIALOG_OK_BUTTON
XmDIALOG_DIR_LIST
XmDIALOG_SELECTION_LABEL
XmDIALOG_DIR_LIST_LABEL XmDIALOG_SEPARATOR
XmDIALOG_FILTER_LABEL XmDIALOG_TEXT
XmDIALOG_FILTER_TEXT XmDIALOG_WORK_AREA
XmDIALOG_HELP_BUTTON
See Also

XmFileSelectionBox (2).

1.The ComboBox, containing a List of directories, is enabled if the CDE resource XmNenableFsbPickList is true.

Motif Reference Manual 119

XmFileSelectionDoSearch Motif Functions and Macros

Name
XmFileSelectionDoSearch — start a directory search.
Synopsis
#include <Xm/FileSB.h>
void XmFileSelectionDoSearch (Widgetdget XmStringdirmask
Inputs
widget Specifies the FileSelectionBox widget.
dirmask Specifies the directory mask that is used in the directory search.
Description
XmFileSelectionDoSearch () starts a directory and file search for the
specified FileSelectionBowxidget dirmaskis a text pattern that can include
wildcard characters{mFileSelectionDoSearch () updates the lists of
directories and files that are displayed by the FileSelectionBahrtfaskis non-
NULL, the routine restricts the search to directories that matothitmask
Usage

XmFileSelectionDoSearch (O allows you to force a FileSelectionBox to
reinitialize itself, which is useful if you want to set the directory mask directly.

See Also
XmFileSelectionBox (2).

1.Erroneously given as XmFileSelectionBoxDoSearch() in 1st and 2nd editions.

120 Motif Reference Manual

Motif Functions and Macros XmFontListAdd

Name
XmFontListAdd — create a new font list.
Synopsis
XmFontList XmFontListAdd (XmFontLisbldlist, XFontStruct font, XmString-
CharSetharsej
Inputs
oldlist Specifies the font list to which font is added.
font Specifies the font structure.
charset Specifies a tag that identifies the character set for the font.
Returns
The new font list, oldlist if font or charset is NULL, or NULL if oldlist is NULL.
Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively. To maintain backwards compatibility, the XmFontList is re-implemented
as a render table.
Description

XmFontListAdd () makes a new font list by adding the font structure specified
by fontto the old font list. The routine returns the new font list and deallocates
oldlist. charsetspecifies the character set that is associated with the font. It can
be XmSTRING_DEFAULT_CHARSET, which takes the character set from the
current language environment, but this value may be removed from future ver-
sions of Motif.

XmFontListAdd () searches the font list cache for a font list that matches the
new font list. If the routine finds a matching font list, it returns that font list and
increments its reference count. Otherwise, the routine allocates space for the new
font list and caches it. In either case, the application is responsible for managing
the memory associated with the font list. When the application is done using the
font list, it must be freed usingmFontListFree ().

Motif Reference Manual 121

XmFontListAdd Motif Functions and Macros

Usage

See Also

122

In Motif 1.1 and 1.2, a font list contains entries that describe the fonts that are in
use. In Motif 1.1, each entry associates a font and a character set. In Motif 1.2,
each entry consists of a font or a font set and an associated tag. In Motif 2.0 and
later, the XmFontList is implemented using the XmRenderTable type. XmRendi-
tion objects within a render table represent the font entkes-ontListAdd ()
returns a reference counted render table.

XmFontListAdd () is retained for compatibility with Motif 1.2 and should not
be used in newer applications.

XmFontListAppendEntry (1), XmFontListFree (1),
XmRenderTableAddRenditions (1), XmRenditionCreate (1),
XmRendition (2).

Motif Reference Manual

Motif Functions and Macros XmFontListAppendEntry

Name

Synopsis

XmFontListAppendEntry — append a font entry to a font list.

XmFontList XmFontListAppendEntry (XmFontListdlist, XmFontListEntry
entry)

Inputs

oldlist Specifies the font list to which entry is appended.
entry Specifies the font list entry.

Returns

The new font list or oldlist if entry is NULL.

Availability

Motif 1.2 and later. In Motif 2.0 and later, the XmFontList and XmFontListEntry
are obsolete. They are superseded by the XmRenderTable type and the XmRendi-
tion object respectively.

Description

Usage

XmFontListAppendEntry () makes a new font list by appending the speci-
fiedentryto the old font list. Ifoldlistis NULL, the routine creates a new font list
that contains the single ent¥mFontListAppendEntry () returns the new
font list and deallocatesldlist. The application is responsible for freeing the font
list entry usingKmFontListEntryFree 0.

XmFontListAppendEntry () searches the font list cache for a font list that
matches the new font list. If the routine finds a matching font list, it returns that
font list and increments its reference count. Otherwise, the routine allocates
space for the new font list and caches it. In either case, the application is respon-
sible for managing the memory associated with the font list. When the applica-
tion is done using the font list, it should be freed using XmFontListEntryFree().

In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. Before a font list can be added to a font list,
it has to be created witkmFontListEntryCreate () or XmFontListEn-

tryLoad (). In Motif 2.0 and later, the XmFontList is an alias for the
XmRenderTable type. XmRendition objects within a render table represent the
font entriesXmFontListAppendEntry () returns a reference counted render
table.

XmFontListAppendEntry () is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

Motif Reference Manual 123

XmFontListAppendEntry Motif Functions and Macros

See Also
XmFontListEntryCreate (1), XmFontListEntryFree (1),
XmFontListEntryLoad (1), XmFontListFree (1),
XmFontListRemoveEntry (1), XmRenderTableAddRenditions (1),
XmRenditionCreate (1), XmRendition (2).

124 Motif Reference Manual

Motif Functions and Macros XmFontListCopy

Name
XmFontListCopy — copy a font list.
Synopsis
XmFontList XmFontListCopy (XmFontLidbntlist)
Inputs
fontlist Specifies the font list to be copied.
Returns
The new font list or NULL if fontlist is NULL.
Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.
Description
XmFontListCopy () makes and returns a copyfohtlist
The routine searches the font list cache for the font list, returns the font list, and
increments its reference count. The application is responsible for managing the
memory associated with the font list. When the application is done using the font
list, it should be freed usingmFontListFree ().
Usage

A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists

of a font or a font set and an associated tag. In Motif 2.0 and later, the

XmFontList is an alias for the XmRenderTable type. XmRendition objects within
a render table represent the font entikeaFontListCopy () is a convenience
routine which callsmRenderTableCopy () to copy and return a reference

counted render table.

XmFontListCopy () makes a correct copy of the font list regardless of the type

of entries in the list.

When a font list is assigned to a widget, the widget makes a copy of the font list,
so it is safe to free the font list. When you retrieve a font list from a widget using
XtGetValues (), you should not alter the font list directly. If you need to make
changes to the font list, usémFontListCopy () to make a copy of the font list

and then change the copy.

XmFontListCopy () is retained for compatibility with Motif 1.2 and should not

be used in newer applications.

Motif Reference Manual

125

XmFontListCopy Motif Functions and Macros

See Also

XmFontListFree(1), XmRenderTableCopy(1),
XmRenditionCreate(1), XmRendition(2)

126 Motif Reference Manual

Motif Functions and Macros XmFontListCreate

Name
XmFontListCreate — create a font list.

Synopsis

XmFontList XmFontListCreate (XFontStructont, XmStringCharSetharse}

Inputs
font Specifies the font structure.

charset Specifies a tag that identifies the character set for the font.

Returns
The new font list or NULL if font or charset is NULL.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListCreate () creates a new font list that contains a single entry with
the specifiedontandcharset charsetspecifies the character set that is associated
with the font. It can be XmSTRING_DEFAULT _CHARSET, which takes the
character set from the current language environment, but this value may be
removed from future versions of Motif.

XmFontListCreate () searches the font list cache for a font list that matches
the new font list. If the routine finds a matching font list, it returns that font list
and increments its reference count. Otherwise, the routine allocates space for the
new font list and caches it. In either case, the application is responsible for man-
aging the memory associated with the font list. When the application is done
using the font list, it should be freed usXmFontListFree ().

Usage
A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists
of a font or a font set and an associated tag. In Motif 2.0 and later, the
XmFontList is an alias for the XmRenderTable type. XmRendition objects within
a render table represent the font entikesFontListCreate () is a conven-
ience routine which calls XmRenditionCreate() to create a rendition object for
the font. The rendition object is added to a render table byrtiiRenderTab-
leAddRenditions () function. The render table is returned.

XmFontListCreate () is retained for compatibility with Motif 1.2 and should
not be used in newer applications.

Motif Reference Manual 127

XmFontListCreate Motif Functions and Macros

See Also

128

XmFontListCreate () is not multi-thread safe if the application has multiple
application contexts. In Motif 2.1, the functiofmFontListCreate_r ()isto
be preferred within multi-threaded applications.

Fonts must not be shared between displays in a multi-threaded environment.

XmFontListAppendEntry (1), XmRenderTableAddRenditions),
XmRenditionCreate (1), XmRendition (2).

Motif Reference Manual

Motif Functions and Macros XmFontListCreate_r

Name
XmFontListCreate_r — create a font list in a thread-safe manner.

Synopsis
XmFontList XmFontListCreate_r (XFontStructont, XmStringCharSetharset
Widgetwidge)

Inputs
font Specifies the font structure.
charset Specifies a tag that identifies the character set for the font.
widget Specifies a widget.
Returns

The new font list or NULL if font or charset is NULL.

Availability
Motif 2.1 and later.

Description
XmFontListCreate_r () isidentical toXmFontListCreate (), except that
it is multi-thread safe. The additional widget parameter is used to obtain a lock
upon the application context associated wittiget The older routine
XmFontListCreate () is not safe in threaded environments which have multi-
ple application contexts.

Usage
Thewidgetdoes not need to be the widget which uses font. It must be on the
same display. The sharing of fonts or fontlists across multiple displays is not safe
for multi-threaded applications.
Although the XmFontList is obsolete in Motif 2.0 and later,
XmFontListCreate_r () is provided for backwards compatibility with appli-
cations, using the XmFontList interface, which are intended to run in multi-
threaded environment&EmFontListCreate_r () should not be used in appli-
cations using the newer XmRendition and XmRenderTable interface.

See Also

XmFontListCreate (1), XmRendition (2).

Motif Reference Manual 129

XmFontListEntryCreate Motif Functions and Macros

Name
XmFontListEntryCreate — create a font list entry.

Synopsis

XmFontListEntry XmFontListEntryCreate (chatay, XmFontTypetype
XtPointerfont)
Inputs
tag Specifies the tag for the font list entry.
type Specifies the type of the font argument. Pass either
XmMFONT_IS_FONT or XmFONT_IS_FONTSET.
font Specifies the font or font set.

Returns
A font list entry.

Availability

In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively. To maintain backwards compatibility, the XmFontList is re-implemented

as a render table.

Description

XmFontListEntryCreate () makes a font list entry that contains the speci-

fiedfont, which is identified byag. typeindicates whetheont specifies an
XFontSet or a pointer to an XFontStruety is a NULL-terminated string that
identifies the font list entry. It can have the value
XmFONTLIST_DEFAULT_TAG, which identifies the default font list entry in a
font list.

XmFontListEntryCreate () allocates space for the new font list entry. The
application is responsible for managing the memory associated with the font list
entry. When the application is done using the font list entry, it should be freed

usingXmFontListEntryFree 0.
Usage

In Motif 1.2, a font list contains font list entries, where each entry consists of a

font or font set and an associated ta{mFontListEntryCreate () creates a
font list entry using an XFontStruct returnedXiyoadQueryFont () or an
XFontSet returned b} CreateFontSet (). The routine does not copy the font

structure, so the XFontStruct or XFontSet must not be freed until all references to

it have been freed. The font list entry can be added to a font list using
XmFontListAppendEntry ().

130 Motif Reference Manual

Motif Functions and Macros XmFontListEntryCreate

Example

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.

XmFontListEntryCreate () returns a rendition object.
XmFontListEntryCreate () is not multi-thread safe if the application has
multiple application contexts. In Motif 2.1, the function
XmFontListEntryCreate _r () is to be preferred within multi-threaded
applications.

Fonts must not be shared between displays in a multi-threaded environment.

XmFontListEntryCreate () is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

The following code fragment shows how to create font list entries using
XmFontListEntryCreate():

Widget toplevel;

XFontStruct *fontl, *font2; /* Previously loaded
fonts */

XFontSet fontset3; /* Previously created
font sets */

XmFontListEntry entryl, entry2, entry3;
XmFontList fontlist;

entryl = XmFontListEntryCreate("tagl”, XmFONT_IS_FONT,
fontl);

entry2 = XmFontListEntryCreate("tag2", XmFONT_IS_FONT,
font2);

entry3 = XmFontListEntryCreate("tag3",
XmFONT_IS_FONTSET, fontset3);

fontlist = XmFontListAppendEntry (NULL, entry1);

fontlist = XmFontListAppendEntry (fontlist, entry2);

fontlist = XmFontListAppendEntry (fontlist, entry3);

/* Bug in Motif 1.2.1: see XmFontListEntryFree() */
#if (XmVERSION == 1) && (XmREVISION == 2) &&
(XmUPDATE_LEVEL == 1))
XtFree (entryl);
XtFree (entry2);
XtFree (entry3);
#else /* Motif 1.2.1 */
XmFontListEntryFree (entryl);
XmFontListEntryFree (entry2);

Motif Reference Manual 131

XmFontListEntryCreate Motif Functions and Macros

See Also

132

XmFontListEntryFree (entry3);
#endif /* Motif 1.2.1 */

XtVaCreateManagedWidget ("widget_name”, xmLabelWidget-
Class, toplevel, XmNfontList,
fontlist, NULL);

XmFontListFree (fontlist);

XmFontListAppendEntry (1), XmFontListEntryFree),
XmFontListEntryCreate_r (1), XmFontListEntryGetFont),
XmFontListEntryGetTag (1), XmFontListEntryLoad),
XmFontListRemoveEntry (1), XmRenditionCreate (1),
XmRendition (2).

Motif Reference Manual

Motif Functions and Macros XmFontListEntryCreate_r

Name

Synopsis

XmFontListEntryCreate_r — create a font list entry in a thread-safe manner.

XmFontListEntry XmFontListEntryCreate r (char tay,
XmFontType typg
XtPointer font,
Widget widged

Inputs

tag Specifies the tag for the font list entry.

type Specifies the type of the font argument. Pass either
XmMFONT_IS_FONT or XmFONT_IS_FONTSET.

font Specifies the font or font set.

widget Specifies a widget.

Returns

A font list entry.

Availability

Motif 2.1 and later.

Description

Usage

See Also

XmFontListEntryCreate_r () is in all respects identical d¥mFontLis-
tEntryCreate (), except thaXmFontListEntryCreate_r () is provided

for multi-threaded applications: the additioma@tigetparameter is used to obtain

a lock upon an application context. The older roun@ontListEntry-

Create () is not safe in threaded environments which have multiple application
contexts.

Thewidgetdoes not need to be the widget which uses font. It must be on the
same display. The sharing of fonts or fontlists across multiple displays is not safe
for multi-threaded applications.

Although the XmFontList is obsolete in Motif 2.0 and later,
XmFontListEntryCreate r () is provided for backwards compatibility

with applications, using the XmFontList interface, which are intended to run in
multi-threaded environment&mFontListEntryCreate_r () should not be
used in applications using the newer XmRendition and XmRenderTable inter-
face.

XmFontListEntryCreate (1), XmRendition (2).

Motif Reference Manual 133

XmFontListEntryFree Motif Functions and Macros

Name
XmFontListEntryFree — free the memory used by a font list entry.
Synopsis
void XmFontListEntryFree (XmFontListEntryehtry)
Inputs
entry Specifies the address of the font list entry that is to be freed.
Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.
Description
XmFontListEntryFree () deallocates storage used by the specified font list
entry The routine does not free the XFontSet or XFontStruct data structure asso-
ciated with the font list entry.
Usage

In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. A font list entry can be created using
XmFontListEntryCreate () or XmFontListEntryLoad () and then
appended to a font list witKmFontListAppendEntry (). Once the entry has
been appended to the necessary font lists, it should be freedXisirgntLis-
tEntryFree ().

In Motif 1.2.1, there is a bug MmFontListEntryFree () that causes it to
free the font or font set, rather than the font list entry. As a workaround for this
specific version, you can udgFree () to free the font list entry.

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryFree () is a simple convenience routine which calls
XmRenditionFree ().

XmFontListEntryFree () is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

See Also
XmFontListAppendEntry (1), XmFontListEntryCreate (),
XmFontListEntryLoad (1), XmFontListNextEntry (),
XmFontListRemoveEntry (1), XmRenditionFree (1),
XmRendition (2).

134 Motif Reference Manual

Motif Functions and Macros XmFontListEntryGetFont

Name
XmFontListEntryGetFont — get the font information from a font list entry.

Synopsis

XtPointer XmFontListEntryGetFont (XmFontListEntentry, XmFontType
*type_return

Inputs
entry Specifies the font list entry.

Outputs
type_return Returns the type of the font information that is returned. Valid
types are XmFONT_IS_FONT or XmFONT_IS_FONTSET.

Returns
An XFontSet or a pointer to an XFontStruct.

Avalilability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListEntryGetFont () retrieves the font information for the specified
font listentry. When the font lisentry contains a fontype_returnis
XmFONT_IS_FONT and the routine returns a pointer to an XFontStruct. When
the font listentry contains a font setype_returnis XmFONT_IS_FONTSET
and the routine returns the XFontSet. The XFontSet or XFontStruct that is
returned is not a copy of the data structure, so it must not be freed by an applica-
tion.

Usage
The XmFontList and XmFontListEntry types are opaque, so if an application
needs to perform any processing on a font list, it has to use special functions to
cycle through the font list entries and retrieve information about them. These rou-
tines use a XmFontContext to maintain an arbitrary position in a font list.
XmFontListEntryGetFont () can be used to get the font structure for a font
list entry once it has been retrieved from the font list uXimg-ontListNex-
tEntry ().

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryGetFont () is a convenience routine which fetches the
XmNfont and XmNfontType values of the rendition object represented by entry.
The values are fetched through the funconRenditionRetrieve 0.

Motif Reference Manual 135

XmFontListEntryGetFont Motif Functions and Macros

See Also

type_return is set to the value of the XmNfontType resource, and the function
XmFontListEntryGetFont () returns the value of the XmNfont resource of
the rendition object.

XmFontListEntryGetFont ()l is retained for compatibility with Motif 1.2
and should not be used in newer applications.

XmFontListEntryCreate (1), XmFontListEntryGetTag),
XmFontListEntryLoad (1), XmFontListNextEntry),
XmRenditionRetrieve (1), XmRendition (2).

1.Erroneously given as XmFontListGetFont() in 2nd edition.

136

Motif Reference Manual

Motif Functions and Macros XmFontListEntryGetTag

Name
XmFontListEntryGetTag — get the tag of a font list entry.

Synopsis

char* XmFontListEntryGetTag (XmFontListEntgntry)

Inputs
entry Specifies the font list entry.

Returns
The tag for the font list entry.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListEntryGetTag () retrieves the tag of the specified font &stry,
The routine allocates storage for the tag string; the application is responsible for
freeing the memory usingtFree ().

Usage
The XmFontList and XmFontListEntry types are opaque, so if an application
needs to perform any processing on a font list, it has to use special functions to
cycle through the font list entries and retrieve information about them. These rou-
tines use a XmFontContext to maintain an arbitrary position in a font list.
XmFontListEntryGetTag () can be used to get the tag of a font list entry
once it has been retrieved from the font list uskrgFontListNextEntry 0.

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryGetTag () is a convenience routine which fetches and
returns a copy of the XmNtag value of the rendition object represented by entry.
The value is fetched through the functidmRenditionRetrieve 0.

XmFontListEntryGetTag ()1 is retained for compatibility with Motif 1.2
and should not be used in newer applications.

See Also
XmFontListEntryCreate (1), XmFontListEntryGetFont D),
XmFontListEntryLoad (1), XmFontListNextEntry (1),
XmRenditionRetrieve (1), XmRendition (2).

1.Erroneously given as XmFontListGetTag() in 2nd edition.

Motif Reference Manual 137

XmFontListEntryLoad Motif Functions and Macros

Name
XmFontListEntryLoad — load a font or create a font set and then create a font list
entry.
Synopsis
XmFontListEntry XmFontListEntryLoad (Display display
char *font_name
XmFontType typg
char *tag)
Inputs
display = Specifies a connection to an X server; returned @penDis-
play () orXtDisplay ().
font_name Specifies an X Logical Font Description (XLFD) string.
type Specifies the type of font_name. Pass either XmFONT _IS_FONT or
XmMFONT_IS_FONTSET.
tag Specifies the tag for the font list entry.
Returns
A font list entry or NULL if the font cannot be found or the font set cannot be
created.
Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.
Description

138

XmFontListEntryLoad () either loads a font or creates a font set depending
on the value ofypeand then creates a font list entry that contains the font data
and the specifiethg. font_namds an XLFD string which is parsed as either a
font name or a base font name ligtgis a NULL-terminated string that identifies
the font list entry. It can have the value XmFONTLIST_DEFAULT_TAG, which
identifies the default font list entry in a font list.

If typeis set to XmFONT_IS_FONT, the routine usesXt@vtStringTo-
FontStruct () converter to load the font struct specified by font_name. If the
value oftypeis XmFONT_IS_FONTSET, XmFontListEntryLoad uses the
XtCvtStringToFontSet () converter to create a font set in the current
locale.

XmFontListEntryLoad () allocates space for the new font list entry. The
application is responsible for managing the memory associated with the font list
entry. When the application is done using the font list entry, it should be freed
usingXmFontListEntryFree 0.

Motif Reference Manual

Motif Functions and Macros XmFontListEntryLoad

Usage

See Also

In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tagmFontListEntryLoad () sets up the

font data and creates a font list entry. The font list entry can be added to a font list
usingXmFontListAppendEntry ().

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryLoad () is a convenience routine which creates and returns
a rendition object whose XmNfontName resource is set to font_name, and XmN-
fontType value is type. The rendition object is created with an XmNIloadModel of
XmLOAD_IMMEDIATE.

XmFontListEntryLoad () is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

XmFontListAppendEntry (1), XmFontListEntryCreate (1),
XmFontListEntryFree (1), XmFontListEntryGetFont (1),
XmFontListEntryGetTag (1), XmFontListRemoveEntry (1),
XmRenditionCreate (1), XmRendition (2).

Motif Reference Manual 139

XmFontListFree Motif Functions and Macros

Name
XmFontListFree — free the memory used by a font list.
Synopsis
void XmFontListFree (XmFontLidontlist)
Inputs
fontlist Specifies the font list that is to be freed.
Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.
Description
XmFontListFree () deallocates storage used by the speciioedlist The rou-
tine does not free the XFontSet or XFontStruct data structures associated with the
font list.
Usage

A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists
of a font or a font set and an associated dagFontListFree () frees the stor-

age used by the font list but does not free the associated font data structures. In
Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListFree () is a convenience function which simply calls
XmRenderTableFree ().

It is important to calKmFontListFree () rather tharXtFree () because

Motif caches font lists. A call tXmFontListFree () decrements the reference
count for the font list; the font list is not actually freed until the reference count
reaches 0 (zero).

XmFontListFree () is retained for compatibility with Motif 1.2 and should not
be used in newer applications.

See Also
XmFontListAppendEntry (1), XmFontListCopy (1),
XmFontListEntryFree (1), XmFontListRemoveEntry (1),
XmRenderTableFree (1).

140 Motif Reference Manual

Motif Functions and Macros XmFontListFreeFontContext

Name
XmFontListFreeFontContext — free a font context.

Synopsis

void XmFontListFreeFontContext (XmFontContexintexj

Inputs
context Specifies the font list context that is to be freed.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListFreeFontContext () deallocates storage used by the specified
font list context

Usage
The XmFontList type is opaque, so if an application needs to perform any
processing on a font list, it has to use special functions to cycle through the font
list. These routines use a XmFontContext to maintain an arbitrary position in a
font list. XmFontListFreeFontContext () is the last of the three font con-
text routines that an application should call when processing a font list, as it frees
the font context data structure. An application begins by calimgontLis-
tinitFontContext () to create a font context and then makes repeated calls
to XmFontListNextEntry () or XmFontListGetNextFont () to cycle
through the font list.

XmFontListFreeFontContext () is retained for compatibility with Motif
1.2, and should not be used in newer applications.

See Also
XmFontListGetNextFont (1), XmFontListinitFontContext (),
XmFontListNextEntry (1), XmRenderTableAddRendition (),
XmRenditionCreate (1), XmRendition (2).

Motif Reference Manual 141

XmFontListGetNextFont Motif Functions and Macros

Name
XmFontListGetNextFont — retrieve information about the next font list element.
Synopsis
Boolean XmFontListGetNextFont (XmFontContext contex{
XmStringCharSet ¢harset
XFontStruct **fon)
Inputs
context Specifies the font context for the font list.
Outputs
charset Returns the tag that identifies the character set for the font.
font Returns the font structure for the current font list element.
Returns
True if the values being returned are valid or False otherwise.
Avalilability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.
Description
XmFontListGetNextFont () returns the character set and font for the next
element of the font listontextis the font context created bymFontListin-
itFontContext (). The first call toXmFontListGetNextFont () returns
the first font list element. Repeated callXtaFontListGetNextFont 0
using the sameontextaccess successive font list elements. The routine returns
False when it has reached the end of the font list.
Usage

A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists
of a font or a font set and an associated tag. In Motif 2.0 and later, the
XmFontList is an alias for the XmRenderTable type. XmRendition objects within

a render table represent the font entries. The XmFontContext is an opaque type
which contains an index into the renditions of a render table.

If the routine is called with a font context that contains a font set, it returns the
first font of the font set.

The XmFontList type is opaque, so if an application needs to perform any
processing on a font list, it has to use special functions to cycle through the font
list. These routines use a XmFontContext to maintain an arbitrary position in a

142 Motif Reference Manual

Motif Functions and Macros XmFontListGetNextFont

See Also

font list. XmFontListGetNextFont () cycles through the fonts in a font list.

XmFontListinitFontContext () is called first to create the font context.
When an application is done processing the font list, it should call
XmFontListFreeFontContext () with the same context to free the allo-
cated data.

XmFontListGetNextFont () is retained for compatibility with Motif 1.2,
and should not be used in newer applications.

XmFontListFreeFontContext (1),
XmFontListinitFontContext (1),
XmFontListNextEntry (1), XmRendition (2).

Motif Reference Manual 143

XmFontListlnitFontContext Motif Functions and Macros

Name
XmFontListInitFontContext — create a font context.

Synopsis

Boolean XmFontListInitFontContext (XmFontContextohtext XmFontList
fontlist)

Inputs
fontlist Specifies the font list.

Outputs
context Returns the allocated font context structure.

Returns
True if the font context is allocated or False otherwise.

Avalilability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListInitFontContext () creates a font context for the specified
fontlist This font context allows an application to access the information that is
stored in the font lislKmFontListInitFontContext () allocates space for
the fontcontext The application is responsible for managing the memory associ-
ated with the font context. When the application is done using thecfmmexf it
should be freed usingmFontListFreeFontContext 0.

Usage
The XmFontList type is opaque, so if an application needs to perform any
processing on a font list, it has to use special functions to cycle through the font
list. These routines use a XmFontContext to maintain an arbitrary position in a
font list. XmFontListInitFontContext () is the first of the three font con-
text routines that an application should call when processing a font list, as it cre-
ates the font context data structure. The context is passed to
XmFontListNextEntry () or XmFontListGetNextFont () to cycle
through the font list. When an application is done processing the font list, it
should calXmFontListFreeFontContext () with the same context to free
the allocated data.

144 Motif Reference Manual

Motif Functions and Macros XmFontListinitFontContext

See Also

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries. The
XmFontContext is an opaque type which contains an index into the renditions of
a render table.

XmFontListinitFontContext () is retained for compatibility with Motif
1.2, and should not be used in newer applications.

XmFontListFreeFontContext (1), XmFontListGetNextFont),
XmFontListinitFontContext (1), XmFontListNextEntry),
XmRendition (2).

Motif Reference Manual 145

XmFontListNextEntry Motif Functions and Macros

Name
XmFontListNextEntry — retrieve the next font list entry in a font list.

Synopsis
XmFontListEntry XmFontListNextEntry (XmFontContesxbntexj

Inputs
context Specifies the font context for the font list.
Returns

A font list entry or NULL if the context refers to an invalid entry or if it is at the
end of the font list.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListNextEntry () returns the next font list entry in a font liston-
textis the font context created BymFontListinitFontContext (). The
first call toXmFontListNextEntry () returns the first entry in the font list.
Repeated calls timFontListNextEntry () using the sameontextaccess
successive font list entries. The routine returns NULL when it has reached the
end of the font list.

Usage

146

In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. In Motif 2.0 and later, the XmFontList is
an alias for the XmRenderTable type. XmRendition objects within a render table
represent the font entries. The XmFontContext is an opaque type which contains
an index into the renditions of a render table.

The XmFontList and XmFontListEntry types are opaque, so if an application
needs to perform any processing on a font list, it has to use special functions to
cycle through the font list entries and retrieve information about them. These rou-
tines use a XmFontContext to maintain an arbitrary position in a font list.
XmFontListinitFontContext () is called first to create the font context.
XmFontListNextEntry () cycles through the font entries in a font list.
XmFontListEntryGetFont () andXmFontListEntryGetTag () access

the information in a font list entry. When an application is done processing the
font list, it should callXmFontListFreeFontContext () with the same con-

text to free the allocated data.

Motif Reference Manual

Motif Functions and Macros XmFontListNextEntry

XmFontListNextEntry() is retained for compatibility with Motif 1.2, and should
not be used in newer applications.

See Also
XmFontListEntryFree (1), XmFontListEntryGetFont),
XmFontListEntryGetTag (1), XmFontListFreeFontContext),
XmFontListinitFontContext (1), XmRendition (2).

Motif Reference Manual 147

XmFontListRemoveEntry Motif Functions and Macros

Name
XmFontListRemoveEntry — remove a font list entry from a font list.
Synopsis
XmFontList XmFontListRemoveEntry (XmFontListdlist, XmFontListEntry
entry)
Inputs
oldlist Specifies the font list from which entry is removed.
entry Specifies the font list entry.
Returns
The new font list, oldlist if entry is NULL or no entries are removed, or NULL if
oldlist is NULL.
Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.
Description
XmFontListRemoveEntry () makes a new font list by removing any entries
in oldlist that match the specifiehtry The routine returns the new font list and
deallocatesldlist. XmFontListRemoveEntry () does not deallocate the font
list entry, so the application should free the storage uXng~ontListEntry-
Free ().
XmFontListRemoveEntry () searches the font list cache for a font list that
matches the new font list. If the routine finds a matching font list, it returns that
font list and increments its reference count. Otherwise, the routine allocates
space for the new font list and caches it. In either case, the application is respon-
sible for managing the memory associated with the font list. When the applica-
tion is done using the font list, it should be freed using-ontListFree ().
Usage

148

In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. In Motif 2.0 and later, the XmFontList is
an alias for the XmRenderTable type. XmRendition objects within a render table
represent the font entries. The XmFontContext is an opaque type which contains
an index into the renditions of a render table.

An application can usEmFontListRemoveEntry () to remove a font list

entry from a font list. If an application needs to process the font list to determine
which entries to remove, it can usmFontListinitFontContext () and
XmFontListNextEntry () to cycle through the entries in the font list.

Motif Reference Manual

Motif Functions and Macros XmFontListRemoveEntry

XmFontListRemoveEntry () is retained for compatibility with Motif 1.2,
and should not be used in newer applications.

See Also
XmFontListAppendEntry (1), XmFontListEntryCreate),
XmFontListEntryFree (1), XmFontListEntryLoad),
XmFontListFree (1), XmRendition (2).

Motif Reference Manual 149

XmGetAtomName Motif Functions and Macros

Name
XmGetAtomName — get the string representation of an atom.

Synopsis
#include <Xm/AtomMgr.h>
String XmGetAtomName (Displaydisplay Atom atom)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
atom Specifies the atom for the property name to be returned.
Returns

The string that represents atom.

Availability
In Motif 2.0 and laterXGetAtomName() is preferred.

Description
XmGetAtomName) returns the string that is used to represent a git@n
This routine works like Xlib’'sXGetAtomName() routine, but the Motif routine
provides the added feature of client-side cach¥myGetAtomName) allocates
space for the returned string; the application is responsible for freeing this stor-
age usingKtFree () when the atom is no longer needed.

Usage
An Atom is a number that identifies a property. Properties also have string names.
XmGetAtomName() returns the string name specified in the original call to
XminternAtom () or XInternAtom (), or for predefined atoms, a string ver-
sion of the symbolic constant without the XA __ attached.
In Motif 2.0 and laterKmGetAtomNamd) is no more than a convenience rou-
tine which callsXGetAtomName(). While XmGetAtomName) is not yet obso-
lete, XGetAtomName() is to be preferred.

See Also

XminternAtom (1).

150 Motif Reference Manual

Motif Functions and Macros XmGetColorCalculation

Name

Synopsis

XmGetColorCalculation — get the procedure that calculates default colors.

XmColorProc XmGetColorCalculation (void)

Returns

The procedure that calculates default colors.

Description

Usage

XmGetColorCalculation () returns the procedure that calculates the default
foreground, top and bottom shadow, and select colors. The procedure calculates
these colors based on the background color that is passed to the procedure.

Motif widgets rely on the use of shadowed borders to achieve their three-dimen-
sional appearance. The top and bottom shadow colors are lighter and darker
shades of the background color; these colors are reversed to make a component
appear raised out of the screen or recessed into the screen. The select color is a
slightly darker shade of the background color that indicates that a component is
selected. The default foreground color is either black or white, depending on
which color provides the most contrast with the background coGet-
ColorCalculation () returns the procedure that calculates these colors. Use
XmSetColorCalculation () to change the calculation procedure.

In Motif 2.0 and later, color calculation procedures can be specified on a per-
screen basis by specifying a value for the XmScreen object XmNcolorCalcula-
tionProc resource. Where a particular XmScreen does not have an assigned cal-
culator, the procedure specified ¥snGetColorCalculation () is used as

the default.

Procedures

The XmColorProc has the following syntax:

typedef void (*XmColorProc) (XColor Bg_color /* specifies the
background color */

XColor *fg_color, /* returns the fore-
ground color */

XColor *sel _color /* returns the select
color */

XColor *ts_color /* returns the top
shadow color */

XColor *bs_colo) /* returns the bot-
tom shadow color */

Motif Reference Manual 151

XmGetColorCalculation Motif Functions and Macros

See Also

152

An XmColorProc takes five arguments. The first argumiegit,color is a pointer

to an XColor structure that specifies the background color. The red, green, blue,
and pixel fields in the structure contain valid values. The rest of the arguments are
pointers to XColor structures for the colors that are to be calculated. The proce-
dure fills in the red, green, and blue fields in these structures.

XmChangeColor (1), XmGetColors (1), XmSetColorCalculation Q).
XmScreen (2).

Motif Reference Manual

Motif Functions and Macros XmGetColors

Name

Synopsis

XmGetColors — update the colors for a widget.

void XmGetColors (Screen streen
Colormap color_map
Pixel background
Pixel *foreground_return
Pixel *top_shadow_return
Pixel *bottom_shadow_return
Pixel *select_returi

Inputs

screen Specifies the screen for which colors are to be allocated.
color_map Specifies a Colormap from which the colors are allocated.
background Specifies the background from which to calculate allocated
colors.

Outputs

foreground_return Specifies an address into which the foreground Pixel
is returned.

top_shadow_return Specifies an address into which the top shadow Pixel
is returned.

bottom_shadow_return Specifies an address into which the bottom shadow
Pixel is returned.

select_return Specifies an address into which the select Pixel is
returned.

Description

Usage

XmGetColors () allocates and returns a set of pixels within a Colormap associ-
ated with a giveiscreenfor use as the foreground, top shadow, bottom shadow,
and select colors of a widget. The returned values are calculated based upon a
supplied background.

XmGetColors () allocates a set of pixels from a colormap. The pixels required
are based upon a supplied background pixel. If any return address is specified as
NULL, the relevant pixel is not allocated. In Motif 1.2 and earlier, pixels are allo-
cated using the current color calculation procedure, which can be specified using
XmSetColorCalculation (). In Motif 2.0 and later, per-screen color calcu-
lation procedures are supported: if the XmNcolorCalculationProc resource of the
XmScreen object associated with screen is not NULL, the procedure specified by
the resource is used to calculate the pixels. Otherwise, the current color calcula-
tion procedure is used.

Motif Reference Manual 153

XmGetColors Motif Functions and Macros

See Also
XmGetColorCalculation (1), XmSetColorCalculation (2).
XmScreen (2).

154 Motif Reference Manual

Motif Functions and Macros XmGetDestination

Name
XmGetDestination — get the current destination widget.

Synopsis
Widget XmGetDestination (Displaydtsplay)
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
Returns

The widget ID of the current destination widget or NULL if there is no current
destination widget.

Description
XmGetDestination () returns the widget ID of the current destination widget
for the specifiedlisplay The destination widget is usually the widget most
recently changed by a select, edit, insert, or paste operdtitBetDestina-
tion () identifies the widget that serves as the destination for quick paste opera-
tions and some clipboard routines. This routine returns NULL if there is no
current destination, which occurs when no edit operations have been performed
on a widget.

Usage
XmGetDestination() provides a way for an application to retrieve the widget that
would be acted on by various selection operations, so that the application can do
any necessary processing before the operation occurs.

See Also
XmGetFocusWidget (1), XmGetTabGroup (1).

Motif Reference Manual 155

XmGetDragContext Motif Functions and Macros

Name

Synopsis

XmGetDragContext — get information about a drag and drop operation.

#include <Xm/DragDrop.h>
Widget XmGetDragContext (Widgetidget Timetimestamp

Inputs

widget Specifies a widget on the display where the drag and drop opera-
tion is taking place.
timestamp Specifies a timestamp that identifies a DragContext.

Returns

The ID of the DragContext object or NULL if no active DragContext is found.

Availability

Motif 1.2 and later.

Description

Usage

See Also

156

XmGetDragContext () retrieves the DragContext object associated with the
display of the specifiediidgetthat is active at the specifiichestampWhen

more that one drag operation has been started on a display, a timestamp can
uniquely identify the active DragContext. If the speciftedestamporresponds

to a timestamp processed between the beginning and end of a single drag and
drop operationXmGetDragContext () returns the DragContext associated

with the operation. If there is no active DragContext for the time-stamp, the rou-
tine returns NULL.

Motif 1.2 and later supports the drag and drop model of selection actions. Every
drag and drop operation has a DragContext object associated with it that stores
information about the drag operation. Both the initiating and the receiving clients
use information in the DragContext to process the drag transaction. The Drag-
Context object is widget-like, in that it uses resources to specify its attributes.
These resources can be checked uXi@gtValues () and modified using
XtSetValues ().

XmGetDragContext () provides a way for an application to retrieve a Drag-
Context object. The application can then ¥§8etValues () andXtSet-
Values () to manipulate the DragContext.

XmDragCancel (1), XmDragStart (1), XmDragContext (2).

Motif Reference Manual

Motif Functions and Macros XmGetFocusWidget

Name
XmGetFocusWidget — get the widget that has the keyboard focus.

Synopsis

Widget XmGetFocusWidget (Widgetidge)

Inputs
widget Specifies the widget whose hierarchy is to be traversed.

Returns
The widget ID of the widget with the keyboard focus or NULL if no widget has
the focus.

Availability
Motif 1.2 and later.

Description
XmGetFocusWidget () returns the widget ID of the widget that has keyboard
focus in the widget hierarchy that contains the speciiiedet The routine
searches the widget hierarchy that contains the specified widget up to the nearest
shell ancestor. XmGetFocusWidget () returns the widget in the hierarchy that
currently has the focus, or the widget that last had the focus when the user navi-
gated to another hierarchy. If no widget in the hierarchy has the focus, the routine
returns NULL.

Usage
XmGetFocusWidget() provides a means of determining the widget that currently
has the keyboard focus, which can be useful if you are trying to control keyboard
navigation in an application.

See Also
XmGetTabGroup (1), XmGetVisibility (1), XmlIsTraversable (1),
XmProcessTraversal (1).

Motif Reference Manual 157

XmGetMenuCursor Motif Functions and Macros

Name
XmGetMenuCursor — get the current menu cursor.

Synopsis

Cursor XmGetMenuCursor (Displayisplay)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

Returns
The cursor ID for the current menu cursor or None if no cursor has been defined.

Availability
In Motif 1.2 and laterXmGetMenuCursor () is obsolete. It has been super-
seded by getting the Screen resource XmNmenuCursor.

Description
XmGetMenuCursor () returns the cursor ID of the menu cursor currently in use
by the application on the specified display. The routine returns the cursor for the
default screen of the display. If the cursor is not yet defined because the applica-
tion called the routine before any menus were created, then XmGetMenuCursor()
returns the value None.

Usage
The menu cursor is the pointer shape that is used whenever a menu is posted.
This cursor can be different from the normal pointer shape. In Motif 1.2 and later,
the new Screen object has a resource, XmNmenuCursor, that specifies the menu
cursor.XmGetMenuCursor () is retained for compatibility with Motif 1.1 and
should not be used in newer applications.

See Also
XmSetMenuCursor (1), XmScreen (2).

158 Motif Reference Manual

Motif Functions and Macros XmGetPixmap

Name
XmGetPixmap — create and return a pixmap.
Synopsis
Pixmap XmGetPixmap (Screescreen char image_namgPixelforeground
Pixel backgroundl
Inputs
screen Specifies the screen on which the pixmap is to be drawn.
image_name Specifies the string name of the image used to make the pixmap.
foreground Specifies the foreground color that is combined with the image
when it is a bitmap.
background Specifies the background color that is combined with the image
when it is a bitmap.
Returns

A pixmap on success or XmUNSPECIFIED_ _PIXMAP when the specified
image_name cannot be found.

Description
XmGetPixmap () generates a pixmap, stores it in the pixmap cache, and returns
its resource ID. Before the routine actually creates the pixmap, it checks the pix-
map cache for a pixmap that matches the spedifiage _namescreen fore-
ground andbackgroundIf a match is found, the reference count for the pixmap
is incremented and the resource ID for the pixmap is returned. If no pixmap is
found,XmGetPixmap () checks the image cache for a image that matches the
specifiedmage_namelf a matching image is found, it is used to create the pix-
map that is returned.

When no matches are fourinGetPixmap () begins a search for an X10 or

X11 bitmap file, usingmage_namas the filename. If a file is found, its contents

are read, converted into an image, and cached in the image cache. Then, the
image is used to generate a pixmap that is subsequently cached and returned. The
depth of the pixmap is the default depth of 8ween If image_namepecifies a
bitmap, theforegroundandbackgrounccolors are combined with the image. If

no file is found, the routine returns XmMUNSPECIFIED PIXMAP.

Usage
Whenimage_nametarts with a slash (/), it specifies a full pathname and
XmGetPixmap () opens the specified file. Otherwigaage nameapecifies a
filename which causeémGetPixmap () to look for the file using a search path.
In Motif 1.2 and earlier, the XBMLANGPATH environment variable specifies the
search path for X bitmap files. In Motif 2.0 and later, the environment variables
XMICONSEARCHPATH and XMICONBMSEARCHPATH specify search

Motif Reference Manual 159

XmGetPixmap Motif Functions and Macros

See Also

160

paths for pixmap files: XMICONSEARCHPATH is used if a color server is run-
ning, XMICONBMSEARCHPATH otherwise, and XBMLANGPATH is used as
a fallback.

The search path can contain the substitution character %B, where image_name is
substituted for %B. The search path can also use the substitution characters
accepted bXtResolvePathname (), where %T is mapped to bitmaps and %S

is mapped to NULL.

If XBMLANGPATH is not set,XmGetPixmap () uses a default search path. If
the XAPPLRESDIR environment variable is set, the routine searches the follow-
ing paths:

%B

$XAPPLRESDIR/%L/bitmaps/%N/%B fusr/lib/X11/%L/bitmaps/%N/
%B

$XAPPLRESDIR/%I_%t/bitmaps/%N/%B {usr/lib/X11/%I_%t/bitmaps/
%N/%B

$XAPPLRESDIR/%I/bitmaps/%N/%B /usr/lib/X11/%l/bitmaps/%N/

%B

$XAPPLRESDIR/bitmaps/%N/%B {usr/lib/X11/bitmaps/%N/%B

$XAPPLRESDIR/%L/bitmaps/%B {usr/lib/X11/%L/bitmaps/%B

$XAPPLRESDIR/%I_%t/bitmaps/%B /usr/lib/X11/%I_%t/bitmaps/

%B

$XAPPLRESDIR/%I/bitmaps/%B {usr/lib/X11/%l/bitmaps/%B

$XAPPLRESDIR/bitmaps/%B {usr/lib/X11/bitmaps/%B
/usr/include/X11/bitmaps/%B

$HOME/bitmaps/%B $HOME/%B

If XAPPLRESDIR is not seiXmGetPixmap () searches the same paths, except
that XAPPLRESDIR is replaced by HOME. These search paths are vendor-
dependent and a vendor may use different directories for /usr/lib/X11 and /usr/
include/X11. In the search paths, the image name is substituted for %B, the
class name of the application is substituted for %N, the language string of the dis-
play is substituted for %L, the language component of the language string is sub-
stituted for %l, and the territory string is substituted for %t.

XmDestroyPixmap (1), XmGetPixmapByDepth (1),
Xminstalllmage (1), XmUninstalllmage (1).

Motif Reference Manual

Motif Functions and Macros XmGetPixmapByDepth

Name
XmGetPixmapByDepth — create and return a pixmap of the specified depth.

Synopsis

Pixmap XmGetPixmapByDepth (Screenscteen

char iimage_namge

Pixel foreground

Pixel background

int depth

Inputs

screen Specifies the screen on which the pixmap is to be drawn.
image_name Specifies the string name of the image used to make the pixmap.
foreground Specifies the foreground color that is combined with the image
when it is a bitmap.
background Specifies the background color that is combined with the image
when it is a bitmap.
depth Specifies the depth of the pixmap.

Returns
A pixmap on success or XmUNSPECIFIED_PIXMAP when the specified

image_name cannot be found.

Availability
Motif 1.2 and later.

Description
XmGetPixmapByDepth () generates a pixmap, stores it in the pixmap cache,
and returns its resource ID. Before the routine actually creates the pixmap, it
checks the pixmap cache for a pixmap that matches the spauvidigd _name
screenforeground backgroundanddepth If a match is found, the reference
count for the pixmap is incremented and the resource ID for the pixmap is
returned. If no pixmap is foundkmGetPixmapByDepth () checks the image
cache for a image that matches the specifieae_namef a matching image is
found, it is used to create the pixmap that is returned.

When no matches are fourXinGetPixmapByDepth () begins a search for an

X10 or X11 bitmap file, usingnage_namas the filename. If a file is found, its
contents are read, converted into an image, and cached in the image cache. Then,
the image is used to generate a pixmap that is subsequently cached and returned.
The depth of the pixmap is the specifigelpth If image_namepecifies a bitmap,

the foreground and background colors are combined with the image. If no file is
found, the routine returns XmUNSPECIFIED_PIXMAP.

Motif Reference Manual 161

XmGetPixmapByDepth Motif Functions and Macros

Usage
XmGetPixmapByDepth () works just likeXmGetPixmap () except that the
depth of the pixmap can be specified. WKthGetPixmap (), the depth of the
returned pixmap is the default depth of the screenX8e@etPixmap () for an
explanation of the search path that is used to find the image.

See Also

XmDestroyPixmap (1), XmGetPixmap (1), Xminstalllmage (1),
XmuUninstalllmage (1).

162 Motif Reference Manual

Motif Functions and Macros XmGetPostedFromWidget

Name
XmGetPostedFromWidget — get the widget that posted a menu.

Synopsis
#include <Xm/RowColumn.h>
Widget XmGetPostedFromWidget (Widgeeny

Inputs
menu Specifies the menu widget.
Returns

The widget ID of the widget that posted the menu.

Description
XmGetPostedFromWidget () returns the widget from which the specified
menuis posted. The value that is returned depends on the type of menu that is
specified. For a PopupMenu, the routine returns the widget from wtgohis
popped up. For a PulldownMenu, the routine returns the RowColumn widget
from whichmenuis pulled down. For cascading submenus, the returned widget is
the original RowColumn widget at the top of the menu system. For tear-off
menus in Motif 1.2 and lateKmGetPostedFromWidget () returns the widget
from which the menu is torn off.

Usage
If an application uses the same menu in different contexts, it catmGet-
PostedFromWidget () in an activate callback to determine the context in
which the menu callback should be interpreted.

See Also

XmRowColumi{2), XmPopupMeny2), XmPulldownMenu (2).

Motif Reference Manual

163

XmGetScaledPixmap Motif Functions and Macros

Name
XmGetScaledPixmap — create and return a scaled pixmap.
Synopsis
Pixmap XmGetScaledPixmap (Widget widget
char image_namge
Pixel foreground
Pixel background
int depth
double scaling_ratig
Inputs
widget Specifies a widget.
image_name Specifies the string name of the image used to make the pix-
map.
foreground Specifies the foreground color that is combined with the image
when it is a bitmap.
background Specifies the background color that is combined with the
image when it is a bitmap.
depth Specifies the depth of the pixmap.
scaling_ratio Specifies a scaling ratio applied to the pixmap.
Returns
A pixmap on success or XmMUNSPECIFIED_PIXMAP when the specified
image_name cannot be found.
Availability
Motif 2.1 and later.
Description
XmGetScaledPixmap () is similar toXmGetPixmapByDepth () except that
the returned pixmap is scaled.
Usage
widgetis used to find a PrintShell by wandering up the widget hierarchy, and sec-
ondly to find a Screen on which to create the pixmapscdling_ratiois zero
and an ancestral PrintShell is found, the ratio applied is given by
(printer resolution / default pixmap resolution)
where the default pixmap resolution is the XmNdefaultPixmapResolution
resource of the PrintShell, and the printer resolution is fetched by the PrintShell
using Xp extensions to communicate with the XPrint server. The default value of
the PrintShell XmNdefaultPixmapResolution resource is 100.
164 Motif Reference Manual

Motif Functions and Macros XmGetScaledPixmap

At present, any resolution specified within the pixmap file itself is currently

ignored, although it is intended that this should take precedence over any Print-
Shell setting.

Although otherwise fully documented, the function does not have a functional
prototype in any of the supplied public headers.

See Also
XmDestroyPixmap (1), XmGetPixmapByDepth (1), XmPrintShell (2).

Motif Reference Manual 165

XmGetSecondaryResourceData Motif Functions and Macros

Name
XmGetSecondaryResourceData — retrieve secondary widget resource data.
Synopsis
Cardinal XmGetSecondaryResourceData (WidgetClass
widget_class
XmSecondaryResourceData
** secondary_data_retujn
Inputs
widget_class Specifies the widget class.
Outputs
secondary_data_return Returns an array of XmSecondaryResourceData
pointers.
Returns
The number of secondary resource data structures associated with the widget
class.
Avalilability
Motif 1.2 and later.
Description

XmGetSecondaryResourceData () provides access to the secondary widget
resource data associated with a widget class. Some Motif widget classes have
resources that are not accessible with the funcko@gtResourcelList ()
andXtGetConstraintResourceL.ist (). If the specifiedvidget_classas
secondary resourcesmGetSecondaryResourceData () provides descrip-

tions of the resources in one or more data structures and returns the number such
structures. If thevidget_classloes not have secondary resources, the routine
returns O (zero) and the valuesgicondary_data_returis undefined.

If the widget_clas$as secondary resourc&snGetSecondaryResource-

Data() allocates an array of pointers to the corresponding data structures. The
application is responsible for freeing the allocated memory ustirgee (). The
resource listin each structure (the value of the resources field), the structures, and
the array of pointers to the structures all need to be freed.

166 Motif Reference Manual

Motif Functions and Macros XmGetSecondaryResourceData

Usage

Example

XmGetSecondaryResourceData ()! only returns the secondary resources

for a widget class if the class has been initialized. You can initialize a widget
class by creating an instance of the class or any of its subclass. VendorShell and
Text are two Motif widget classes that have secondary resources. The two fields
in the XmSecondaryResourceData structure that are of interest to an application
are resources and num_resources. These fields contain a list of the secondary
resources and the number of such resources.

Most applications do not need to query a widget class for the resources it sup-
ports.XmGetSecondaryResourceData () is intended to support interface
builders and applications lileditresthat allow a user to view the available
resources and set them interactively. M#8etResourceList () and
XtGetConstraintResourcelList () to get the regular and constraint
resources for a widget class.

The following code fragment shows the usexofiGetSecondaryResource-
Data () to print the names of the secondary resources of the VendorShell widget:

XmSecondaryResourceData *res; Cardinal num_res, i,
J;
if (num_res = XmGetSecondaryResourceData (vendor-
Shell-
WidgetCl
ass,
&res)) {
for (i=0; i <num_res; i++) {
for (j = 0; j < res[i]->num_resources; j++) {
printf ("%s\n", resJi]-
>resourceslj].resource_name);
}
XtFree ((char*) res[i]->resources);
XtFree ((char*) resli]);

}
XtFree ((char*) res);

1.Erroneously given as XmGetSecondaryResources() in 1st and 2nd edition.

Motif Reference Manual 167

XmGetSecondaryResourceData Motif Functions and Macros

Structures
The XmSecondaryResourceData structure is defined as follows:
typedef struct {
XmResourceBaseProc base_proc;
XtPointer client_data;
String name;
String res_class;
XtResourceList resources;
Cardinal num_resources;

}IXmSecondaryResourceDataRec, *XmSecondaryResourceData;

See Also
VendorShell (2), XmText (2).

168 Motif Reference Manual

Motif Functions and Macros XmGetTabGroup

Name

Synopsis

XmGetTabGroup — get the tab group for a widget.

Widget XmGetTabGroup (Widgetidge)

Inputs

widget Specifies the widget whose tab group is to be returned.

Returns

The widget ID of the tab group of widget.

Availability

Motif 1.2 and later.

Description

Usage

See Also

XmGetTabGroup () returns the widget ID of the widget that is the tab group for
the specified widget. Mvidgetis a tab group or a shell, the routine retuwidget

If widgetis not a tab group and no ancestor up to the nearest shell ancestor is a
tab group, the routine returns the nearest shell ancestor. OthetmiGetTab-
Group () returns the nearest ancestonidgetthat is a tab group.

XmGetTabGroup () provides a way to find out the tab group for a particular
widget in an application. A tab group is a group of widgets that can be traversed
using the keyboard rather than the mouse. Users move from widget to widget
within a single tab group by pressing the arrow keys. Users move between differ-
ent tab groups by pressing the Tab or Shift-Tab keys. If the tab group widget is a
manager, its children are all members of the tab group (unless they are made into
separate tab groups). If the widget is a primitive, it is its own tab group. Certain
widgets must not be included with other widgets within a tab group. For example,
each List, ScrollBar, OptionMenu, or multi-line Text widget must be placed in a
tab group by itself, since these widgets define special behavior for the arrow or
Tab keys, which prevents the use of these keys for widget traversal.

XmGetFocusWidget (1), XmGetVisibility (1), XmlIsTraversable (1),
XmProcessTraversal (1), XmManager(2), XmPrimitive (2).

Motif Reference Manual 169

XmGetTearOffControl Motif Functions and Macros

Name

Synopsis

XmGetTearOffControl — get the tear-off control for a menu.

#include <Xm/RowColumn.h>
Widget XmGetTearOffControl (Widgeheny

Inputs

menu Specifies the RowColumn widget whose tear-off control is to be
returned.

Returns

The widget ID of the tear-off control or NULL if no tear-off control exists.

Availability

Motif 1.2 and later.

Description

Usage

See Also

170

XmGetTearOffControl () retrieves the widget ID of the widget that is the
tear-off control for the specifieshenu When the XmNtearOffModel resource of

a RowColumn widget is set to XmTEAR_OFF_ENABLED for a PulldownMenu
or a PopupMenu, the RowColumn creates a tear-off button for the menu. The
tear-off button, which contains a dashed line by default, is the first element in the
menu. When the button is activated, the menu is torn off. If the spauiéied

does not have a tear-off contrginGetTearOffControl () returns NULL.

In Motif 1.2, a RowColumn that is configured as a PopupMenu or a Pulldown-
Menu supports tear-off menus. When a menu is torn off, it remains on the screen
after a selection is made so that additional selections can be made. The tear-off
control is a button that has a Separator-like appearance. Once you retrieve the
widget ID of the tear-off control, you can set resources to specify its appearance.
You can specify values for the following resources: XmNbackground, XmNback-
groundPixmap, XmNbottomShadowColor, XmNforeground, XmNheight, XmN-
margin, XmNseparatorType, XmNshadowThickness, and XmNtopShadowColor.
You can also set these resources in a resource file by using the name of the con-
trol, which is TearOffControl.

XmRepTypelnstallTearOffModelConverter (1), XmPopupMeny2),
XmPulldownMenu (2), XmRowColumi§2), XmSeparator (2).

Motif Reference Manual

Motif Functions and Macros XmGetVisibility

Name
XmGetVisibility — determine whether or not a widget is visible.
Synopsis
XmVisibility XmGetVisibility (Widget widge)
Inputs
widget Specifies the widget whose visibility state is to be returned.
Returns
XmVISIBILITY_UNOBSCURED if widget is completely visi-
ble, XmVISIBILITY_PARTIALLY_OBSCURED if widget is partially visible,
XmVISIBILITY_FULLY_OBSCURED or if widget is not visible.
Availability
Motif 1.2 and later.
Description
XmGetVisibility () determines whether or not the specifiedgetis visi-
ble. The routine returns XmVISIBILITY_UNOBSCURED if the entire rectangu-
lar area of the widget is visible. It returns
XmVISIBILITY_PARTIALLY_OBSCURED if a part of the rectangular area of
the widget is obscured by its ancestaimGetVisibility () returns
XmVISIBILITY_FULLY_OBSCURED if the widget is completely obscured by
its ancestors or if it is not visible for some other reason, such as if it is unmapped
or unrealized.
Usage

XmGetVisibility() provides a way for an application to find out the visibility state

of a particular widget. This information can be used to help determine whether or
not a widget is eligible to receive the keyboard focus. In order for a widget to
receive the keyboard focus, it and all of its ancestors must not be in the process of
being destroyed and they must be sensitive to input. The widget and its ancestors
must also have their XmNtraversalOn resources set to True. If the widget is view-
able, which means that it and its ancestors are managed, mapped, and realized
and some part of the widget is visible, then the widget is eligible to receive the
keyboard focus. A fully-obscured widget is not eligible to receive the focus
unless part of it is within the work area of a ScrolledWindow with an XmNscroll-
ingPolicy of XmAUTOMATIC that has an XmNtraverseObscuredCallback.

Motif Reference Manual 171

XmGetVisibility Motif Functions and Macros

Structures
XmVisibility is defined as follows:

typedef enum {
XmVISIBILITY_UNOBSCURED,
XmVISIBILITY_PARTIALLY_OBSCURED,
XmVISIBILITY_FULLY_OBSCURED

} XmVisibility;

See Also
XmGetFocusWidget (1), XmGetTabGroup (1), XmisTraversable (1),
XmProcessTraversal (1), XmManager(2), XmScrolledWindow (2).

172 Motif Reference Manual

Motif Functions and Macros XmGetXmDisplay

Name
XmGetXmDisplay — get the Display object for a display.
Synopsis
#include <Xm/Display.h>
Widget XmGetXmDisplay (Displaydisplay)
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
Returns
The Display object for the display.
Availability
Motif 1.2 and later.
Description
XmGetXmbDisplay () retrieves the Display object for the specifiisplay
Usage
In Motif 1.2, the Display object stores display-specific information for use by the
toolkit. An application has a Display object for each display it accesses. When an
application creates its first shell on a display, typically by caKit#gpplni-
tialize () or XtAppCreateShell (), a Display object is created automati-
cally. There is no way to create a Display independently. Use
XmGetXmDisplay () to get the ID of the Display object, so that you can use
XtGetValues () andXtSetValues () to access and modify Display
resources.
See Also

XmDisplay (2), XmScreen (2).

Motif Reference Manual 173

XmGetXmScreen Motif Functions and Macros

Name
XmGetXmScreen — get the Screen object for a screen.
Synopsis
Widget XmGetXmScreen (Screenctreen
Inputs
screen Specifies a screen on a display; returnedtiScreen ().
Returns
The Screen object for the screen.
Availability
Motif 1.2 and later.
Description
XmGetXmScreen() retrieves the Screen object for the speciie@en
Usage
In Motif 1.2, the Screen object stores screen-specific information for use by the
toolkit. An application has a Screen object for each screen that it accesses. When
an application creates its first shell on a screen, typically by caXigplni-
tialize () or XtAppCreateShell (), a Screen object is created automati-
cally. There is no way to create a Screen independently. Use
XmGetXmsScreen() to get the ID of the Screen object, so that you can use
XtGetValues () andXtSetValues () to access and modify Screen resources.
See Also

XmDisplay (2), XmScreen (2).

174 Motif Reference Manual

Motif Functions and Macros Xmim

Name
Xmlm — introduction to input methods.

Synopsis

Public Header:
<Xm/Xmlm.h>

Functions/Macros:
XmImCloseXIM (), XmIimFreeXIC (), XmIimGetXIC (), XmIm-
GetXIM (),
XmIimMbLookupString (), XmimMbResetIC (), XmimRegister (),
XmIimSetFocusValues (), XmimSetValues (), XmImSetXIC (),
XmIimUnregister (), XmimUnsetFocus (), XmimVaSetFocusVal-
ues (),
XmimVaSetValues ()

Avalilability
Motif 1.2 and later.

Description

Many languages are ideographic, and have considerably more characters than
there are keys on the keyboard: the Ascii keyboard was not originally designed
for languages that are not based upon the Latin alphabet. For such languages, in
order to provide a mapping between the alphabet and the keyboard, it is neces-
sary to represent particular characters by a key sequence rather than a single key-
stroke. An input method is the means by which X maps between the characters of
the language, and the representative key sequences. The most common use of an
input method is in implementing language-independent text widget input. As the
user types the key sequences, the input method displays the actual keystrokes
until the sequence completes a character, when the required character is dis-
played in the text widget. The process of composing a character from a key

sequence is called pre-editing.

In order to facilitate pre-editing, the input method may maintain several areas on
the screen: a status area, a pre-edit area, and an auxiliary area. The status area is
an output-only window which provides feedback on the interaction with the input
method. The pre-edit area displays the keyboard sequence as it is typed. The aux-
iliary area is used for popup menus, or for providing customized controls

required by the particular input method. The location of the pre-edit area is deter-
mined by the XmNpreeditType resource of VendorShell. The value OnTheSpot
displays the key sequence as it is typed into the destination text widget itself.
OverTheSpot superimposes an editing window over the top of the text widget.
OffTheSpot creates a dedicated editing window, usually at the bottom of the dia-

Motif Reference Manual

175

Xmim

Usage

See Also

176

Motif Functions and Macros

log. Root uses a pre-edit window which is a child of the root window of the dis-
play.

To control the interaction between the application and the input method, X
defines a structure called an input context, which the programmer can fetch and
manipulate where the need arises. Each widget registered with the input method
has an associated input context, which may or may not be shared amongst the
registered widgets. Motif extends the mechanisms provided by the lower level X
libraries, and provides a caching mechanism whereby input contexts are shared
between widgets.

Input methods are usually supplied by the vendors of the hardware, and the appli-
cation generally connects to the input method without the need for any special
coding by the programmer. The Motif widgets are fully capable of connecting to
an input method when required, and although Motif provides a functional inter-
face to enable the programmer to interact with an input method, the interface is
not required for the Motif widgets. The exceptions are where the programmer is
writing new widgets, or where internationalized input is required for the Drawin-
gArea.

XmimRegister () registers a widget with an input methognimSetVal-

ues () manipulates an input context by registering callbacks which respond to
specific statesXmimSetFocusValues () is similar, except that after the input
context has been maodified, the focus is reset to the widget providing the input.
XmIimMbLookupString () performs the necessary key sequence to character
translation on behalf of the input widg&mImUnRegister () unregisters the
widget with the input method. Typicall)mimRegister () is called within the
Initialize method of a widgeXXmimUnRegister () is called by the Destroy
method, andKmimMbLookupString () is called within an action or callback
routine of the widget in response to an event. These are the primary functions
which a programmer may need to call, and are all that are required to implement
internationalized input for the Motif text widget.

Note that an input method does not need to support all styles of XmNpreedit-
Type.

XmImCloseXIM (1), XmimFreeXIC (1), XmImGetXIM (1),
XmImGetXIC (1), XmImMbLookupString (1), XmimMbResetIC (1),
XmimRegister (1), XmImSetFocusValues (1), XmimSetValues (1),
XmImSetXIC (1), XmImUnregister (1), XmimUnsetFocus (1),
XmimVaSetFocusValues (1), XmimVaSetValues(1).

Motif Reference Manual

Motif Functions and Macros XmIimCloseXIM

Name
XmImCloseXIM — close all input contexts.
Synopsis
#include <Xm/Xmim.h>
void XmImCloseXIM (Widgetwidge)
Inputs
widget Specifies a widget used to determine the display connection.
Availability
Motif 2.0 and later.
Description
XmImCloseXIM () is a convenience function which closes all input contexts
associated with the current input method. Widgetparameter is used to iden-
tify the XmDisplay object of the application.
Usage

XmImCloseXIM () uses thavidgetparameter to deduce the input method associ-
ated with the XmDisplay object. The application’s connection to the input
method is closed, and all widgets which are registered with any input context
associated with the input method are unregistered. In order to close the input con-
text associated with a single widget, rather than closing down all connections, use
XmlmUnregister().

The Motif widgets internally register and unregister themselves with the input
manager using XmImRegister() akdnimUnregister () as required. The Ven-
dorShell callsXmimCloseXIM () within its Destroy method once the last Ven-
dorShell is destroyed in order to clean up the connection to the input method. An
application which dynamically switches between input methods in a multi-lan-
guage application may need to invokelmCloseXIM () because Motif only
supports a single input method at any given instance. Application programmers
will not normally need to usemimCloseXIM () directly.

See Also
XmIimRegister (1), XmimUnregister (1), Xmim(1).

Motif Reference Manual 177

XmIimFreeXIC Motif Functions and Macros

Name
XmimFreeXIC — free an input context.

Synopsis
#include <Xm/Xmim.h>
void XmImFreeXIC (Widgetvidget XIC xic)

Inputs

widget Specifies a widget from which the input context registry is
deduced.
xic Specifies the input context which is to be freed.

Availability
Motif 2.0 and later.

Description
XmImFreeXIC () is a convenience function which unregisters all widgets associ-
ated with the input contexic, and then frees the input context.

Usage
XmlImFreeXIC () uses thavidgetparameter to deduce an ancestral VendorShell,
from which the X input context registry is found. All widgets associated with the
input contexixic within the registry are unregistered, and the input context is
freed.

See Also

XmImGetXIC (1), XmIimRegister (1). XmImSetXIC (1),
XmimUnregister (1), XmIm(1).

178 Motif Reference Manual

Motif Functions and Macros XmimGetXIC

Name
XmImGetXIC — create an input context for a widget.
Synopsis
#include <Xm/Xmim.h>
XIC XmImGetXIC (Widgetwidget XmInputPolicyinput_policy ArgList
arglist, Cardinalargcoun)
Inputs
widget Specifies a widget for which the input context is required.
input_policy Specifies the policy for creating input contexts.
arglist Specifies a list of arguments consisting of name/value pairs.
argcount Specifies the number of arguments in arglist.
Returns
The input context associated with widget.
Availability
Motif 2.0 and later.
Description

XmImGetXIC () creates and registers a new input context for a widget, depend-
ing upon thanput_policy If input_policyis XmPER_WIDGET, a new input con-
text is created for the widget. If the value is XmPER_SHELL, a new input
context is created only if an input context associated with the ancestral shell of
widgetdoes not already exist, otherwise the widget is registered with the existing
input context. If the policy is XmINHERIT_POLICY, the input policy is inher-
ited by taking the value of the XmNinputPolicy resource from the nearest ances-
tral VendorShell. The set of attributes for the input context is specified through
the resource lisrglist, each element of the list being a structure containing a
name/value pair. The number of elements within the list is giverdnount

The name/value pairs are passed through to the fun¢@oeatelC () if the

input context is createdkmImGetXIC () returns either the input context which is
newly created if the input policy is XmPER_WIDGET, otherwise it returns the
shared context.

Motif Reference Manual 179

XmIimGetXIC Motif Functions and Macros

Usage

In Motif 1.2, the supported attributes for configuring the created input context are
XmNbackground, XmNforeground, XmNbackgroundPixmap, XmNspotLoca-
tion, XmNfontList, and XmNarea.

In Motif 2.0 and later, the list is extended to include XmNpreeditCaretCallback,
XmNpreeditDoneCallback, XmNpreeditDrawCallback, and XmNpreeditStart-
Callback resources.

You are referred to th€CreatelC () entry within the Xlib Reference Manual

for the interpretation of each of the resource types. The function allocates storage
associated with the created input context, and it is the responsibility of the pro-
grammer to reclaim the space at a suitable point by calimgnFreeXIC ().

Structures

See Also

180

The enumerated type XmlInputPolicy has the following possible values:

XmINHERIT_POLICY
XmPER_WIDGET
XmPER_SHELL

XmImFreeXIC (1), XmIimSetXIC (1), Xmim(1).

Motif Reference Manual

Motif Functions and Macros XmimGetXIM

Name
XmImGetXIM — retrieve the input method for a widget.
Synopsis
#include <Xm/Xmim.h>
XIM XmImGetXIM (Widget widge)
Inputs
widget Specifies a widget registered with the input manager.
Returns
The input method associated witiidget
Avalilability
Motif 1.2 and later.
Description
XmImGetXIM() returns a pointer to an opaque data structure which represents
the input method which the input manager has opened for the specified widget.
Usage

Widgets are normally registered with the input manager through a ¢atilito-
Register (). If no input method is associated with thielget the procedure

uses any specified XmNinputMethod resource of the nearest ancestral Vendor-
Shell in order to open an input method. If the resource is NULL, the input
method associated with the current locale is opened. If no input method can be

opened, the function returns NULL.

XmImGetXIM() allocates storage for the opaque data structure which is
returned, and it is the responsibility of the programmer to reclaim the space by a
call toXmImCloseXIM () at a suitable poinXmIimGetXIM() is not a procedure
which an application programmer needs to use: the routine is of more use to the

programmer of new widgets.

See Also
XmImRegister (1), XmImCloseXIM (1), Xmim(1).

Motif Reference Manual

181

XmImMbLookupString Motif Functions and Macros

Name
XmimMbLookupString — retrieve a composed string from an input method.
Synopsis
#include <Xm/Xmim.h>
int XmImMbLookupString (Widget widget
XKeyPressedEvent event
char *uffer,
int num_bytes
KeySym *Keysym
int *statug
Inputs
widget Specifies a widget registered with the input manager.
event Specifies a key press event.
num_bytes Specifies the length of the buffer array.
Outputs
buffer Returns the composed string.
keysym Returns any keysym associated with the input keyboard event.
status Returns the status of the lookup.
Returns
The length of the composed string in bytes.
Avalilability
Motif 1.2 and later.
Description

XmimMbLookupString () translates arventinto a composed character, and/

or a keysym, using the input context associated with a gidget Any com-

posed string which can be deduced fromethentis placed irbuffer, the com-

posed string consists of multi-byte characters in the encoding of the locale of the
input context. If a keysym is associated with¢lien this is returned at the
address specified eysymThe function returns the number of bytes placed

into buffer

182 Motif Reference Manual

Motif Functions and Macros XmImMbLookupString

Usage
A widget is registered with an input method through the functimimRegis-
ter (). If no input context is associated with tElget the function uses
XLookupString () to map the kegventinto composed text. Otherwise the
function callsXmbLookupString () with the input context as the first parame-
ter. If the programmer is not interested in keysym values, a NULL value can be
passed as theysynparameterxXmimMbLookupString () places intduffer
any composed character string associated with the key event: if the event at the
given point in the input sequence does not signify a unique character in the lan-
guage of the current locale, the function returns zero: subsequent key events may
be required before a character is composed.

Structures
The possible values returnedsitatusare the same as those returned from

XmbLookupString (): you are referred to the Xlib Reference Manual for a full
description and interpretation of the values.

XBufferOverflow [* buffer size insufficient to hold composed sequeiice

XLookupNone /*no character sequence matching the input exiéts
XLookupChars [Yinput characters were composed */
XLookupKeysym [*input is keysym rather than composed charactéf
XLookupBoth [*both a keysym and composed character are retdfned

See Also
XmimRegister (1), XmIm(1).

Motif Reference Manual 183

XmImMbResetIC Motif Functions and Macros

Name
XmImMbResetIC — reset an input context.
Synopsis
#include <Xm/Xmim.h>
void XmImMbResetIC (Widgetvidget char **mb_tex}
Inputs
widget Specifies a widget registered with the Input Manager.
Outputs
mb_text Returns pending input on the input context.
Availability
Motif 2.0 and later.
Description
XmImMbResetIC () resets the input context associated with a widget.
Usage
XmIimMbResetIC () is a convenience function which resets an input context to
the initial state. The function is no more than a wrapper onto the function
XmbResetIC (), which clears the pre-edit area and updates the status area of the
input context. The return value ¥mbResetIC () is placed into the address
specified bymb_text This data is implementation dependent, and may be NULL.
If data is returned, the programmer is responsible for freeing it by calling
XFree ().
See Also

XmimRegister (1), XmIm(1).

184 Motif Reference Manual

Motif Functions and Macros XmIimRegister

Name
XmImRegister — register a widget with an Input Manager.
Synopsis
#include <Xm/Xmim.h>
void XmImRegister (Widgetvidget unsigned inteservedl
Inputs
widget Specifies a widget to register with the input manager.
reserved This parameter is current unused.
Availability
Motif 1.2 and later.
Description
XmImRegister () is a convenience function which registers a widget with the
input manager to establish a connection to the current input method. The function
is called when an application needs to specially arrange for internationalized
input to a widget.
Usage

The Motif widgets internally register themselves with the input manager as
required. Only a programmer who is writing a new widget, or who requires inter-
nationalized input for the DrawingArea needs to éatiimRegister () directly.

If the VendorShell ancestor containing thalgetalready has an associated input
context, the function simply returns. Otherwise, the XmNinputPolicy resource of
the nearest VendorShell ancestor is fetched to determine whether to share an
existing input context. The function opens an input method by inspecting the
XmNinputMethod resource of the VendorShell. If the resource is NULL, a
default input method is opened using information from the current loxafém-
Register () should not be called twice using the samiggetparameter with-

out unregistering the widget from the input method first.

The programmer is responsible for closing down the connection to the input
method by callingimimUnregister (). The Destroy method of the widget is

an appropriate place to call this.

See Also
XmimUnregister (1), XmIm(1).

Motif Reference Manual

185

XmImSetFocusValues Motif Functions and Macros

Name

Synopsis

XmImSetFocusValues — set the values and focus for an input context.

#include <Xm/Xmlim.h>

void XmImSetFocusValues (Widgefidget ArgList arglist, Cardinaargcoun)

Inputs

widget Specifies a widget registered with the input manager.
arglist Specifies a list of resources consisting of name/value pairs.
argcount Specifies the number of arguments in arglist.

Availability

Motif 1.2 and later.

Description

Usage

See Also

186

XmImSetFocusValues () notifies the input manager that a widget has
received the input focus. If the previous values of the input context associated
with the widget do not allow the context to be reused, the old context is unregis-
tered, and a new one registered with the widget.

XmImSetFocusValues () is identical in all respects ¥mimSetValues (),
except that after the input context has been reset, the focus window attribute of
the input context is set to the window of the inpidget

The Motif widgets invokeXmimSetFocusValues () as and when required.

For example, the Text and TextField widgets automatically invoke XmImSetFo-
cusValues() in response to Focusin and EnterNotify events. A programmer who
is implementing internationalized input for a DrawingArea or creating a new
widget may need to call this function when the widget receives the input focus.

XmIimRegister (1), XmimSetValues (1), Xmin(1).

Motif Reference Manual

Motif Functions and Macros XmIimSetValues

Name
XmIimSetValues — set the values for an input context.
Synopsis
#include <Xm/Xmim.h>
void XmImSetValues (Widgewidget ArgList arglist, Cardinalargcoun}
Inputs
widget Specifies a widget registered with the Input Manager.
arglist Specifies a list of resources consisting of name/value pairs.
argcount Specifies the number of arguments in arglist.
Availability
Motif 1.2 and later.
Description
XmimSetValues () sets the attributes for the input context associated with the
specifiedwidget The set of attributes to be modified is specified through the
resource lisarglist, each element of the list being a structure containing a name/
value pair. The number of elements within the list is givearggount
Usage

XmImSetValues () is a convenience routine which invok&SetICValues ()

in order to configure an input context. You are referred to the Xlib Reference
Manual for the set of attributes supportedt8etiCValues (), and for their
interpretation.

The Motif widgets invokeXmimSetValues () as and when required. For exam-
ple, the Text and TextField widgets automatically invEkeimSetValues ()

when the widget is resized or the font changed. A programmer who is imple-
menting internationalized input for a DrawingArea or creating a new widget may
need to call this function when, for example, the widget needs to reconfigure the
spot location.

See Also
XmIimSetFocusValues (1), XmimRegister (1), Xmim(1).

Motif Reference Manual 187

XmIimSetXIC Motif Functions and Macros

Name
XmImSetXIC — register a widget with an existing input context.

Synopsis
#include <Xm/Xmim.h>
XIC XmImSetXIC (Widgetwidget XIC xic)

Inputs
widget Specifies a widget to be registered with the input context.
xic Specifies an input context where the widget is to be registered.
Returns

The input context where the widget is registered.

Availability
Motif 2.0 and later.

Description
XmImSetXIC () is a convenience function which registensidgetwith an input
context. If thewidgetis registered with another input context, thielgetis firstly
unregistered with that context. The widget is then registered with the input con-
textxic. If xicis NULL, the function creates a new input context and registers the
widget with it. The function returns the input context where the widget is regis-
tered.

Usage

XmImSetXIC () allocates storage when it creates a new input context, and it is
the responsibility of the programmer to free the space at an appropriate point by
calling XmimFreeXIC ().

See Also
XmimFreeXIC (1), XmIimRegister (1), XmIm(1).

188 Motif Reference Manual

Motif Functions and Macros XmIimUnregister

Name
XmIimUnregister — unregister the input context for a widget.
Synopsis
#include <Xm/Xmim.h>
void XmImUnregister (Widgetvidge)
Inputs
widget Specifies a widget whose input context is to be unregistered.
Availability
Motif 1.2 and later.
Description
XmImUnregister () is a convenience function which unregisters the input con-
text associated with a givevidget The function is the inverse #imimRegis-
ter (), which is called when an application needs to specially arrange for
internationalized input to a widget.
Usage

The Motif widgets internally register themselves with the input manager as
required. Only a programmer who is writing a new widget, or who requires inter-
nationalized input for the DrawingArea needs to éatiimRegister () directly.
WhereXmimRegister () has been called by the application, it is the responsi-
bility of the programmer to also calimimUnregister (), usually within the
Destroy () method of the widget for which internationalized input is required.
XmImUnregister () uses thavidgetparameter to deduce the input method
associated with a display connection. Any input context associated with the input
method is unregistered.

See Also
XmIimRegister (1), Xmim(1).

Motif Reference Manual 189

XmImUnsetFocus Motif Functions and Macros

Name
XmIimUnsetFocus — unset focus for input context.
Synopsis
#include <Xm/Xmim.h>
void XmImUnsetFocus (Widgetidge)
Inputs
widget Specifies a widget which has lost the input focus.
Availability
Motif 1.2 and later.
Description
XmlmUnsetFocus () notifies the input manager that a widget has lost the input
focus.
Usage

XmImUnsetFocus () is a convenience routine which invok€gnsetICFo-
cus () using the input context associated with the speaffiddet The input
method is notified that no more input is expected from the widget.

The Motif widgets invokeXmimUnsetFocus () as and when required. For
example, the Text and TextField widgets automatically invokémUnsetFo-

cus ()1 in response to FocusOut and LeaveNotify events. A programmer who is
implementing internationalized input for a DrawingArea or creating a new
widget may need to call this function when the widget loses the input focus.

See Also
XmIimSetFocusValues (1), XmimVaSetFocusValues (1), Xmim(1).

1.Erroneously given as XmUnsetFocus() in 2nd edition.

190 Motif Reference Manual

Motif Functions and Macros XmIimVaSetFocusValues

Name
XmImVaSetFocusValues — set the values and focus for an input context.
Synopsis
#include <Xm/Xmim.h>
void XmImVaSetFocusValues (Widgeidget....,NULL)
Inputs
widget Specifies a widget registered with the Input Manager.
..., NULL A NULL-terminated variable-length list of resource name/value
pairs.
Availability
Motif 1.2 and later.
Description
XmImVaSetFocusValues () notifies the input manager thawviadgethas
received the input focus. If the previous values of the input context associated
with thewidgetdo not allow the context to be reused, the old context is unregis-
tered, and a new one registered with the widget.
Usage

XmimVaSetFocusValues () is simply a convenience routine with a variable
length argument list which constructs internal arglist and argcount parameters to
aXmimSetFocusValues () call.

See Also
XmIimSetFocusValues (1).

Motif Reference Manual 191

XmIimVaSetValues Motif Functions and Macros

Name
XmimVaSetValues — set the values for an input context.
Synopsis
#include <Xm/Xmim.h>
void XmImVaSetValues (Widgetidget...,NULL)
Inputs
widget Specifies a widget registered with the Input Manager.
...,NULL A NULL-terminated variable-length list of resource name/value
pairs.
Availability
Motif 1.2 and later.
Description
XmimVaSetValues ()! sets the attributes for the input context associated with
the specifiedvidget
Usage

XmIimVaSetValues () is simply a convenience routine with a variable length
argument list which constructs internal arglist and argcount parameters to a
XmimSetValues () call.

See Also
XmimSetValues (1).

1.Erroneously given as XmIimSetValues() in 2nd edition.

192 Motif Reference Manual

Motif Functions and Macros Xminstalllmage

Name

Synopsis

Xminstalllmage — install an image in the image cache.

Boolean Xminstallimage (XImagemage char image_namp

Inputs

image Specifies the image to be installed.
image_name Specifies the string name of the image.

Returns

True on success or Falsdiifiageorimage_namés NULL or image_namelupli-
cates an image name already in the cache.

Description

Usage

Xminstalllmage () installs the specifietnagein the image cache. Thmage

can later be used to create a pixmap. When the routine installs the image, it does
not make a copy of the image, so an application should not destroy the image
until it has been uninstalled. The routine also expands the resource converter that
handles images so thatage_namean be used in a resource file. In order to

allow references from a resource fifaninstalllmage () must be called to

install an image before any widgets that use the image are created.

An application can usEminstallimage () to install and cache images, so that

the images can be shared throughout the application. Once an image is installed,
it can be used to create a pixmap wkimGetPixmap (). The toolkit provides the
following pre-installed images that can be referenced in a resource file or used to
create a pixmap:

Image Name Image Description

background Solid background tile

25_foreground A 25% foreground, 75% background tile

50_foreground A 50% foreground, 50% background tile

75_foreground A 75% foreground, 25% background tile

horizontal_tile Horizontal lines tile, in Motif 1.2.3 and later.

vertical_tile Vertical lines tile, in Motif 1.2.3 and later.

horizontal As horizontal_tile: maintained for 1.2.2 compatibility.

vertical

As vertical_tile: maintained for 1.2.2 compatibility.

slant_right Right slanting lines tile

slant_left Left slanting lines tile

Motif Reference Manual 193

Xminstalllmage

Image Name
menu_cascade
menu_cascade_rtol
menu_checkmark
menu_dash
collapsed
collapsed_rtol

expanded

Motif Functions and Macros

Image Description
An arrow pointing to the right, in Motif 2.0 and later.
An arrow pointing to the left, in Motif 2.0 and later.
A tick mark, in Motif 2.0 and later.
A horizontal line, in Motif 2.0 and later.
A filled arrow pointing to the right, in Motif 2.0 and later.
A filled arrow pointing to the left, in Motif 2.0 and later.

A filled arrow pointing downwards, in Motif 2.0 and later.

Example

You might use the following code to define and install an image:

#define bitmap_width 16
#define bitmap_height 16

static char bitmap_bits[] = {
OxFF, 0x00, OxFF, 0x00, OxFF, 0x00, OxFF, 0x00,
OxFF, 0x00, OxFF, 0x00, OxFF, 0x00, OxFF, 0x00,
0x00, OxFF, 0x00, OxFF, 0x00, OxFF, 0x00, OxFF,
0x00, OxFF, 0x00, OxFF, 0x00, OxFF, 0x00, OxFF

%

static XImage ximage = {
bitmap_width, /* width */
bitmap_height, /* height */
0, * xoffset */
XYBitmap, [* format */
bitmap_bits, [* data */
MSBFirst, /* byte_order */
8, [* bitmap_unit */
LSBFirst, /* bitmap_bit_order */
8, [* bitmap_pad */
1, /* depth */
2, [* bytes_per_line */
NULL /* obdata */

k

Xminstalllmage (&ximage, "image_name");

See Also

194

XmDestroyPixmap (1), XmGetPixmap (1), XmUninstalllmage (1).

Motif Reference Manual

Motif Functions and Macros XminternAtom

Name
XminternAtom — return an atom for a given property name string.

Synopsis
#include <Xm/AtomMgr.h>

Atom XminternAtom (Display display Stringname Boolearnonly_if _existy

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().

name Specifies the string name of the property for which you want the
atom.

only_if_exists Specifies a Boolean value that indicates whether or not the atom
is created if it does not exist.

Returns
An atom on success or None.

Availability
In Motif 2.0 and laterXInternAtom () is preferred.

Description
XminternAtom () returns the atom that corresponds to the given property
name This routine works like Xlib’XInternAtom () routine, but the Motif
routine provides the added feature of client-side caching. If no atom exists with
the specifiechameandonly_if_existss True,XminternAtom () does not create
a new atom; it simply returns None olfily_if _existds False, the routine creates
the atom and returns it.

Usage
An atom is a number that identifies a property. Properties also have string names.
XminternAtom() returns the atom associated with a property if it exists, or it may
create the atom if it does not exist. The atom remains defined even after the client
that defined it has exited. An atom does not become undefined until the last con-
nection to the X server closes. Predefined atoms are defined in <X11/Xatom.h>
and begin with the prefix XA_. Predefined atoms do not need to be interned with
XminternAtom ().

In Motif 2.0 and laterXmInternAtom () is no more than a convenience routine
which callsXInternAtom (). While XminternAtom () is not yet officially
obsoleteXInternAtom () is to be preferred.

See Also
XmGetAtomNamé1l).

Motif Reference Manual 195

XmisMotifWMRunning Motif Functions and Macros

Name
XmlsMotifWMRunning — check whether the Motif Window Managem(n) is
running.

Synopsis
Boolean XmIsMotifWMRunning\(/idget she)l

Inputs
shell Specifies the shell widget whose screen is queried.
Returns

True if mwmis running or Falsetherwise.

Description
XmlsMotifWMRunning () checks for the presence of the
_MOTIF_WM_INFO property on the root window of the screen of the specified
shellto determine whether the Motif Window Managem(n) is running on the
screen.

Usage
mwmdefines additional types of communication between itself and client pro-
grams. This communication is optional, so an application should not depend on
the communication or the presencemafmfor any functionalityXmlIsMo-
tifWMRunning () allows an application to checkrifwmis running and act
accordingly.

See Also

196

mwrd).

Motif Reference Manual

Motif Functions and Macros Xmls<Emphasis>Object<Default Para Font>

Name

XmlsObject— determine whether a widget is a subclass of a class.
Synopsis

#include <Xm/Gadget.h>

Boolean XmlIsGadget (Widget widget)

#include <Xm/Manager.h>
Boolean XmIsManager (Widget widget)

#include <Xm/Primitive.h>
Boolean XmlsPrimitive (Widget widget)

#include <Xm/ArrowB.h>
Boolean XmlIsArrowButton (Widget widget)

#include <Xm/ArrowBG.h>
Boolean XmlIsArrowButtonGadget (Widget widget)

#include <Xm/BulletinB.h>
Boolean XmlsBulletinBoard (Widget widget)

#include <Xm/CascadeB.h>
Boolean XmlIsCascadeButton (Widget widget)

#include <Xm/CascadeBG.h>
Boolean XmIsCascadeButtonGadget (Widget widget)

#include <Xm/ComboBox.h>
Boolean XmIsComboBox (Widget widget)

#include <Xm/Command.h>
Boolean XmIsCommand (Widget widget)

#include <Xm/Container.h>
Boolean XmlIsContainer (Widget widget)

#include <Xm/DialogS.h>
Boolean XmlsDialogShell (Widget widget)

#include <Xm/Display.h>
Boolean XmisDisplay (Widget widget)

#include <Xm/DragC.h>
Boolean XmlIsDragContext (Widget widget)

#include <Xm/Draglcon.h>
Boolean XmlIsDraglconObjectClass (Widget widget)

Motif Reference Manual 197

Xmls<Emphasis>Object<Default Para Font> Motif Functions and Macros

#include <Xm/DrawingA.h>
Boolean XmlIsDrawingArea (Widget widget)

#include <Xm/DrawnB.h>
Boolean XmlIsDrawnButton (Widget widget)

#include <Xm/DropSMgr.h>
Boolean XmisDropSiteManager (Widget widget)

#include <Xm/DropTrans.h>
Boolean XmisDropTransfer (Widget widget)

#include <Xm/FileSB.h>
Boolean XmisFileSelectionBox (Widget widget)

#include <Xm/Form.h>
Boolean XmlIsForm (Widget widget)

#include <Xm/Frame.h>
Boolean XmlIsFrame (Widget widget)

#include <Xm/GrabShell.h>
Boolean XmlIsGrabShell (Widget widget)

#include <Xm/lconG.h>
Boolean XmlslconGadget (Widget widget)

#include <Xm/Label.h>
Boolean XmlsLabel (Widget widget)

#include <Xm/LabelG.h>
Boolean XmisLabelGadget (Widget widget)

#include <Xm/List.h>
Boolean XmisList (Widget widget)

#include <Xm/MainW.h>
Boolean XmIsMainWindow (Widget widget)

#include <Xm/MenuShell.h>
Boolean XmIsMenuShell (Widget widget)

#include <Xm/MessageB.h>
Boolean XmIsMessageBox (Widget widget)

#include <Xm/Notebook.h>
Boolean XmlIsNotebook (Widget widget)

#include <Xm/PanedW.h>
Boolean XmIsPanedWindow (Widget widget)

198 Motif Reference Manual

Motif Functions and Macros Xmls<Emphasis>Object<Default Para Font>

#include <Xm/PrintS.h>
Boolean XmlsPrintShell (Widget widget)

#include <Xm/PushB.h>
Boolean XmlIsPushButton (Widget widget)

#include <Xm/PushBG.h>
Boolean XmlIsPushButtonGadget (Widget widget)

#include <Xm/RowColumn.h>
Boolean XmIsRowColumn (Widget widget)

#include <Xm/Scale.h>
Boolean XmlIsScale (Widget widget)

#include <Xm/Screen.h>
Boolean XmlIsScreen (Widget widget)

#include <Xm/ScrollBar.h>
Boolean XmlsScrollBar (Widget widget)

#include <Xm/ScrolledW.h>
Boolean XmlsScrolledWindow (Widget widget)

#include <Xm/SelectioB.h>
Boolean XmlIsSelectionBox (Widget widget)

#include <Xm/Separator.h>
Boolean XmisSeparator (Widget widget)

#include <Xm/SeparatoG.h>
Boolean XmisSeparatorGadget (Widget widget)

#include <Xm/Text.h>
Boolean XmlsText (Widget widget)

#include <Xm/TextF.h>
Boolean XmlsTextField (Widget widget)

#include <Xm/ToggleB.h>
Boolean XmlIsToggleButton (Widget widget)

#include <Xm/ToggleBG.h>
Boolean XmlIsToggleButtonGadget (Widget widget)

#include <Xm/VendorS.h>
Boolean XmlIsVendorShell (Widget widget)

Inputs
widget Specifies the widget ID of the widget whose class is to be checked.

Motif Reference Manual 199

Xmls<Emphasis>Object<Default Para Font> Motif Functions and Macros

Returns
True if widget is of the specified class or False otherwise.

Availability
XmilsDisplay (), XmisDragContext (), XmlsDraglconObject-
Class (), XmlsDropSiteManager (), XmlsDropTransfer (), and
XmlsScreen () are only available in Motif 1.2 and later.

XmIsComboBox(), XmlIsContainer (), XmlIsNotebook (), Xmlslcon-
Gadget (), andXmlsGrabShell () are available in Motif 2.0 and later.

XmlsPrintShell () is available in Motif 2.1. Note that although the SpinBox
class is available in Motif 2.0, and the SimpleSpinBox class in Motif 2.1, neither

XmisSpinBox () norXmlIsSimpleSpinBox () are defined?

Description
The Xmls*() routines are macros that check the class of the specified widget. The
macros returns True if widget is of the specified class or a subclass of the speci-
fied class. Otherwise, the macros return False.

Usage
An application can use the Xmls*() macros to check the class of a particular
widget. All of the macros usétisSubclass () to determine the class of the
widget.

Example

The missing macr&misSpinBox () could be defined as follows:

#include <Xm/SpinB.h>

#ifndef XmlsSpinBox

#define XmlsSpinBox(w) XtlsSubclass(w, xmSpinBoxWidgetClass)
#endif /* XmlIsSpinBox */

1.Be warned that certain platforms, although they ship the PrintShell headers, do not compile the component into the
native Motif toolkit. Sun Solaris is a case in point.

200 Motif Reference Manual

Motif Functions and Macros

See Also

XmCreateObject(1), VendorShell(2), XmArrowButton(2),
XmArrowButtonGadget(2), XmBulletinBoard(2),
XmCascadeButton(2), XmCascadeButtonGadget(2),
XmComboBox(2), XmCommand(2), XmContainer(2),
XmbDialogShell(2), XmDisplay(2), XmDragContext(2),
XmbDraglcon(2), XmDrawingArea(2), XmDrawnButton(2),
XmDropSite(2), XmDropTransfer(2),
XmFileSelectionBox(2), XmForm(2), XmFrame(2),
XmGadget(2), XmGrabShell(2), XmiconGadget(2),
XmLabel(2), XmLabelGadget(2), XmList(2),
XmMainWindow(2), XmManager(2), XmMenuShell(2),
XmMessageBox(2), XmNotebook(2), XmPanedWindow(2),
XmPrimitive(2), XmPrintShell(2), XmPushButton(2),
XmPushButtonGadget(2), XmRowColumn(2), XmScale(2),
XmScreen(2), XmScrollBar(2), XmScrolledWindow(2),
XmSelectionBox(2), XmSeparator(2),
XmSeparatorGadget(2), XmSpinBox(2),
XmSimpleSpinBox(2), XmText(2), XmTextField(2),
XmToggleButton(2), XmToggleButtonGadget(2).

Motif Reference Manual

Xmls<Emphasis>Object<Default Para Font>

201

XmlsTraversable Motif Functions and Macros

Name
XmlsTraversable — determine whether or not a widget can receive the keyboard
focus.

Synopsis

Boolean XmlsTraversable (Widgeidge)

Inputs
widget Specifies the widget whose traversability state is to be returned.

Returns
True if widget is eligible to receive the keyboard focus or False otherwise.

Availability
Motif 1.2 and later.

Description
XmisTraversable () determines whether or not the specifiedgetcan
receive the keyboard focus. The routine returns True ifvttigetis eligible to
receive the keyboard focus; otherwise it returns False.

Usage
In order for a widget to receive the keyboard focus, it and all of its ancestors must
not be in the process of being destroyed and they must be sensitive to input. The
widget and its ancestors must also have their XmNtraversalOn resources set to
True. If the widget is viewable, which means that it and its ancestors are man-
aged, mapped, and realized and some part of the widget is visible, then the
widget is eligible to receive the keyboard focus. A fully-obscured widget is not
eligible to receive the focus unless part of it is within the work area of a Scrolled-
Window with an XmNscrollingPolicy of XmAUTOMATIC that has an XmNtra-
verseObscuredCallback.

Primitive widgets and gadgets can receive the keyboard focus, while most man-
ager widgets cannot, even if they have traversable children. However, some man-
agers may be eligible to receive the keyboard focus under certain conditions. For
example, a DrawingArea can receive the keyboard focus if it meets the condi-
tions above and it does not have any children with the XmNtraversalOn resource
set to True.

See Also
XmGetFocusWidget (1), XmGetTabGroup (1), XmGetVisibility (1),
XmProcessTraversal (1), XmManager(2), XmScrolledWindow (2).

202 Motif Reference Manual

Motif Functions and Macros XmListAddltem

Name
XmListAddltem, XmListAddltems — add an item/items to a list.

Synopsis
#include <Xm/List.h>

void XmListAddIltem (Widgetvidget XmStringitem, int position)
void XmListAddIitems (Widgetvidget XmString sitems intitem_countint
position
Inputs
widget Specifies the List widget.
item Specifies the item that is to be added.
items Specifies a list of items that are to be added.
item_count Specifies the number of items to be added.
position Specifies the position at which to add the new item(s).

Description

XmListAdditem () inserts the specifiegteminto the list, whileXmListAd-

ditems () inserts the specified list aéms If item_counis smaller than the
number of items, only the firstem_counitems of the array are added. Tpesi-

tion argument specifies the location of the new item(s) in the lisposiion

value of 1 indicates the first item pmsitionvalue of 2 indicates the second item,
and so on. A value of O (zero) specifies the last item in the list. An inserted item

appears selected if it matches an item in the XmNselectedltems list.
Usage

XmListAdditem () andXmListAddltems () are convenience routines that

allow you to add items to a list. The routines add items to the list by internally
manipulating the arrays of compound strings specified by the XmNitems,
XmNitemCount, XmNselectedltems, and XmNselectedltemCount resources. If
an item being added to the list duplicates an item that is already selected, the new
item appears as selected. You should only use these routines if the list supports
multiple selections and you want to select the new items whose duplicates are
already selected. In order to add items with these routines, you have to create a

compound string for each item.

See Also
XmListAdditemUnselected (1), XmListReplaceltems (1),
XmListReplaceltemsPos (1),
XmListReplaceltemsPosUnselected (D),
XmListReplacePositions (1), XmList (2).

Motif Reference Manual

203

XmListAddltemUnselected Motif Functions and Macros

Name

Synopsis

XmListAddltemUnselected, XmListAddltemsUnselected — add an item/items to
a list.

#include <Xm/List.h>

void XmListAddltemUnselected (Widgetidget XmStringitem, int position)
void XmListAddIitemsUnselected (Widgetidget XmString %items int
item_countint position)

Inputs

widget Specifies the List widget.

item Specifies the item that is to be added.

items Specifies a list of items that are to be added.
item_count Specifies the number of items to be added.

position Specifies the position at which to add the new item(s).

Availability

XmListAddItemsUnselected () is only available in Motif 1.2 and later.

Description

Usage

Example

204

XmListAddIitemUnselected () inserts the specifieiteminto the list, while
XmListAddIitemsUnselected () inserts the specified list aéms If

item_counts smaller than the number of items, only the fitstm_counttems of

the array are added. Thesitionargument specifies the location of the new
item(s) in the list. Apositionvalue of 1 indicates the first itempasitionvalue

of 2 indicates the second item, and so on. A value of 0 (zero) specifies the last
item in the list. An inserted item does not appear selected, even if it matches an
item in the XmNselectedltems list.

XmListAdditemUnselected () andXmListAddItemsUnselected 0

are convenience routines that allow you to add items to a list. These routines add
items to the list by internally manipulating the array of compound strings speci-
fied by the XmNitems and XmNitemCount resources. If an item being added to
the list duplicates an item that is already selected, the new item does not appear
as selected. In order to add items with these routines, you have to create a com-
pound string for each item.

The following callback routine shows how to use of XmListAddltemUnse-

lected() to insert an item into a list in alphabetical order:

void add_item (Widget text_w,

Motif Reference Manual

Motif Functions and Macros XmListAddIitemUnselected

XtPointer client_data,
XtPointer call_data)

{
char *text, *newtext = XmTextFieldGetString
(text_w);
XmsString str, *strlist;
int u_bound, |_bound = 0;
Widget list w = (Widget) client_data;

/* newtext is the text typed in the TextField
widget */
if (Inewtext || *newtext) {

XtFree (newtext);

return;

}

/* get the current entries (and number of entries)

from the List */

XtVaGetValues (list_w, XmNitemCount, &u_bound,
XmNitems, &strlist, NULL);

u_bound--;

/* perform binary search */
while (u_bound >=1_bound) {
inti=1_bound + (u_bound - |_bound)/2;

text = (char *) XmStringUnparse (strlist[i],
NULL,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, O,
XmOUTPUT_ALL);

if (Itext)
break;

if (strcmp (text, newtext) > 0)
u_bound =i-1;

else
|_bound =i+1;

XtFree (text);
}

/* insert item at appropriate location */

Motif Reference Manual 205

XmListAddltemUnselected Motif Functions and Macros

str = XmStringCreatelLocalized (newtext);
XmListAdditemUnselected (list_w, str, |_bound+1);
XmsStringFree (str);

XtFree (newtext);

See Also
XmListAdditem (1), XmListReplaceltems (1),
XmListReplaceltemsPos (1),
XmListReplaceltemsPosUnselected (1),
XmListReplaceltemsUnselected (1),
XmListReplacePositions (1), XmList (2).

206 Motif Reference Manual

Motif Functions and Macros XmListDeleteAllltems

Name
XmListDeleteAllltems — delete all of the items from a list.
Synopsis
#include <Xm/List.h>
void XmListDeleteAllltems (Widgetvidge)
Inputs
widget Specifies the List widget.
Description
XmlListDeleteAllltems () removes all of the items from the specified List
widget
Usage
XmListDeleteAllltems () is a convenience routine that allows you to
remove all of the items from a list. The routine removes items from the list by
internally manipulating the array of compound strings specified by the
XmNitems and XmNitemCount resources.
See Also

XmListDeleteltem (1), XmListDeleteltemsPos (D),
XmListDeletePos (1), XmListDeletePositions (1), XmList (2).

Motif Reference Manual 207

XmListDeleteltem Motif Functions and Macros

Name

Synopsis

XmListDeleteltem, XmListDeleteltems — delete an item/items from a list.

#include <Xm/List.h>

void XmListDeleteltem (Widgetvidget XmStringitem)
void XmListDeleteltems (Widgetidget XmString *tems intitem_counk

Inputs

widget Specifies the List widget.

item Specifies the item that is to be deleted.

items Specifies a list of items that are to be deleted.
item_count Specifies the number of items to be deleted.

Description

Usage

See Also

XmListDeleteltem ()! removes the first occurrence of the specifiexh

from the list, whileXmListDeleteltems () removes the first occurrence of
each of the elements @éms If an item does not exist, a warning message is dis-
played.

XmListDeleteltem () andXmListDeleteltems () are convenience rou-

tines that allow you to remove items from a list. The routines remove items from
the list by internally manipulating the array of compound strings specified by the
XmNitems and XmNitemCount resources. If there is more than one occurrence
of an item in the list, the routines only remove the first occurrence. In order to
remove items with these routines, you have to create a compound string for each
item. The routines use a linear search to locate the items to be deleted.

XmListDeleteAllltems (1), XmListDeleteltemsPos (D),
XmListDeletePos (1), XmListDeletePositions (1), XmList (2).

1.Erroneously given as ListDeleteltem() in 1st and 2nd editions.

208

Motif Reference Manual

Motif Functions and Macros XmListDeleteltemsPos

Name
XmListDeleteltemsPos — delete items starting at a specified position from a list.

Synopsis
#include <Xm/List.h>

void XmListDeleteltemsPos (Widgetidget int item_countint position)
Inputs

widget Specifies the List widget.

item_count Specifies the number of items to be deleted.

position Specifies the position from which to delete items.

Description
XmListDeleteltemsPos () removestem_counitems from the list, starting
at the specifiegosition A positionvalue of 1 indicates the first itempasition
value of 2 indicates the second item, and so on. If the number of items between
positionand the end of the list is less thitam_countthe routine deletes all of
the items up through the last item in the list.

Usage
XmListDeleteltemsPos () is a convenience routine that allows you to
remove items from a list. The routine removes items from the list by internally
manipulating the array of compound strings specified by the XmNitems and
XmNitemCount resources. Since you are specifying the position of the items to
be removed, you do not have to create compound strings for the items. The rou-
tine does not have to search for the items, so it avoids the linear search that is
used by XmListDeleteltems().

See Also
XmListDeleteAllltems (1), XmListDeleteltem (1),
XmListDeletePos (1), XmListDeletePositions (1), XmList (2).

Motif Reference Manual 209

XmListDeletePos Motif Functions and Macros

Name

Synopsis

XmListDeletePos — delete an item at the specified position from a list.

#include <Xm/List.h>

void XmListDeletePos (Widgetidget int position)

Inputs

widget Specifies the List widget.
position Specifies the position from which to delete an item.

Description

Usage

See Also

210

XmlListDeletePos () removes the item at the specifigakitionfrom the list.

A positionvalue of 1 indicates the first itempasitionvalue of 2 indicates the
second item, and so on. A value of 0 (zero) specifies the last item in the list. If the
list does not have the specifipdsition a warning message is displayed.

XmListDeletePos () is a convenience routine that allows you to remove an
item from a list. The routine removes items from the list by internally manipulat-
ing the array of compound strings specified by the XmNitems and XmNitem-
Count resources. Since you are specifying the position of the item to be removed,
you do not have to create a compound string for the item. The routine does not
have to search for the item, so it avoids the linear search that is used by
XmListDeleteltem ().

XmListDeleteAllltems (1), XmListDeleteltem (1),
XmListDeleteltemsPos (1), XmListDeletePositions (D),
XmList (2).

Motif Reference Manual

Motif Functions and Macros XmListDeletePositions

Name

Synopsis

XmListDeletePositions — delete items at the specified positions from a list.

#include <Xm/List.h>

void XmListDeletePositions (Widgetidget int *position_list int
position_count

Inputs

widget Specifies the List widget.
position_list Specifies a list of positions from which to delete items.
position_count Specifies the number of positions to be deleted.

Availability

Motif 1.2 and later.

Description

Usage

See Also

XmListDeletePositions () removes the items that appear at the positions
specified inposition_listfrom the list. A position value of 1 indicates the first
item, a value of 2 indicates the second item, and so on. If the list does not have
the specified position, a warning message is displayedsifion_counts

smaller than the number of positiongdasition_list only the firstposition_count
items of the array are deleted.

XmListDeletePositions () is a convenience routine that allows you to
remove items from a list. The routine remove the items by modifying the
XmNitems and XmNitemCount resources. Since you are specifying the positions
of the items to be removed, you do not have to create compound strings for the
items. The routine does not have to search for the items, so it avoids the linear
search that is used B§mListDeleteltems 0.

XmListDeleteAllltems (1), XmListDeleteltem (1),
XmListDeleteltemsPos (1), XmListDeletePos (1), XmList (2).

Motif Reference Manual 211

XmListDeselectAllltems Motif Functions and Macros

Name
XmListDeselectAllltems — deselect all items in a list.

Synopsis
#include <Xm/List.h>
void XmListDeselectAllltems (Widgetidge)

Inputs

widget Specifies the List widget.

Description
XmlListDeselectAllitems () unhighlights all of the selected items in the
specifiedwidgetand removes these items from the XmNselectedltems list. If the
list is in normal mode, the item with the keyboard focus remains selected; if the
list is in add mode, all of the items are deselected.

Usage
XmListDeselectAllltems () is a convenience routine that allows you to
deselect all of the items in a list. The routine deselects items in the list by inter-
nally manipulating the array of compound strings specified by the XmNselecte-
ditems and XmNselectedltemCount resources. This routine does not invoke any
selection callbacks for the list when the items are deselected.

See Also

XmListDeselectltem (1), XmListDeselectPos (1),
XmListSelectltem (1), XmListSelectPos (1),
XmListUpdateSelectedList (1), XmList (2).

212 Motif Reference Manual

Motif Functions and Macros XmListDeselectltem

Name
XmlListDeselectltem — deselect an item from a list.
Synopsis
#include <Xm/List.h>

void XmListDeselectltem (Widgetidget XmStringitem)

Inputs
widget Specifies the List widget.

item Specifies the item that is to be deselected.

Description
XmListDeselectltem () unhighlights and removes from the XmNselecte-
ditems list the first occurrence of the speciftech

Usage
XmlListDeselectltem () is a convenience routine that allows you to deselect
an item in a list. The routine deselects items in the list by internally manipulating
the array of compound strings specified by the XmNselectedltems and XmNse-
lecteditemCount resources. This routine does not invoke any selection callbacks
for the list when the item is deselected. If there is more than one occurrence of an
item in the list, the routine only deselects the first occurrence. In order to deselect
an item with this routine, you have to create a compound string for the item. The
routine uses a linear search to locate the item to be deselected.

See Also
XmListDeselectAllltems (1), XmListDeselectPos (1),
XmListSelectltem (1), XmListSelectPos (1),
XmListUpdateSelectedList (1), XmList (2).

Motif Reference Manual 213

XmListDeselectPos Motif Functions and Macros

Name XmlListDeselectPos — deselect an item at the specified position from a list.
Synopsis

#include <Xm/List.h>

void XmListDeselectPos (Widgetidget int position)

Inputs
widget Specifies the List widget.

position Specifies the position at which to deselect an item.

Description
XmlListDeselectPos () unhighlights the item at the specifigdsitionin the
list and removes the item from the XmNselectedltems ligtogitionvalue of 1

indicates the first item, positionvalue of 2 indicates the second item, and so on.
A value of 0 (zero) specifies the last item in the list. If the list does not have the

specifiedposition the routine does nothing.

Usage
XmListDeselectPos () is a convenience routine that allows you to deselect

an item in a list. The routine deselects items in the list by internally manipulating
the array of compound strings specified by the XmNselectedltems and XmNse-
lectedltemCount resources. This routine does not invoke any selection callbacks
for the list when the item is deselected. Since you are specifying the position of
the item to be deselected, you do not have to create a compound string for the

item. The routine does not have to search for the item, so it avoids the linear
search that is used B§mListDeselectltem 0.

See Also
XmListDeselectAllltems (1), XmListDeselectPos (1),
XmListGetSelectedPos (1), XmListPosSelected (1),
XmListSelectltem (1), XmListSelectPos (1),
XmListUpdateSelectedList (1), XmList (2).

214 Motif Reference Manual

Motif Functions and Macros XmListGetKbdIltemPos

Name
XmListGetKbdltemPos — get the position of the item in a list that has the location
cursor.
Synopsis
#include <Xm/List.h>
int XmListGetKbdIltemPos (Widgetidge)
Inputs
widget Specifies the List widget.
Returns
The position of the item that has the location cursor.
Availability
Motif 1.2 and later.
Description
XmListGetKbdltemPos () retrieves the position of the item in the specified
List widgetthat has the location cursor. A returned value of 1 indicates the first
item, a value of 2 indicates the second item, and so on. The value 0 (zero) speci-
fies that the list is empty.
Usage

XmListGetKbdltemPos () provides a way to determine which item in a list
has the keyboard focus. This information is useful if you need to perform actions
based on the position of the location cursor in the list.

See Also
XmListSetAddMode (1), XmListSetkbdIitemPos (1), XmList (2).

Motif Reference Manual 215

XmListGetMatchPos Motif Functions and Macros

Name

Synopsis

XmListGetMatchPos — get all occurrences of an item in a list.

#include <Xm/List.h>

Boolean XmListGetMatchPos (Widgeidget XmStringitem, int
** position_list int *position_count

Inputs

widget Specifies the List widget.
item Specifies the item whose positions are to be retrieved.

Outputs

position_list Returns a list of the positions of the item.
position_count Returns the number of items in position_list.

Returns

True if the item is in the list or False otherwise.

Description

Usage

Example

216

XmListGetMatchPos () determines whether the specifitam exists in the

list. If the list containgtem, the routine returns True apdsition_listreturns a

list of positions that specify the location(s) of titem A position value of 1 indi-
cates the first item, a position value of 2 indicates the second item, and so on.
XmListGetMatchPos () allocates storage for thpsition_listarray when the
item is found; the application is responsible for freeing this storage using
XtFree (). If the list does not contaitem, the routine returns False, and
position_counts set to zero. In Motif 1.2.3 and earlier, the valugosition_list

is undefined ifitemis not within the list. From Motif 1.2.4 and latgypsition_list

is set to NULL.

XmListGetMatchPos () is a convenience routine that provides a way to locate
all of the occurrences of an item in a list. Alternatively, you could obtain this
information yourself using the XmNitems resource ZniListitemPos ().

The following code fragments show the us&ofListGetMatchPos ():

Widget list_w;

int *pos_list;

int pos_cnt, i;

char *choice ="A Sample Text String";
XmString str = XmStringCreatelLocalized
(choice);

Motif Reference Manual

Motif Functions and Macros XmListGetMatchPos

if ('XmListGetMatchPos (list_w, str, &pos_list,
&pos_cnt))
XtWarning ("Can’t get items in list");
else {
printf ("%s exists at %d positions:", choice,
pos_cnt);

for (i=0; i < pos_cnt; i++)
printf (" %d", pos_list[i]);

puts (");

XtFree (pos_list);
}

XmsStringFree (str);

See Also
XmListGetSelectedPos (1), XmList (2).

Motif Reference Manual

217

XmListGetSelectedPos Motif Functions and Macros

Name
XmListGetSelectedPos — get the positions of the selected items in a list.

Synopsis
#include <Xm/List.h>

Boolean XmListGetSelectedPos (Widgatiget int ** position_list int
*position_count

Inputs
widget Specifies the List widget.

Outputs
position_list Returns a list of the positions of the selected items.
position_count Returns the number of items in position_list.

Returns
True if there are selected items in the list or False otherwise.

Description
XmListGetSelectedPos () determines whether there are any selected items
in the list. If the list has selected items, the routine returns Trupaaitibn_list
returns a list of positions that specify the location(s) of the items. A position
value of 1 indicates the first item, a position value of 2 indicates the second item,
and so onXmListGetSelectedPos () allocates storage for thp@sition_list
array when there are selected items; the application is responsible for freeing this
storage usingtFreq)). If the list does not contain any selected items, the routine
returns False angbsition_counts set to zero. In Motif 1.2.3 and earlier, the
value ofposition_listis undefined if there are no selected items within the list.
From Motif 1.2.4 and lateposition_listis set to NULL.

Usage
XmListGetSelectedPos () is a convenience routine that provides a way to
determine the positions of all of the selected items in a list. Alternatively, you
could obtain this information yourself using the XmNselectedltems resource and
XmlListltemPos ().

See Also
XmListGetMatchPos (1), XmList (2).

218 Motif Reference Manual

Motif Functions and Macros XmListltemExists

Name
XmlListltemEXxists — determine if a specified item is in a list.
Synopsis
#include <Xm/List.h>
Boolean XmListlitemExists (Widgetidget XmStringitem)
Inputs
widget Specifies the List widget.
item Specifies the item whose presence in the list is checked.
Returns
True if the item is in the list or False otherwise.
Description
XmListltemExists () determines whether the list contains the specifieu
The routine returns True if themis present and False if it is not.
Usage
XmListltemExists () is a convenience routine that determines whether or not
an itemis in a list. In order to use the routine, you have to create a compound
string for the item. The routine uses a linear search to locate the item. You may be
able to obtain this information more effectively by searching the XmNitems list
using your own search procedure.
See Also

XmListGetMatchPos (1), XmListitemPos (1), XmList (2).

Motif Reference Manual 219

XmListltemPos Motif Functions and Macros

Name
XmListltemPos — return the position of an item in a list.
Synopsis
#include <Xm/List.h>
int XmListltemPos (Widgetvidget XmStringitem)
Inputs
widget Specifies the List widget.
item Specifies the item whose position is returned.
Returns
The position of the item in the list or 0 (zero) if ftEmis not in the list.
Description
XmListltemPos () returns the position of the first occurrence of the specified
itemin the list. A position value of 1 indicates the first item, a position value of 2
indicates the second item, and so on. If item is not in thlist,istitem-
Pos() returns O (zero).
Usage
XmListltemPos () is a convenience routine that finds the position of an item in
a list. If there is more than one occurrence of the item in the list, the routine only
returns the position of the first occurrence. In order to use the routine, you have
to create a compound string for the item. The routine uses a linear search to
locate the item.
Example
The following routines show how to make sure that a given item in a list is visi-
ble:
void MakePosVisible (Widget list_w, int item_no)
{
int top, visible;
XtVaGetValues (list_w, XmNtopltemPosition,
&top,
XmNuvisibleltemCount,
&visible,

NULL);

if (item_no < top)
XmListSetPos (list_w, item_no);

else if (item_no >= top+visible)
XmListSetBottomPos (list_w, item_no);

220 Motif Reference Manual

Motif Functions and Macros XmListltemPos

}
void MakeltemVisible (Widget list_w, XmString item)
{
int item_no = XmListlitemPos (list_w, item);
if (item_no > 0)
MakePosVisible (list_w, item_no);
}

See Also
XmListltemExists (1), XmListPosSelected (1), XmList (2).

Motif Reference Manual 221

XmListPosSelected Motif Functions and Macros

Name
XmListPosSelected — check if the item at a specified position is selected in a list.
Synopsis
#include <Xm/List.h>
Boolean XmListPosSelected (Widgeidget int position)
Inputs
widget Specifies the List widget.
position Specifies the position that is checked.
Returns
True if the item is selected or False if the item is not selected po#iigonis
invalid.
Availability
Motif 1.2 and later.
Description
XmListPosSelected () determines whether or not the list item at the speci-
fied positionis selected. Apositionvalue of 1 indicates the first item msition
value of 2 indicates the second item, and so on. The value 0 (zero) specifies the
last item in the list. The routine returns True if the list item is selected. It returns
False if the item is not selected or the list does not have the speci§i¢éidn
Usage
XmListPosSelected() is a convenience routine that lets you check if an item at a
particular position is selected. Alternatively, you could check the list of positions
returned byXmListGetSelectedPos () to see if the item at a position is
selected.
See Also

XmListDeselectPos (1), XmListGetSelectedPos (1),
XmlListSelectPos (1), XmListUpdateSelectedList (1), XmList (2).

222 Motif Reference Manual

Motif Functions and Macros XmListPosToBounds

Name
XmListPosToBounds — return the bounding box of an item at the specified posi-
tion in a list.
Synopsis
#include <Xm/List.h>
Boolean XmListPosToBounds (Widget widget
int position
Position *,
Position ,
Dimension “width,
Dimension ‘heigh)
Inputs
widget Specifies the List widget.
position Specifies the position of the item for which to return the bounding
box.
Outputs
X Returns the x-coordinate of the bounding box for the item.
y Returns the y-coordinate of the bounding box for the item.
width Returns the width of the bounding box for the item.
height Returns the height of the bounding box for the item.
Returns
True if item at the specified position is visible or False otherwise.
Avalilability
Motif 1.2 and later.
Description

XmListPosToBounds () returns the bounding box of the item at the specified
positionin the list. Apositionvalue of 1 indicates the first itempasitionvalue

of 2 indicates the second item, and so on. A value of 0 (zero) specifies the last
item in the list. The routine returns tlk@ndy coordinates of the upper left corner
of the bounding box in relation to the upper left corner of the List widget.
XmListPosToBounds () also returns thevidth andheightof the bounding

box. Passing a NULL value for any of they, width, or heightparameters indi-
cates that the value for the parameter should not be returned. If the item at the
specifiedpositionis not visible XmListPosToBounds () returns False and the
return values are undefined.

Motif Reference Manual 223

XmListPosToBounds Motif Functions and Macros

Usage
XmListPosToBounds () provides a way to determine the bounding box of an
item in a list. This information is useful if you want to perform additional event
processing or draw special graphics for the list item.

See Also
XmListYToPos (1), XmList (2).

224 Motif Reference Manual

Motif Functions and Macros XmListReplaceltems

Name

Synopsis

XmListReplaceltems — replace specified items in a list.

#include <Xm/List.h>

void XmListReplaceltems (Widget widget
XmString *old_items
int item_count
XmString *new_itemp

Inputs

widget Specifies the List widget.

old_items Specifies a list of the items that are to be replaced.
item_count Specifies the number of items that are to be replaced.
new_items Specifies a list of the new items.

Description

Usage

See Also

XmListReplaceltems () replaces the first occurrence of each item in the
old_itemdlist with the corresponding item from thew_itemdist. If an item in
theold_itemdlist does not exist in the specified Ligtdget the corresponding

item innew_item$is skipped. litem_counis smaller than the number of
old_itemsor new_itemsonly the firstitem_counitems are replaced. A new item
appears selected if it matches an item in the XmNselectedltems list.

XmListReplaceltems () is a convenience routine that allows you to replace
particular items in a list. The routine replaces items by manipulating the array of
compound strings specified by the XmNitems and XmNitemCount resources. If a
new item duplicates an item that is already selected, the new item appears as
selected. You should only use this routine if the list supports multiple selections
and you want to select the new items whose duplicates are already selected. In
order to replace items with this routine, you have to create compound strings for
all of the old and new items. The routine uses a linear search to locate the items to
be replaced.

XmListAddltem (1), XmListAdditemUnselected (D),
XmListReplaceltemsPos (1),
XmListReplaceltemsPosUnselected (),
XmListReplaceltemsUnselected (),
XmListReplacePositions (1), XmList (2).

1.Erroneously given asew_listin 1st and 2nd edition.

Motif Reference Manual 225

XmListReplaceltemsPos Motif Functions and Macros

Name
XmListReplaceltemsPos — replace specified items in a list.

Synopsis
#include <Xm/List.h>

void XmListReplaceltemsPos (Widgetdget XmString *new_itemsint
item_countint position)

Inputs
widget Specifies the List widget.
new_items Specifies a list of the new items.
item_count Specifies the number of items that are to be replaced.
position Specifies the position at which to replace items.

Description
XmListReplaceltemsPos () replaces a consecutive number of items in the
list with items from thenew_itemdist. The first item that is replaced is located at
the specifiegpositionand each subsequent item is replaced by the corresponding
item fromnew_itemsA positionvalue of 1 indicates the first itempasition
value of 2 indicates the second item, and so dtertf_counis smaller than the
number ofnew_itemsonly the firstitem_counitems are replaced. If the number
of items betweepositionand the end of the list is less thitam_countthe rou-
tine replaces all of the items up through the last item in the list. A new item
appears selected if it matches an item in the XmNselectedltems list.

Usage
XmListReplaceltemsPos () is a convenience routine that allows you to
replace a contiguous sequence of items in a list. The routine replaces items by
manipulating the array of compound strings specified by the XmNitems and
XmNitemCount resources. If a new item duplicates an item that is already
selected, the new item appears as selected. You should only use this routine if the
list supports multiple selections and you want to select the new items whose
duplicates are already selected. In order to replace items with this routine, you
have to create compound strings for all of the new items. The routine does not
have to search for the items, so it avoids the linear searches that are used by
XmListReplaceltems ().

See Also
XmListAdditem (1), XmListAddltemUnselected (D),
XmListReplaceltems (1),
XmListReplaceltemsPosUnselected (D),
XmListReplaceltemsUnselected (D),
XmListReplacePositions (1), XmList (2).

226 Motif Reference Manual

Motif Functions and Macros XmListReplaceltemsPosUnselected

Name
XmListReplaceltemsPosUnselected — replace specified items in a list.
Synopsis
#include <Xm/List.h>
void XmListReplaceltemsPosUnselected (Widget widget
XmString *new_items
int item_count
int position
Inputs
widget Specifies the List widget.
new_items Specifies a list of the new items.
item_count Specifies the number of items that are to be replaced.
position Specifies the position at which to replace items.
Availability
Motif 1.2 and later.
Description
XmListReplaceltemsPosUnselected () replaces a consecutive number
of items in the list with items from theew_itemdist. The first item that is
replaced is located at the specifigaksitionand each subsequent item is replaced
by the corresponding item fromew_itemsA positionvalue of 1 indicates the
first item, apositionvalue of 2 indicates the second item, and so oiteth_count
is smaller than the number éw_itemsonly the firsitem_counitems are
replaced. If the number of items betwgmsitionand the end of the list is less
thanitem_countthe routine replaces all of the items up through the last item in
the list. A new item does not appear selected, even if it matches an item in the
XmNselecteditems list.
Usage

XmListReplaceltemsPosUnselected () is a convenience routine that

allows you to replace a contiguous sequence of items in a list. The routine
replaces items by modifying the array of compound strings specified through the
XmNitems and XmNitemCount resources. If a new item duplicates an item that

is already selected, the new item does not appear as selected. In order to replace
items with this routine, you have to create compound strings for all of the new
items. The routine does not have to search for the items, so it avoids the linear
searches that are usedXwyListReplaceltemsUnselected 0.

Motif Reference Manual 227

XmListReplaceltemsPosUnselected Motif Functions and Macros

See Also
XmListAdditem (1), XmListAdditemUnselected (1),
XmListReplaceltems (1), XmListReplaceltemsPos (1),
XmListReplaceltemsUnselected (1),
XmListReplacePositions (1), XmList (2).

228 Motif Reference Manual

Motif Functions and Macros XmListReplaceltemsUnselected

Name

Synopsis

XmListReplaceltemsUnselected — replace specified items in a list.

#include <Xm/List.h>

void XmListReplaceltemsUnselected (Widget widget
XmString *old_items
int item_count
XmString *new_item}p

Inputs

widget Specifies the List widget.

old_items Specifies a list of the items that are to be replaced.
item_count Specifies the number of items that are to be replaced.
new_items Specifies a list of the new items.

Availability

Motif 1.2 and later.

Description

Usage

See Also

XmListReplaceltemsUnselected () replaces the first occurrence of each
item in theold_itemdlist with the corresponding item from threew_itemdist. If
an item in theold_itemslist does not exist in the specified Ligtdget the corre-

sponding item imew_item&is skipped. Ifitem_counts smaller than the number
of old_itemsor new_itemsonly the firsitem_counitems are replaced. A new
item does not appear selected, even if it matches an item in the XmNselecte-
ditems list.

XmListReplaceltemsUnselected () is a convenience routine that allows

you to replace particular items in a list. The routine replaces items by modifying
the array of compound strings specified through the XmNitems and XmNitem-
Countresources. If a new item duplicates an item that is already selected, the new
item does not appear as selected. In order to replace items with this routine, you
have to create compound strings for all of the old and new items. The routine uses
a linear search to locate the items to be replaced.

XmListAdditem(1), XmListAddltemUnselected(1),
XmListReplaceltems(1), XmListReplaceltemsPos(1),
XmListReplaceltemsPosUnselected(1),
XmListReplacePositions(1), XmList(2).

1.Erroneously given agew_listin 1st and 2nd editions.

Motif Reference Manual 229

XmListReplacePositions Motif Functions and Macros

Name

Synopsis

XmlListReplacePositions — replace items at the specified positions in a list.

#include <Xm/List.h>

void XmListReplacePositions (Widgefidget int *position_list XmString
*jtem_list intitem_couni

Inputs

widget Specifies the List widget.

position_list ~ Specifies a list of positions at which to replace items.
item_list Specifies a list of the new items.

item_count Specifies the number of items that are to be replaced.

Availability

Motif 1.2 and later.

Description

Usage

See Also

230

XmListReplacePositions () replaces the items that appear at the positions
specified inposition_listwith the corresponding items froitem_list A position

value of 1 indicates the first item, a value of 2 indicates the second item, and so
on. If the list does not have the specified position, a warning message is dis-
played. Ifitem_counis smaller than the number of positiongasition_list

only the firstitem_counitems are replaced. A new item appears selected if it
matches an item in the XmNselectedltems list.

XmListReplacePositions () is a convenience routine that allows you to
replace items at particular positions in a list. The routine replaces items by modi-
fying the array of compound strings specified through the XmNitems and
XmNitemCount resources. If a new item duplicates an item that is already
selected, the new item appears as selected. You should only use this routine if the
list supports multiple selections and you want to select the new items whose
duplicates are already selected. In order to replace items with this routine, you
have to create compound strings for all of the new items. The routine does not
have to search for the items, so it avoids the linear searches that are used by
XmListReplaceltems ().

XmListAdditem (1), XmListAdditemUnselected (),
XmListReplaceltems (1), XmListReplaceltemsPos (1),
XmListReplaceltemsPosUnselected (2),
XmListReplaceltemsUnselected (1), XmList (2).

Motif Reference Manual

Motif Functions and Macros XmListSelectltem

Name

Synopsis

XmListSelectltem — select an item from a list.

#include <Xm/List.h>

void XmListSelectltem (Widgewidget XmStringitem Booleamotify)

Inputs

widget Specifies the List widget.
item Specifies the item that is to be selected.
notify Specifies whether or not the selection callback is invoked.

Description

Usage

See Also

XmlListSelectltem () highlights and selects the first occurrence of the speci-
fieditemin the list. If the XmNselectionPolicy resource of the list is
XmMULTIPLE_SELECT, the routine toggles the selection statiesfL For any
other selection policy{mListSelectltem () replaces the currently selected
item(s) withitem The XmNselectedltems resource specifies the current selection
of the list. If notify is TrueXmListSelectltem () invokes the selection call-
back for the current selection policy.

XmListSelectltem () is a convenience routine that allows you to select an
item in a list. The routine selects the item by modifying the array of compound
strings specified by the XmNselectedltems and XmNselectedltemCount
resources. In order to select an item with this routine, you have to create a com-
pound string for the item. The routine uses a linear search to locate the item to be
selected. XmListSelectltem() only allows you to select a single item; there are no
routines for selecting multiple items. If you need to select more than one item,
useXtSetValues () to set XmNselectedltems and XmNselectedltemCount.

Thenotify parameter indicates whether or not the selection callbacks for the cur-
rent selection policy are invoked. You can avoid redundant code by setting this
parameter to True. If you are calliXgnListSelectltem () from a selection
callback routine, you probably want to set the parameter to False to avoid the
possibility of an infinite loop. CallingKmListSelectltem () with notify set to

True causes the callback routines to be invoked in a way that is indistinguishable
from a user-initiated selection action.

XmListDeselectAllltems (1), XmListDeselectltem (D),
XmListDeselectPos (1), XmListSelectPos (1),
XmListUpdateSelectedList (1), XmList (2).

Motif Reference Manual 231

XmListSelectPos Motif Functions and Macros

Name

Synopsis

XmListSelectPos — select an item at the specified position from a list.

#include <Xm/List.h>

void XmListSelectPos (Widgetidget int position Booleamotify)

Inputs

widget Specifies the List widget.
position Specifies the position of the item that is to be selected.
notify Specifies whether or not the selection callback is invoked.

Description

Usage

232

XmListSelectPos () highlights and selects the item at the specifiesition

in the list. Apositionvalue of 1 indicates the first item pasitionvalue of 2 indi-
cates the second item, and so on. A value of O (zero) specifies the last item in the
list. If the XmNselectionPolicy resource of the listis XmMULTIPLE_SELECT,
the routine toggles the selection state of the item. For any other selection policy,
XmListSelectPos () replaces the currently selected item with the specified
item. The XmNselectedltems resource lists the current selection of the list. If
notify is True,XmListSelectPos () invokes the selection callback for the cur-
rent selection policy.

XmListSelectPos () is a convenience routine that allows you to select an item

at a particular position in a list. The routine selects the item by modifying the
array of compound strings specified through the XmNselectedltems and XmNse-
lectedltemCount resources. Since you are specifying the position of the item to
be selected, you do not have to create a compound string for the item. The routine
does not have to search for the item, so it avoids the linear search that is used by
XmListSelectltem (). XmListSelectPos () only allows you to select a

single item; there are no routines for selecting multiple items. If you need to
select more than one item, use XtSetValues() to set XmNselectedltems and
XmNselecteditemCount.

Thenotify parameter indicates whether or not the selection callbacks for the cur-
rent selection policy are invoked. You can avoid redundant code by setting this
parameter to True. If you are calling XmListSelectPos() from a selection callback
routine, you probably want to set the parameter to False to avoid the possibility of
an infinite loop. Calling<mListSelectPos () with notify set to True causes

the callback routines to be invoked in a way that is indistinguishable from a user-
initiated selection action.

Motif Reference Manual

Motif Functions and Macros XmListSelectPos

See Also
XmlListDeselectAllitems (1), XmListDeselectltem (1),
XmListDeselectPos (1), XmListGetSelectedPos (1),
XmListPosSelected (1), XmListSelectltem (1), XmList (2).

Motif Reference Manual 233

XmListSetAddMode Motif Functions and Macros

Name
XmListSetAddMode — set add mode in a list.

Synopsis
#include <Xm/List.h>

void XmListSetAddMode (Widgewidget Booleanmodg
Inputs

widget Specifies the List widget.

mode Specifies whether to set add mode on or off.

Description
XmListSetAddMode () sets the state of add mode when the XmNselectionPol-
icy is XmEXTENDED_SELECT. Ifnodeis True, add mode is turned on; if
modeis False, add mode is turned off. When a List widget is in add mode, the
user can move the location cursor without disturbing the current selection.

Usage
XmListSetAddMode() provides a way to change the state of add mode in a list.
The distinction between normal mode and add mode is only important for mak-
ing keyboard-based selections. In normal mode, the location cursor and the selec-
tion move together, while in add mode, the location cursor and the selection can
be separate.

See Also
XmListGetKbdltemPos (1), XmListSetKbditemPos (1), XmList (2).

234 Motif Reference Manual

Motif Functions and Macros XmListSetBottomltem

Name

XmListSetBottomltem — set the last visible item in a list.
Synopsis

#include <Xm/List.h>

void XmListSetBottomltem (Widgetidget XmStringitem)

Inputs

widget Specifies the List widget.

item Specifies the item that is made the last visible item.
Description

XmListSetBottomltem () scrolls the Liswidgetso that the first occurrence

of the specifiedtem appears as the last visible item in the list.
Usage

XmListSetBottomltem () provides a way to make sure that a particutam

is visible in a list. The routine changes the viewable portion of the list so that the
specifiedtemis displayed at the bottom of the viewport. If there is more than one
occurrence of thégemin the list, the routine uses the first occurrence. In order to

use this routine, you have to create a compound string faetheThe routine

uses a linear search to locate iteen

See Also
XmListSetBottomPos (1), XmListSetHorizPos (1),
XmListSetltem (1), XmListSetPos (1), XmList (2).

Motif Reference Manual 235

XmListSetBottomPos Motif Functions and Macros

Name
XmListSetBottomPos — set the last visible item in a list.
Synopsis
#include <Xm/List.h>
void XmListSetBottomPos (Widgetidget int position)
Inputs
widget Specifies the List widget.
position Specifies the position of the item that is made the last visible item.
Description
XmListSetBottomPos () scrolls the Listvidgetso that the item at the speci-
fied positionappears as the last visible item in the listpésitionvalue of 1 indi-
cates the first item, positionvalue of 2 indicates the second item, and so on. A
value of 0 (zero) specifies the last item in the list.
Usage

XmListSetBottomPos () provides a way to make sure that an item at a partic-
ular position is visible in a list. The routine changes the viewable portion of the
list so that the item at the specifigdisitionis displayed at the bottom of the

viewport. Since you are specifying the position of the item, you do not have to
create a compound string for the item. The routine does not have to search for the
item, so it avoids the linear search that is useXhyListSetBottomltem ().

Example
The following routine shows how to make sure that an item at a given position in
a list is visible:

void MakePosVisible (Widget list_w, int item_no)

{
int top, visible;
XtVaGetValues (list_w, XmNtopltemPosition, &top, XmNvisibleltem-
Count, &visible, NULL);
if (item_no < top)
XmListSetPos (list_w, item_no);
else if (item_no >= top+visible)
XmListSetBottomPos (list_w, item_no);
}

See Also
XmListSetBottomltem (1), XmListSetHorizPos (1),
XmListSetltem (1), XmListSetPos (1), XmList (2).

236 Motif Reference Manual

Motif Functions and Macros XmListSetHorizPos

Name
XmListSetHorizPos — set the horizontal position of a list.

Synopsis
#include <Xm/List.h>
void XmListSetHorizPos (Widgetidget int position)

Inputs

widget Specifies the List widget.
position Specifies the horizontal position.

Description
XmListSetHorizPos () scrolls the list to the specified horizorpalsition If
XmNlistSizePolicy is set to XmCONSTANT or XmRESIZE_IF_POSSIBLE and
the horizontal scroll bar is visibl&mListSetHorizPos () sets the XmNvalue
resource of the horizontal scroll bar to the specifieditionand updates the visi-
ble area of the list.

Usage
When a list item is too long to fit horizontally inside the viewing area of a List
widget, the widget either expands horizontally or adds a horizontal scroll bar,
depending on the value of the XmNlistSizePolicy resource. CaXimdistSe-
tHorizPos () is equivalent to the user moving the horizontal scroll bar to the
specified location.

See Also

XmListSetBottomltem (1), XmListSetBottomPos (1),
XmListSetltem (1), XmListSetPos (1), XmList (2).

Motif Reference Manual 237

XmListSetltem Motif Functions and Macros

Name
XmListSetltem — set the first visible item in a list.

Synopsis
#include <Xm/List.h>

void XmListSetltem (Widgetvidget XmStringitem)
Inputs
widget Specifies the List widget.
item Specifies the item that is made the first visible item.

Description
XmListSetltem () scrolls the Listvidgetso that the first occurrence of the
specifiedtemappears as the first visible item in the list.

Usage
XmListSetltem () provides a way to make sure that a particit@mis visible
in a list. The routine changes the viewable portion of the list so that the specified
itemis displayed at the top of the viewport. Using this routine is equivalent to set-
ting the XmNtopltemPaosition resource. If there is more than one occurrence of
theitemin the list, the routine uses the first occurrence. In order to use this rou-
tine, you have to create a compound string foritam The routine uses a linear
search to locate thieem

See Also
XmListSetBottomltem (1), XmListSetBottomPos (1),
XmListSetHorizPos (1), XmListSetPos (1), XmList (2).

238 Motif Reference Manual

Motif Functions and Macros XmListSetKbdltemPos

Name
XmlListSetKbdltemPos — set the position of the location cursor in a list.
Synopsis
#include <Xm/List.h>
Boolean XmListSetKbdltemPos (Widgetdget int position)
Inputs
widget Specifies the List widget.
position Specifies the position where the location cursor is set.
Returns
True on success or False if there is not item at position or the list is empty.
Availability
Motif 1.2 and later.
Description
XmListSetKbditemPos () sets the location cursor at the specifgesition A
positionvalue of 1 indicates the first itempasitionvalue of 2 indicates the sec-
ond item, and so on. A value of O (zero) specifies the last item in the list. The rou-
tine does not check the selection state of the item at the specified location.
Usage
XmListSetKbdltemPos () provides a way to change which item in a list has
the keyboard focus. The routine is useful if you need to make sure that particular
item has the keyboard focus at a given time, such as when the list first receives
the keyboard focus.
See Also

XmlListGetKbdltemPos (1), XmListSetAddMode (1), XmList (2).

Motif Reference Manual 239

XmListSetPos Motif Functions and Macros

Name
XmListSetPos — sets the first visible item in a list.
Synopsis
#include <Xm/List.h>
void XmListSetPos (Widgewidget int position)
Inputs
widget Specifies the List widget.
position Specifies the position of the item that is made the first visible item.
Description
XmListSetPos () scrolls the List widget so that the item at the specjfiesd-
tion appears as the first visible item in the listpAsitionvalue of 1 indicates the
first item, apositionvalue of 2 indicates the second item, and so on. A value of 0
(zero) specifies the last item in the list.
Usage

XmListSetPos () provides a way to make sure that an item at a particular loca-
tion is visible in a list. The routine changes the viewable portion of the list so that
the item at the specified position is displayed at the top of the viewport. Using
this routine is equivalent to setting the XmNtopltemPosition resource. Since you
are specifying the position of the item, you do not have to create a compound
string for the item. The routine does not have to search for the item, so it avoids
the linear search that is usedXwListSetitem ().

Example
The following routine shows how to make sure that an item at a given position in
a list is visible:

void MakePosVisible (Widget list_w, int item_no)

{
int top, visible;
XtVaGetValues (list_w, XmNtopltemPosition, &top, XmNvisibleltem-
Count, &visible, NULL);
if (item_no < top)
XmListSetPos (list_w, item_no);
else if (item_no >= top+visible)
XmListSetBottomPos (list_w, item_no);
}

See Also
XmListSetBottomltem(1), XmListSetBottomPos(1),
XmListSetHorizPos(1), XmListSetltem(1), XmList(2).

240 Motif Reference Manual

Motif Functions and Macros XmListUpdateSelectedList

Name
XmListUpdateSelectedList — update the list of selected items in a list.
Synopsis
#include <Xm/List.h>
void XmListUpdateSelectedList (Widgetidge)
Inputs
widget Specified the List widget.
Availability
Motif 1.2 and later.
Description
XmListUpdateSelectedList () updates the array of compound strings
specified through the XmNselectedltems resource. The routine frees the current
selected array, and then traverses the array of compound strings specified by the
XmNitems resource, adding each currently selected item to the XmNselecte-
ditems list.
Usage
XmListUpdateSelectedList () provides a way to update the list of
selected items in a list. This routine is useful if the actual items that are selected
are not synchronized with the value of the XmNselectedltems resource. This situ-
ation might arise if you are using internal list functions and modifying internal
data structures. If you are using the defined list routines, the situation should
never occur.
See Also

XmListDeselectAllltems (1), XmListDeselectltem (),
XmListDeselectPos (1), XmListGetSelectedPos (1),
XmListPosSelected (1), XmListSelectltem (),
XmListSelectPos (1), XmList (2).

Motif Reference Manual 241

XmListYToPos Motif Functions and Macros

Name

Synopsis

XmListYToPos — get the position of the item at the specified y-coordinate in a
list.

#include <Xm/List.h>

int XmListYToPos (Widgetvidget Positiony)

Inputs

widget Specifies the List widget.
y Specifies the y-coordinate.

Returns

The position of the item at the specified y-coordinate.

Avalilability

Motif 1.2 and later.

Description

Usage

See Also

242

XmListYToPos () retrieves the position of the item at the specifjecbordinate

in the list. They-coordinate is specified in the coordinate system of the list. A
returned value of 1 indicates the first item, a value of 2 indicates the second item,
and so on. The value 0 (zero) specifies that there is no item at the specified loca-
tion.

As of Motif 1.2, a return value of O (zero) indicates the first item, a value of 1
indicates the second item, and so on. In Motif 1.2.3 and earlier, the value that is
returned may not be a valid position in the list, so an application should check the
value with respect to the value of XmNitemCount before using it. In Motif 1.2.4
and later, the returned position may not exceed the value of XmNitemCount.

XmListYToPos () provides a way to translate a y-coordinate into a list position.
This routine is useful if you are processing events that report a pointer position
and you need to convert the location of the event into an item position.

XmListPosToBounds (1), XmList (2).

Motif Reference Manual

Motif Functions and Macros XmMainWindowSep1

Name
XmMainWindowSep1, XmMainWindowSep2, XmMainWindowSep3 — get the
widget ID of a MainWindow Separator.
Synopsis
#include <Xm/MainW.h>
Widget XmMainWindowSep1 (Widgetidge)
Widget XmMainWindowSep2 (Widgetidge)
Widget XmMainWindowSep3 (Widgetidge)
Inputs
widget Specifies the MainWindow widget.
Returns
The widget ID of the particular MainWindow Separator.
Availability
In Motif 2.0 and later, these routines are marked as deprecated.
Description
XmMainWindowSep1() returns the widget ID of the MainWindow widget’s
first Separator, which is located directly below the MenuBar.
XmMainWindowSep2() returns the widget ID of the second Separator in the
Main Window, which is between the Command and ScrolledWindow widgets.
XmMainWindowSep3() returns the widget ID of the MainWindow’s third Sep-
arator, which is located just above the message window. The three Separator
widgets in a MainWindow are visible only when the XmNshowSeparator
resource is set to True.
Usage

XmMainWindowSep1(), XmMainWindowSep2(), and

XmMainWindowSep3() provide access to the three Separator widgets that can
be displayed by a MainWindow widget. With the widget IDs, you can change the
visual attributes of the individual Separators.

In Motif 2.0 and later, the functioXtNameToWidget () is the preferred

method of obtaining the MainWindow components. You should\pakgetas

the first parameter, and "Separatorl”, "Separator2", or "Separator3" as the second
parameter to this procedure.

See Also
XmMainWindowSetAreas (1), XmMainWindow(2),
XmScrolledWindow (2).

Motif Reference Manual 243

XmMainWindowSetAreas Motif Functions and Macros

Name

Synopsis

XmMainWindowSetAreas — specify the children for a MainWindow.

#include <Xm/MainW.h>

void XmMainWindowSetAreas (Widgetvidget
Widget menu_bar
Widget command_window
Widget horizontal_scrollbay
Widget vertical_scrollbar
Widget work_region

Inputs

widget Specifies the MainWindow widget.

menu_bar Specifies the widget ID of the MenuBar.
command_window Specifies the widget ID of the command window.
horizontal_scrollbar ~ Specifies the widget ID of the horizontal ScrollBar.
vertical_scrollbar Specifies the widget ID of the vertical ScrollBar.
work_region Specifies the widget ID of the work window.

Availability

In Motif 2.0 and later, the procedure is marked as deprecated.

Description

Usage

244

XmMainWindowSetAreas () sets up the standard regions of the MainWindow
widgetfor an application. The MainWindow must be created before the routine is
called.XmMainWindowSetAreas () specifies the MenuBar, the work window,

the command window, and the horizontal and vertical ScrollBars for the Main-
Window. If an application does not have one of these regions, the corresponding
argument can be specified as NULL. Each region may have child widgets, and
this routine determines which of those children will be actively managed by the
MainWindow.

Each of the MainWindow regions is associated with a MainWindow resource;
XmMainWindowSetAreas () sets the associated resources. The associated
resources that correspond to the last five arguments to the routine are XmNmenu-
Bar, XmNcommand, XmNhorizontalScrollBar, XmNverticalScrollBar, and
XmNworkWindow. XmMainWindowSetAreas () does not provide a way to

set up the message area; this region must be set up by specifying the XmNmes-
sageWindow resource.

Motif Reference Manual

Motif Functions and Macros XmMainWindowSetAreas

Example

If an application does not callmMainWindowSetAreas (), the widget may

still set some of the standard regions. When a MenuBar child is added to a Main-
Window, if XmNmenuBar has not been set, it is set to the MenuBar child. When
a Command child is added to a MainWindow, if XmNcommand has not been set,
it is set to the Command child. If ScrollBars are added as children, the XmNhori-
zontalScrollBar and XmNverticalScrollBar resources may be set if they have not
already been specified. Any child that is not one of these types is used for the
XmNworkWindow. If you want to be certain about which widgets are used for
the different regions, it is wise to climMainWindowSetAreas () explicitly.

In Motif 2.0 and laterKXmMainWindowSetAreas (), is deprecated. The pro-
grammer should usétSetValues () in order to specify the XmNcommand-
Window, XmNmenuBar, XmNworkWindow, XmNhorizontalScrollBar, and
XmNverticalScrollBar resources of the MainWindotmMainWindowSe-
tAreas () does not handle the XmNmessageWindow resource in any case.

The following code fragment shows how to set some of the regions of a Main-
Window:

Widget top, main_w, menubar, command_w, text_w, scrolled_text w;
Arg args[4];

main_w = XtVaCreateManagedWidget("main_w", xmMainWindowWidget-
Class, top, NULL);

menubar = XmCreateMenuBar (main_w, "menubar”, NULL, 0);
XtManageChild (menubar);

XtSetArg (args[0], XmNrows, 24);

XtSetArg (args[1], XmNcolumns, 80);

XtSetArg (args[2], XmNeditable, False);

XtSetArg (args[3], XmNeditMode, XmMULTI_LINE_EDIT);
text w = XmCreateScrolledText (main_w, "text_w", args, 4);
XtManageChild (text_w);

scrolled_text_w = XtParent (text_w);
command_w = XmCreateText (main_w, "command_w", (Arg *) 0, 0);
XtManageChild (command_w);

#if (XmVERSION > 1)
XtVaSetValues (main_w,

XmNmenuBar, menubar,
XmNcommandWindow, command_w,
XmNhorizontalScrollBar, NULL,
XmNverticalScrollBar, NULL,

Motif Reference Manual 245

XmMainWindowSetAreas Motif Functions and Macros

XmNworkWindow, scrolled_text_w,
0);
#else /* XmVERSION > 1 */

XmMainWindowSetAreas (main_w, menubar, command_w, NULL, NULL,
scrolled_text_w);
#endif /* XmVERSION > 1 */

See Also
XmMainWindowSep(1), XmMainWindow(2), XmScrolledWindow (2).

246 Motif Reference Manual

Motif Functions and Macros XmMapSegmentEncoding

Name
XmMapSegmentEncoding — get the compound text encoding format for a font
list element tag.

Synopsis

char * XmMapSegmentEncoding (chdofitlist_tag

Inputs
fontlist_tag Specifies the compound string font list element tag.

Returns
A character string that contains a copy of the compound text encoding format or

NULL if the font list element tag is not found in the registry.

Availability
Motif 1.2 and later.

Description
XmMapSegmentEncoding () retrieves the compound text encoding format
associated with the specifiéghtlist_tag The toolkit stores the mappings
between compound text encodings and font list elements tags in a registry.
XmMapSegmentEncoding () searches the registry for a compound text encod-
ing format associated with the specifiahtlist_tagand returns a copy of the for-
mat. Iffontlist_tagis not in the registry, the routine returns NULL.
XmMapSegmentEncoding () allocates storage for the returned character
string; the application is responsible for freeing the storage using XtFree().

Usage
Compound text is an encoding that is designed to represent text from any locale.
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4 for
use as a text interchange format for interclient communication.

XmCvtXmStringToCT () converts a compound string into compound text by
using the font list tag of each compound string segment to select a compound text
format from the registry for the segmeXdimMapSegmentEncoding () pro-

vides a way for an application to determine the compound text format that would
be used for a particular font list element tag.

See Also
XmCvtXmStringToCT (1), XmRegisterSegmentEncoding (1).

Motif Reference Manual 247

XmMenuPosition Motif Functions and Macros

Name
XmMenuPosition — position a popup menu.
Synopsis
#include <Xm/RowColumn.h>
void XmMenuPosition (Widgaheny XButtonPressedEveneYen)
Inputs
menu Specifies the PopupMenu.
event Specifies the event that was passed to the action procedure manag-
ing the PopupMenu.
Description
XmMenuPosition () positions a popup menu, using the values of the x_root
and y_root fields from the specifiedent An application must call this routine
before managing the popup menu, except when the application is positioning the
menu itself.
Usage

Theeventparameter foKmMenuPosition () is defined to be of type XButton-
PressedEvent *; using another type of event might lead to toolkit problems. The
x_rootand y_root fields in theventstructure are used to position the menu at the
location of the mouse button press. You can modify these fields to position the
menu at another location.

In Motif 2.0 and later, a menu whose XmNpopupEnabled resource is
XmPOPUP_AUTOMATIC or XmPOPUP_AUTOMATIC_RECURSIVE has an
installed event handler which caksnMenuPosition () directly without the
need for an application to intervene in posting the menu.

Example
The following routine shows the use of an event handler to post a popup menu.

void Postlt (Widget w, XtPointer client_data, XEvent *event, Boolean *dispatch)

{
Widget popup = (Widget) client_data;
XButtonPressedEvent *bevent = (XButtonPressedEvent *) event;

if ((bevent->type != ButtonPress) && (bevent->button = 3))
return;

XmMenuPosition (popup, bevent);
XtManageChild (popup);

248 Motif Reference Manual

Motif Functions and Macros XmMenuPosition

extern Widget some_widget; /* Where the menu is posted */
extern Widget my_menu; /* The menu to post */

XtAddEventHandler(some_widget, ButtonPressMask, False, Postlt, (XtPointer)
my_menu) ;

See Also
XmRowColumi§2), XmPopupMeny2).

Motif Reference Manual 249

XmMessageBoxGetChild Motif Functions and Macros

Name
XmMessageBoxGetChild — get the specified child of a MessageBox widget.
Synopsis
#include <Xm/MessageB.h>
Widget XmMessageBoxGetChild (Widgetdget unsigned chachild)
Inputs
widget Specifies the MessageBox widget.
child Specifies the child of the MessageBox widget. Pass one of the val-
ues from the list below.
Returns
The widget ID of the specified child of the MessageBox.
Availability
As of Moatif 2.0, the toolkit abstract child fetch routines are marked for depreca-
tion. You should give preference XiNameToWidget (), except when fetching
the MessageBox default button.
Description
XmMessageBoxGetChild () returns the widget ID of the specifietiild of the
MessageBoxvidget
Usage

Thechild values XmDIALOG_CANCEL_BUTTON,
XmDIALOG_HELP_BUTTON, and XmDIALOG_OK_BUTTON specify the

action buttons in thevidget A child value of

XmDIALOG_DEFAULT_BUTTON specifies the current default button. The

value XmDIALOG_SYMBOL_LABEL specifies the label used to display the
message symbol, while XmDIALOG_MESSAGE_LABEL specifies the message
label. XmDIALOG_SEPARATOR specifies the separator that is positioned
between the message and the action buttons. For more information on the differ-
ent children of the MessageBox, see the manual page in Sedimti?2and Xt
Widget Classes

Widget Hierarchy

As of Motif 2.0, most Motif composite child fetch routines are marked as depre-
cated. However, since it is not possible to fetch the
XmDIALOG_DEFAULT_BUTTON child using a public interface except
throughXmMessageBoxGetChild (), the routine should not be considered

truly deprecated. For consistency with the preferred new style, when fetching alll
other child values, consider giving preference to the Intrinsics roxtiam-
eToWidget (), passing one of the following names as the second parameter:

250 Motif Reference Manual

Motif Functions and Macros XmMessageBoxGetChild

“Cancel’ (XmDIALOG_CANCEL_BUTTON)
“OK” (XmDIALOG_OK_BUTTON)
“Separator” (XmDIALOG_SEPARATOR)
“Help” (XmDIALOG_HELP_BUTTON)
“Symbol” (XmDIALOG_SYMBOL_LABEL)
“Message” (XmDIALOG_MESSAGE_LABEL)

Structures
The possible values for child are:

XmDIALOG_CANCEL_BUTTON XmDIALOG_OK_BUTTON
XmDIALOG_DEFAULT_BUTTON XmDIALOG_SEPARATOR
XmDIALOG_HELP_BUTTON

XmDIALOG_SYMBOL_LABEL

XmDIALOG_MESSAGE_LABEL

See Also
XmBulletinBoard (2), XmBulletinBoardDialog(2)XmErrorDialog (2),
XminformationDialog (2), XmManager(2), XmMessageBox(2),
XmMessageDialog (2), XmQuestionDialog (2),
XmTemplateDialog (2), XmWarningDialog (2),
XmWorkingDialog (2).

Motif Reference Manual 251

XmNotebookGetPagelnfo Motif Functions and Macros

Name
XmNotebookGetPagelnfo — return information about a Notebook page.
Synopsis
#include <Xm/Notebook.h>
XmNotebookPageStatus XmNotebookGetPagelnfo (Widget
widget
int
page_number
XmNotebookPagelnfo
*page_infQ
Inputs
widget Specifies the Notebook widget.
page_number Specifies a logical page humber.
Outputs
page_info Returns a structure into which the requested page information is
placed.
Returns
The status of the search for the requested information.
Avalilability
Motif 2.0 and later.
Description

252

XmNotebookGetPagelnfo () returns information associated with a logical
page of the Notebook.

The Notebook searches through the list of its children, looking for those which

are associated with the logical page humber specifigépy _numberThe

Notebook principally searches for page children, but collects data in passing on

any status area child with a matching logical number, or major and minor tab
children whose logical page number does not exgaeg:_numbefThe function
returns within theage_infostructure the data collected for each of the child
widget types.

If the requestegpage_numbeis greater than the value of the Notebook XmNlast-
PageNumber resource, or less than the Notebook XmNfirstPageNumber value,

the function returns XmPAGE_INVALID.

Otherwise, if exactly one matching page child is found, the function returns

XmPAGE_FOUND. If more than one matching page child is found, the routine
returns XmPAGE_DUPLICATED. For no matching page child, the return value

is XmPAGE_EMPTY.

Motif Reference Manual

Motif Functions and Macros XmNotebookGetPagelnfo

Usage

XmNotebookGetPagelnfo performs a linear search through the children of the
Notebook for widgets whose XmNpageNumber constraint resource matches the
requestegbage_numbeif a matching child is found with the XmNnotebook-
ChildType resource set to XmPAGE, the widget ID is stored within the
page_widgetlement of thpage_infostructure. If a matching child is of type
XmSTATUS_AREA, the widget ID is placed in thetatus_area_widgetlement.

If during the search a child widget is found which is of type XmMAJOR_TAB,
and the logical page number of the child does not exgagel nhumberthe

widget ID is stored within thenajor_tab_widgetlement. Again, if a child

widget is found of type XmMINOR_TAB, and the logical page humber of the
child does not excequhge numbeithe widget ID is stored within the
minor_tab_widgeelement of page_info.

Thepage_ widgetstatus_area_widgetajor_tab_widgetandminor_tab_widget
elements of thpage_infostructure are set during the search as each Notebook
child is compared, even if no XmPAGE child is found, grafie_number

exceeds the Notebook first and last page resources. An elemenpafjghénfo
structure can be NULL if no child of the associated type is found with a logical
page number which meets the matching criteria.

The Notebook automatically sorts children into ascending logical page order, and
the search is terminated as soon as any child has a logical page number which
exceeds the requestpdge_number

Structures
XmNotebookPagelnfo is defined as follows:

typedef struct {
int page_number; [the requested page number */
Widget page_widget; /&ny matching page widget */
Widget status_area_widget; dhy matching status area widgét
Widget major_tab_widget; [the nearest major tab widget/
Widget minor_tab_widget; [the nearest minor tab widget/

} XmNotebookPagelnfo;

A XmNotebookPageStatus can have one of the following values:

XmPAGE_FOUND XmPAGE_INVALID
XmPAGE_EMPTY XmPAGE_DUPLICATED
See Also
XmNotebook (2).

Motif Reference Manual 253

XmObjectAtPoint Motif Functions and Macros

Name
XmObjectAtPoint — determine the child nearest to a point.
Synopsis
#include <Xm/Xm.h>
Widget XmObjectAtPoint (Widgewidget Positionx, Positiony)
Inputs
widget Specifies a composite widget.
X Specifies an X coordinate relative to the widget left side.
y Specifies an Y coordinate relative to the widget top side.
Returns
The widget most closely associated with the coordinate X, y.
Availability
Motif 2.0 or later.
Description
XmObjectAtPoint () searches the list of childrenwfdget and returns the
widget ID of the child associated with tlxey coordinate. x andy are interpreted
as pixel values, relative to the top left of the Manager widget.
Usage

XmObjectAtPoint () calls the object_at_point method associated with a Man-
ager widget, in order to determine the child of the Manager most closely associ-
ated with the coordinate specified bgndy. Each widget class may override the
object_at_point method inherited from Manager, to redefine what is meant by
"associated".

The default Manager class method returns the last managed gadget which con-
tains the coordinate.

The DrawingArea overrides the default method, and performs a simple linear
search for the first managed child, widget or gadget, which contains the coordi-
nate.

The Container overrides the object_at_point method, by searching through the
list of logical child nodes, using any XmQTpointIn trait held by each child to
determine a logical match with the coordinate. If no XmQTpointin is held by the
child, the Container simply checks whether the coordinate is within the child
dimensions. The IconGadget holds the XmQTpointin trait, although neither this
fact nor the trait itself is otherwise documented.

See Also
XmContainer (2), XmDrawingArea (2), XmGadget(2),
XmlconGadget (2), XmManager(2).

254 Motif Reference Manual

Motif Functions and Macros XmOptionButtonGadget

Name
XmOptionButtonGadget — get the CascadeButtonGadget in an option menu

Synopsis
#include <Xm/RowColumn.h>

Widget XmOptionButtonGadget (Widgeption_meny

Inputs
option_menu Specifies the option menu.

Returns
The widget ID of the internal CascadeButtonGadget.

Description
XmOptionButtonGadget () returns the widget ID for the internal Cascade-
ButtonGadget that is created when the specijgbn_menwvidget is created.
An option menu is a RowColumn widget containing two gadgets: a CascadeBut-
tonGadget that displays the current selection and posts the submenu and a Label-
Gadget that displays the XmNlabelString resource.

Usage
XmOptionButtonGadget () provides a way for an application to access the
internal CascadeButtonGadget that is part of an option menu. Once you have
retrieved the gadget, you can alter its appearance. In Motif 1.2, you can also spec-
ify resources for the gadget using the widget name OptionButton.

See Also

XmOptionLabelGadget (1), XmCascadeButtonGadget (2),
XmLabelGadget (2), XmOptionMenu (2), XmRowColumr{2).

Motif Reference Manual 255

XmOptionLabelGadget Motif Functions and Macros

Name
XmOptionLabelGadget — get the LabelGadget in an option menu.
Synopsis
#include <Xm/RowColumn.h>
Widget XmOptionLabelGadget (Widgeption_meny
Inputs
option_menu Specifies the option menu.
Description
XmOptionLabelGadget () returns the widget ID for the internal LabelGadget
that is created when the specifagation_menuwvidget is created. An option
menu is a RowColumn widget containing two gadgets: a LabelGadget that dis-
plays the XmNlabelString resource, and a CascadeButtonGadget that displays
the current selection and posts the submenu.
Usage

XmOptionLabelGadget () provides a way for an application to access the
internal LabelGadget that is part of an option menu. Once you have retrieved the
gadget, you can alter its appearance. In Motif 1.2, you can also specify resources
for the gadget using the widget name OptionLabel.

See Also
XmOptionButtonGadget (1), XmCascadeButtonGadget (2),
XmLabelGadget (2), XmOptionMenu (2), XmRowColumr2).

256 Motif Reference Manual

Motif Functions and Macros XmParseMappingCreate

Name
XmParseMappingCreate — create a parse mapping.

Synopsis
XmParseMapping XmParseMappingCreate (Aagg* list, Cardinalarg_counj
Inputs
arg_list Specifies an argument list, consisting of resource name/value pairs.
arg_count Specifies the number of arguments in arg_list.

Returns
An allocated parse mapping.

Availability
Motif 2.0 and later.

Description
XmParseMappingCreate () creates a parse mapping, which is an entry in a
parse table. A parse mapping consists minimally of a match pattern, and a substi-
tution pattern or procedure, which can be used by string parsing functions in
order to compare against and subsequently transform text. A parse mapping is
created through a resource style argument list, wdrgrdistis an array of
resource name/value pairs, ard_countis the number of such pairs.

Usage
A parse table is an array of parse mappiXgsParseMappingCreate () cre-
ates a parse mapping using a resource style parameter list. The parse table can
subsequently be passedfmStringParseText () in order to filter or modify
an input string.

XmParseMappingCreate () allocates storage associated with the returned
parse mapping object. It is the responsibility of the programmer to free the allo-
cated memory by a call ®¥mParseMappingFree () at the appropriate

moment.

Example
The following code fragment creates a parse mapping which performs a simple
swap of occurrences of two characters within an input string:

char *swapover (char *input, /* input string */

char *a, * only first character in array used */
char *b) /* only first character in array used */
{
XmString tmp;

XmParseMapping parse_mapping;

Motif Reference Manual 257

XmParseMappingCreate Motif Functions and Macros

258

XmParseTable parse_table = (XmParseTable) XtCalloc (2, sizeof
(XmParseMapping));

Cardinal parse_table_index = 0;

Arg argv[4];

Cardinal argc =0;

char *output = (char *) 0;

/* create a XmParseMapping object to swap *a with *b */

argc = 0;

tmp = XmStringCreatelLocalized (a);

XtSetArg (argv[argc], XmNincludeStatus, XmMINSERT);
argc++,;

XtSetArg (argv[argc], XmNsubstitute, tmp);

argc++;

XtSetArg (argv[argc], XmNpattern, b);

argc++;

XtSetArg (argv[argc], XmNpatternType, XMCHARSET_TEXT);
argc++;

parse_mapping = XmParseMappingCreate (argv, argc);
parse_table[parse_table_index++] = parse_mapping;
XmStringFree (tmp);

/* create a XmParseMapping object to swap *b with *a */
argc = 0;

tmp = XmStringCreatelLocalized (b);

XtSetArg (argv[argc], XmNincludeStatus, XmMINSERT);
argc++,;

XtSetArg (argv[argc], XmNsubstitute, tmp);

argc++;

XtSetArg (argv[argc], XmNpattern, a);

argc++;

XtSetArg (argv[argc], XmNpatternType, XMCHARSET_TEXT);
argc++;

parse_mapping = XmParseMappingCreate (argv, argc);
parse_table[parse_table_index++] = parse_mapping;
XmStringFree (tmp);

/* substitute using the XmParseMapping. */

tmp = XmStringParseText ((XtPointer) input, NULL, NULL,
XmMCHARSET_TEXT,
parse_table, parse_table _index, NULL);
XmParseTableFree (parse_table, parse_table_index);

Motif Reference Manual

Motif Functions and Macros XmParseMappingCreate

/* convert XmString to String */
if (tmp = (XmString) 0) {
output = (char *) XmStringUnparse (tmp, NULL,
XmMCHARSET_TEXT,
XmMCHARSET_TEXT, NULL,

0, XmOUTPUT_ALL)!
XmStringFree (tmp);

}

return output;

See Also
XmParseMappingFree(1), XmParseMappingGetValues(1),
XmParseMappingSetValues(1), XmParseTableFree(1),
XmStringParseText(1), XmStringUnparse(1),
XmParseMapping(2).

1.The code sample in the 2nd edition us¥StringGetLtoR () to convert the compound string{m-
StringGetLtoR () is deprecated as of Motif 2.0.

Motif Reference Manual 259

XmParseMappingFree Motif Functions and Macros

Name
XmParseMappingFree — free the memory used by a parse mapping.

Synopsis
void XmParseMappingFree (XmParseMappi@gse_mapping

Inputs

parse_mapping Specifies a parse mapping.

Availability
Motif 2.0 and later.

Description
XmParseMappingFree () deallocates storage used by the specified parse map-
ping object.

Usage
The XmParseMapping type is opaque, and represents an entry in a parse table,
which can be used for transforming text. A parse mapping is created by
XmParseMappingCreate (), which allocates storage for the object repre-
sented by the type, and it is the responsibility of the programmer to reclaim the
memory when the parse mapping is no longer required.
It is important to calKmParseMappingFree () rather tharKtFree () upon
redundant parse mappings, otherwise compound strings internally referenced by
the object are not deallocated.

See Also

XmParseMappingCreate (1), XmParseMappingGetValues (1),
XmParseMappingSetValues (1), XmParseTableFree (1),
XmStringParseText (1), XmParseMapping (2).

260 Motif Reference Manual

Motif Functions and Macros XmParseMappingGetValues

Name
XmParseMappingGetValues — fetch resources from a parse mapping object.
Synopsis
void XmParseMappingGetValues (XmParseMappingparse_mapping
Arg *arg_list,
Cardinal arg_counj
Inputs
parse_mapping Specifies a parse mapping object.
arg_count Specifies the number of arguments in the list arg_list.
Outputs
arg_list Specifies the argument list of name/value pairs that contain the
resource names and addresses into which the resource values
are to be stored.
Availability
Motif 2.0 and later.
Description
XmParseMappingGetValues () fetches selected attributes from
parse_mappingThe set of attributes retrieved is specified through the resource
list arg_list, each element of the list being a structure containing a name/value
pair. The number of elements within the list is giveralyy count
Usage
If the XmNsubstitute attribute of the parse mapping is retrieved, the procedure
returns a copy of the internal value. It is the responsibility of the programmer to
recover the allocated space at a suitable point by callimgtringFree ().
Example

The following code illustrates fetching the values from an XmParseMapping:

XtPointer pattern;

XmTextType pattern_type;

XmString substitute;

XmParseProc parse_proc;

XtPointer client_data;

XmincludeStatus include_status;

Arg argv[6];

Cardinal argc = 0;

/* construct a resource-style argument list for all XmParseMapping values */
XtSetArg (argv[argc], XmNpattern, &pattern); argc++,;

XtSetArg (argv[argc], XmNpatternType, &pattern_type); argc++;

Motif Reference Manual 261

XmParseMappingGetValues Motif Functions and Macros

See Also

262

XtSetArg (argv[argc], XmNsubstitute, &substitute); argc++;
XtSetArg (argv[argc], XmNinvokeParseProc, &parse_proc); argc++;
XtSetArg (argv[argc], XmNclientData, &client_data); argc++;
XtSetArg (argv[argc], XmNincludeStatus, &include_status); argc++;

/* fetch the values. parse_mapping here is an unspecified XmParseMapping */
XmParseMappingGetValues (parse_mapping, argv, argc);

/* XmParseMappingGetValues returns a copy of the XmNsubstitute value */
/* which must be freed when no longer required by the application */
XmStringFree (substitute);

XmParseMappingCreate (1), XmParseMappingFree (1),
XmParseMappingSetValues (1), XmParseTableFree (1),
XmParseMapping (2).

Motif Reference Manual

Motif Functions and Macros XmParseMappingSetValues

Name
XmParseMappingSetValues — sets resources for a parse mapping object.
Synopsis
void XmParseMappingSetValues (XmParseMappingparse_mapping
Arg *arg_list,
Cardinal arg_counj
Inputs
parse_mapping Specifies a parse mapping object.
arg_list Specifies the list of name/value pairs containing resources to
be modified.
arg_count Specifies the number of arguments in thedigt list
Availability
Motif 2.0 and later.
Description
XmParseMappingSetValues () sets selected attributes within
parse_mappingThe set of attributes which is modified is specified through the
resource lisarg_list, each element of the list being a structure containing a
name/value pair. The number of elements within the list is givemdoycount
Usage

If the XmNsubstitute attribute of the parse mapping is set, the procedure inter-
nally takes a copy of the supplied value. It is the responsibility of the programmer
to recover the allocated space at a suitable point by climgtringFree ().

Example
The following skeleton code illustrates changing the values of a parse mapping:

XmincludeStatus map_tab (XtPointer *in_out,

XtPointer text_end, [* unused
*
: XmTextType type, /* unused
*
: XmStringTag tag, /* unused
*
: XmParseMapping entry, /* unused
*
: int pattern_length, /* unused
*
: XmString *str_out,

Motif Reference Manual 263

XmParseMappingSetValues Motif Functions and Macros

XtPointer call_data) [* unused
*/
{
/* Insert an XmString Tab component into the output stream */
*str_out = XmStringComponentCreate (XmSTRING_COMPONENT_TAB,
0, NULL);
*in_out = (*in_out + 1);
return XmINSERT,
}

/* change a parse mapping to invoke the above parse procedure */
void set_parse_tab_mapping (XmParseMapping parse_mapping)

{
Arg argv[4];
Cardinal argc =0;
/* construct resource-style argument list for XmParseMapping values */
XtSetArg (argv[argc], XmNpattern, "\t");
argc++;
XtSetArg (argv[argc], XmNpatternType, XMCHARSET_TEXT);
argc++;
XtSetArg (argv[argc], XmNincludeStatus, XmINVOKE);
argc++;
XtSetArg (argv[argc], XmNinvokeParseProc, = map_tab);
argc++;
/* change the values */
XmParseMappingSetValues (parse_mapping, argv, argc);
}

See Also
XmParseMappingCreate (1), XmParseMappingFree (1),
XmParseMappingGetValues (1), XmParseTableFree (1),
XmParseMapping (2),

264 Motif Reference Manual

Motif Functions and Macros XmParseTableFree

Name
XmParseTableFree — free the memory used by a parse table.
Synopsis
void XmParseTableFree (XmParseTatéese_tableCardinalparse_count
Inputs
parse_table Specifies a parse table.
parse_count Specifies the number of entries in the parse table.
Availability
Motif 2.0 and later.
Description
XmParseTableFree () deallocates storage used by the specjfaede_table
In addition, the function deallocates storage used by any parse mapping elements
of the tableparse_counindicates the number of mapping elements within the
table.
Usage
A parse table is an array of XmParseMapping objects. The XmParseMapping is
an opaque type, which is used when transforming text. Each parse mapping
object allocates memory in addition to any memory allocated by the parse table
array. It is important to cakmParseTableFree () rather tharXtFree ()
when deallocating storage associated with a parse table, otherwise objects con-
stituent within the array, and compound strings internally referenced by the parse
mapping objects, are not deallocated. The function should be called when a parse
table is no longer needed.
Example
/* Allocate a parse table */
XmParseTable parse_table = (XmParseTable) XtCalloc (2, sizeof
(XmParseMapping));
Cardinal parse_table_index = 0;
XmParseMapping parse_mapping;
Arg argv[MAX_ARGS];
Cardinal argc =0;

/* Create a XmParseMapping object */
argc = 0;

parse_mapping = XmParseMappingCreate (argv, argc);

/* Insert into parse table */
parse_table[parse_table_index++] = parse_mapping;

Motif Reference Manual 265

XmParseTableFree Motif Functions and Macros

See Also

266

/* Create another XmParseMapping object */
argc = 0;

parse_mapping = XmParseMappingCreate (argv, argc);

/* Insert into parse table */
parse_table[parse_table_index++] = parse_mapping;

/* Use the XmParseTable. */

tmp = XmStringParseText ((XtPointer) input, NULL, NULL,
XmCHARSET_TEXT, parse_table,
parse_table_index, NULL);

/* Free the parse table: this also frees the parse mappings */
XmParseTableFree (parse_table, parse_table_index);

XmParseMappingCreate (1), XmParseMappingFree (1),
XmParseMappingGetValues (1), XmParseMappingSetValues (1),
XmParseMapping (2).

Motif Reference Manual

Motif Functions and Macros XmPrintPopupPDM

Name
XmPrintPopupPDM - notify the Print Display Manager.
Synopsis
#include <Xm/Print.h>
XtEnum XmPrintPopupPDM (Widgetrint_shell Widgetvideo_she)l
Inputs
print_shell Specifies a PrintShell widget.
video_shell Specifies the widget on whose behalf the PDM dialog is
required.
Returns

Returns XmPDM_NOTIFY_SUCCESS if the PDM was natified,
XmPDM_NOTIFY_FAIL otherwise.

Availability
Motif 2.1 and later.

Note that not all operating system vendors incorporate the XmPrintShell within
the native Motif toolkit:

Description
XmPrintPopupPDM () sends a notification to start a Print Display Manager for
the application. The notification is issued to either the display associated with
print_shel| or the display ofideo_shelldepending upon the value of the envi-
ronment variable XPDMDISPLAY. XPDMDISPLAY can only be set to "print"
or "video". If the value is "print", the notification is sent to the display of
print_shell and similarly the value "video" sends the notification to the display
of video_shell If the notification could be sent, the function returns
XmPDM_NOTIFY_SUCCESS, otherwise the return value is
XmPDM_NOTIFY_FAIL.

Usage
XmPrintPopupPDM () is a convenience function which issues a notification
through the X selection mechanisms in order to start a Print Dialog Manager. The
notification is issued asynchronously: the return value
XmPDM_NOTIFY_SUCCESS indicates that the message has successfully been
issued, not that any PDM is now initialized. In order to track the status of the
PDM, the programmer registers an XmNpdmNotificationCallback with the
widgetprint_shell which must be an instance of the PrintShell widget class. To
ensure that the contents of the video_shell is not modified whilst the PDM is ini-

1.Sun Solaris being a case in point.

Motif Reference Manual 267

XmPrintPopupPDM Motif Functions and Macros

See Also

268

tializing, XmPrintPopupPDM () creates an input-only window over the top of
video_shelland the window is only removed when the PDM indicates that it is
present, or if the selection XmIPDM_START times out. The timeout period is set
at two minutes.

XmPrintSetup (1), XmPrintToFile (1), XmRedisplayWidget (1),
XmPrintShell (2).

Motif Reference Manual

Motif Functions and Macros XmPrintSetup

Name
XmPrintSetup — create a Print Shell widget.
Synopsis
#include <Xm/Print.h>
Widget XmPrintSetup (Widget video_widget
Screen print_screen
String name
ArgList arg_list,
Cardinal arg_coun}
Inputs
video_widget Specifies a widget from which video application data is
fetched.
print_screen Specifies the screen on which the PrintShell is created.
name Specifies the name of the created PrintShell.
arg_list Specifies an argument list of name/value pairs that contain
resources for the PrintShell.
arg_count Specifies the number of arguments in the list arg_list.
Returns
The created PrintShell, or NULL if no ApplicationShell can be found from
video_widget
Availability

Motif 2.1 and later.

Note that not all operating system vendors incorporate the PrintShell in their
native toolkit!

Description
XmPrintSetup () creates a PrintShell widget with the giveameon the
screerprint_screenThe new PrintShell is returned to the application. Resources
which configure the new print shell are supplied through an array of structures
which contain name/value pairs. The array of resourcagidist, and the
number of items in the arrayasg_count

Usage
XmPrintSetup () creates a new ApplicationShell on the screen specified by
print_screenand thereafter creates a PrintShell as a popup child. The new Appli-
cationShell is created with the same name and class as the ApplicationShell from
whichvideo_widgets descended. The XmNmappedWhenManaged resource of

1.For example, Sun Solaris includes the headers, but does not compile the widget into the Motif library.

Motif Reference Manual 269

XmPrintSetup Motif Functions and Macros

the PrintShell is set to False under the assumption that subsequent notification of
the start of a job or page is the correct time to map the widget. The print shell is
finally realized, and returned.

See Also
XmPrintPopupPDM (1), XmPrintToFile (1), XmRedisplayWidget (1),
XmPrintShell (2).

270 Motif Reference Manual

Motif Functions and Macros XmPrintToFile

Name
XmPrintToFile — save X Print Server data to file.
Synopsis
#include <Xm/Print.h>
XtEnum XmPrintToFile (Display display
String file_name
XPFinishProc finish_prog
XPointer client_datg
Inputs
display Specifies the print connection to the X server.
file_name Specifies the name of the file to contain the print output.
finish_proc Specifies a procedure called when printing is finished.
client_data Specifies application data to be passed to finish_proc.
Returns
True if printing can be initiated, otherwise False.
Availability

Motif 2.1 and later.

Note that not all operating system vendors incorporate the XmPrintShell in their
native toolkits!

Description
XmPrintToFile () is a convenience function which provides a simple interface
onto the X Print mechanisms, in order to save print data to tHéefilaame
Printing takes place asynchronously, and the programmer receives notification of
the status of the printing task by supplyfilgsh_prog which is called when the
task is finished. Thdisplayparameter is the print connection to the X server, and
is used to deduce an application name and class.

Usage
If XmPrintToFile () cannot open the filile_namefor writing, create a pipe,
or fork off a child process, the procedure returns False. An application name and
class is deduced using tiisplayparameter, and these are used by the child
process, which creates a new application context, and opens a new display con-
nection using the same name and class as the application process. Data is
retrieved from the X server through a calXpGetDocumentData (). The par-
ent process does not wait for the child to complete, but returns immediately after

1.For example, Sun Solaris supply the widget headers, but do not compile the component into the Motif library.

Motif Reference Manual 271

XmPrintToFile Motif Functions and Macros

initiating the child process. The return value True therefore does not mean that
the print task is complete, merely that the task is initiated.

The application is notified of task completion by supplying an XPFinishProc.
Thestatusparameter passed to the finish procedure when the task is completed is
set to XPGetDocFinished on successful completion. If for any reason the child
process fails to print the data, the file_nameis both closed and removed. The

file is closed in any case prior to calling the XPFinishProc.

XpStartJob () must be called by the application befémPrintToFile ()
can be called.

Structures
An XPFinishProc is specified as follows:

typedef void (*XPFinishProc)(Display *display,
XPContext context,
XPGetDocStatus status,
XPointer client_data);

If status is XPGetDocFinished, the print task has completed successfully.
See Also

XmPrintPopupPDM (1), XmPrintSetup (1), XmRedisplayWidget (1),
XmPrintShell (2).

272 Motif Reference Manual

Motif Functions and Macros XmProcessTraversal

Name

Synopsis

XmProcessTraversal — set the widget that has the keyboard focus.

Boolean XmProcessTraversal (Widgétiget XmTraversalDirectiomlirection)

Inputs

widget Specifies the widget whose hierarchy is to be traversed.
direction Specifies the direction in which to traverse the hierarchy. Pass one
of the values from the list below.

Returns

True on success or False otherwise.

Description

Usage

XmProcessTraversal () causes the input focus to change to another widget
under application control, rather than as a result of keyboard traversal events
from a userwidgetspecifies the widget whose hierarchy is traversed up to the
shell widget. If that shell has the keyboard foetreProcessTraversal ()
changes the keyboard focus immediately. If that shell does not have the focus, the
routine does not have an effect until the shell receives the focus.

Thedirectionargument specifies the nature of the traversal to be made. In each
case, the routine locates the hierarchy that contains the specified widget and then
performs the action that is particular to ttieection If the new setting succeeds,
XmProcessTraversal () returns True. The routine returns False if the key-
board focus policy is not XmEXPLICIT, if no traversable items exist, or if the
arguments are invalid.

For XmTRAVERSE_CURRENT, if the tab group that containdgetis inac-

tive, it is made the active tab groupMidgetis in the active tab group, it is given
the keyboard focus; ilvidgetis the active tab group, the first traversable item in it
is given the keyboard focus. For XmTRAVERSE_UP, XmTRAVERSE_DOWN,
XMTRAVERSE_LEFT, and XmTRAVERSE_RIGHT, in the hierarchy that con-
tainswidget the item in the specifiedirectionfrom the active item is given the
keyboard focus. For XmTRAVERSE_NEXT and XmTRAVERSE_PREYV, in the
hierarchy that containsidget the next and previous items in child order from
the active item are given keyboard focus. For XmTRAVERSE_HOME, in the
hierarchy that contains widget, the first traversable item is given the keyboard
focus. For XmTRAVERSE_NEXT_TAB_GROUP and
XMTRAVERSE_PREV_TAB_GROUP, in the hierarchy that contaidget the
next and previous tab groups from the active tab group are given the keyboard
focus.

Motif Reference Manual 273

XmProcessTraversal Motif Functions and Macros

Example

274

In Motif 2.0 and later, new XmTraversalDirection values
XMTRAVERSE_GLOBALLY_FORWARD and
XmMTRAVERSE_GLOBALLY_BACKWARD are provided in order to imple-
ment the XmDisplay resource XmNenableButtonTab. If enabled, for
XmMTRAVERSE_GLOBALLY_FORWARD navigation proceeds to the next (or
downwards, depending upon orientation) item within the current tab group,
unless the current location is the last item in the group, when navigation is into
the next tab group. Similarly, for XmTRAVERSE_GLOBALLY_BACKWARD
navigation proceeds to the previous (or upwards) item in the current tab group,
unless the current location is the first item in the group, when navigation is into
the previous tab group. The interpretation ofdhectionvalues
XMTRAVERSE_GLOBALLY_FORWARD and
XMTRAVERSE_GLOBALLY_BACKWARD is reversed where XmNlayoutDi-
rection is XmRIGHT_TO_LEFT.

XmProcessTraversal () does not allow traversal to widgets in different
shells or widgets that are not mapped. CalingProcessTraversal ()
inside a XmNfocusCallback causes a segmentation fault.

The following code fragments shows the us&XaiProcessTraversal ()asa
callback routine for a text widget. When the user presses the Return key, the key-
board focus is advanced to the next input area:

Widget form, label, text;

form = XtVaCreateWidget (“form", xmFormWidgetClass, parent,
XmNorientation, XmHORIZONTAL,

NULL);

label = XtVaCreateManagedWidget ("label”, xmLabelGadgetClass, form,
XmNleftAttachment, XmMATTACH_FORM,
XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmMATTACH_FORM,
NULL);

text = XtVaCreateManagedWidget ("text”, xmTextWidgetClass, form,
XmNleftAttachment,
XmATTACH_WIDGET,

XmNleftWidget, label,
XmNtopAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmMATTACH_FORM,
NULL);

XtAddCallback (text, XmNactivateCallback,

Motif Reference Manual

Motif Functions and Macros XmProcessTraversal

XmProcessTraversal, (XtPointer)
XmTRAVERSE_NEXT_TAB_GROUP);
XtManageChild (form);

Structures
The possible values for direction are:
XmTRAVERSE_CURRENT XMTRAVERSE_NEXT
XmTRAVERSE_UP XmTRAVERSE_PREV
XmTRAVERSE_DOWN XmTRAVERSE_HOME

XmTRAVERSE_LEFT
XmMTRAVERSE_NEXT_TAB_GROUP
XmMTRAVERSE_RIGHT
XmTRAVERSE_PREV_TAB_GROUP
XmMTRAVERSE_GLOBALLY_FORWARD
XmMTRAVERSE_GLOBALLY_BACKWARD

See Also

XmGetFocusWidget (1), XmGetTabGroup (1), XmGetVisibility (1),
XmisTraversable (1).

Motif Reference Manual 275

XmRedisplayWidget Motif Functions and Macros

Name
XmRedisplayWidget — force widget exposure for printing.

Synopsis
#include <Xm/Print.h>

void XmRedisplayWidget (Widgetidge)

Inputs
widget Specifies the widget to redisplay.

Availability
Motif 2.1 and later.

Note that not all operating system vendors compile the XmPrintShell into their
native Motif toolkits®

Description
XmRedisplayWidget () forces widget to redisplay itself by invoking the
expose method of theidget The routine is a convenience function which hides
the internals of the X11R6 Xp mechanisms, whichwisigetexposure in order
to implement printing.

Usage
XmRedisplayWidget () constructs a region which corresponds precisely to
the location and area occupied by a widget. The expose method of the widget is
called directly using the region in order to redisplay the wid¢aiRedis-
playWidget () is synchronous in effect. Asynchronous printing is performed
by creating a PrintShell, and specifying XmNstartJobCallback, XmNendJobCall-
back, and XmNpageSetupCallback procedures which are invoked in response to
X Print events as they arrive.

XmRedisplayWidget () is not multi-thread safe, nor is thnedgetparameter
fully validated: it is implicitly assumed to be the descendant of a PrintShell.

1.Sun Solaris supplied the widget headers, but the widget itself is compiled out of the Motif library.

276 Motif Reference Manual

Motif Functions and Macros XmRedisplayWidget

Example
The following code synchronously prints the contents of a text widget:

Widget app_shell, app_text;

Screen print_screen;

Display print_display;

Widget print_shell, print_form, print_text;

short rows;
int lines, pages, page;
char *data;

[* create a connection to the X Print server */
print_shell = XmPrintSetup (app_shell, print_screen, "PrintShell", NULL, 0);

/* create a suitable print hierarchy */
print_form = XmCreateForm (print_shell,...);
print_text = XmCreateText (print_form,...);

/* configure and manage the print hierarchy */

/* copy the video text to the print text */
/* what is copied depends upon whether it is */
/* contents and/or visuals that are printed */

data = XmTextGetString (app_text);
XmTextSetString (print_text, data);
XtFree (data);

)’: start a print job */
print_display = XtDisplay (print_shell);
XpStartJob (print_display, XPSpool);

/* deduce number of logical pages in the print text widget */
XtVaGetValues (print_text, XmNrows, &rows, XmNtotalLines, &lines, 0);

for (page = 0, pages = lines / rows; page < pages; page++) {
/* start of page notification */
XpStartPage (print_display, XtWindow (print_shell), False);

/* force the print text to expose itself */
XmRedisplayWidget (print_text);

/* end of page notification */
XpEndPage (print_display);

/* scroll to next page */

Motif Reference Manual 277

XmRedisplayWidget Motif Functions and Macros

XmTextScroll (print_text, rows);
}
/* end of print job notification */
XpEndJob (print_display);

See Also
XmPrintPopupPDM (1), XmPrintSetup (1), XmPrintToFile (1),
XmPrintShell (2).

278 Motif Reference Manual

Motif Functions and Macros XmRegisterSegmentEncoding

Name

Synopsis

XmRegisterSegmentEncoding — register a compound text encoding format for a
font list element tag.

char *XmRegisterSegmentEncoding (chéoritlist_tag char *tt_encodiny

Inputs

fontlist_tag Specifies the compound string font list element tag.
ct_encoding Specifies the compound text character set.

Returns

The old compound text encoding format for a previously-registered font list ele-
ment tag or NULL for a new font list element tag.

Availability

Motif 1.2 and later.

Description

Usage

See Also

XmRegisterSegmentEncoding () registers the specified compound text
encoding formatt_encodindor the specifiedontlist_tag Bothfontlist_tagand
ct_encodingnust be NULL-terminated 1SO8859-1 strings. If the font list tag is
already associated with a compound text encoding format, registering the font list
tag again overwrites the previous entry and the routine returns the previous com-
pound text format. If the font list tag is has not been registered before, the routine
returns NULL. Ifct_encodings NULL, the font list tag is unregistered. If
ct_encodings the reserved value XmFONTLIST_DEFAULT_TAG, the font list
tag is mapped to the code set of the current loXadRegisterSegmentEn-

coding () allocates storage if the routine returns a character string; the applica-
tion is responsible for freeing the storage usiiigree ().

Compound text is an encoding that is designed to represent text from any locale.
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4 for
use as a text interchange format for interclient communication.

XmCvtXmStringToCT () converts a compound string into compound text. The
routine uses the font list tag of each compound string segment to select a com-
pound text format for the segment. A mapping between font list tags and com-
pound text encoding formats is stored in a registry.
XmRegisterSegmentEncoding () provides a way for an application to map
particular font list element tags to compound text encoding formats.

XmCvtXmStringToCT (1), XmMapSegmentEncoding (1).

Motif Reference Manual 279

XmRemoveFromPostFromList Motif Functions and Macros

Name
XmRemoveFromPostFromList — make a menu inaccessible from a widget.
Synopsis
#include <Xm/RowColumn.h>
void XmRemoveFromPostFromList (Widgeeny Widgetwidge)
Inputs
menu Specifies a menu widget
widget Specifies the widget which no longer posts menu.
Availability
In Motif 2.0 and later, the functional prototype is removed from RowColumn.h,
although there is otherwise no indication that the procedure is obsolete.
Description
XmRemoveFromPostFromList () is the inverse of the procedufenAddTo-
PostFromWidget (). The menu hierarchy associated witenuis made inac-
cessible fronwidget
Usage

If the type of menu is XmMENU_PULLDOWN, the XmNsubMenuld resource
of widget is set to NULL. If the type of menu is XmMENU_POPUP, event han-
dlers presumably added to widget by XmAddToPostFromWidget() in order to
post the menu are removed.

No check is made to ensure that the XmNsubMenuld resource of widget is origi-
nally set to menu before clearing the value. Passing the wrong menu into the pro-
cedure can therefore have unwanted effects. There are implicit assumptions that
widget is a CascadeButton or CascadeButtonGadget when menu is
XmMENU_PULLDOWN, and that widget is not a Gadget when menu is
XmMENU_POPUP. These are not checked by the procedure.

See Also
XmAddToPostFromList (1), XmGetPostedFromWidget (1),
XmPopupMeny2), XmPulldownMenu (2), XmRowColumr{2).

1.This is true of Motif 2.1.10, although the header reference is restored in the OpenMotif 2.1.30.

280 Motif Reference Manual

Motif Functions and Macros XmRemoveProtocolCallback

Name

Synopsis

XmRemoveProtocolCallback — remove client callback from a protocol.

#include <Xm/Protocols.h>

void XmRemoveProtocolCallback (Widget shell
Atom property
Atom protocol
XtCallbackProc callback
XtPointer closure

Inputs

shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocol Specifies the protocol atom.

callback Specifies the procedure that is to be removed.

closure Specifies any client data that is passed to the callback.

Description

Usage

See Also

XmRemoveProtocolCallback () removes the specifiedhllbackfrom the
list of callback procedures that are invoked when the client message correspond-
ing toprotocolis received.

A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
To communicate using a protocol, a client sends a ClientMessage event contain-
ing apropertyandprotocol and the receiving client responds by calling the asso-
ciated protocotallbackroutine.XmRemoveProtocolCallback () allows

you to unregister one of these callback routines. The inverse roukngAd-
dProtocolCallback 0.

XmAddProtocolCallback (1), XminternAtom (1),
XmRemoveWMProtocolCallback (1), VendorShell (2).

Motif Reference Manual 281

XmRemoveProtocols Motif Functions and Macros

Name
XmRemoveProtocols — remove protocols from the protocol manager.

Synopsis
#include <Xm/Protocols.h>

void XmRemoveProtocols (Widgehell Atom property Atom *protocols Car-
dinalnum_protocoly

Inputs
shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmRemoveProtocols () removes the specifigatotocolsfrom the protocol
manager and deallocates the internal tables for the protocols. If the spebiiéd
is realized and at least one of firetocolsis active, the routine also updates the
handlers and thproperty The inverse routine iSmAddProtocols ().

Usage

A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.

XmRemoveProtocols () allows you eliminate protocols that can be under-
stood by your application. The inverse routine is XmAddProtocols().

See Also
XmAddProtocols (1), XminternAtom (1), XmRemoveWMProtocols (1),
VendorShell (2).

282 Motif Reference Manual

Motif Functions and Macros XmRemoveTabGroup

Name
XmRemoveTabGroup — remove a widget from a list of tab groups.

Synopsis
void XmRemoveTabGroup (Widgtb_group

Inputs
tab_group Specifies the widget to be removed.

Availability
In Motif 1.1, XmRemoveTabGroup() is obsolete. It has been superseded by set-
ting XmNnavigationType to XmNONE.

Description
XmRemoveTabGroup() removes the specifigdb_groupwidget from the list
of tab groups associated with the widget hierarchy. This routine is retained for
compatibility with Motif 1.0 and should not be used in newer applications. If
traversal behavior needs to be changed, this should be done by setting the XmN-
navigationType resource directly.

Usage
A tab group is a group of widgets that can be traversed using the keyboard rather
than the mouse. Users move from widget to widget within a single tab group by
pressing the arrow keys. Users move between different tab groups by pressing the
Tab or Shift-Tab keys. The inverse routine is XmAddTabGroup().

See Also
XmAddTabGroup(1), XmGetTabGroup (1), XmManager(2),
XmPrimitive (2).

Motif Reference Manual 283

XmRemoveWMProtocolCallback Motif Functions and Macros

Name

Synopsis

XmRemoveWMProtocolCallback — remove client callbacks from a
XA _WM_PROTOCOLS protocol.

#include <Xm/Protocols.h>

void XmRemoveWMProtocolCallback (Widget shell
Atom protocol
XtCallbackProc callback
XtPointer closure

Inputs

shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.

callback Specifies the procedure that is to be removed.

closure Specifies any client data that is passed to the callback.

Description

Usage

See Also

284

XmRemoveWMProtocolCallback () is a convenience routine that calls
XmRemoveProtocolCallback () with property set to
XA WM_PROTOCOL, the window manager protocol property.

The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. To communicate using a pro-
tocol, a client sends a ClientMessage event containgmgperty andprotocol,

and the receiving client responds by calling the associated protittzckrou-

tine. XmRemoveWMProtocolCallback () allows you to unregister one of
thesecallbackroutines with the window managgotocol property. The inverse
routine isXmAddWMProtocolCallback ().

XmAddProtocolCallback (1), XmAddwWMProtocolCallback (1),
XminternAtom (1), XmRemoveProtocolCallback (1),
VendorShell (2).

Motif Reference Manual

Motif Functions and Macros XmRemoveWMProtocols

Name
XmRemoveWMProtocols — remove the XA_WM_PROTOCOLS protocols from
the protocol manager.

Synopsis
#include <Xm/Protocols.h>

void XmRemoveWMProtocols (Widgsehell Atom *protocols Cardinal
num_protocoly

Inputs
shell Specifies the widget associated with the protocol property.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmRemoveWMProtocols () is a convenience routine that callsiRemove-
Protocols () with property set to XA WM_PROTOCOL, the window man-
ager protocol property. The inverse routinXisAddWMProtocols ().

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managénsRemoveWMProto-
cols () allows you to remove this protocol so that it is no longer understood by
your application. The inverse routinedsmAddWMProtocols ().

See Also
XmAddProtocols (1), XmAddWMProtocols (1), XminternAtom (1),
XmRemoveProtocols (1), VendorShell (2).

Motif Reference Manual 285

XmRenderTableAddRenditions Motif Functions and Macros

Name
XmRenderTableAddRenditions — add renditions to a render table.
Synopsis
XmRenderTable XmRenderTableAddRenditions (XmRenderTable
old_table
XmRendition
*new_renditions
Cardinal
new_rendition_count
XmMergeMode
merge_mode
Inputs
old_table Specifies a render table.
new_renditions Specifies an array of renditions to merge with the
render table.
new_rendition_count Specifies the number of renditions in the array.
merge_mode Specifies the action to take if entries have the same
tag.
Returns
The newly allocated merged render table.
Availability
Motif 2.0 and later.
Description

286

A render table is a set of renditions which can be used to specify the way in
which XmStrings are drawiXmRenderTableAddRenditions () creates a
new render table by merging the list of renditions specifieely renditions
into the renditions contained withld_table If a rendition with the same tag is
found in bothold_tableandnew_renditionsmerge_modés used to give prece-
dence. The new render table is returned.

If old_tableis NULL, a new render table is allocated which contains only the
renditions ofnew_renditionslf new_renditionss NULL or new_rendition_count

is zero, theold_tableis returned unmodified. If a rendition withotd_tablehas

the same tag as one witliew_renditionsmerge_modeéetermines how to

resolve the conflict. lnerge_modés XmMMERGE_REPLACE, the rendition

within old_tableis ignored, and the rendition withirew_renditionss added to

the new table. If the mode is XmMMERGE_SKIP, the new table contains the rendi-
tion fromold_table and that froomew_renditionss ignored. If the mode is
XmMERGE_NEW, the rendition withinew_renditionss used, except that

Motif Reference Manual

Motif Functions and Macros XmRenderTableAddRenditions

Usage

Example

where any resources of the rendition are unspecified, the value is copied from the
matching rendition from theld_table A resource is unspecified if the value is
XmAS_IS or NULL. Lastly, if the mode is XmMMERGE_OLD, itis thwd_table
rendition which is added to the new table, and any unspecified resources are
taken from the new rendition.

The reference count for the original table is decremented and deallocated where
necessary, and a newly allocated render table containing the merged data is
returned. It is the responsibility of the programmer to reclaim the allocated mem-
ory for the returned render table by calllgmRenderTableFree () at a suita-

ble point.

The following specimen code creates a set of renditions and merges them into an
unspecified render table:

XmRendition new_renditions[2];

XmRenderTable new_table;

Arg argv[4];

Cardinal argc = 0;

Pixel fg=...;

Pixel bg=..;

XtSetArg (argv[argc], XmNfontName, "fixed");

argc++;

XtSetArg (argv[argc], XmNfontType, XmFONT_IS_FONT);
argc++;

XtSetArg (argv[argc], XmNloadModel, XmLOAD_DEFERRED);
argc++;

new_renditions[0] = XmRenditionCreate (widget,
XmFONTLIST_DEFAULT_TAG, argv, argc);

argc = 0;

XtSetArg (argv[argc], XmNrenditionBackground, bg); argc++;

XtSetArg (argv[argc], XmNrenditionForeground, fg); argc++;
new_renditions[1] = XmRenditionCreate (widget, "colors", argv, argc);
new_table = XmRenderTableAddRenditions (old_table, new_renditions, 2,
XmMMERGE_REPLACE);)

Motif Reference Manual 287

XmRenderTableAddRenditions Motif Functions and Macros

See Also
XmRenderTableCopy (1), XmRenderTableFree (1),
XmRenderTableGetRendition (1),
XmRenderTableGetRenditions (1), XmRenderTableGetTags (1),
XmRenderTableRemoveRenditions (1), XmRenditionCreate (1),
XmRenditionFree (1), XmRenditionRetrieve (1),
XmRenditionUpdate (1), XmRendition (2).

288 Motif Reference Manual

Motif Functions and Macros XmRenderTableCopy

Name

XmRenderTableCopy — copy a render table.

Synopsis

XmRenderTable XmRenderTableCopy (XmRenderTaldetable XmString-
Tag *ags inttag_coun}

Inputs

old_table Specifies the table containing the renditions to be copied.
tags Specifies an array of tags. Renditions with matching tags are
copied.

tag_count Specifies the number of items within the tags array.

Returns

A new render table containing renditions with matching tags, or NULL.

Availability

Motif 2.0 and later.

Description

Usage

An XmRenderTable is an array of XmRendition objects, which are used to render
compound stringsXmRenderTableCopy () creates a newly allocated render
table by copying renditions from an existing talolel, table An array of tags

can be supplied which acts as a filter: only those renditions bigimtablewhich

have a matching XmNtag resource are copied. The number of items within any
tags array is specified throutdg_count If tagsis NULL, all of the renditions
within old_tableare copied. Ibld_tableis NULL, the function returns NULL.

The function allocates storage for the returned render table, including storage for
each of the newly copied renditions. It is the responsibility of the programmer to
reclaim the memory at an appropriate point by calXngRenderTable-

Free ().

In Motif 2.0 and later, the XmRenderTable supersedes the XmFontList, which is
now considered obsolete. For backwards compatibility, the XmFontList opaque
type is implemented through the render table.

See Also

XmRenderTableAddRenditions (1), XmRenderTableFree (1),
XmRenderTableGetRendition (2),
XmRenderTableGetRenditions (1), XmRenderTableGetTags (1),
XmRenderTableRemoveRenditions (1), XmRenditionCreate (1),
XmRenditionFree (1), XmRenditionRetrieve (1),
XmRenditionUpdate (1), XmRendition (2).

Motif Reference Manual 289

XmRenderTableCvtFromProp Motif Functions and Macros

Name
XmRenderTableCvtFromProp — convert from a string representation into a
render table.
Synopsis
XmRenderTable XmRenderTableCvtFromProp (Widgielget char property
unsigned intength
Inputs
widget Specifies a destination widget in a data transfer.
property Specifies the render table in string representation format.
length Specifies the number of bytes in the property string.
Returns
The converted render table.
Availability
Motif 2.0 and later.
Description
XmRenderTableCvtFromProp () converts a string representation of a render
table into an XmRenderTable. The string representation to be converted is given
by property and the size of the string in bytedength
Usage

Typically, the procedure is used within the destination callback of widget when it
is the target of a data transfer. The inverse funcfimRenderTableCvtTo-

Prop () is called by the convert procedures of the source of the data transfer.
XmRenderTableCvtFromProp () returns allocated memory, and it is the
responsibility of the programmer to reclaim the space at a suitable point by call-
ing XmRenderTableFree ().

See Also

XmRenderTableCvtToProp (1), XmRenderTableFree (1),
XmRendition (2).

290 Motif Reference Manual

Motif Functions and Macros XmRenderTableCvtToProp

Name
XmRenderTableCvtToProp — convert a render table into a string representation.

Synopsis

unsigned int XmRenderTableCvtToProp (Widget widget
XmRenderTable render_table
char
** property_return
Inputs
widget Specifies a source widget for the render table.
render_table Specifies the render table to convert.
Outputs
property_return Returns the string representation of the converted render
table.

Returns
The number of bytes in the converted string representation.

Avalilability
Motif 2.0 and later.

Description
XmRenderTableCvtToProp () converts an XmRenderTable render_table
into a string representation at the address specifipdoperty _return The
length of the converted string is returned.

Usage
Typically, the procedure is used within the convert callback of widget when it is
the source of a data transfer. The procedure returns allocated memory within
property_return, and it is the responsibility of the programmer to reclaim the
space at a suitable point by calliXt-ree ().

The standard built-in conversion routines within the Uniform Transfer Model
internally callXmRenderTableCvtToProp () when asked to convert the
_MOTIF_RENDER_TABLE selection.

See Also
XmRenderTableCvtFromProp (1), XmRendition (2).

Motif Reference Manual 291

XmRenderTableFree Motif Functions and Macros

Name
XmRenderTableFree — free the memory used by a render table.

Synopsis

void XmRenderTableFree (XmRenderTatzble)

Inputs
table Specifies the render table to free.

Availability
Motif 2.0 and later.

Description
XmRenderTableFree () is a convenience function which deallocates space
used by the render table table.

Usage
Render tables, and the renditions which they contain, are reference counted. It is
important to calXmRenderTableFree () on a render table rather than
XtFree () so that each rendition in the table is properly deallocated. Motif
caches and shares render tables and the renditions which they contain, and so an
improper XtFree() would not respect any sharing currently in place.
XmRenderTableFree () does not actually free the render table until the refer-
ence count is zero.

See Also
XmRenderTableAddRenditions (1), XmRenderTableCopy (1),
XmRenderTableRemoveRenditions (1), XmRenditionCreate (1),
XmRenditionFree (1), XmRendition (2).

292 Motif Reference Manual

Motif Functions and Macros XmRenderTableGetRendition

Name
XmRenderTableGetRendition — search a render table for a matching rendition.
Synopsis
XmRendition XmRenderTableGetRendition (XmRenderTédlde, XmString-
Tagtag)
Inputs
table Specifies the render table to search.
tag Specifies the tag with which to find a rendition.
Returns
A Rendition which matches tag, otherwise NULL.
Availability
Motif 2.0 and later.
Description
XmRenderTableGetRendition () is a convenience function which searches
table and returns the rendition which matcless
Usage

XmRenderTableGetRendition () performs a linear search through the ren-
ditions contained withitable, comparing the XmNtag resource value with the

search string given biag. If no match is found, any XmNnoRenditionCallbdck
callbacks registered with the XmDisplay object are invoked, supplying the table
as therender_tableslement of the XmDisplayCallbackStruct passed to the call-
backs. If the callbacks modify tmender_tableslement, the linear search is
restarted. A copy of any matching rendition is returned, otherwise NULL.

XmRenderTableGetRendition () allocates space for the returned rendition,
and it is the responsibility of the programmer to reclaim the space at a suitable
point by callingKXmRenditionFree ().

See Also
XmRenderTableAddRenditions (1),
XmRenderTableGetRenditions (),
XmRenderTableRemoveRenditions (1), XmRenditionFree (1),
XmRendition (2).

1.Erroneously given as XmNnoRendition in 2nd edition.

Motif Reference Manual 293

XmRenderTableGetRenditions Motif Functions and Macros

Name
XmRenderTableGetRenditions — search a render table for matching renditions.
Synopsis
XmRendition *XmRenderTableGetRenditions (XmRenderTablé&ble,
XmStringTag tags
Cardinal tag_couny
Inputs
table Specifies the render table to search.
tags Specifies an array of tags for which matching renditions are
required.
tag_count Specifies the number of items in tags.
Returns
The array of renditions which have matching tags.
Availability
Motif 2.0 and later.
Description
XmRenderTableGetRenditions () searchegablefor all renditions which
have a tag that matches an entry within thedigs If thetableis NULL, or if
tagsis NULL, or if tag_countis zero, the function returns NULL. Otherwise,
the function returns an allocated array of matching rendition objects.
Usage

XmRenderTableGetRenditions () iterates through a set t#fgs compar-
ing in turn each tag with the group of renditions contained within a render table.

If no match is found when comparing a tag, any XmNnoRenditionCaltbeak-
backs registered with the XmDisplay object are invoked, supplying the table as
therender_tableslement of the XmDisplayCallbackStruct passed to the call-
backs. If the callbacks modify tmender_tableslement, the linear search is
restarted for that tag.

The documentation states that the function returns an allocated array, renditions
being copied into the array at the same index of the matching tag within the tags
array. For example, if the third tagtagsmatches a rendition, that rendition is
copied into the third element of the returned array. If any tag inagslist does

not match any rendition in the table, that slot in the returned array is set to NULL.

The sources, however, do not match the documentation: renditions are copied
into the array in the order which they are matched, ignoring any slots which do

1.Erroneously given as XmNnoRendition in 2nd edition.

294 Motif Reference Manual

Motif Functions and Macros XmRenderTableGetRenditions

Example

See Also

not match. Thus if the first tag fagsresults in a NULL match, any rendition

found from the second tag is placed into the first slot. If the number of matched
renditions is less than the number of suppliagls then memory for the returned
array is reallocated to match the number of found renditions. In the absence of a
XmNnoRenditionCallback callback, it is not possible to deduce the size of the
returned rendition array.

The function allocates space for both the returned rendition array and the constit-
uent renditions, and it is the responsibility of the programmer to reclaim the
space at a suitable point by callKgWRenditionFree () on each of the ele-

ments in the returned array, and subsequéfifiyee () on the array itself.

The following specimen code illustrates the basic outline of a call to
XmRenderTableGetRenditions 0:

XmRendition *match_renditions;
XmStringTag tags[MAX_TAGS];
int i;

tags[0] = XmFONTLIST_DEFAULT_TAG;
tags[1] = XmS; /* "/

/* search an unspecified render table */
match_renditions = XmRenderTableGetRenditions (render_table, tags,
MAX_TAGS);

/* use the matched set of renditions */

/* free the returned space */

if (match_renditions != NULL) {
/* ASSUMPTION: XtNumber (match_renditions) == MAX_TAGS */
/* Not a valid assumption if a tag does not match ~ */

for (i = 0; i < MAX_TAGS; i++) {
XmRenditionFree (match_renditionsi]);

}

XtFree (match_renditions);

}

XmRenderTableAddRenditions (1), XmRenderTableGetRendition (1),
XmRenderTableRemoveRenditions (1), XmRenditionFree (1),
XmRendition (2).

Motif Reference Manual 295

XmRenderTableGetTags Motif Functions and Macros

Name

Synopsis

XmRenderTableGetTags — fetch the list of rendition tags from a render table.

int XmRenderTableGetTags (XmRenderTatalele, XmStringTag *tag_lis)

Inputs

table Specifies the render table.

Outputs

tag_list Returns the list of rendition tags.

Returns

The number of tags within the returned tag_list.

Avalilability

Motif 2.0 and later.

Description

Usage

Example

296

XmRenderTableGetTags () is a convenience function which iterates through

a rendetable collecting all the tags from the individual renditions within the
table, and returning them to the programmer. The number of tags placed at the
addresgag_listby the function is returned.

XmRenderTableGetTags () allocates an array, and places in the array a copy
of the XmNtag resource for each rendition within the table. The array is returned
at the address specified by tiag_listparameter. If théableis NULL, tag_listis
initialized to NULL, and the function returns zero. It is the responsibility of the
programmer to reclaim the space by calltt§ree () on each of the items

within the allocated array, and then subsequently calltRgee () on the array
itself.

The following specimen code illustrates the basic outline of a call to
XmRenderTableGetTags ():

XmStringTag *tags;
int count, i;

/* fetch the tags from an unspecified render table */
count = XmRenderTableGetTags (render_table, &tags);
/* use the tags */

/* free the returned space */

Motif Reference Manual

Motif Functions and Macros XmRenderTableGetTags

if (tags != (XmStringTag *) 0) {
for (i=0; i < count; i++) {
XtFree (tags[i]);
}

XtFree (tags);

See Also
XmRenditionFree (1), XmRendition (2).

Motif Reference Manual 297

XmRenderTableRemoveRenditions Motif Functions and Macros

Name

Synopsis

XmRenderTableRemoveRenditions — copy a render table, excluding specified
renditions.

XmRenderTable XmRenderTableRemoveRenditions (XmRenderTable
old_table
XmStringTag tags
int
tag_coun}

Inputs

old_table Specifies a render table.

tags Specifies an array of rendition tags. Any rendition which
matches an item in the array is not copied from old_table.

tag_count Specifies the number of items in the tags array.

Returns

A new render table with matching renditions removed.

Availability

Motif 2.0 and later.

Description

Usage

See Also

298

XmRenderTableRemoveRenditions () creates a new render table by copy-
ing fromold_tableonly those renditions which do not have a tag matching items
within the arraytags If tagsis NULL, or if tag_counis zero, or if no renditions

are removed, the function returns theé tableunmodified. Otherwise,

old_tableis deallocated, and the reference counts for any excluded renditions are
decremented, before the function returns the newly allocated render table.

A rendition is not copied into the returned table if it has a XmNtag resource value
the same as any item within the tags list. When the returned render table differs
from the originabbld_tableparameter, the function allocates space for the new
table, and itis the responsibility of the programmer to reclaim the space by call-
ing XmRenderTableFree ().

XmRenderTableAddRenditions (1), XmRenderTableFree (1),
XmRendition (2).

Motif Reference Manual

Motif Functions and Macros XmRenditionCreate

Name
XmRenditionCreate — create a rendition object.

Synopsis
XmRendition XmRenditionCreate (Widgeidget XmStringTagtag, Arg
*arglist, Cardinalargcoun}

Inputs
widget Specifies a widget.
tag Specifies a tag for the rendition object.
arglist Specifies an argument list, consisting of resource name/value pairs.
argcount Specifies the number of arguments in arglist.
Returns

The new rendition object.

Availability
Motif 2.0 and later.

Description
XmRenditionCreate () creates a new rendition object, which can be used as
an entry in a render table used for rendering XmStringigetis used to find a
connection to the X server and an application contexfis used as the XmNtag
resource of the new rendition object. Resources for the new object are supplied in
thearglist array.

Usage
The implementation of XmRendition is through a pseudo widget: although not a
true widget, the object has resources and a resource style interface for setting and
fetching values of the rendition. Typically, a rendition is merged into an existing
render table through the functistmRenderTableAddRenditions (). Com-
pound strings are rendered by successively matching tags within the compound
string with the XmNtag resources of renditions in the table, and then using the
resources of matched renditions to display the string components.
XmRenditionCreate () allocates storage for the returned rendition object. It
is the responsibility of the programmer to reclaim the storage at a suitable point
by callingXmRenditionFree (). Renditions are reference counted, and it is
important to calKmRenditionFree () rather tharXtFree () in order to main-
tain the references.

Example

The following specimen code creates a pair of renditions and merges them into
an unspecified render table:

XmRendition new_renditions[2];

Motif Reference Manual 299

XmRenditionCreate Motif Functions and Macros

See Also

300

XmRenderTable new_table;

Arg argv[4];

Cardinal argc = 0;

Pixel fg=..;

Pixel bg =...;

/* create a rendition with fonts specified */

argc = 0;

XtSetArg (argv[argc], XmNfontName, "fixed");

argc++,;

XtSetArg (argv[argc], XmNfontType, XMFONT_IS_FONT);
argc++,;

XtSetArg (argv[argc], XmNloadModel, XmLOAD_DEFERRED);
argc++,;

new_renditions[0] = XmRenditionCreate (widget,
XmFONTLIST_DEFAULT_TAG, argv, argc);

/* create a rendition with line style specified */

argc = 0;

XtSetArg (argv[argc], XmNrenditionBackground, bg);

argc++,;

XtSetArg (argv[argc], XmNrenditionForeground, fg);

argc++,;

XtSetArg (argv[argc], XmNunderlineType, XmSINGLE_LINE);
argc++,;

XtSetArg (argv[argc], XmNstrikethruType, XmSINGLE_LINE);
argc++,;

new_renditions[1] = XmRenditionCreate (widget, "lineStyle", argv, argc);

/* merge into an unspecified render table */
new_table = XmRenderTableAddRenditions (old_table, new_renditions, 2,
XmMMERGE_REPLACE);

XmRenderTableAddRenditions (1), XmRenditionFree (1),
XmRenditionRetrieve (1), XmRenditionUpdate (1),
XmRendition (2).

Motif Reference Manual

Motif Functions and Macros XmRenditionFree

Name
XmRenditionFree — free the memory used by a rendition.
Synopsis
void XmRenditionFree (XmRenditiorndition)
Inputs
rendition Specifies the rendition that is to be freed.
Availability
Motif 2.0 and later.
Description
XmRenditionFree () deallocates storage used by the speciéadition The
routine does not free any XFontSet or XFontStruct data structures associated
with the rendition object.
Usage

XmRenditionFree () frees the storage used by the rendition object, but does
not free font data structures associated with the XmNfont resource of the object.
It is important to calKmRenditionFree () rather tharKtFree () because

Motif reference counts rendition objeckimRenditionFree () decrements the
reference count for the rendition; the rendition is not actually freed until the ref-
erence count reaches 0 (zero).

See Also
XmRenditionCreate (1), XmRendition (2).

Motif Reference Manual 301

XmRenditionRetrieve Motif Functions and Macros

Name

Synopsis

XmRenditionRetrieve — fetch rendition object resources.

void XmRenditionRetrieve (XmRenditiaendition, Arg *arg_list, Cardinal
arg_counj

Inputs

rendition Specifies the rendition whose resources are fetched.
arg_count Specifies the number of arguments in arg_list.

Outputs

arg_list Specifies an argument list, consisting of resource name/value pairs.

Availability

Motif 2.0 and later.

Description

Usage

Example

302

XmRenditionRetrieve () fetches selective resource values aéradition

object. The set of resources retrieved is specified through the resource list
arg_list, each element of the list being a structure containing a name/value pair.
The number of elements within the list is givenaog _count

XmRenditionRetrieve () directly returns the values of the rendition

resources, and not copies of them. The programmer should not inadvertently
modify a returned value, but should take a copy of any pointer-valued resource
which is to be changed. For example, the XmNtag and XmNfontName resources
should be copied into a separate address space before modifying or manipulating
the values.

If the XmNloadModel of the rendition object is XmLOAD_DEFERRED, and the
font specified by the XmNfont resource is NULL, but the XmNfontName value is
not NULL, and if the programmer has specified that the font is to be retrieved
within arg_list, thenXmRenditionRetrieve () automatically changes the

load model to XmLOAD_IMMEDIATE and directly calls a procedure to load the
font indicated by XmNfontName before returning the requested resource values.

The following specimen code illustrates fetching resources from an unspecified
rendition object:

Pixel bg;

Pixel fg;
XtPointer font;

String font_name;

Motif Reference Manual

Motif Functions and Macros

See Also

XmFontType font_type;
unsigned char load_model;
unsigned char strike_type;
XmTabList tab_list;
XmStringTag tag;
unsigned char ul_type;

Arg av[10];
Cardinal ac =0;

XtSetArg (av[ac], XmNrenditionForeground, &fg);
XtSetArg (av[ac], XmNrenditionBackground, &bg);

XtSetArg (av[ac], XmNfont, &font);
XtSetArg (av[ac], XmNfontName, &font_name);
XtSetArg (av[ac], XmNfontType, &font_type);
XtSetArg (avl[ac], XmNloadModel, &load_model);
XtSetArg (av[ac], XmNstrikethruType, &strike_type);
XtSetArg (av[ac], XmNtabList, &tab_list);
XtSetArg (av[ac], XmNtag, &tag);
XtSetArg (av[ac], XmNunderlineType, &ul_type);

XmRenditionRetrieve (rendition, av, ac);

XmRenditionCreate (1), XmRenditionFree (1),
XmRenditionUpdate (1), XmRendition (2).

Motif Reference Manual

XmRenditionRetrieve

ac++;
ac++;
ac++;
ac++;
ac++;
ac++;
ac++;
ac++;
ac++;
ac++;

303

XmRenditionRetrieve Motif Functions and Macros

Name
XmRenditionUpdate — set rendition object resources.
Synopsis
void XmRenditionUpdate (XmRenditiaendition, Arg *arg_list, Cardinal
arg_counj
Inputs
rendition Specifies the rendition whose resources are to be changed.
arg_list Specifies an argument list, consisting of resource name/value pairs.
arg_count Specifies the number of arguments within arg_list.
Availability
Motif 2.0 and later.
Description
XmRenditionUpdate () is a convenience function which sets the resources for
arenditionobject. The attributes to change are specified through an array of
name/value pairs, similar to the resource-style interfad@SdtValues ().
Usage
Modifying the value of the XmNfontName resource initially resets the XmNfont
resource to NULL, irrespective of whether the load model for the new font is
XmLOAD_IMMEDIATE or XmLOAD_DEFERRED.
Example
The following specimen code illustrates setting resources for an unspecified ren-
dition object:
Pixel bg =...;
Pixel fg=...;
Arg av[10];
Cardinal ac =0;
XtSetArg (av[ac], XmNrenditionForeground, fg);
ac++;
XtSetArg (av[ac], XmNrenditionBackground, bg);
ac++;
XtSetArg (avl[ac], XmNfontType, XmMFONT_IS_FONT);
ac++;
XtSetArg (av[ac], XmNfontName, "fixed");
ac++;
XtSetArg (av[ac], XmNloadModel, XmLOAD_DEFERRED);
ac++;

304 Motif Reference Manual

Motif Functions and Macros XmRenditionRetrieve

See Also

XtSetArg (av[ac], XmNstrikethruType, XmMSINGLE_LINE);
ac++;
XtSetArg (av[ac], XmNunderlineType, XmSINGLE_LINE);
ac++;

XmRenditionUpdate (rendition, av, ac);

XmRenditionCreate (1), XmRenditionFree (1),
XmRenditionRetrieve (1), XmRendition (2).

Motif Reference Manual

305

XmRepTypeAddReverse Motif Functions and Macros

Name
XmRepTypeAddReverse — install the reverse converter for a representation type.
Synopsis
#include <Xm/RepType.h>
void XmRepTypeAddReverse (XmRepType&p_type_idl
Inputs
rep_type_id Specifies the ID number of the representation type.
Availability
Motif 1.2 and later.
Description
XmRepTypeAddReverse () installs a reverse converter for a previously regis-
tered representation type. The reverse converter converts numerical representa-
tion type values to string values. Tie@ type_idargument specifies the ID
number of the representation type. If the representation type contains duplicate
values, the reverse converter uses the first name irathe _nametst that
matches the specified humeric value.
Usage

In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations likeeditresthat allow a user to set resources interactivaiyRep-
TypeAddReverse () provides a way for an application to install a converter

that converts numeric values to their string values.

See Also
XmRepTypeGetld (1), XmRepTypeRegister (1).

306 Motif Reference Manual

Motif Functions and Macros XmRepTypeGetld

Name
XmRepTypeGetld — get the ID number of a representation type.

Synopsis
#include <Xm/RepType.h>

XmRepTypeld XmRepTypeGetld (Strimgp_typé

Inputs
rep_type Specifies the string name of a representation type.

Returns
The ID number of the representation type or XmREP_TYPE_INVALID if the
representation type is not registered.

Availability
Motif 1.2 and later.

Description
XmRepTypeGetld () retrieves the ID number of the specified representation
typerep_typefrom the representation type manager. fHpe typestring is the
string name of a representation type that has been registeredmiRapTy-
peRegister (). XmRepTypeGetld () returns the ID number if the represen-
tation type has been registered. This value is used in other representation type
manager routines to identify a particular type. Otherwise, the routine returns
XmREP_TYPE_INVALID.

Usage
In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations likeeditresthat allow a user to set resources interactivaiyRep-
TypeGetld () provides a way for an application get the ID of a representation
type, which can be used to identify the type to other representation manager rou-
tine.

See Also
XmRepTypeGetNamelList (1), XmRepTypeGetRecord (1),
XmRepTypeGetRegistered (1), XmRepTypeRegister (1).

Motif Reference Manual 307

XmRepTypeGetNameList Motif Functions and Macros

Name

Synopsis

XmRepTypeGetNamelList — get the list of value names for a representation type.

#include <Xm/RepType.h>

String * XmRepTypeGetNamelList (XmRepTypetp_type_idBoolean
use_uppercase_format

Inputs

rep_type_id Specifies the ID number of the representation type.
use_uppercase_forma&@pecifies whether or not the names are in uppercase char-
acters.

Returns

A pointer to an array of value names.

Availability

Motif 1.2 and later.

Description

Usage

See Also

308

XmRepTypeGetNamelList () retrieves the list of value names associated with
the specifiedep_type_id The routine returns a pointer to a NULL-terminated

list of value names for the representation type, where each value name is a
NULL-terminated string. lise_uppercase_format True, the value names are

in uppercase characters with Xm prefixes. Otherwise, the value names are in low-
ercase characters without Xm prefix¥sRepTypeGetNameList () allocates
storage for the returned data. The application is responsible for freeing the stor-
age usingKtFree () on each of the elements in the returned array, and subse-
guently upon the array pointer itself.

In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations likeeditresthat allow a user to set resources interactivaiyRep-
TypeGetNamelList () provides a way for an application to get the named

values for a particular representation type.

XmRepTypeGetld (1), XmRepTypeGetRecord (1),
XmRepTypeGetRegistered (1), XmRepTypeRegister (1).

Motif Reference Manual

Motif Functions and Macros XmRepTypeGetRecord

Name

Synopsis

XmRepTypeGetRecord — get information about a representation type.

#include <Xm/RepType.h>
XmRepTypeEntry XmRepTypeGetRecord (XmRepTypej type_id

Inputs

rep_type_id Specifies the ID number of the representation type.

Returns

A pointer to a representation type entry structure.

Availability

Motif 1.2 and later.

Description

Usage

XmRepTypeGetRecord () retrieves information about the representation type
specified byep_type_id The routine returns a XmRepTypeEntry, which is a
pointer to a representation type entry structure. This structure contains informa-
tion about the value names and values for the enumerated ¥rp&ep-
TypeGetRecord () allocates storage for the returned data. The application is
responsible for freeing the storage uskifree ().

In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations likeeditresthat allow a user to set resources interactivaiyRep-
TypeGetRecord () provides a way for an application to retrieve information
about a particular representation type.

Structures

The XmRepTypeEntry is defined as follows:

typedef struct {
String rep_type_name; ffame of representation type */
String *value_names; [&rray of value names */
unsigned char *values; Hrray of numeric values */
unsigned char num_values; rtimber of values *
Boolean reverse_installed; v&verse converter installed fl&g
XmRepTypeld rep_type_id; [fepresentation type ID */

Motif Reference Manual 309

XmRepTypeGetRecord Motif Functions and Macros

} XmRepTypeEntryRec, *XmRepTypeEntry, XmRepTypeListRec, *XmRep-
TypelList;

See Also

XmRepTypeGetld(1), XmRepTypeGetNameList(1),
XmRepTypeGetRegistered(1), XmRepTypeRegister(1).

310 Motif Reference Manual

Motif Functions and Macros XmRepTypeGetRegistered

Name
XmRepTypeGetRegistered — get the registered representation types.

Synopsis
#include <Xm/RepType.h>

XmRepTypeList XmRepTypeGetRegistered (void)

Returns
A pointer to the registration list of representation types.

Availability
Motif 1.2 and later.

Description
XmRepTypeGetRegistered () retrieves the whole registration list for the
representation type manager. The routine returns a copy of the registration list,
which contains information about all of the registered representation types. The
registration list is an array of XmRepTypeList structures, where each structure
contains information about the value names and values for a single representation
type. The end of the registration list is indicated by a NULL pointer in the
rep_type_naméeld. XmRepTypeGetRegistered allocates storage for the
returned data. The application is responsible for freeing this storage using
XtFree (). The list of value names (the value of adue _namefsield), the list
of values (the value of thaluesfield), and the array of structures all need to be
freed.

Usage
In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations likeeditresthat allow a user to set resources interactivaiyRep-
TypeGetRegistered () provides a way for an application to get information
about all of the registered representation types.

Example
The following code fragment shows the us&ofRepTypeGetRegis-
tered () to print the value names and values of all of the registered representa-
tion types:

XmRepTypelList replist; int i;
replist = XmRepTypeGetRegistered();

Motif Reference Manual 311

XmRepTypeGetRegistered Motif Functions and Macros

while (replist->rep_type_name != NULL) {
printf ("Representation type name: %s\n", replist->rep_type_name);
printf ("Value names and associated values: \n");

for (i = 0; i < replist->num_values; i++) {
printf ("%s: ", replist->value_namesli]);
printf ("%d\n", replist->valuesli]);

}

replist++;

XtFree ((char *)replist->values);

XtFree ((char *)replist->value_names);

}
XtFree ((char *)replist);
Structures

The XmRepTypelList is defined as follows:

typedef struct {
String rep_type_name; fame of representation type
*/
String *value_names; [&rray of value names */
unsigned char *values; Hrray of numeric values */
unsigned char num_values; rtimber of values *
Boolean reverse_installed; Y&verse converter installed flag
*/
XmRepTypeld rep_type_id; ffepresentation type ID ~ */

} XmRepTypeEntryRec, *XmRepTypeEntry, XmRepTypeListRec, *XmRep-

TypelList;

See Also

XmRepTypeGetRecord (1), XmRepTypeGetNameList (1),
XmRepTypeRegister (1).

312 Motif Reference Manual

Motif Functions and Macros XmRepTypelnstallTearOffModelConverter

Name
XmRepTypelnstallTearOffModelConverter — install the resource converter for
the RowColumn XmNtearOffModel resource.

Synopsis
#include <Xm/RepType.h>
void XmRepTypelnstallTearOffModelConverter (void)

Avalilability
Motif 1.2 and later. In Motif 2.0 and later, the converter for the XmNtearOff-
Model resource is internally installed, and this function is obsolete.

Description
XmRepTypelnstallTearOffModelConverter () installs the resource
converter for the RowColumn XmNtearOffModel resource. This resource con-
trols whether or not PulldownMenus and PopupMenus in an application can be
torn off. Once the converter is installed, the value of XmNtearOffModel can be
specified in a resource file.

Usage
In Motif 1.2, a RowColumn that is configured as a PopupMenu or a Pulldown-
Menu supports tear-off menus. When a menu is torn off, it remains on the screen
after a selection is made so that additional selections can be made. A menu pane
that can be torn off contains a tear-off button at the top of the menu. The
XmNtearOffModel resource controls whether or not tear-off functionality is
available for a menu. This resource can take the values
XmTEAR_OFF_ENABLED or XmTEAR_OFF_DISABLED.

In Motif 1.2, the resource converter for XmNtearOffModel is not installed by
default. Some existing applications depend on receiving a callback when a menu
is mapped; since torn-off menus are always mapped, these applications might fail
if a user is allowed to enable tear-off menus from a resourcXfilBepTy-
pelnstallTearOffModelConverter () registers the converter that allows

the resource to be set from a resource file.

See Also
XmRowColumr§2).

Motif Reference Manual 313

XmRepTypeRegister Motif Functions and Macros

Name

Synopsis

XmRepTypeRegister — register a representation type resource.

#include <Xm/RepType.h>

XmRepTypeld XmRepTypeRegister (String rep_type
String *value_names
unsigned char Values
unsigned char num_values

Inputs

rep_type Specifies the string name for the representation type.

value_names Specifies an array of value names for the representation type.
IP values 1i Specifies an array of values for the representa-
tion type.

num_values Specifies the number of items in value_names and values.

Returns

The ID number of the representation type.

Availability

Motif 1.2 and later.

Description

314

XmRepTypeRegister () registers a representation type with the representation
type manager. The representation type manager provides resource conversion
facilities for enumerated value$smRepTypeRegister () installs a resource
converter that converts string values to numerical representation type values. The
strings in thevalue_namearray specify the value names for the representation
type. The strings are specified in lowercase characters, with underscore charac-
ters separating words and without Xm prefixes.

If the valuesargument is NULL, the order of the strings in th&@ue_namearray
determines the numerical values for the enumerated type. In this case, the names
are assigned consecutive values starting with 0 (zenagluésis non-NULL, it

is used to assign values to the names. Each namevaltiee namearray is

assigned the corresponding value intadiesarray, so it is possible to have non-
consecutive values or duplicate names for the same value.

XmRepTypeRegister () returns the ID number that is assigned to the repre-
sentation type. This value is used in other representation type manager routines to
identify a particular type. A representation type can only be registered once. If a
type is registered more than once, the behavior of the representation type man-
ager is undefined.

Motif Reference Manual

Motif Functions and Macros XmRepTypeRegister

Usage

See Also

In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations likeeditresthat allow a user to set resources interactivélyRepTy-
peRegister () provides a way for an application to register representation

types for application-specific resources or for new widget classes.

XmRepTypeAddReverse (1), XmRepTypeGetld (1),
XmRepTypeGetNamelList (1), XmRepTypeGetRecord (1),
XmRepTypeGetRegistered (1), XmRepTypeValidvalue (1).

Motif Reference Manual 315

XmRepTypeValidValue Motif Functions and Macros

Name

Synopsis

XmRepTypeValidValue — determine the validity of a numerical value for a repre-
sentation type.

#include <Xm/RepType.h>

Boolean XmRepTypeValidValue (XmRepTypeldrep_type_id
unsigned char test_value
Widget enable_default_warning

Inputs

rep_type_id Specifies the ID number of the representation type.
test_value Specifies the value that is to be tested.
enable_default_warning Specifies a widget that is used to generate a default
warning message.

Returns

True if the specified value is valid or False otherwise.

Availability

Motif 1.2 and later.

Description

Usage

See Also

316

XmRepTypeValidValue () checks the validity of the specifigebt_valudor

the representation type specifiedrbp_type_id The routine returns True if the
value is valid. Otherwise, it returns False. If tagable_default_warningarame-
ter is non-NULL,XmRepTypeValidValue () uses the specified widget to gen-
erate a default warning message if the value is invalidndble _default_warning
is NULL, no default warning message is provided.

In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations likeeditresthat allow a user to set resources interactivétlyRepType-
ValidvValue () provides a way for an application to check if a value is valid for

a particular representation type.

XmRepTypeGetld (1), XmRepTypeRegister (1).

Motif Reference Manual

Motif Functions and Macros XmResolveAllPartOffsets

Name
XmResolveAllPartOffsets — ensure upward-compatible widgets and applications.

Synopsis

void XmResolveAllPartOffsets (WidgetClass widget_class
XmOffsetPtr offsef
XmOffsetPtr ‘tonstraint_offsgt

Inputs
widget_class Specifies the widget class pointer.

Outputs
offset Returns the widget offset record.
constraint_offset Returns the constraint offset record.

Description
XmResolveAllPartOffsets () ensures that an application or a widget will
be upwardly compatible with the records in a widget structure. In other words, if
the size of a widget structure changes in the future, this routine can be used to
calculate the locations of the new offsets. This routineXanBResolvePart-
Offsets () are similar. During the creation of a widget, both routines modify the
widget structure by allocating an array of offset values. XmResolvePartOffsets()
affects only the widget instance record, wiil@ResolveAllPartOff-
sets () affects the widget instance and constraint records.

Usage
If you are subclassing a Motif widget, you should XeeResolveAllPart-
Offsets () andXmResolvePartOffsets () to ensure that your widget will
be compatible with future releases of the toolkit.

See Also
XmResolvePartOffsets (2).

Motif Reference Manual 317

XmResolvePartOffsets Motif Functions and Macros

Name
XmResolvePartOffsets — ensure upward-compatible widgets and applications.

Synopsis

void XmResolvePartOffsets (WidgetClasglget _classXmOffsetPtr bffse)

Inputs
widget_class Specifies the widget class pointer.

Outputs
offset Returns the widget offset record.

Description
XmResolvePartOffsets () ensures that an application or a widget will be
upwardly compatible with the records in a widget structure. In other words, if the

size of a widget structure changes in the future, this routine can be used to calcu-

late the locations of the new offsets. This routine dmdResolveAllPart-

Offsets () are similar. During the creation of a widget, both routines modify the
widget structure by allocating an array of offset valu@snResolvePart-

Offsets () affects only the widget instance record, wbilaResolveAll-
PartOffsets () affects the widget instance and constraint records.

Usage
If you are subclassing a Motif widget, you should X¥eeResolvePartOff-
sets () andXmResolveAllPartOffsets () to ensure that your widget will
be compatible with future releases of the toolkit.

See Also
XmResolveAllPartOffsets (2).

318 Motif Reference Manual

Motif Functions and Macros XmScaleGetValue

Name
XmScaleGetValue — get the slider value for a Scale widget.
Synopsis
#include <Xm/Scale.h>
void XmScaleGetValue (Widgetidget int *value_returi
Inputs
widget Specifies the Scale widget.
Outputs
value_return Returns the current slider position for the Scale.
Description
XmScaleGetValue () returns the current position of the slider within the spec-
ified Scalewidget
Usage

XmScaleGetValue () is a convenience routine that returns the value of the
XmNvalue resource for the Scale widget. Calling the routine is equivalent to call-
ing XtGetValues () for that resource, althougfmScaleGetValue ()

accesses the value through the widget instance structure rather than through
XtGetValues ().

See Also
XmScaleSetValue (1), XmScale (2).

Motif Reference Manual 319

XmScaleSetTicks Motif Functions and Macros

Name

Synopsis

XmScaleSetTicks — set tick marks for a Scale widget.

#include <Xm/Scale.h>

void XmScaleSetTicks (Widget widget,
int big_every,
Cardinal num_med,
Cardinal num_small,
Dimension size_big,
Dimension size_med,
Dimension size_small)

Inputs

widget Specifies a scale widget.

big_every Specifies the number of scale values between large ticks.
num_med Specifies the number of medium-sized ticks between the large
tick marks.

num_small Specifies the number of small-sized ticks between the
medium-sized tick marks.

size_big Specifies the size of the large ticks.

size_med Specifies the size of the medium ticks.

size_small Specifies the size of the small ticks.

Availability

Motif 2.0 and later.

Description

Usage

320

XmScaleSetTicks() places tick marks along the edges of a Scale widget. Ticks
may be of three types: big, medium, and small, and the size (in pixels) of each
type is specified by size_big, size_med, and size_small respectively. The location
of each big tick is given by big_every, which simply specifies the number of scale
values between each big tick. The number of medium-sized ticks between each
big tick is given by num_med, and the number of small-sized ticks between each
medium-sized tick is num_small.

XmScaleSetTicks() is a convenience function which places tick marks along the
edge of a Scale by creating a series of SeparatorGadget children at evenly spaced
intervals. If size_big is zero, XmScaleSetTicks() simply returns. If size_med or
size_small is zero, num_med and num_small are forced to zero respectively. The
number of medium and small tick marks required may be zero, but the number of
large tick marks must not be less than 2.

Motif Reference Manual

Motif Functions and Macros XmScaleSetTicks

SeparatorGadgets are created with the names "BigTic", "MedTic", and "Small-
Tic", the XmNseparatorType resource of each is forced to XmSINGLE_LINE.
XmScaleSetTicks() does not delete any existing ticks when invoked on any par-
ticular Scale, neither does the Scale recalculate proper positions for the tick
marks if the scale orientation is changed after tick marks are added. In each case,
existing tick marks must be erased and subsequently redrawn or re-specified.

Example
The following code ensures that any tick marks are erased before adding new
ticks to a Scale:

#include <Xm/Scale.h>
#include <Xm/SeparatoG.h>

void ScaleEraseSetTicks (Widget scale,
int big_every,
Cardinal num_med,
Cardinal num_small,

Dimension size_big,
Dimension size_med,
Dimension size_med)

{
WidgetList ~ children = (WidgetList) O;
Cardinal num_children = (Cardinal) O;
int i;
String name;

[* fetch scale children. */
XtVaGetValues (scale, XmNchildren, &children, XmNnumChildren,
&num_children, 0)

/* destroy old ticks. */

/* some optimization to reuse correctly */

/* placed ticks might be in order here... */

for (i = 0; i < num_children; i++) {

if (XmIsSeparatorGadget (children[i])) {
if ((name = XtName (children[i])) != (String) 0) {
if ((strcmp (name, "BigTic") == 0) ||

(strcmp (name, "MedTic") == 0) ||
(strcemp (name, "SmallTic") == 0)) {
XtDestroyWidget (children[i]);}

Motif Reference Manual 321

XmScaleSetTicks Motif Functions and Macros

/* create new ticks. */
XmScaleSetTicks (scale, big_every, num_med, num_small, size_big,
size_med, size_small);

See Also
XmScaleSetValues (1). XmScale (2), XmSeparatorGadget (2).

322 Motif Reference Manual

Motif Functions and Macros XmScaleSetValue

Name
XmScaleSetValue — set the slider value for a Scale widget.

Synopsis
#include <Xm/Scale.h>

void XmScaleSetValue (Widgetidget int value
Inputs

widget Specifies the Scale widget.

value Specifies the value of the slider.

Description
XmScaleSetValue () sets the current position of the slider to value in the
specified Scalevidget Thevaluemust be in the range XmNminimum to XmN-
maximum.

Usage
XmScaleSetValue () is a convenience routine that sets the value of the XmN-
value resource for the Scale widget. Calling the routine is equivalent to calling
XtSetValues () for that resource, althougtmScaleSetValue () accesses
the value through the widget instance structure rather than thxiSgtval-
ues ().

See Also
XmScaleGetValue (1), XmScale (2).

Motif Reference Manual 323

XmScrollBarGetValues Motif Functions and Macros

Name

XmScrollBarGetValues — get information about the current state of a ScrollBar
widget.

Synopsis
#include <Xm/ScrollBar.h>

void XmScrollBarGetValues (Widget widget
int *value_return
int *slider_size_return
int *increment_return
int *page_increment_retujn
Inputs
widget Specifies the ScrollBar widget.

Outputs
value_return Returns the current slider position.
slider_size_return Returns the current size of the slider.
increment_return Returns the current increment and decrement level.
page_increment_return Returns the current page increment and decrement
level.

Description
XmScrollBarGetValues () returns the current state information for the spec-
ified ScrollBarwidget This information consists of the position and size of the
slider, as well as the increment and page increment values.

Usage
XmScrollBarGetValues () is a convenience routine that returns the values
of the XmNvalue, XmNsliderSize, XmNincrement, and XmNpagelncrement
resources for the ScrollBar widget. Calling the routine is equivalent to calling
XtGetValues () for those resources, althougimScrollBarGetValues 0
accesses the values through the widget instance structure rather than through
XtGetValues ().

See Also
XmScrollBarSetValues (1), XmScroliBar (2).

324 Motif Reference Manual

Motif Functions and Macros XmScrollBarSetValues

Name
XmScrollBarSetValues — set the current state of a ScrollBar widget.

Synopsis
#include <Xm/ScrollBar.h>

void XmScrollBarSetValues (Widget widget
int value
int slider_size
int increment
int page_increment
Boolean notify)

Inputs
widget Specifies the ScrollBar widget.
value Specifies the slider position.
slider_size Specifies the size of the slider.
increment Specifies the increment and decrement level.
page_increment Specifies the page increment and decrement level.
notify Specifies whether or not the value changed callback is
invoked.

Description
XmScrollBarSetValues () sets the current state of the specified ScrollBar
widget The position of the slider is setvalue which must be in the range
XmNminimum to XmNmaximum minus XmNsliderSize. The size of the slider is
set toslider_sizewhich must be between 1 and the size of the scroll region. The
increment and page increment values are sattementandpage_increment
respectively.

If notifyis True, XmScrollBarSetValues () invokes the XmNval-
ueChangedCallback for the ScrollBar when the state is set.

Usage
XmScrollBarSetValues () is a convenience routine that sets the values of
the XmNvalue, XmNsliderSize, XmNincrement, and XmNpagelncrement
resources for the ScrollBar widget. Calling the routine is equivalent to calling
XtSetValues () for those resources, althougmScrollBarSetValues 0
accesses the values through the widget instance structure rather than through
XtSetValues ().

Thenotify parameter indicates whether or not the value changed callbacks for the
ScrollBar are invoked. You can avoid redundant code by setting this parameter to
True. If you are calling{mScrollBarSetValues () from a value changed

Motif Reference Manual 325

XmScrollBarSetValues Motif Functions and Macros

callback routine, you probably want to set the parameter to False to avoid the
possibility of an infinite loop. CallingkmScrollBarSetValues () with notify

set to True causes the callback routines to be invoked in a way that is indistin-
guishable from a user-initiated adjustment to the ScrollBar.

See Also
XmScrollBarGetValues (1), XmScrollBar (2).

326 Motif Reference Manual

Motif Functions and Macros XmScrolledWindowSetAreas

Name

Synopsis

XmScrolledWindowSetAreas — specify the children for a scrolled window.

#include <Xm/ScrolledW.h>

void XmScrolledWindowSetAreas (Widget widget
Widget horizontal_scrollbar
Widget vertical_scrollbar
Widget work_regior)

Inputs

widget Specifies the ScrolledWindow widget.
horizontal_scrollbar ~ Specifies the widget ID of the horizontal ScrollBar.
vertical_scrollbar Specifies the widget ID of the vertical ScrollBar.
work_region Specifies the widget ID of the work window.

Availability

In Motif 2.0 and laterXmScrolledWindowSetAreas () is obsolete.

Description

Usage

XmScrolledWindowSetAreas () sets up the standard regions of a Scrolled-
Window widget for an application. The ScrolledWindow must be created before
the routine is calledXmScrolledWindowSetAreas () specifies the horizon-

tal and vertical ScrollBars and the work window region. If a particular Scrolled-
Window does not have one of these regions, the corresponding argument can be
specified as NULL.

Each of the ScrolledWindow regions is associated with a ScrolledWindow
resourceXmsScrolledWindowSetAreas () sets the associated resources.

The resources that correspond to the last three arguments to the routine are XmN-
horizontalScrollBar, XmNverticalScrollBar, and XmNworkWindow, respec-

tively.

If an application does not callmScrolledWindowSetAreas (), the widget

may still set some of the standard regions. If ScrollBars are added as children,
the XmNhorizontalScrollBar and XmNverticalScrollBar resources may be set if
they have not already been specified. Any child that is not a ScrollBar is used for
the XmNworkWindow. If you want to be certain about which widgets are used
for the different regions, it is wise to calinScrolledWindowSetAreas ()
explicitly.

In Motif 2.0 and later, the function is obsolete, and the programmer should spec-
ify the XmNhorizontalScrollBar, XmNverticalScrollBar, and XmNworkWindow

Motif Reference Manual 327

XmScrolledWindowSetAreas Motif Functions and Macros

Example

See Also

328

resources directly through a callx@SetValues (). Although ostensibly main-
tained for backwards compatibility, the implementatioXwfScrolledWin-
dowSetAreas () in Motif 2.0 and later is not Motif 1.2 compatible. In Motif

1.2, supplying a NULL value for any of the scrollbar or work window parameters
directly sets the internal component to NULL. In Motif 2.0 and later, supplying a
NULL value causes that parameter to be ignored, leaving the internal component
intact.

The following code fragment shows how to set the regions of a ScrolledWindow:

Widget toplevel, scrolled_w, drawing_a, vsb, hsb;
int view_width, view_height;

scrolled_w = XtVaCreateManagedWidget ("scrolled_w", xmScrolledWindow-
WidgetClass, toplevel,
XmNscrollingPolicy,
XmAPPLICATION_DEFINED,
XmNvisualPolicy, XmVARIABLE,
NULL);
drawing_a = XtVaCreateManagedWidget ("drawing_a", xmDrawingAreaWidg-
etClass, scrolled_w,
XmNwidth, view_width,
XmNheight, view_height,
NULL);
vsb = XtVaCreateManagedWidget ("vsb", xmScrollBarWidgetClass, scrolled_w,
XmNorientation, XmVERTICAL,
NULL);
hsb = XtVaCreateManagedWidget ("hsb", xmScrollBarWidgetClass, scrolled_w,
XmNorientation, XmHORIZONTAL,
NULL);

XmScrolledWindowSetAreas (scrolled_w, hsb, vsb, drawing_a);

XmScrolledWindow (2).

Motif Reference Manual

Motif Functions and Macros XmScrollVisible

Name

Synopsis

XmScrollVisible — make an obscured child of a ScrolledWindow visible.

#include <Xm/ScrolledW.h>

void XmScrollVisible (Widget scrollw_widget
Widget widget
Dimension left_right_margin
Dimension top_bottom_margin

Inputs

scrollw_widget Specifies the ScrolledWindow widget.

widget Specifies the widget ID of the widget that is to be made
visible.

left_right_margin Specifies the distance between the widget and the left or
right edge of the viewport if the ScrolledWindow is
scrolled horizontally.

top_bottom_margin Specifies the distance between the widget and the top or
bottom edge of the viewport if the ScrolledWindow is
scrolled vertically.

Availability

Motif 1.2 and later.

Description

Usage

See Also

XmScrollVisible () scrolls the specified ScrolledWindaerollw_widgetso

that the obscured or partially obscureidgetbecomes visible in the work area
viewport.widgetmust be a descendentsdrollw_widget The routine repositions
the work area of the ScrolledWindow and sets the margins between the widget
and the viewport boundaries basedeft right marginandtop_bottom_margin

if necessary.

XmScrollVisible () provides a way for an application to ensure that a partic-
ular child of a ScrolledWindow is visible. In order for the routine to work, the
XmNscrollingPolicy of the ScrolledWindow widget must be set to XmAUTO-
MATIC. This routine is designed to be used in the XmNtraverseObscureCallback
for a ScrolledWindow.

XmScrolledWindow (2).

Motif Reference Manual 329

XmSelectionBoxGetChild Motif Functions and Macros

Name
XmSelectionBoxGetChild — get the specified child of a SelectionBox widget.
Synopsis
#include <Xm/SelectioB.h>
Widget XmSelectionBoxGetChild (Widgetidget unsigned chachild)
Inputs
widget Specifies the SelectionBox widget.
child Specifies the child of the SelectionBox widget. Pass one of the val-
ues from the list below.
Returns
The widget ID of the specified child of the SelectionBox.
Availability

As of Moatif 2.0, the toolkit abstract child fetch routines are marked for depreca-
tion. You should give preference XiNameToWidget (), except when fetching
the SelectionBox default button or work area.

Description
XmSelectionBoxGetChild () returns the widget ID of the specified child of
the SelectionBox widget.

Usage
XmDIALOG_APPLY_BUTTON, XmDIALOG_CANCEL_BUTTON,
XmDIALOG_HELP_BUTTON, and XmDIALOG_OK_BUTTON specify the
action buttons in thevidget XmDIALOG_DEFAULT_BUTTON specifies the
current default button. XmDIALOG_LIST and XmDIALOG_LIST_LABEL
specify the list and its label. XmDIALOG_TEXT and
XmDIALOG_SELECTION_LABEL specify the selection text entry area and its
label. XmDIALOG_SEPARATOR specifies the separator and
XmDIALOG_WORK_AREA specifies any work area child that has been added
to the SelectionBox. For more information on the different children of the Selec-
tionBox, see the manual page in SectiomMatif and Xt Widget Classes

Widget Hierarchy

As of Motif 2.0, most Motif composite child fetch routines are marked as depre-
cated. However, since it is not possible to fetch the
XmDIALOG_DEFAULT_BUTTON or XmDIALOG_WORK_AREA children
using a public interface except through XmSelectionBoxGetChild(), the routine
should not be considered truly deprecated. For consistency with the preferred
new style, when fetching all other child values, consider giving preference to the

330 Motif Reference Manual

Motif Functions and Macros XmSelectionBoxGetChild

Intrinsics routine XtNameToWidget(), passing one of the following names as the
second parameter:

“Apply” (XmDIALOG_APPLY_BUTTON)
“Cancel’ (XmDIALOG_CANCEL_BUTTON)
“OK” (XmDIALOG_OK_BUTTON)
“Separator” (XmDIALOG_SEPARATOR)
“Help” (XmDIALOG_HELP_BUTTON)
“Symbol” (XmDIALOG_SYMBOL_LABEL)
“Message” (XmDIALOG_MESSAGE_LABEL)
“*|temsList” (XmDIALOG_LIST)

“ltems” (XmDIALOG_LIST_LABEL)
“Selection” (XmDIALOG_SELECTION_LABEL)
“Text” (XmDIALOG_TEXT)

Structures
The possible values for child are:

XmDIALOG_APPLY_BUTTON

XmDIALOG_OK_BUTTON

XmDIALOG_CANCEL_BUTTON

XmDIALOG_SELECTION_LABEL

XmDIALOG_DEFAULT_BUTTON XmDIALOG_SEPARATOR
XmDIALOG_HELP_BUTTON XmDIALOG_TEXT
XmDIALOG_LIST

XmDIALOG_WORK_AREA

XmDIALOG_LIST_LABEL

See Also
XmPromptDialog (2), XmSelectionBox (2).

1.The “*" is important: the List is not a direct child of the SelectionBox, but of a ScrolledList.

Motif Reference Manual 331

XmSetColorCalculation Motif Functions and Macros

Name
XmSetColorCalculation — set the procedure that calculates default colors.

Synopsis

XmColorProc XmSetColorCalculation (XmColorProalor_prog

Inputs
color_proc Specifies the procedure that is used for color calculation.

Returns
The previous color calculation procedure.

Description

XmSetColorCalculation () sets the procedure called BynGetColors ()%

that calculates the default foreground, top and bottom shadow, and selection
colors. The procedure calculates these colors based on the background color that
has been passed to the procedureolér_procis NULL, this routine restores the
default color calculation procedurmSetColorCalculation () returns the

color calculation procedure that was in use when the routine was called. Both
XmGetColors () andXmChangeColor () use the color calculation procedure.

Usage
Motif widgets rely on the use of shadowed borders to create their three-dimen-
sional appearance. The top and bottom shadow colors are lighter and darker
shades of the background color; these colors are reversed to make a component
appear raised out of the screen or recessed into the screen. The select color is a
slightly darker shade of the background color that indicates that a component is
selected. The foreground color is either black or white, depending on which color
provides the most contrast with the background cotanSetColorCalcula-
tion () sets the procedure that calculates these colorsXii&etColorCal-
culation () to get the default color calculation procedure.

In Motif 2.0 and later, per-screen color calculation procedures are supported: if
the XmNcolorCalculationProc resource of the XmScreen object associated with
a given widget is not NULL, the procedure specified by the resource is used to
calculate color in preference to any procedure which may have been specified by
XmSetColorCalculation 0.

Procedures
The XmColorProc has the following syntax:

typedef void (*XmColorProc) (XColor *bg_color, /* specifies the back-
ground color */

1.Erroneously missing from 1st and 2nd editions.

332 Motif Reference Manual

Motif Functions and Macros XmSetColorCalculation

XColor *fg_color, /* returns the fore-
ground color */

XColor *sel_color, /*returns the select
color */

XColor *ts_color, /* returns the top
shadow color */

XColor *bs_color) /* returns the bottom
shadow color */

An XmColorProc takes five arguments. The first argument, bg_color, is a pointer
to an XColor structure that specifies the background color. The red, green, blue,
and pixel fields in the structure contain valid values. The rest of the arguments are
pointers to XColor structures for the colors that are to be calculated. The proce-
dure fills in the red, green, and blue fields in these structures.

See Also
XmChangeColor (1), XmGetColorCalculation (1), XmGetColors (1).
XmScreen (2).

Motif Reference Manual 333

XmSetFontUnit Motif Functions and Macros

Name
XmSetFontUnit — set the font unit values.
Synopsis
void XmSetFontUnit (Displaydisplay int font_unit_valug
Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
font_unit_value Specifies the value for both horizontal and vertical font units.
Availability
In Motif 1.2 and laterXmSetFontUnit () is obsolete. It has been superseded
by setting the Screen resources XmNhorizontalFontUnit and XmNverticalFontU-
nit.
Description
XmSetFontUnit () sets the value of the horizontal and vertical font units for all
of the screens on the display. This routine is retained for compatibility with Motif
1.1 and should not be used in newer applications.
Usage

Font units are a resolution-independent unit of measurement that are based on the
width and height characteristics of a particular font. The default horizontal and
vertical font unit values are based on the XmNfont resource, which in Motif 1.2,
is a resource of the Screen object. An application can override these default val-
ues by callingKmSetFontUnit (). The values should be set before any widgets
that use resolution-independent data are created.

See Also
XmConvertUnits (1), XmSetFontUnits (1), XmGadget(2),
XmManager(2), XmPrimitive (2), XmScreen (2).

334 Motif Reference Manual

Motif Functions and Macros XmSetFontUnits

Name
XmSetFontUnits — set the font unit values.

Synopsis
void XmSetFontUnits (Displaydisplay int h_valueg intv_valug
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

h_value Specifies the value for horizontal font units.
v_value Specifies the value for vertical font units.

Availability
In Motif 1.2 and laterXmSetFontUnits () is obsolete. It has been superseded
by setting the Screen resources XmNhorizontalFontUnit and XmNverticalFontU-
nit.

Description
XmSetFontUnits () sets the value of the horizontal and vertical font units to
h_valueandv_valuerespectively. The routine sets the font units for all of the
screens on the display. This routine is retained for compatibility with Motif 1.1
and should not be used in newer applications.

Usage
Font units are a resolution-independent unit of measurement that are based on the
width and height characteristics of a particular font. The default horizontal and
vertical font unit values are based on the XmNfont resource, which in Motif 1.2
and later, is a resource of the Screen object. An application can override these
default values by callingmSetFontUnits (). The values should be set before
any widgets that use resolution-independent data are created.

See Also
XmConvertUnits (1), XmSetFontUnit (1), XmGadget(2),
XmManager(2), XmPrimitive (2), XmScreen (2).

Motif Reference Manual 335

XmSetMenuCursor Motif Functions and Macros

Name
XmSetMenuCursor — set the current menu cursor.

Synopsis

void XmSetMenuCursor (Displaydtsplay Cursorcursorld)
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
cursorld Specifies the cursor ID for the menu cursor.

Availability
In Motif 1.2 and laterXmSetMenuCursor () is obsolete. It has been super-
seded by setting the Screen resource XmNmenuCursor.

Description
XmSetMenuCursor () sets the menu cursor for an application. The routine sets
the cursor for all screens on the specitiespplay The specified cursor is shown
whenever the application is using a Motif menu on the specifgpday This
routine is retained for compatibility with Motif 1.1 and should not be used in
newer applications.

Usage
The menu cursor is the pointer shape that is used whenever a menu is posted.
This cursor can be different from the normal pointer shape. In Motif 1.2 and later,
the new Screen object has a resource, XmNmenuCursor, that specifies the menu
cursor.XmSetMenuCursor () is retained for compatibility with Motif 1.1 and
should not be used in newer applications.

See Also
XmGetMenuCursor (1), XmScreen (2).

336 Motif Reference Manual

Motif Functions and Macros XmSetProtocolHooks

Name

Synopsis

XmSetProtocolHooks — set prehooks and posthooks for a protocol.

#include <Xm/Protocols.h>

void XmSetProtocolHooks (Widget shell
Atom property
Atom protocol
XtCallbackProc prehook
XtPointer pre_closure
XtCallbackProc posthook
XtPointer post_closurg

Inputs

shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.

protocol Specifies the protocol atom.

prehook Specifies the procedure to invoke before the client callbacks.
pre_closure Specifies any client data that is passed to the prehook.
posthook Specifies the procedure to invoke after the client callbacks.
post_closure Specifies any client data that is passed to the posthook.

Description

Usage

See Also

XmSetProtocolHooks () allows pre- and post-procedures to be invoked in
addition to the regular callback procedures that are performed when the Motif
window manager sends a protocol message. The prehook procedure is invoked
before calling the procedures on the client’s callback list, whereas the posthook
procedure is invoked after calling the procedures on the client’s callback list. This
routine gives shells more control flow, since callback procedures aren't necessar-
ily executed in any particular order.

A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
To communicate using a protocol, a client sends a ClientMessage event contain-
ing apropertyandprotocol and the receiving client responds by calling the asso-
ciated protocol callback routing&mSetProtocolHooks () gives an

application more control over the flow of callback procedures, since callbacks are
not necessarily invoked in any particular order.

XmAddProtocolCallback (1), XmRemoveProtocolCallback (1),
XmSetWMProtocolHooks (1), VendorShell (2).

Motif Reference Manual 337

XmSetWMProtocolHooks Motif Functions and Macros

Name
XmSetWMProtocolHooks — set prehooks and posthooks for the
XA _WM_PROTOCOLS protocol.

Synopsis
#include <Xm/Protocols.h>

void XmSetWMProtocolHooks (Widget shell
Atom protocol
XtCallbackProc prehook
XtPointer pre_closure
XtCallbackProc posthook
XtPointer post_closurg

Inputs
P shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.
prehook Specifies the procedure to invoke before the client callbacks.
pre_closure Specifies any client data that is passed to the prehook.
posthook Specifies the procedure to invoke after the client callbacks.
post_closure Specifies any client data that is passed to the posthook.

Description

XmSetWMProtocolHooks ()1 is a convenience routine that caksnSetPro-
tocolHooks () with property set to XA WM_PROTOCOL, the window man-
ager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. To communicate using a
protocol, a client sends a ClientMessage event containing a prope gyoamd
col, and the receiving client responds by calling the associated protocol callback
routine.XmSetWMProtocolHooks () gives an application more control over
the flow of callback procedures, since callbacks are not necessarily invoked in
any particular order.

See Also
XmAddWMProtocolCallback (1), XminternAtom (1),
XmRemoveWMProtocolCallback (1), XmSetProtocolHooks (1),
VendorShell (2).

1.Erroneously given as XmSetXmProtocolHooks() in 1st and 2nd editions.

338 Motif Reference Manual

Motif Functions and Macros XmSimpleSpinBoxAddltem

Name
XmSimpleSpinBoxAddltem — add an item to a SimpleSpinBox.

Synopsis
#include <Xm/SSpinB.h>
void XmSimpleSpinBoxAddItem (Widgetidget XmStringitem, int positior)
Inputs
widget Specifies a SimpleSpinBox widget.

item Specifies an item to add.
position Specifies the position at which to add the new item.

Availability
Motif 2.1 and later.

Description
XmSimpleSpinBoxAddltem () adds antemto a SimpleSpinBowidgetat a
givenpositionwithin the list of values which the widget may displaypdsition
is zero, or ifpositionis greater than the number of items in the listjtdmis
appended to the list of values.

Usage
XmSimpleSpinBoxAddltem () is a convenience routine that addstamto
the list of items which a SimpleSpinBox may display. In order to add an item to
the SimpleSpinBox, a compound string must be creXiebimpleSpinBox-
Addltem () adds thétemto the SimpleSpinBox by manipulating the XmNval-
ues, XmNnumValues, and XmNposition resources of the widget. If the
XmNspinBoxChildType resource of the widget is not XmSTRING, or if the item
is NULL, the procedure simply returns without modifying the array of values.

The SimpleSpinBox widget takes a copy of the supplied item; the programmer is
responsible for freeing the compound string at an appropriate point by calling
XmStringFree ().

Example
The following procedure simply appends an item onto the end of a SimpleSpin-
Box list:

void SimpleSpinBoxAppend (Widget spinb, char *item)
{
XmString xms = XmStringGenerate ((XtPointer)
value,
XmFONTLIST_DEF
AULT_TAG,

Motif Reference Manual 339

XmSimpleSpinBoxAddltem Motif Functions and Macros

XMCHARSET_TEXT,
NULL);

XmSimpleSpinBoxAddltem (spinb, xms, 0);
XmsStringFree (xms);

See Also
XmSimpleSpinBoxDeletePos (1), XmSimpleSpinBoxSetltem (1),
XmStringFree (1), XmSimpleSpinBox (2).

340 Motif Reference Manual

Motif Functions and Macros XmSimpleSpinBoxDeletePos

Name
XmSimpleSpinBoxDeletePos — delete an item at the specified position from a
SimpleSpinBox.
Synopsis
#include <Xm/SSpinB.h>
void XmSimpleSpinBoxDeletePos (Widgetdget int position)
Inputs
widget Specifies a SimpleSpinBox widget.
position Specifies the position at which to delete an item.
Availability
Motif 2.1 and later.
Description
XmSimpleSpinBoxDeletePos () deletes an item at a giveositionfrom a
SimpleSpinBox widget. A value of 1 indicates the first item, 2 is the second item,
and so on. The last item in the list can be specified by paspwsjtaonof zero.
Usage
XmSimpleSpinBoxDeletePos () is a convenience function which deletes an
item from the set of values associated with a SimpleSpinBox. The function
directly manipulates the XmNvalues, XmNnumValues, and XmNposition
resources of the widget. If the XmNspinBoxChildType resource of the widget is
not XmSTRING, the function simply returns without modifying the array of val-
ues.
See Also

XmSimpleSpinBoxAddltem (1), XmSimpleSpinBoxSetltem (1),
XmSimpleSpinBox (2).

Motif Reference Manual 341

XmSimpleSpinBoxSetltem Motif Functions and Macros

Name
XmSimpleSpinBoxSetltem — set an item in a SimpleSpinBox.

Synopsis
#include <Xm/SSpinB.h>
void XmSimpleSpinBoxSetltem (Widgetidget XmStringitem)

Inputs

widget Specifies a SimpleSpinBox widget.
item Specifies the item to set.

Availability
Motif 2.1 and later.

Description
XmSimpleSpinBoxSetltem () makes an item in a SimpleSpinBox widget
the current value.

Usage
XmSimpleSpinBoxSetltem () is a convenience routine that selects one of
the SimpleSpinBox values. Thitemmust exist within the XmNvalues array of
thewidget otherwise a warning message is displayed. The function modifies the
XmNposition resource of the widget if the item is found. No check is performed
to ensure that the XmNspinBoxChildType resource of the SimpleSpinBox is
XmSTRING.

See Also

XmSimpleSpinBoxAddltem (1), XmSimpleSpinBoxDeletePos (1),
XmSimpleSpinBox (2).

342 Motif Reference Manual

Motif Functions and Macros XmSpinBoxValidatePosition

Name
XmSpinBoxValidatePosition — validate the current value of a SpinBox.
Synopsis
#include <Xm/SpinB.h>
int XmSpinBoxValidatePosition (Widgéext_field int *position_valug
Inputs
text_field Specifies a text field child of a SpinBox widget.
Outputs
position_value Returns the position of the current value.
Returns
The status of the validation.
Avalilability
Motif 2.1 and later.
Description
XmSpinBoxValidatePosition () checks that theext_fieldchild of a Spin-
Box has a valid position value, and places the validated value of the text_field at
the addresposition_valuelf the position is valid, the function returns
XmVALID_VALUE. Otherwise the function returns XmCURRENT_VALUE,
XmMAXIMUM_VALUE, XmMINIMUM_VALUE, or
XmINCREMENT_VALUE, depending upon a comparison of the current posi-
tion and other constraint resources oftde_field
Usage

XmSpinBoxValidatePosition () can be used to ensure that the user has
entered a valid value into an editable textual child of a SpinBoextffieldis
NULL, or if text_fielddoes not hold the XmQTaccessTextual trait, or if the
XmNspinBoxChildType of this widget is not XmNUMERIC the function returns
XmMCURRENT_VALUE. The current value of the text field is fetched as a float-
ing point number, then converted into an integer using the XmNdecimalPoints
resource: digits after the decimal place are simply truncated. The current value is
subsequently compared against the XmNminimumValue and XmNmaximum-
Value resources: if less than XmNminimumValpesition_valuds set to the

value of XmNminimumValue, and the function returns XmMINIMUM_VALUE,

or if the current value is more than XmNmaximumValpesition_valués set to

the value of XmNmaximumValue, and the function returns
XmMAXIMUM_VALUE. Lastly, the function checks that the current value falls
between XmNminimumValue and XmNmaximumValue on an interval specified

Motif Reference Manual 343

XmSpinBoxValidatePosition Motif Functions and Macros

by the XmNincrementValue resource. That is, the current value is a member of

the set:

{
XmNminimumValue,
XmNminimumValue + XmNincrementValue,
XmNminimumValue + (2 * XmNincrementValue),
XmNminimumValue + (3 * XmNincrementValue),
XmNminimumValue + (n * XmNincrementValue),
XmNmaximumValue

}

If the current value does not fall within the set, plsition_valuds set to the

nearest item in the set which is not more than the current value, and the function
returns XmINCREMENT_VALUE. If all checks pass, thesition_valuas set to

the current value, and the function returns XmVALID_VALUE.

The SpinBox does not modify the contentdet_fieldwhen performing the val-

idation.
Structures
The returned status has the following values:
XmCURRENT_VALUE XmINCREMENT_VALUE
XmMAXIMUM_VALUE XmMINIMUM_VALUE
XmVALID_VALUE
See Also
XmSpinBox (2).

344 Motif Reference Manual

Motif Functions and Macros XmStringBaseline

Name
XmStringBaseline — get the baseline spacing for a compound string.
Synopsis
Dimension XmStringBaseline (XmFontLifintlist, XmStringstring)
Inputs
fontlist Specifies the font list for the compound string.
string Specifies the compound string.
Returns
The distance, in pixels, from the top of the character box to the baseline of the
first line of text.
Availability
In Motif 2.0 and later, the XmFontList is obsolete. It is superseded by the
XmRenderTable, to which it has become an alias.
Description
XmStringBaseline () returns the distance, in pixels, from the top of the char-
acter box to the baseline of the first line of texdtiing. If string is created with
XmStringCreateSimple (), thenfontlistmust begin with the font associated
with the character set from the current language environment, otherwise the
result is undefined.
Usage

In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.

XmStringBaseline () provides information that is useful if you need to

render a compound string. Motif widgets render compound string automatically,
so you only need to worry about rendering them yourself if you are writing your
own widget. The routine is also useful if you want to get the dimensions of a

compound string rendered with a particular font.

See Also
XmStringComponentCreate (1), XmStringExtent (1),
XmStringHeight (1), XmStringWidth (1), XmRendition (2).

Motif Reference Manual

XmStringByteCompare Motif Functions and Macros

Name
XmStringByteCompare — compare two compound strings byte-by-byte.

Synopsis

Boolean XmStringByteCompare (XmStrisgygingl, XmStringstring2)

Inputs
stringl Specifies a compound string.

string2 Specifies another compound string.

Returns
True if the two compound strings are byte-by-byte identical or False otherwise.

Description
XmStringByteCompare () compares the compound strirgigsngland
string2 byte by byte. If the strings are equivalent, it returns True; otherwise it
returns False. If two compound strings are created WitistringCreatelLo-
calized () in the same language environment, using the same character string,
the strings are byte-for-byte equal. Similarly, if two compound strings are created
with XmStringCreate () using the same font list element tag and character
string, the strings are equal.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringByteCompare () is one of a number of routines that allow an appli-
cation to manipulate compound strings as it would regular character strings.

When a compound string is placed into a widget, the string is sometimes con-
verted to an internal format, which provides faster processing but strips out
redundant information. As a result, when an application retrieves the compound
string from the widget by callingtGetValues (), the returned string does not
necessarily match the original string byte-for-byte. This situation occurs most
often with Label widgets and its subclasses.

See Also
XmStringComponentCreate (1), XmStringCompare (1).

346 Motif Reference Manual

Motif Functions and Macros XmStringByteStreamLength

Name
XmStringByteStreamLength — calculates the length of a byte stream.
Synopsis
unsigned int XmStringByteStreamLength (unsigned chkairig)
Inputs
string Specifies a string in byte stream format.
Returns
The length, in bytes, of the string.
Availability
Motif 2.0 and later.
Description
XmStringByteStreamLength () calculates and returns the length of a byte
streamstringin bytes, including any header information. Téteing is presumed
to be a compound string which has been converted into byte stream format.
Usage

Since the returned value includes the size of the stream header, the function
returns a non-zero value everstfingis NULL. The function is primarily used as
part of data transfer operations, for example in transferring compound string
tables to and from the clipboard or other widgets.

See Also
XmCvtXmStringToByteStream (1),
XmCvtByteStreamToXmString (1).

Motif Reference Manual 347

XmStringCompare Motif Functions and Macros

Name
XmStringCompare — compare two compound strings.

Synopsis
Boolean XmStringCompare (XmStrirsgringl, XmStringstring2)
Inputs
stringl Specifies a compound string.
string2 Specifies another compound string.

Returns
True if the two compound strings are semantically equivalent or False otherwise.

Description
XmStringCompare () compares the compound strirgjengl andstring2
semantically. If the strings are equivalent, it returns True; otherwise it returns
False XmStringCompare () is similar toXmStringByteCompare () but
less restrictive. Two compound string are semantically equivalent if they have the
same text components, font list element tags, directions, and separators.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringCompare () is one of a number of routines that allow an application
to manipulate compound strings as it would regular character strings.

See Also
XmStringcomponentCreate (1), XmStringByteCompare (1).

348 Motif Reference Manual

Motif Functions and Macros XmStringComponentCreate

Name
XmStringComponentCreate — create a compound string consisting of a single
component.
Synopsis
XmString XmStringComponentCreate (XmStringComponentTypge
unsigned int length
XtPointer valug
Inputs
type Specifies the type of component to create.
length Specifies the length, in bytes, of value.
value Specifies the value of the component.
Returns
A new compound string, or NULL.
Availability
Motif 2.0 and later.
Description
XmStringComponentCreate () creates a new compound string consisting of
a component of the type specifiedtge which contains the giveralue
Usage

If typeis not a valid component type, orléngthis greater than zero andlueis
NULL, then the function returns NULL. Otherwise, the function returns an allo-
cated compound string. It is the responsibility of the programmer to reclaim the
utilized space at an appropriate point by calmyStringFree ().

Structures
The string componeitypecan have one of the following values:

XMSTRING_COMPONENT_CHARSET
XMSTRING_COMPONENT_TEXT
XMSTRING_COMPONENT_LOCALE_TEXT
XmMSTRING_COMPONENT_DIRECTION
XmMSTRING_COMPONENT_SEPARATOR
XmMSTRING_COMPONENT_TAB
XMSTRING_COMPONENT_END
XMSTRING_COMPONENT_UNKNOWN
XMSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XMSTRING_COMPONENT_WIDECHAR_TEXT
XMSTRING_COMPONENT_LAYOUT_PUSH
XMSTRING_COMPONENT_LAYOUT_POP

Motif Reference Manual 349

XmStringComponentCreate Motif Functions and Macros

XmMSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END

Example
The following code illustrates basic compound string creation by concatenating
elements from an array of strings:

XmString create_xmstring_from_array (char **array, int count, Boolean tab)
{
XmString txt, sep;
XmString xms = (XmString) O;
XmStringComponentType sep_type;
int i;

if (tab) {
sep_type = XmSTRING_COMPONENT _TAB;
}

else {
sep_type = XmMSTRING_COMPONENT_SEPARATOR,;

}

for (i=0; i < count; i++) {
txt = XmStringComponentCreate
(XmSTRING_COMPONENT_TE
XT, strlen (array[i]), (XtPointer)
array[i]);
xms = XmStringConcatAndFree (xms, txt);

if (i < count) {
/* another item after this... */
sep = XmStringComponentCreate (sep_type, 0, NULL);
xms = XmStringConcatAndFree (xms, sep);

}

/* caller must free this */
return xms;

See Also
XmStringConcatAndFree (1), XmStringFree (1).

350 Motif Reference Manual

Motif Functions and Macros XmStringConcat

Name
XmStringConcat — concatenate two compound strings.
Synopsis
XmString XmStringConcat (XmStringtringl, XmStringstring2)
Inputs
stringl Specifies a compound string.
string2 Specifies another compound string.
Returns
A new compound string.
Description
XmStringConcat () returns the compound string formed by appenditnong2
to stringl, leaving the original compound strings unchanged. Storage for the
result is allocated within the routine and should be freed by calingtring-
Free (). Management of the allocated memory is the responsibility of the appli-
cation.
Usage

In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringConcat () is one of a number of routines that allow an application to
manipulate compound strings as it would regular character strings.

See Also
XmStringComponentCreate (1), XmStringCopy (1),
XmStringNConcat (1), XmStringNCopy (1).

Motif Reference Manual 351

XmsStringConcatAndFree Motif Functions and Macros

Name
XmStringConcatAndFree — concatenate two compound strings.

Synopsis
XmsString XmStringConcatAndFree (XmStristringl, XmStringstring2)
Inputs
stringl Specifies a compound string.
string2 Specifies another compound string.

Returns
A new compound string.

Availability
Motif 2.0 and later.

Description
XmsStringConcatAndFree () is similar toXmStringConcat () in that each
returns a compound string formed by appendinigng2 to stringl XmString-
ConcatAndFree () differs fromXmStringConcat () by freeing the original
compound strings. Storage for the result is allocated within the routine and
should be freed by callingmStringFree (). Management of the allocated
memory is the responsibility of the application.

Usage

In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, and locale components.

Example

The following code constructs a simple compound string out of piecemeal sub-

components:

XmString xms;
XmString xms_temp;

xms = XmStringGenerate((XtPointer) “Multiple”,
XmFONTLIST_DEFAULT_TAG,
XmMCHARSET_TEXT,
NULL);
xms_temp = XmStringComponentCreate
(XmSTRING_COMP
ONENT_TAB, 0,
NULL);
xms = XmStringConcatAndFree(xms, xms_temp);

352 Motif Reference Manual

Motif Functions and Macros XmsStringConcatAndFree

See Also

xms_temp = XmStringGenerate((XtPointer) “Column”,
XmFONTLIST_DEFAULT_TAG

XmCHARSET_TEXT,
NULL);
xms = XmStringConcatAndFree (xms, xms_temp);
xms_temp = XmStringComponentCreate
(XmSTRING_COMP
ONENT_TAB, 0,
NULL);
xms = XmStringConcatAndFree (xms, xms_temp);
xms_temp = XmStringGenerate((XtPointer) “Format”,
XmFONTLIST_DEFAULT_TAG

XmCHARSET_TEXT,
NULL);
xms = XmStringConcatAndFree (xms, xms_temp);

XmStringComponentCreate (1), XmStringCopy (1),
XmStringConcat (1), XmStringNConcat (1), XmStringNCopy (1).

Motif Reference Manual 353

XmStringCopy Motif Functions and Macros

Name
XmStringCopy — copy a compound string.
Synopsis
XmString XmStringCopy (XmStringtring)
Inputs
string Specifies a compound string.
Returns
A new compound string.
Description
XmStringCopy () copies the compound strirggring and returns the copy, leav-
ing the original compound string unchanged. Storage for the result is allocated by
the routine and should be freed by callfmStringFree (). Management of
the allocated memory is the responsibility of the application.
Usage

In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringCopy () is one of a number of routines that allow an application to
manipulate compound strings as it would regular character strings.

See Also
XmStringComponentCreate (1), XmStringConcat (1),
XmStringNConcat (1), XmStringNCopy (1).

354 Motif Reference Manual

Motif Functions and Macros XmStringCreate

Name
XmStringCreate — create a compound string.

Synopsis

XmString XmStringCreate (chatéxt XmStringCharSetag)

Inputs
text Specifies the text component of the compound string.

tag Specifies the font list element tag.

Returns
A new compound string.

Description
XmStringCreate () creates a compound string containing two components: a
text component composedtektand the font list element tag specifiedtag.
textmust be a NULL-terminated stringg can have the value
XmFONTLIST_DEFAULT_TAG, which identifies a locale-encoded text seg-
ment. Storage for the returned compound string is allocated by the routine and
should be freed by callingmStringFree (). Management of the allocated
memory is the responsibility of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringCreate () allows you to create a compound string composed of a
font list element tag and a text component.

In Motif 1.1, compound strings use character set identifiers rather than font list
element tags. The character set identifier for a compound string can have the
value XmSTRING_DEFAULT_CHARSET, which takes the character set from
the current language environment, but this value may be removed from future
versions of Motif.

XmStringCreate () creates a compound string with no specified direction.

The default direction may be taken from the XmNstringDirection resource of the
parent of the widget that contains the compound string. If you need a string with
a direction other than the default direction, ¥seStringDirectionCre-

ate () to create a direction string and concatenate it with the compound string
containing the text.

Motif Reference Manual 355

XmStringCreate Motif Functions and Macros

Example
The following code fragment shows how to create compound strings using
XmStringCreate ():

Widget toplevel,

XmString sl, s2, s3, text, tmp;

String stringl = "This is a string", string2 = "that contains three", string3 =
"separate fonts.";

s1 = XmStringCreate (stringl, "tagl");
s2 = XmStringCreate (string2, "tag2");
s3 = XmStringCreate (string3, XmFONTLIST_DEFAULT_TAG);

tmp = XmStringConcatAndFree (s1, s2);
text = XmStringConcatAndFree (tmp, s3);

XtVaCreateManagedWidget ("widget_name", xmLabelWidgetClass, toplevel,
XmNlabelString, text, NULL);
XmStringFree (text);

See Also
XmsStringBaseline (1), XmStringByteCompare (1),
XmStringCompare (1), XmStringConcat (1),
XmStringComponentCreate (1), XmStringCopy (1),
XmStringCreateLocalized (1), XmStringCreateLtoR (1),
XmStringCreateSimple (1), XmStringDirectionCreate (1),
XmStringDraw (1), XmStringDrawlmage (1),
XmStringDrawUnderline (1), XmStringEmpty (1),
XmStringExtent (1), XmStringFree (1), XmStringFreeContext (1),
XmStringGetLtoR (1), XmStringGetNextComponent (1),
XmStringGetNextSegment (1), XmStringHasSubstring (D),
XmStringHeight (1), XmStringlnitContext (1),
XmsStringLength (1), XmStringLineCount (1),
XmStringNConcat (1), XmStringNCopy (1),
XmStringPeekNextComponent (1), XmStringSegmentCreate (1),
XmStringSeparatorCreate (1), XmStringWidth (1).

356 Motif Reference Manual

Motif Functions and Macros XmStringCreatelLocalized

Name
XmStringCreatelLocalized — create a compound string in the current locale.
Synopsis
XmString XmStringCreatelLocalized (Stringx)
Inputs
text Specifies the text component of the compound string.
Returns
A new compound string.
Availability
Motif 1.2 and later.
Description
XmStringCreateLocalized () creates a compound string containing two
components: a text component composeigxifand the font list element tag
XmFONTLIST_DEFAULT_TAG, which identifies a locale-encoded text seg-
ment.textmust be a NULL-terminated string. Storage for the returned compound
string is allocated by the routine and should be freed by cadlm8tring-
Free (). Management of the allocated memory is the responsibility of the appli-
cation.
Usage

In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringCreatelLocalized () creates the identical compound string that
would result from calling XmStringCreate with

XmFONTLIST_DEFAULT_TAG as the font list entry tag.

Example
The following program shows how to create a compound string in the current
locale and use it as the label for a PushButton:

#include <Xm/RowColumn.h>
#include <Xm/PushB.h>

String fallbacks[] = { "*fontList:9x15=tag", NULL };

main (int argc, char *argv[])

{

Widget toplevel, rowcol;
XtAppContext app;

Motif Reference Manual 357

XmStringCreateLocalized Motif Functions and Macros

See Also
XmStringComponentCreate (1), XmStringCreate (1),
XmStringFree (1).

358

XmString text;
XtSetLanguageProc (NULL, (XtLanguageProc) NULL, NULL);

toplevel = XtVaApplnitialize (&app, argv[0], NULL, O, &argc, argv, fall-
backs, NULL);

rowcol = XtVaCreateWidget ("rowcol”, xmRowColumnWidgetClass,
toplevel, NULL);

text = XmsStringCreateLocalized ("Testing, testing...");
XtVaCreateManagedWidget ("pb", xmPushButtonWidgetClass, rowcol,
XmNlabelString, text, NULL);

XmsStringFree (text);
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

Motif Reference Manual

Motif Functions and Macros XmStringCreateLtoR

Name
XmStringCreateLtoR — create a compound string.
Synopsis
XmString XmStringCreatelLtoR (chatext XmStringCharSetag)
Inputs
text Specifies the text component of the compound string.
tag Specifies the font list element tag.
Returns
A new compound string.
Availability

In Motif 2.0 and later, this function is obsolete, and is replaced by the function
XmStringGenerate ().

Description
XmStringCreateLtoR () creates a compound string containing two compo-
nents: a text component composedestand the font list element tag specified
by tag. text must be a NULL-terminated string. In additi¥@mStringCre-
ateLtoR () searches for newline characters (\njeixt Each time a newline is
found, the characters up to the newline are placed into a compound string seg-
ment followed by a separator component. The routine does not add a separator
component to the end of the compound string. The default direction of the string
is left to right and the assumed encoding is 8-bit characters rather than 16-bit
characters.

tag can have the value XmFONTLIST_DEFAULT_TAG, which identifies a
locale-encoded text segment. Storage for the returned compound string is allo-
cated by the routine and should be freed by calkmgStringFree (). Manage-
ment of the allocated memaory is the responsibility of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list elenegyta string direction, andtaxt
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringCreateLtoR () allows you to create a compound string composed
of a font list elementag and a multi-lingextcomponent.

Motif Reference Manual 359

XmStringCreateLtoR Motif Functions and Macros

See Also

360

In Motif 1.1, compound strings use character set identifiers rather than font list
element tags. The character set identifier for a compound string can have the
value XmSTRING_DEFAULT_CHARSET, which takes the character set from
the current language environment, but this value may be removed from future

versions of Motif.

XmStringComponentCreate (1), XmStringCreate (1),
XmStringFree (1). XmStringGenerate (1).

Motif Reference Manual

Motif Functions and Macros XmStringCreateSimple

Name
XmStringCreateSimple — create a compound string in the current language envi-
ronment.
Synopsis
XmString XmStringCreateSimple (chatek)
Inputs
text Specifies the text component of the compound string.
Returns
A new compound string.
Availability

In Motif 1.2, XmStringCreateSimple () is obsolete. It has been superseded
by XmStringCreatelLocalized 0.

Description
XmStringCreateSimple () creates a compound string containing two com-
ponents: a text component composedextand a character set identifier derived
from the LANG environment variable or from a vendor-specific default, which is
usually 1SO8859-1textmust be a NULL-terminated string. Storage for the
returned compound string is allocated by the routine and should be freed by call-
ing XmStringFree (). Management of the allocated memory is the responsibil-
ity of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components. In
Motif 1.1, compound strings use character set identifiers rather than font list ele-
ment tags. XmStringCreateSimple () is retained for compatibility with
Motif 1.1 and should not be used in newer applications.

See Also
XmStringComponentCreate (1), XmStringCreate (1),
XmStringCreateLocalized (1), XmStringFree (1).

Motif Reference Manual 361

XmsStringDirectionCreate Motif Functions and Macros

Name
XmStringDirectionCreate — create a compound string containing a direction
component.

Synopsis

XmString XmStringDirectionCreate (XmStringDirectidirection)

Inputs
direction Specifies the value of the direction component. Pass either

XmSTRING_DIRECTION_L_TO R,
XmSTRING_DIRECTION_R_TO_L or
XmSTRING_DIRECTION_DEFAULT.

Returns
A new compound string.

Description
XmStringDirectionCreate () creates a compound string containing a sin-
gle component, which is a direction component with the spedifiedtion
value. If thedirectionis XmSTRING_DIRECTION_DEFAULT, the widget
where the compound string is rendered controls the direction. Storage for the
returned compound string is allocated by the routine and should be freed by call-
ing XmStringFree (). Management of the allocated memory is the responsibil-
ity of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringDirectionCreate () allows you to create a string direction com-
ponent that can be concatenated with a compound string containing other compo-
nents.

See Also
XmStringComponentCreate (1), XmStringCreate (1),
XmStringFree (1).

362 Motif Reference Manual

Motif Functions and Macros XmStringDirectionToDirection

Name
XmStringDirectionToDirection — converts a string direction to a direction.
Synopsis
XmDirection XmStringDirectionToDirection (XmStringDirection
string_direction
Inputs
string_direction Specifies the string direction to be converted.
Returns
The converted direction.
Availability
Motif 2.0 and later.
Description
XmStringDirectionToDirection () converts an XmStringDirection
value specified bgtring_directioninto an XmDirection value.
Usage
XmStringDirectionToDirection () converts between the XmStringDi-
rection and XmDirection data typessifing_directionis
XmSTRING_DIRECTION_LEFT_TO_RIGHT, the function returns
XmLEFT_TO_RIGHT. Ifstring_directionis
XmSTRING_DIRECTION_RIGHT_TO_LEFT, the function returns
XmMRIGHT_TO_LEFT. Otherwise, the function returns
XmDIRECTION_DEFAULT.
See Also

XmStringDirectionCreate (2).

Motif Reference Manual 363

XmStringDraw Motif Functions and Macros
Name
XmStringDraw — draw a compound string.
Synopsis
void XmStringDraw (Display display
Window window
XmFontList fontlist,
XmString string,
GC ac,
Position X,
Position A
Dimension width,
unsigned char alignment
unsigned char layout_direction
XRectangle tlip)
Inputs
display Specifies a connection to an X server; returned from
XOpenDisplay() or XtDisplay().
window Specifies the window where the string is drawn.
fontlist Specifies the font list for drawing the string.
string Specifies a compound string.
gc Specifies the graphics context that is used to draw the string.
X Specifies the x-coordinate of the rectangle that will contain
the string.
y Specifies the y-coordinate of the rectangle that will contain
the string.
width Specifies the width of the rectangle that will contain the
string.
alignment Specifies the alignment of the string in the rectangle. Pass

364

layout_direction

clip

one of the following values:
XmMALIGNMENT_BEGINNING,
XmMALIGNMENT_CENTER, or
XMALIGNMENT_END.

Specifies the layout direction of the string segments. Pass
XMSTRING_DIRECTION_L_TO_R,
XMSTRING_DIRECTION_R_TO_L, or
XmMSTRING_DIRECTION_DEFAULT.

Specifies an clip rectangle that restricts the area where the
string will be drawn.

Motif Reference Manual

Motif Functions and Macros XmStringDraw

Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringDraw () draws the compound string specified by string by rendering
the foreground pixels for each character.stiing is created with
XmStringCreateSimple (), thenfontlistmust begin with the font associated
with the character set from the current language environment, otherwise the
result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringDraw () provides a means of rendering a compound string that is
analogous to the Xlib string rendering routines. Motif widgets render compound
string automatically, so you only need to worry about rendering them yourself if
you are writing your own widget.

In Motif 1.2 or later, if a segment of a compound string is associated with a font
list entry that is a font set, the font member ofdhés left in an undefined state

by the underlying call tXmbDrawsString (). If a segment of the compound

string is not associated with a font set, the gc must contain a valid font member.
Thegcmust be created usingtAllocateGC (); graphics contexts created with
XtGetGC () are not valid.

See Also

XmStringDrawlmage (1), XmStringDrawUnderline (D),
XmRendition (2).

Motif Reference Manual 365

XmStringDrawlmage

Name

Motif Functions and Macros

XmStringDrawlmage — draw a compound string.

Synopsis

366

void XmStringDrawlmage (Display display

Inputs
display

window
fontlist
string
gc

X

y

width

alignment

layout_direction

clip

Window window
XmFontList fontlist,
XmString string,

GC ac,

Position X,

Position Y,

Dimension width,
unsigned char alignment
unsigned char layout_direction
XRectangle tlip)

Specifies a connection to an X server; returned from
XOpenDisplay() or XtDisplay().

Specifies the window where the string is drawn.

Specifies the font list for drawing the string.

Specifies a compound string.

Specifies the graphics context that is used to draw the
string.

Specifies the x-coordinate of the rectangle that will con-
tain the string.

Specifies the y-coordinate of the rectangle that will con-
tain the string.

Specifies the width of the rectangle that will contain the
string.

Specifies the alignment of the string in the rectangle. Pass
one of the following values:
XmMALIGNMENT_BEGINNING,
XmMALIGNMENT_CENTER, or
XmMALIGNMENT_END.

Specifies the layout direction of the string segments. Pass
XmSTRING_DIRECTION_L_TO_R,
XmSTRING_DIRECTION_R_TO_L, or
XmSTRING_DIRECTION_DEFAULT.

Specifies an clip rectangle that restricts the area where the
string will be drawn.

Motif Reference Manual

Motif Functions and Macros XmStringDrawlmage

Availability

In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description

Usage

See Also

XmStringDrawimage () draws the compound string specifiedstyng by

painting the foreground and background pixels for each character. If string is cre-
ated withXmStringCreateSimple (), thenfontlist must begin with the font
associated with the character set from the current language environment, other-
wise the result is undefined.

In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringDrawimage () provides a means of rendering a compound string
that is analogous to the Xlib string rendering routines. Motif widgets render com-
pound string automatically, so you only need to worry about rendering them
yourself if you are writing your own widget.

In Motif 1.2 or later, if a segment of a compound string is associated with a font
list entry that is a font set, the font member ofdhés left in an undefined state

by the underlying call tmbDrawlmageString (). If a segment of the com-
pound string is not associated with a font setgthmust contain a valid font
member. Thgc must be created usingAllocateGC (); graphics contexts
created withXtGetGC () are not valid.

XmStringDraw (1), XmStringDrawUnderline (1), XmRendition (2).

Motif Reference Manual 367

XmStringDrawUnderline

Name
XmStringDrawUnderline — draw a compound string with an underlined sub-
string.
Synopsis
void XmStringDrawUnderline (Display display
Window window
XmFontList fontlist,
XmString string,
GC gc,
Position X,
Position Y,
Dimension width,
unsigned char alignment
unsigned char layout_direction
XRectangle tlip,
XmString underling
Inputs
display Specifies a connection to an X server; returned from
XOpenDisplay() or XtDisplay().
window Specifies the window where the string is drawn.
fontlist Specifies the font list for drawing the string.
string Specifies a compound string.
gc Specifies the graphics context that is used to draw the string.
X Specifies the x-coordinate of the rectangle that will contain
the string.
y Specifies the y-coordinate of the rectangle that will contain
the string.
width Specifies the width of the rectangle that will contain the
string.
alignment Specifies the alignment of the string in the rectangle. Pass

layout_direction

clip

368

Motif Functions and Macros

one of the following values:
XmMALIGNMENT_BEGINNING,
XmMALIGNMENT_CENTER, or
XMALIGNMENT_END.

Specifies the layout direction of the string segments. Pass
XMSTRING_DIRECTION_L_TO_R,
XMSTRING_DIRECTION_R_TO_L, or
XmMSTRING_DIRECTION_DEFAULT.

Specifies an clip rectangle that restricts the area where the
string will be drawn.

Motif Reference Manual

Motif Functions and Macros XmStringDrawUnderline

underline Specifies the substring that is to be underlined.

Avalilability

In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description

Usage

See Also

XmStringDrawUnderline () is similar toXmStringDraw (), but it also

draws an underline beneath the first matching subsindgrlinethat is con-
tained withinstring. If string is created wittKmStringCreateSimple 0,
thenfontlist must begin with the font associated with the character set from the
current language environment, otherwise the result is undefined.

In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringDrawUnderline () provides a means of rendering a compound
string and underlining a substring within it. Motif widgets render compound
string automatically, so you only need to worry about rendering them yourself if
you are writing your own widget.

In Motif 1.2 and later, if a segment of a compound string is associated with a font
list entry that is a font set, the font member ofghés left in an undefined state

by the underlying call ttXmbDrawString (). If a segment of the compound
string is not associated with a font set, gleenust contain a valid font member.
Thegcmust be created usingtAllocateGC (); graphics contexts created with
XtGetGC () are not valid.

XmStringDraw (1), XmStringDrawlmage (1), XmRendition (2).

Motif Reference Manual 369

XmStringEmpty Motif Functions and Macros

Name
XmStringEmpty — determine whether there are text segments in a compound
string.
Synopsis
Boolean XmStringEmpty (XmStringtring)
Inputs
string Specifies a compound string.
Returns
True if there are no text segments in the string or False otherwise.
Description
XmStringEmpty () returns True if no text segments exist in the specifigithg
and False otherwise. If the routine is passed NULL, it returns True.
Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringEmpty () is one of a number of routines that allow an application to
manipulate compound strings as it would regular character strings.
See Also

XmStringLength (1), XmStringLineCount (1).

370 Motif Reference Manual

Motif Functions and Macros XmStringExtent

Name
XmStringExtent — get the smallest rectangle that contains a compound string.
Synopsis
void XmStringExtent (XmFontListontlist, XmStringstring, Dimension #width,
Dimension *heigh)
Inputs
fontlist Specifies the font list for the compound string.
string Specifies the compound string.
Outputs
width Returns the width of the containing rectangle.
height Returns the height of the containing rectangle.
Availability

In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmsStringExtent () calculates the size of the smallest rectangle that can
enclose the specified compoustdng and returns theidth andheightof the
rectangle in pixels. I§tringis created witliXmStringCreateSimple (), then
fontlist must begin with the font from the character set of the current language
environment, otherwise the result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringExtent () provides information that is useful if you need to render a
compound string. Motif widgets render compound string automatically, so you
only need to worry about rendering them yourself if you are writing your own
widget. The routine is also useful if you want to get the dimensions of a com-
pound string rendered with a particular font.

See Also
XmStringBaseline (1), XmStringHeight (1), XmStringWidth (1),
XmRendition (2).

Motif Reference Manual 371

XmStringFree Motif Functions and Macros

Name
XmStringFree — free the memory used by a compound string.

Synopsis

void XmStringFree (XmStringtring)

Inputs
string Specifies the compound string.

Description
XmStringFree () frees the memory used by the specified compound string.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components. All of
the routines that return a compound string allocate memory for the string. An
application is responsible for this stora@StringFree () provides a way to
free the memory.

WhenXtGetValues () is called for a resource that contains an XmString, a
copy of the compound string is returned. The allocated storage is again the
responsibility of the application and can be freed u¥im$tringFree ().

Example
The following code fragment shows the us&XofStringFree ():

Widget toplevel, rowcol, pb;
XmString str;
char *text;

rowcol = XtVaCreateWidget ("rowcol", xmRowColumnWidgetClass, toplevel,
NULL);

str = XmStringCreatelLocalized ("Testing, testing...");

pb = XtVaCreateManagedWidget ("pb", xmPushButtonWidgetClass, rowcol,
XmNlabelString, str, NULL);

XmStringFree (str);

XtVaGetValues (pb, XmNlabelString, &str, NULL);

text = (char *) XmStringUnparse (str, NULL,
XmMCHARSET_TEXT,
XmMCHARSET_TEXT,

NULL, 0, XmOUTPUT_ALL):

372 Motif Reference Manual

Motif Functions and Macros XmStringFree

printf ("PushButton’s label is %s\n", text);
XmsStringFree (str);
XtFree (text);

See Also
XmStringCreate (1), XmStringCreatelLocalized),
XmStringCreateLtoR (1), XmStringCreateSimple),
XmStringDirectionCreate (1), XmStringSegmentCreate (1),
XmStringSeparatorCreate (2).

1.Erroneously given as XmStringGetLtoR() in 2nd edition. XmStringGetLtoR() is deprecated from Motif 2.0 onwards.

Motif Reference Manual 373

XmStringFreeContext Motif Functions and Macros

Name
XmStringFreeContext — free a string context.
Synopsis
void XmStringFreeContext (XmStringContesdntexj
Inputs
context Specifies the string context that is to be freed.
Description
XmStringFreeContext () deallocates the string context structure specified
by context.
Usage
The XmString type is opaque, so if an application needs to perform any process-
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary position in
a compound string. XmStringFreeContext() is the last of the string context rou-
tines that an application should call when processing a compound string, as it
frees the string context data structure. An application begins by calling
XmStringlnitContext() to create a string context and then makes repeated calls to
either XmStringGetNextComponent() or XmStringGetNextSegment() to cycle
through the compound string.
The most common use of these routines is in converting a compound string to a
regular character string when the compound string uses multiple fontlist element
tags or it has a right-to-left orientation.
Example
The following code fragment shows how to convert a compound string into a
character string:
XmString str;
XmStringContext context;
char *text, buf[128], *p;
XmStringCharSet tag;
XmStringDirection direction;
Boolean separator;
XtVaGetValues (widget, XmNIlabelString, &str, NULL);
if (IXmStringInitContext (&context, str)) {
XmStringFree (str);
XtWarning ("Can’t convert compound string.");
return;
374 Motif Reference Manual

Motif Functions and Macros XmStringFreeContext

See Also

}

/* p keeps a running pointer thru buf as text is read */ p = buf;
while (XmStringGetNextSegment (context, &text, &tag, &direction, &separa-
tor)) {

/* copy text into p and advance to the end of the string */

p += (strlen (strcpy (p, text)));

if (separator == True) {
[* if there’s a separator... */
*p++ ="\n’;
p = 0; /[add newline and null-terminate */

}

XtFree (text); /* we're done with the text; free it */

}

XmStringFreeContext (context);
XmsStringFree (str);

printf ("Compound string:\n%s\n", buf);

XmStringlnitContext (1), XmStringGetNextSegment (1),
XmStringGetNextComponent (1),
XmStringPeekNextComponent (1).

Motif Reference Manual 375

XmsStringGenerate Motif Functions and Macros

Name
XmStringGenerate — generate a compound string.
Synopsis
XmString XmStringGenerate (XtPointer text,
XmsStringTag tag,
XmTextType type
XmsStringTag rendition)
Inputs
text Specifies the data forming the value of the compound string.
tag Specifies the tag used in creating the compound string.
type Specifies the type of text.
rendition Specifies a rendition tag.
Returns
A new compound string.
Availability
Motif 2.0 and later.
Description
XmsStringGenerate () is a convenience function which invokésString-
ParseText () using a default parse table in order to contetinto a com-
pound string. The default parse table maps tab characters to
XmMSTRING_COMPONENT _TAB, and newline characters to
XmSTRING_COMPONENT_SEPARATOR components of the compound
string. If arenditiontag is specified, the resulting compound string is placed
within matching components of type XmSTRING_RENDITION_BEGIN and
XmSTRING_RENDITION_END which contain threndition The type of the
inputtextis specified byype and is one of XmCHARSET_TEXT,
XmWIDECHAR_TEXT, or XmMULTIBYTE_TEXT.typealso specifies the
type of thetag which is used in creating the compound stringtadfis NULL
and the inputextis of type XmCHARSET_TEXT, then the compound string is
created with theag set to XmFONTLIST_DEFAULT_TAG. Itagis NULL and
the inputtextis of type XmWIDECHAR_TEXT or XmMULTIBYTE_TEXT,
then thetag used is constructed from the value of
_MOTIF_DEFAULT_LOCALE.
Usage

The function returns allocated storage, and it is the responsibility of the program-

mer to reclaim the space by callikgnStringFree () at an appropriate point.

376 Motif Reference Manual

Motif Functions and Macros XmStringGenerate

In Motif 2.0 and later, in common with other objects, the compound string is
manipulated as a reference counted data structure. XmString functions prior to
Motif 2.0 handle ASN.1 strings, and the data structures are only used internally.

Example
The following code converts data taken from a Text widget into a compound
string:
XmString convert_text (Widget text)
{
/* ignoring widechar text values */
char *value = XmTextGetString (text);
XmString xms = (XmString) O;
if (value) {
xms = XmStringGenerate ((XtPointer) value,
XmFONTLIST_DEFAULT_TAG,
XmMCHARSET_TEXT, NULL);
XtFree (value);
}
[* caller must free this */
return xms;
}
See Also
XmStringFree(1), XmStringPutRendition (1), XmRendition (2).

Motif Reference Manual 377

XmStringGetLtoR Motif Functions and Macros

Name

Synopsis

Inputs

XmStringGetLtoR — get a text segment from a compound string.

Boolean XmStringGetLtoR (XmStringtring, XmStringCharSetiag, char **texi)

string Specifies the compound string.
tag Specifies the font list element tag.

Outputs

text Returns the NULL-terminated character string.

Returns

True if there is a matching text segment or False otherwise.

Avalilability

In Motif 2.0 and later, the function is obsolete, and is replacethigtrin-
gUnparse ().

Description

Usage

378

XmStringGetLtoR () looks for a text segment &iring that matches the font

list element tag specified lbgg. tag can have the value
XmFONTLIST_DEFAULT_TAG, which identifies a locale-encoded text seg-
ment. The routine returns True if a text segment is fotextreturns a pointer to

the NULL-terminated character string that contains the text from the segment.
Storage for the returned character string is allocated by the routine and should be
freed by callingXtFree (). Management of the allocated memory is the respon-
sibility of the application.

In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringGetLtoR () allows you to retrieve a character string from a com-
pound string, so that you can use the string with the standard C string manipula-
tion functions.

In Motif 1.1, compound strings use character set identifiers rather than font list
element tags. The character set identifier for a compound string can have the
value XmSTRING_DEFAULT_CHARSET, which takes the character set from
the current language environment, but this value may be removed from future
versions of Motif.

Motif Reference Manual

Motif Functions and Macros XmStringGetLtoR

XmStringGetLtoR () gets the first text segment from the compound string that
is associated with the specified tag. If tr'éng contains multiple font list ele-

ment tags, you must cycle through the compound string and retrieve each seg-
ment individually in order to retrieve the entire string. The routine only gets
strings with a left-to-right orientation.

See Also
XmStringCreate (1), XmStringCreateLtoR (1),
XmStringGetNextSegment (1), XmStringUnparse (1).

Motif Reference Manual 379

XmStringGetNextComponent Motif Functions and Macros

Name

Synopsis

XmStringGetNextComponent — retrieves information about the next compound
string
component.

XmStringComponentType

XmStringGetNextComponent (XmStringContext context
char **text
XmStringCharSet tag,
XmStringDirection direction,
XmStringComponentType unknown_tag
unsigned short

*unknown_length
unsigned char

** ynknown_value

Inputs

context Specifies the string context for the compound string.

Outputs

text Returns the NULL-terminated string for a text component.
tag Returns the font list element tag for a tag component.
direction Returns the string direction for a direction component.
unknown_tag Returns the tag of an unknown component.
unknown_length Returns the length of an unknown component.
unknown_value Returns the value of an unknown component.

Returns

The type of the compound string component. The type is one of the values
described below.

Avalilability

In Motif 2.0 and laterXmStringGetNextComponent () is obsolete, and is
replaced byXmStringGetNextTriple 0.

Description

380

XmStringGetNextComponent () reads the next component in the compound
string specified bygontextand returns the type of component found. The return
value indicates which, if any, of the output parameters are valid. Storage for the
returned values is allocated by the routine and must be freed by the application
usingXtFree ().

For the type XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG, the
font list element tag is returnedtig. In Motif 2.0 and later, the type

Motif Reference Manual

Motif Functions and Macros XmStringGetNextComponent

Usage

XmSTRING_COMPONENT_CHARSET is obsolete and is retained for compat-
ibility with Motif 1.2. The type indicates that the character set identifier is
returned intag. XMSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
replaces XmSTRING_COMPONENT_CHARSET.

For the string component types XmSTRING_COMPONENT_TEXT and
XMSTRING_COMPONENT_LOCALE_TEXT, the text string is returned in
text For XmSTRING_COMPONENT _DIRECTION, the direction is returned in
direction Only one ottag, text anddirectioncan be valid at any one time.

The type XmSTRING_COMPONENT_SEPARATOR indicates that the next
component is a separator, while XmSTRING_COMPONENT_END specifies the
end of the compound string. For type
XmMSTRING_COMPONENT_UNKNOWN, the tag, length, and value of the
unknown component are returned in the corresponding arguments.

The XmString type is opaque, so if an application needs to perform any process-
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary position in
a compound stringmStringInitContext () is called first to create the

string contextXmsStringGetNextComponent () cycles through the compo-
nents in the compound string. When an application is done processing the string,
it should callXmsStringFreeContext () with the same context to free the
allocated data.

Structures

A XmStringComponentType can have one of the following values:

XMSTRING_COMPONENT_CHARSET
XMSTRING_COMPONENT_TEXT
XMSTRING_COMPONENT_LOCALE_TEXT
XmMSTRING_COMPONENT_DIRECTION
XmMSTRING_COMPONENT_SEPARATOR
XMSTRING_COMPONENT_END
XMSTRING_COMPONENT_UNKNOWN

In Motif 2.0 and later, the following additional types are defined:

XMSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XMSTRING_COMPONENT_WIDECHAR_TEXT
XMSTRING_COMPONENT_LAYOUT_PUSH
XmMSTRING_COMPONENT_LAYOUT_POP
XmMSTRING_COMPONENT_RENDITION_BEGIN
XmMSTRING_COMPONENT_RENDITION_END

Motif Reference Manual 381

XmStringGetNextComponent Motif Functions and Macros

See Also
XmStringFreeContext (1), XmStringGetNextTriple (1),
XmStringGetNextSegment (1), XmStringlnitContext (1),
XmStringPeekNextComponent (1).

382 Motif Reference Manual

Motif Functions and Macros XmStringGetNextSegment

Name
XmStringGetNextSegment — retrieves information about the next compound
string segment.
Synopsis
Boolean XmStringGetNextSegment (XmStringContext context
char **text
XmsStringCharSet ¢harset
XmStringDirection “irection,
Boolean Separatoy
Inputs
context Specifies the string context for the compound string.
Outputs
text Returns the NULL-terminated string for the segment.
tag Returns the font list element tag for the segment.
direction Returns the string direction for the segment.
separator Returns whether or not the next component is a separator.
Returns
True if a valid segment is located or False otherwise.
Avalilability

In Motif 2.0 and later, the function is obsolete, and is replaced by
XmStringGetNextTriple 0.

Description
XmStringGetNextSegment () retrieves the text string, font list element tag,
and direction for the next segment of the compound string specifieahibgxt
The routine returns True if a valid segment is retrieved; otherwise, it returns
False. Storage for the returned text is allocated by the routine and must be freed
by the application usingtFree ().

Usage
The XmString type is opaque, so if an application needs to perform any process-
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary position in
a compound stringmsStringInitContext () is called first to create the
stringcontext XmsStringGetNextSegment () cycles through the segments
in the compound string. The Booleaaparatorcan be used to determine whether
or not the next component in the compound string is a separator. When an appli-
cation is done processing the string, it shouldXalbtringFreeContext ()
with the same context to free the allocated data.

Motif Reference Manual 383

XmStringGetNextSegment Motif Functions and Macros

See Also

384

The most common use of these routines is in converting a compound string to a
regular character string when the compound string uses multiple fontlist element
tags or it has a right-to-left orientation.

XmStringFreeContext (1), XmStringGetLtoR (1),
XmStringGetNextComponent (1), XmStringGetNextTriple),
XmStringlnitContext (1), XmStringPeekNextComponent (1),
XmStringPeekNextTriple (2).

Motif Reference Manual

Motif Functions and Macros XmStringGetNextTriple

Name
XmStringGetNextTriple — retrieve information about the next component.
Synopsis
XmStringComponentType
XmStringGetNextTriple (XmStringConterbntext unsigned int fength
XtPointer *value
Inputs
context Specifies the string context for the compound string.
Outputs
length Returns the length of the value of the component.
value Returns the value of the component.
Returns
The type of the component.
Avalilability
Motif 2.0 and later.
Description
XmStringGetNextTriple () is a convenience function which returns the type,

length andvalueof the next component within the compound string associated with
context The context is an opaque structure used for walking along compound strings
one component at a time, and is initialized through a call to
XmStringlnitContext 0.

Usage
If either ofvalueor lengthare NULL pointers, the function immediately returns
XmSTRING_COMPONENT_END without fetching the next string segment.
Otherwiseyalueis initially set to point to NULL, andengthis reset to zero, and
the next segment is processed. The function allocates memory for the returned
value, which should be reclaimed at an appropriate point by cxitiige ().

Structures
An XmStringComponentType can have one of the following values:

XmMSTRING_COMPONENT_CHARSET
XMSTRING_COMPONENT_TEXT
XMSTRING_COMPONENT_LOCALE_TEXT
XmMSTRING_COMPONENT_DIRECTION
XmMSTRING_COMPONENT_SEPARATOR
XmMSTRING_COMPONENT_END
XMSTRING_COMPONENT_UNKNOWN

Motif Reference Manual 385

XmStringGetNextTriple Motif Functions and Macros

Example

386

In Motif 2.0 and later, the following additional types are defined:

XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP
XmMSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END

The following code fragment shows how to convert a compound string into a
character string:

XmString str;
XmStringContext context;

char *text, buf[128], *p;
XmStringComponentType type;

unsigned int len;

/* Fetch the Compound String from somewhere */
XtVaGetValues (widget, XmNlabelString, &str, NULL);

if (!XmStringlnitContext (&context, str)) {
XmStringFree (str);
XtWarning ("Can’t convert compound string.");
return;

}

/* p keeps a running pointer through buf as text is read */
p = buf;

/* Ignoring locale or widechar text for simplicity */
while ((type = XmStringGetNextTriple (context, &len, &text)) !=
XmSTRING_COMPONENT_END)

switch (type) {

case XMSTRING_COMPONENT_TAB
*p++ = \t';
break;

case XMSTRING_COMPONENT_SEPARATOR
*p++ = \n’;
*n ="\0}
break;

case XMSTRING_COMPONENT_TEXT
(void) strcpy (p, text);

Motif Reference Manual

Motif Functions and Macros XmStringGetNextTriple

p +=len;
break;

}
XtFree (text);

}

XmStringFreeContext (context);
XmsStringFree (str);
printf ("Compound string:\n%s\n", buf);

See Also
XmStringFreeContext (1), XmStringGetNextComponent (1),
XmStringGetNextSegment (1), XmStringInitContext),
XmStringPeekNextComponent (1), XmStringPeekNextTriple Q).

Motif Reference Manual 387

XmStringHasSubstring Motif Functions and Macros

Name
XmStringHasSubstring — determine whether a compound string contains a sub-
string.

Synopsis
Boolean XmStringHasSubstring (XmStriaging, XmStringsubstring

Inputs
string Specifies the compound string.

substring Specifies the substring.

Returns
True if string containssubstringor False otherwise.

Description
XmStringHasSubstring () determines whether the compound stsnb-
stringis contained within any single segment of the compound s#irgg. sub-
string must have only a single segment. The routine returns Truesfrthg
contains thesubstringand False otherwise.

If two compound strings are created wKimStringCreatelLocalized (Oin

the same language environment and they satisfy the above condition,
XmStringHasSubstring () returns True. If two strings are created with
XmStringCreate () using the same character set and they satisfy the condi-
tion, the routine also returns True. When comparing a compound string created
by XmStringCreate () with a compound string created BymStringCrea-
teSimple () the result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringHasSubstring () is one of a number of routines that allow an
application to manipulate compound strings as it would regular character strings.

See Also
XmStringEmpty (1), XmStringLength (1), XmStringLineCount ().

388 Motif Reference Manual

Motif Functions and Macros XmStringHeight

Name

Synopsis

XmStringHeight — get the line height of a compound string.

Dimension XmStringHeight (XmFontLigontlist, XmStringstring)

Inputs

fontlist Specifies the font list for the compound string.
string Specifies the compound string.

Returns

The height of the compound string.

Availability

In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description

Usage

See Also

XmStringHeight () returns the height, in pixels, of the specified compound
string. If string contains multiple lines, where a separator component delimits
each line, then the total height of all of the lines is returnesdiifg is created
with XmStringCreateSimple (), thenfontlist must begin with the font from
the character set of the current language environment, otherwise the result is
undefined.

In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringHeight () provides information that is useful if you need to render a
compound string. Motif widgets render compound string automatically, so you
only need to worry about rendering them yourself if you are writing your own
widget. The routine is also useful if you want to get the dimensions of a com-
pound string rendered with a particular font.

XmStringBaseline (1), XmStringExtent (1), XmStringWidth (1),
XmRendition (2).

Motif Reference Manual 389

XmStringlnitContext Motif Functions and Macros

Name
XmStringlnitContext — create a string context.
Synopsis
Boolean XmStringlnitContext (XmStringContextdntext XmStringstring)
Inputs
string Specifies the compound string.
Outputs
context Returns the allocated string context structure.
Returns
True if the string context is allocated or False otherwise.
Description
XmStringlnitContext () creates a string context for the specified com-
poundstring. This string context allows an application to access the contents of a
compound string.
Usage
The XmString type is opaque, so if an application needs to perform any process-
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary position in
a compound stringmStringInitContext () is the first of the three string
context routines that an application should call when processing a compound
string, as it creates the string context data structurecdittextis passed to
XmStringGetNextTriple () to cycle through the compound string. When an
application is done processing the string, it shouldXtalbtringFreeCon-
text () with the sameontextto free the allocated data.
The most common use of these routines is in converting a compound string to a
regular character string when the compound string uses multiple fontlist element
tags or it has a right-to-left orientation.
Example
The following code fragment shows how to convert a compound string into a
character string:
XmString str;
XmStringContext context;
char *text, buf[128], *p;
XmStringComponentType type;
unsigned int len;
/* Fetch the Compound String from somewhere */
390 Motif Reference Manual

Motif Functions and Macros XmStringlnitContext

XtVaGetValues (widget, XmNlabelString, &str, NULL);

if (IXmStringInitContext (&context, str)) {
XmsStringFree (str);
XtWarning ("Can’t convert compound string.");

return;
}
/* p keeps a running pointer through buf as text is read */
p = buf;

/* Ignoring locale or widechar text for simplicity */
while ((type = XmStringGetNextTriple (context, &len, &text)) !=
XmSTRING_COMPONENT_END)
{
switch (type) {
case XMSTRING_COMPONENT_TAB
*p++ =\t
break;
case XMSTRING_COMPONENT_SEPARATOR
*p++ ="\n’;
*n ="\0};
break;
case XMSTRING_COMPONENT_TEXT
(void) strcpy (p, text);
p +=len;
break;

}

XtFree (text);
}

XmStringFreeContext (context);
XmsStringFree (str);
printf ("Compound string:\n%s\n", buf);

See Also
XmStringFreeContext (1), XmStringGetNextComponent (1),
XmStringGetNextTriple (1), XmStringGetNextSegment (1),
XmStringPeekNextComponent (1), XmStringPeekNextTriple Q.

Motif Reference Manual 391

XmStringlsVoid Motif Functions and Macros

Name
XmStringlsVoid — determine whether there are valid segments in a compound
string.
Synopsis
Boolean XmStringlsVoid (XmStringtring)
Inputs
string Specifies a compound string.
Returns
True if there are no segments in the string or False otherwise.
Availability
XmStringlsVoid () is available from Motif 2.0 or later.
Description
XmStringlsVoid () checks to see whether there any text, tab, or separator seg-
ments within the specifiestring. If the routine is passed NULL, it returns True.
If the string contains text, tab or separator components, it returns False. Other-
wise, it returns True.
Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, and locale components.
See Also

XmStringEmpty (1), XmStringLength (1), XmStringLineCount ~ (1).

392 Motif Reference Manual

Motif Functions and Macros XmStringLength

Name

Synopsis

XmStringLength — get the length of a compound string.

int XmStringLength (XmStringtring)

Inputs

string Specifies the compound string.

Returns

The length of the compound string.

Availability

In Motif 2.0 and later, the function is obsolete, and is replacehifgtring-
ByteStreamLength ().

Description

Usage

See Also

XmStringLength () returns the length, in bytes, of the specified compound
string. The calculation includes the length of all tags, direction indicators, and
separators. The routine returns 0 (zero) if the structus#iof is invalid.

In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringLength () is one of a number of routines that allow an application to
manipulate compound strings as it would regular character strings. However, this
routine cannot be used to get the length of the text represented by the compound
string; it is not the same as strlen().

XmStringByteStreamLength (1), XmStringEmpty (1),
XmStringLineCount (1).

Motif Reference Manual 393

XmStringLineCount Motif Functions and Macros

Name
XmStringLineCount — get the number of lines in a compound string.

Synopsis
int XmStringLineCount (XmStringtring)

Inputs
string Specifies the compound string.
Returns

The number of lines in the compound string.

Description
XmStringLineCount() returns the number of lines in the specified compound
string. The line count is determined by adding 1 to the number of separators in
the string.

Usage
In Motif 1.2 and later, a compound string is composed of one or more segments,
where each segment can contain a font list element tag, a string direction, and a
text component. In Motif 2.0 and later, the set of available segments is extended
to include, amongst other items, tab, rendition, direction, locale components.
XmStringLineCount () provides information that is useful in laying out com-
ponents that display compound strings.

Example

The following routine shows how to read the contents of a file into a buffer and

then convert the buffer into a compound string. The routine also returns the
number of lines in the compound string:

XmString ConvertFileToXmString (char *filename, int *lines)

{
struct stat statb;
int fd, len, lines;
char *text;

XmString str;
*lines = 0O;

if ((fd = open (filename, O_RDONLY)) < 0) {
XtWarning (“internal error -- can’t open file");
return (XmString) O;

}

if ((fstat (fd, &statb) == -1) || !(text = XtMalloc ((len = statb.st_size) + 1))) {

XtWarning(“internal error -- can’t show text");

394 Motif Reference Manual

Motif Functions and Macros XmStringLineCount

(void) close (fd);
return (XmString) O;
}

(void) read (fd, text, len);

text[len] = \0’;

str = XmStringGenerate ((XtPointer) text, XmFONTLIST_DEFAULT_TAG,
XMCHARSET_TEXT, NULL)!

XtFree (text);

(void) close (fd);

*lines = XmStringLineCount (str);

return str;

See Also
XmStringEmpty (1), XmStringLength (1).

1.Erroneously given as XmStringCreateLtoR() in 2nd edition. XmStringCreateLtoR() is deprecated from Motif 2.0 on-
wards.

Motif Reference Manual 395

XmStringNConcat Motif Functions and Macros

Name

Synopsis

XmStringNConcat — concatenate a specified portion of a compound string to
another compound string.

XmString XmStringNConcat (XmStringtringl, XmsStringstring2, int
num_bytes

Inputs

stringl Specifies a compound string.
string2 Specifies the compound string that is appended.
num_bytes Specifies the number of bytes of string2 that are appended.

Returns

A new compound string.

Availability

In Motif 2.0 and later, the function is obsolete, and is only maintained for back-
wards compatibility.

Description

Usage

See Also

396

XmStringNConcat () returns the compound string formed by appending bytes
from string2to the end o$tringl, leaving the original compound strings
unchangednum_byte®f string are appended, which includes tags, directional
indicators, and separators. Storage for the result is allocated within this routine
and should be freed by callingmStringFree (). Management of the allocated
memory is the responsibility of the application.

If num_bytess less than the length sfring2, the resulting string could be
invalid. In this caseXmStringNConcat () appends as many bytes as possible,
up to a maximum ofium_bytesto ensure the creation of a valid string.

In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringNConcat () is one of a number of routines that allow an application
to manipulate compound strings as it would regular character strings.

XmStringConcat (1), XmStringCopy (1), XmStringNCopy (1).

Motif Reference Manual

Motif Functions and Macros XmStringNCopy

Name
XmStringNCopy — copy a specified portion of a compound string.
Synopsis
XmString XmStringNCopy (XmStringtring, int num_bytes
Inputs
string Specifies a compound string.
num_bytes Specifies the number of bytes of string that are copied.
Returns
A new compound string.
Availability

In Motif 2.0 and later, the function is obsolete, and is only maintained for back-
wards compatibility.

Description
XmStringNCopy () copiesnum_bytedytes from the compound stristring
and returns the resulting copy, leaving the original string unchanged. The number
of bytes copied includes tags, directional indicators, and separators. Storage for
the result is allocated within this routine and should be freed by calling
XmStringFree (). Management of the allocated memory is the responsibility
of the application.

If num_bytess less than the length of string, the resulting string could be invalid.
In this caseXmStringNCopy () copies as many bytes as possible, up to a max-
imum of num_byteso ensure the creation of a valid string.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringNCopy () is one of a number of routines that allow an application to
manipulate compound strings as it would regular character strings.

See Also
XmStringConcat (1), XmStringCopy (1), XmStringNConcat (1).

Motif Reference Manual 397

XmsStringParseText Motif Functions and Macros

Name
XmStringParseText — convert a string to a compound string.
Synopsis
XmString XmStringParseText (- XtPointer text,
XtPointer *text_end
XmsStringTag tag,
XmTextType typg
XmParseTable parse_table
Cardinal parse_count
XtPointer client_datg
Inputs
text Specifies a string to be converted.
text_end Specifies a pointer into text where parsing is to finish.
tag Specifies the tag to be used in creating the compound string.
type Specifies the type of the text and the tag.
parse_table Specifies a table used for matching characters in the input text.
parse_count Specifies the number of items in the parse_table.
client_data Specifies application data to pass to any parse procedures
within the parse_table.
Outputs
text_end Returns a location within the text where parsing finished.
Returns
The converted compound string.
Avalilability
Motif 2.0 and later.
Description

XmStringParseText () converts the string specified tBxtinto a compound
string. Aparse_tablecan be specified which consists of a set of mappings to con-
trol the conversion process. The contents of the string to be converted can be in
one of a number of formats: simple characters, multibyte, or wide characters. The
typeparameter specifies the type of the infext, and is also used to interpret the

tag which is used in creating text components within the returned compound
string.text_ends both an input and an output parameter: as an input parameter, it
specifies a location withitextwhere parsing is to terminate; as an output param-
eter, it points to a location withitextwhere parsing actually finished. Supplying
NULL for text_ends interpreted to mean that parsing should stop at the occur-
rence of a null byte.

398 Motif Reference Manual

Motif Functions and Macros XmsStringParseText

Usage

If typeis XmMCHARSET_TEXT, the inpuextis assumed to consist of a simple
array of characters, and ttegy is interpreted as the name of a charset to use in
constructing the returned compound string.tadfis NULL, a default charset
using XmFONTLIST_DEFAULT_TAG is used.

If the typeis XmMULTIBYTE_TEXT or XmWIDECHAR_TEXT, the inputext
is assumed to be in multibyte or widechar text format respectively, andghe
interpreted as a locale specifier. Thg should either be specified as NULL or
_MOTIF_DEFAULT_LOCALE: if NULL, a locale component with a value of
_MOTIF_DEFAULT_LOCALE is created in any case.

A parse table can be specified for controlling the conversion process. A parse
table consists of a set of XmParseMapping objects, which have match pattern,
substitution pattern and parse procedure components. The head of the input
stream is compared against elements within the parse table, and if there is a cor-
respondence between the input and a parse mapping match pattern, the parse
mapping object is used to construct the output compound string at that point in
the conversion, either by directly inserting the substitution pattern, or by invoking
the parse procedure of the mapping object. The parse mapping specifies how the
input pointer is advanced, and the process is repeated, comparing the head of the
input against the parse table. At the end of the conversiortefteendparameter

is set to point to the location within the ingexxtwhere parsing actually termi-

nated. Depending upon the way in which the parse table interacts with the input
text the returnedext_endmay not be the same location which the programmer
specified if more or less of the ingektis consumed.

An implicit automatic conversion takes place where there is no matching parse
mapping object for the head of the input. In other words, it is not necessary to
provide a parse table to convert everything: parse tables are only required where
specific inputs need to be handled specidliyStringParseText () uses an
internal parse mapping which handles changes in string direction in the absence
of a supplied mapping for the task. A parse mapping handles string direction
changes if the XmNpattern resource of the object is equal to
XmDIRECTION_CHANGE.

XmStringParseText () allocates memory for the returned compound string.
It is the responsibility of the programmer to reclaim the space through a call to
XmStringFree () at an appropriate point.

Motif Reference Manual 399

XmsStringParseText Motif Functions and Macros

Example
The following specimen code converts an input string containing tab and newline
characters into a compound string:

XmParseTable parse_table = (XmParseTable) XtCalloc (2, sizeof

(XmParseMapping));
XmString tmp;
XmString output;
Arg av[4];
Cardinal ac;

/* map \t to a tab component */
tmp = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, 0,

NULL);

ac=0;

XtSetArg (av[ac], XmNincludeStatus, XmINSERT); ac++;
XtSetArg (av[ac], XmNsubstitute, tmp); ac++;
XtSetArg (av[ac], XmNpattern, "“\t"); ac++;

parse_table[0] = XmParseMappingCreate (av, ac);
XmStringFree (tmp);

/* map \n to a separator component */
tmp = XmStringSeparatorCreate();

ac =0;

XtSetArg (av[ac], XmNincludeStatus, XmINSERT); ac++;
XtSetArg (av[ac], XmNsubstitute, tmp); ac++;
XtSetArg (av[ac], XmNpattern, "“\n"); act+;

parse_table[1] = XmParseMappingCreate (av, ac);
XmStringFree (tmp);

/* convert the (unspecified) input string into a compound string *

output = XmStringParseText (input, NULL, NULL, XmCHARSET_TEXT,
parse_table, 2, NULL);

XmParseTableFree (parse_table);

See Also
XmStringFree(1), XmStringGenerate (1), XmStringUnparse (1).
XmParseMapping (2).

400 Motif Reference Manual

Motif Functions and Macros XmStringPeekNextComponent

Name
XmStringPeekNextComponent — returns the type of the next compound string
component.

Synopsis

XmStringComponentType XmStringPeekNextComponent (XmStringContext
contex}

Inputs
context Specifies the string context for the compound string.

Returns
The type of the compound string component. The type is one of the values
described below.

Availability
In Motif 2.0 and later, the function is obsolete, axichStringPeekNextTri-
ple () is preferred.

Description
XmStringPeekNextComponent () checks the next component in the com-
pound string specified lyontextand returns the type of the component found.
The routine shows what would be returned by a callnstringGetNext-
Component (), without actually updatingontext

The returned type XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
indicates that the next component is a font list element tag. In Motif 1.2, the type
XmSTRING_COMPONENT_-CHARSET is obsolete and is retained for compat-
ibility with Motif 1.1. The type indicates that the next component is a character
set identifier. XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
replaces XmSTRING_COMPONENT_CHARSET.

The types XmSTRING_COMPONENT_TEXT and
XmSTRING_COMPONENT_LOCALE_TEXT specify that the next component
is text. XMSTRING_COMPONENT_DIRECTION indicates that the next com-
ponent is a string direction component.

The type XmSTRING_COMPONENT_SEPARATOR indicates that the next
component is a separator, while XmSTRING_COMPONENT_END specifies the
end of the compound string. The type
XmSTRING_COMPONENT_UNKNOWN, indicates that the type of the next
component is unknown.

Motif Reference Manual 401

XmStringPeekNextComponent Motif Functions and Macros

Usage
The XmString type is opaque, so if an application needs to perform any process-
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary position in
a compound stringmsStringInitContext () is called first to create the
string context. XmStringPeekNextComponent () peeks at the next compo-
nent in the compound string without cycling through the component. When an
application is done processing the string, it shouldXalbtringFreeCon-
text () with the same context to free the allocated data.

Structures
A XmStringComponentType can have one of the following values:

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_END
XmSTRING_COMPONENT_UNKNOWN

In Motif 2.0 and later, the following additional types are defined:

XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP
XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END

See Also
XmStringFreeContext (1), XmStringGetNextComponent (1),
XmStringGetNextSegment (1), XmStringPeekNextTriple (D),
XmStringlnitContext Q).

402 Motif Reference Manual

Motif Functions and Macros XmStringPeekNextTriple

Name
XmStringPeekNextTriple — retrieve the type of the next component.
Synopsis
XmStringComponentType XmStringPeekNextTriple (XmStringContextexj
Inputs
context Specifies the string context for the compound string.
Returns
The type of the next component.
Availability
Motif 2.0 and later.
Description
XmStringPeekNextTriple () returns the type of the next component with-
out updating the compound stringntext
Usage

An XmStringContext is an opaque data type which is used for walking along a
compound string one component at a time. It is initialized by a call to XmString-
InitContext. Each successive callXonStringGetNextComponent () adjusts

the string context to point to the next compon¥miStringPeekNextTri-

ple () returns the type of the next component without adjustingaghtext and

thus it can be used to look ahead into the compound string.

Structures
The string component type can have one of the following values:

XMSTRING_COMPONENT_CHARSET
XMSTRING_COMPONENT_TEXT
XMSTRING_COMPONENT_LOCALE_TEXT
XmMSTRING_COMPONENT_DIRECTION
XmMSTRING_COMPONENT_SEPARATOR
XMSTRING_COMPONENT_END
XMSTRING_COMPONENT_UNKNOWN
XMSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XMSTRING_COMPONENT_WIDECHAR_TEXT
XMSTRING_COMPONENT_LAYOUT_PUSH
XmMSTRING_COMPONENT_LAYOUT_POP
XmMSTRING_COMPONENT_RENDITION_BEGIN
XmMSTRING_COMPONENT_RENDITION_END

Motif Reference Manual 403

XmStringPeekNextTriple Motif Functions and Macros

See Also
XmStringFreeContext (1), XmStringGetNextComponent (1),
XmStringGetNextSegment (1), XmStringlnitContext (1),
XmStringPeekNextComponent (1).

404 Motif Reference Manual

Motif Functions and Macros XmStringPutRendition

Name
XmStringPutRendition — add rendition components to a compound string.
Synopsis
XmString XmStringPutRendition (XmStrirgjring, XmStringTagrendition)
Inputs
string Specifies a compound string which requires rendition components.
rendition Specifies a tag used to create the rendition components.
Returns
A newly allocated compound string with rendition components.
Availability
Motif 2.0 and later.
Description
XmStringPutRendition () is a convenience function which places
XmSTRING_COMPONENT_RENDITION_BEGIN and
XmSTRING_COMPONENT_RENDITION_END components containieg-
dition around a compound string. T&eing is not modified by the procedure,
which takes a copy.
Usage

XmStringPutRendition () allocates space for the returned compound
string, and it is the responsibility of the programmer to reclaim the space at an
appropriate point by callingmStringFree ().

See Also
XmStringFree (1).

Motif Reference Manual 405

XmStringSegmentCreate Motif Functions and Macros

Name

Synopsis

XmStringSegmentCreate — create a compound string segment.

XmString XmStringSegmentCreate (char text,
XmStringCharSet tag,
XmStringDirection direction,
Boolean separatoj

Inputs

text Specifies the text component of the compound string segment.

tag Specifies the font list element tag.

direction Specifies the value of the direction component. Pass either
XmSTRING_DIRECTION_L_TO_R or
XmSTRING_DIRECTION_R_TO_L.

separator Specifies whether or not a separator is added to the compound
string.

Returns

A new compound string.

Availability

In Motif 2.0 and later, the function is deprecated. A combinatioXwfString-
ComponentCreate () andXmsStringConcat () is preferred.

Description

Usage

See Also

406

XmStringSegmentCreate () creates a compound string segment that con-
tains the specifietext tag, anddirection If separatoris True, a separator is

added to the segment, following text If separatoris False, the compound

string segment does not contain a separator. Storage for the returned compound
string is allocated by the routine and should be freed by cadlim8tring-

Free (). Management of the allocated memory is the responsibility of the appli-
cation.

In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringSegmentCreate () allows you to create a single segment that can
be concatenated with a compound string containing other segments.

XmStringCreate (1), XmStringFree ().

Motif Reference Manual

Motif Functions and Macros XmStringSeparatorCreate

Name
XmStringSeparatorCreate — create a compound string containing a separator
component.

Synopsis

XmString XmStringSeparatorCreate (void)

Returns
A new compound string.

Description
XmStringSeparatorCreate () creates and returns a compound string con-
taining a separator as its only component.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringSeparatorCreate () allows you to create a separator component
that can be concatenated with a compound string containing other components.

See Also
XmStringCreate (1), XmStringFree (1),
XmStringSegmentCreate (1).

Motif Reference Manual 407

XmStringTableParseStringArray Motif Functions and Macros

Name
XmStringTableParseStringArray — convert an array of strings into a compound
string table.
Synopsis
XmsStringTable XmStringTableParseStringArray (- XtPointer strihgs
Cardinal count
XmsStringTag tag,
XmTextType typg
XmParseTable
parse_table
Cardinal
parse_count
XtPointer
client_datg
Inputs
strings Specifies an array of strings.
count Specifies the number of items in strings.
tag Specifies the tag used to create the resulting compound string
table.
type Specifies the type of each input string, and the tag.
parse_table Specifies a parse table to control the conversion process.
parse_count Specifies the number of parse mappings in parse_table.
client_data Specifies application data to pass to parse procedures within the
parse_table.
Returns
An array of compound strings.
Availability
Motif 2.0 and later.
Description
XmStringTableParseStringArray () converts an array of strings into an
array of compound stringsXmStringTableParseStringArray ()is no
more than a convenience function which allocates space for an table of com-
pound strings, and subsequently cXitlsStringParseText () iteratively on
each item within thetringsarray to convert the item into a compound string.
Each converted item is placed within the allocated table at a corresponding loca-
tion to its position in thetringsarray. Aparse_tablecan be specified which
consists of a set of mappings to control the conversion process. The contents of
each of the strings to be converted can be in one of a number of formats: simple
characters, multibyte, or wide characters. Typeparameter specifies the type of
408 Motif Reference Manual

Motif Functions and Macros XmStringTableParseStringArray

the input strings, and is also used to interpretabavhich is used in creating
text components within the returned compound string array.

Usage
The function callsXmStringParseText () passing NULL as theext_end
(second) parameter: each item within the array of strings is converted until the
occurrence of a terminating null bybémStringTableParseStringAr-
ray () returns allocated storage: the elements within the returned table are com-
pound strings allocated by the internal calKtaStringParseText (), and
these should each be freed at an appropriate point th¥ougtringFree ().
XmStringTableParseStringArray () also allocates space for the table
itself, and this should subsequently be freed uxikgee ().

Structures
The XmTextTypdaypeparameter can take one of the following values:
XMCHARSET_TEXT

XmMULTIBYTE_TEXT
XmWIDECHAR_TEXT

See Also

XmStringFree (1), XmStringGenerate (1), XmStringParseText (1),
XmsStringTableUnparse (1), XmParseMapping (2).

Motif Reference Manual 409

XmStringTableProposeTablist Motif Functions and Macros

Name

Synopsis

XmStringTableProposeTablist — create a tab list for a compound string table.

XmTabList XmStringTableProposeTablist (XmStringTable strings
Cardinal string_count
Widget widget
float padding
XmOffsetModel

offset_modgl

Inputs

strings Specifies an array of compound strings.

string_count Specifies the number of itemsstrings

widget Specifies a widget from which rendition information is calcu-
lated.

padding Specifies a separation between columns.

offset_model Specifies whether tabs are created at absolute or relative off-
sets.

Returns

A new XmTabList.

Availability

Motif 2.0 and later.

Description

410

XmStringTableProposeTablist () creates an XmTabList value which
can be used to specify how an array of tabbed compstuindsis aligned into
columns.

A compound string is tabbed if it contains an XmSTRING_COMPONENT_TAB
component between textual components: each text component forms an individ-
ual column entry. The strings are rendered with respect to a tab list: each tab con-
tains a floating point offset which specifies the starting location of a column.
XmStringTableProposeTablist () creates a tab list appropriate for laying

out the given strings in a multi-column format.

The XmNunitType resource of widget is used to calculate the units in which the
tab calculation is performed. Extra spacing between each column is specified by
thepaddingparameter, and this is also interpreted in terms of the unit type of
widget Theoffset_modetletermines whether the floating point positions calcu-
lated for each tab in the returned XmTabList are at absolute locations (XmAB-
SOLUTE), or relative to the previous tab (XmRELATIVE).

Motif Reference Manual

Motif Functions and Macros XmStringTableProposeTablist

Usage
The tab list created bymStringTableProposeTablist () can be applied
to the render table of the widget where the strings are to be displayed by modify-
ing the XmNtabList resource of an existing rendition through the procedure
XmRenditionUpdate (). Alternatively, a new rendition can be created using
XmRenditionCreate (), and thereafter merged into the widget render table
usingXmRenderTableAddRenditions 0.

XmStringTableProposeTablist () returns allocated storage, and it is the
responsibility of the programmer to reclaim the allocated space at a suitable point
by callingXmTabListFree ().

If no render table is associated witidget XmStringTableProposeTab-
list () invokes internal routines to deduce a default render table: these routines
are not multi-thread safe.

See Also
XmTabCreate (1), XmTabFree (1), XmTabListCopy (1),
XmTabListFree (1), XmRenderTableAddRenditions (D),
XmRenditionCreate (1), XmRenditionUpdate (1), XmRendition (2).

Motif Reference Manual 411

XmStringTableToXmString Motif Functions and Macros

Name
XmStringTableToXmString — convert compound string table to compound string.
Synopsis
XmString
XmStringTableToXmString (XmStringTabtable, Cardinalcount XmString
break_componeht
Inputs
table Specifies an array of compound strings.
count Specified the number of items in the table.
break _component Specifies a compound string used to separate converted table
items.
Returns
A compound string.
Availability
Motif 2.0 and later.
Description
XmStringTableToXmString () is a convenience function which converts a
table of compound strings into a single compound string. A
break_component can be inserted between each component converted from
thetablein order to separate each.
Usage
XmStringTableToXmString () simply walks along the array of items within
thetable concatenating a copy of each item to the result, along with a copy of the
break _componenfThebreak _componergan be NULL, although a component
of type XmSTRING_COMPONENT_TAB or
XMSTRING_COMPONENT_SEPARATOR is a suitable choice. The function
returns allocated storage, and it is the responsibility of the programmer to reclaim
the space by callingmStringFree () at a suitable point.
Example
The following code illustrates a basic calXmStringTableToXm-
String ():
extern XmString table table ;
extern int table_count ;
XmString Xms;
XmString break_component;
[* create a break component */
412 Motif Reference Manual

Motif Functions and Macros XmStringTableToXmString

break_component = XmStringComponentCreate
(XmSTRING_COMPONEN
T_SEPARATOR, 0,

NULL) %

/* convert an (unspecified) compound string table */
xms = XmStringTableToXmString (table, table_count, break_component);

/* use the compound string */

/* free the allocated space */
XmStringFree (xms);

See Also
XmStringConcat (1), XmStringCopy (1), XmStringFree (1),
XmStringToXmStringTable (2).

1.Erroneously given as XmComponentCreate() in 2nd edition. XmStringSeparatorCreate() would do here equally well.

Motif Reference Manual 413

XmStringTableUnparse Motif Functions and Macros

Name
XmStringTableUnparse — convert a compound string table to an array of strings.
Synopsis
XtPointer *XmStringTableUnparse (XmStringTable table
Cardinal count
XmStringTag tag,
XmTextType tag_type
XmTextType output_type
XmParseTable parse_table
Cardinal parse_count
XmParseModel parse_modél
Inputs
table Specifies the compound string table to unparse.
count Specifies the number of compound strings in table.
tag Specifies which text segments to unparse.
tag_type Specifies the type of tag.
output_type Specifies the type of conversion required.
parse_table Specifies a parse table to control the conversion.
parse_count Specifies the number of parse mappings in parse_table.
parse_model Specifies how non-text components are converted.
Returns
An allocated string array containing the unparsed contents of the compound
strings.
Availability
Motif 2.0 and later.
Description
XmStringTableUnparse () is a convenience function which unparses an
array of compound strings. The XmStringTatalble is converted into a string
array, whose contents is determinedbyput_typewhich can be
XMCHARSET_TEXT, XmWIDECHAR_TEXT, or XmMULTIBYTE_TEXT.
Only those text components within ttable which matchtag are converted:
NULL converts all text components. An XmParseTable can be su