
The Java Language Environment
A White Paper
October 1995

A Sun Microsystems, Inc. Business
2550 Garcia Avenue
Mountain View, CA 94043 U.S.A.
415 960-1300 FAX 415 969-9131

The Java Language Environment
A White Paper
James Gosling
Henry McGilton
October 1995

A Sun Microsystems, Inc. Business
2550 Garcia Avenue
Mountain View, CA 94043 U.S.A.
415 960-1300 FAX 415 969-9131

Please
Recycle

Copyright Information

 1995 Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

This BETA quality release and related documentation are protected by copyright and distributed under licenses restricting its
use, copying, distribution, and decompilation. No part of this product or related documentation may be reproduced in any
form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The release described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Solaris, HotJava, and Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and certain other countries. The “Duke” character is a trademark of Sun Microsystems, Inc., and
Copyright (c) 1992-1995 Sun Microsystems, Inc. All Rights Reserved. UNIX is a registered trademark in the United States and
other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc.
All other product names mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of the X Consortium.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Contents
1. Introduction to Java . 10

1.1 Beginnings of the Java Language Project. 12

1.2 Design Goals of Java . 12

1.2.1 Simple, Object Oriented, and Familiar 13

1.2.2 Robust and Secure. 14

1.2.3 Architecture Neutral and Portable 14

1.2.4 High Performance . 15

1.2.5 Interpreted, Threaded, and Dynamic 15

1.3 The Java Base System . 16

1.4 The Java Environment—a New Approach to Distributed
Computing . 17

2. Java—Simple and Familiar . 18

2.1 Main Features of the Java Language 20

2.1.1 Primitive Data Types . 20

2.1.2 Arithmetic and Relational Operators 21

2.1.3 Arrays . 21
iv

2.1.4 Strings. 22

2.1.5 Multi-Level Break . 23

2.1.6 Memory Management and Garbage Collection . . . 24

2.1.7 The Background Garbage Collector 25

2.1.8 Integrated Thread Synchronization 25

2.2 Features Removed from C and C++. 26

2.2.1 No More Typedefs, Defines, or Preprocessor. 26

2.2.2 No More Structures or Unions 27

2.2.3 No More Functions . 27

2.2.4 No More Multiple Inheritance. 28

2.2.5 No More Goto Statements . 29

2.2.6 No More Operator Overloading 29

2.2.7 No More Automatic Coercions 29

2.2.8 No More Pointers . 30

2.3 Summary . 30

3. Java is Object Oriented . 32

3.1 Object Technology in Java . 33

3.2 What Are Objects? . 33

3.3 Basics of Objects . 34

3.3.1 Classes . 35

3.3.2 Instantiating an Object from its Class. 35

3.3.3 Constructors. 36

3.3.4 Methods and Messaging . 37

3.3.5 Finalizers . 39
v The Java Language Environment —October 1995

3.3.6 Subclassing. 39

3.3.7 Access Control . 41

3.3.8 Class Variables and Class Methods. 42

3.3.9 Abstract Methods . 42

3.4 Summary . 44

4. Architecture Neutral, Portable,
and Robust . 46

4.1 Architecture Neutral . 47

4.1.1 Byte Codes . 47

4.2 Portable . 48

4.3 Robust . 49

4.3.1 Strict Compile-Time and Run-Time Checking. 49

4.4 Summary . 50

5. Interpreted and Dynamic. 52

5.1 Dynamic Loading and Binding. 53

5.1.1 The Fragile Superclass Problem 53

5.1.2 Solving the Fragile Superclass Problem 54

5.1.3 Java Language Interfaces . 54

5.1.4 Run-Time Representations . 55

5.2 Summary . 55

6. Security in Java . 56

6.1 Memory Allocation and Layout . 56

6.2 The Byte Code Verification Process 57

6.2.1 The Byte Code Verifier . 58
Contents vi

6.3 Security Checks in the Bytecode Loader 59

6.4 Security in the Java Networking Package 59

6.5 Summary . 60

7. Multithreading in Java. 62

7.1 Threads at the Java Language Level 62

7.2 Integrated Thread Synchronization 63

7.3 Multithreading Support—Conclusion 64

8. Performance and Comparisons. 66

8.1 Performance . 66

8.2 The Java Language Compared . 67

8.3 A Major Benefit of Java: Fast and Fearless Prototyping. . 70

8.4 Summary . 70

9. The HotJava
World-Wide Web Browser . 72

9.1 The Evolution of Cyberspace . 73

9.1.1 First Generation Browsers . 74

9.1.2 The HotJava Browser—A New Concept in Web
Browsers . 75

9.1.3 The Essential Difference . 75

9.1.4 Dynamic Content . 76

9.1.5 Dynamic Types . 77

9.1.6 Dynamic Protocols . 78

9.2 Freedom to Innovate . 80

9.3 Implementation Details . 80

9.4 Security . 81
vii The Java Language Environment—October 1995

9.4.1 The First Layer—the Java Language Interpreter. . . 81

9.4.2 The Next Layer—the Higher Level Protocols 82

9.5 HotJava—the Promise . 82

10. Further Reading. 84
Contents viii

ix The Java Language Environment—October 1995

Introduction to Java 1
The Next Stage of the Known,
Or a Completely New Paradigm?

Taiichi Sakaiya—The Knowledge-Value Revolution

The Software Developer’s Burden
Imagine you’re a software application developer. Your programming language
of choice (or the language that’s been foisted on you) is C or C++ . You’ve been
at this for quite a while and your job doesn’t seem to be getting any easier.
These past few years you’ve seen the growth of multiple incompatible
hardware architectures, each supporting multiple incompatible operating
systems, with each platform operating with one or more incompatible
graphical user interfaces. Now you’re supposed to cope with all this and make
your applications work in a distributed client-server environment. The growth
of the Internet, the World-Wide Web, and “electronic commerce” have
introduced new dimensions of complexity into the development process.
10

1

The tools you use to develop applications don’t seem to help you much. You’re
still coping with the same old problems; the fashionable new object-oriented
techniques seem to have added new problems without solving the old ones.
You say to yourself and your friends, “There has to be a better way”!

The Better Way is Here Now
Now there is a better way—it’s the Java™ programming language environment
(“Java” for short) from Sun Microsystems. Imagine, if you will, this
development world…

• Your programming language is object oriented, yet it’s still dead simple.

• Your development cycle is much faster because Java is interpreted. The
compile-link-load-test-crash-debug cycle is obsolete—now you just compile
and run.

• Your applications are portable across multiple platforms. Write your
applications once, and you never need to port them—they will run without
modification on multiple operating systems and hardware architectures.

• Your applications are robust because the Java run-time system manages
memory for you.

• Your interactive graphical applications have high performance because
multiple concurrent threads of activity in your application are supported by
the multithreading built into Java environment.

• Your applications are adaptable to changing environments because you can
dynamically download code modules from anywhere on the network.

• Your end users can trust that your applications are secure, even though
they’re downloading code from all over the Internet; the Java run-time
system has built-in protection against viruses and tampering.

You don’t need to dream about these features. They’re here now. The Java
Programming Language Environment provides a portable, interpreted, high-
performance, simple, object-oriented programming language and supporting run-
time environment. This introductory chapter provides you with a brief look at
the main design goals of the Java system; the remainder of this paper examines
the features of Java in more detail.
11 The Java Language Environment—October 1995

1

At the end of this paper you’ll find a chapter that describes the HotJava™
Browser (“HotJava” for short). HotJava is an innovative World-Wide Web
browser, and the first major applications written using the Java environment.
HotJava is the first browser to dynamically download and execute Java code
fragments from anywhere on the Internet, and to so so in a secure manner.

1.1 Beginnings of the Java Language Project
Java is designed to meet the challenges of application development in the
context of heterogeneous, network-wide distributed environments. Paramount
among these challenges is secure delivery of applications that consume the
minimum of system resources, can run on any hardware and software
platform, and can be extended dynamically.

Java originated as part of a research project to develop advanced software for a
wide variety of networked devices and embedded systems. The goal was to
develop a small, reliable, portable, distributed, real-time operating
environment. When the project started, C++ was the language of choice. But
over time the difficulties encountered with C++ grew to the point where the
problems could best be addressed by creating an entirely new language
environment. Design and architecture decisions drew from a variety of
languages such as Eiffel, SmallTalk, Objective C, and Cedar/Mesa. The result is
a language environment that has proven ideal for developing secure,
distributed, network-based end-user applications in environments ranging
from networked-embedded devices to the World-Wide Web and the desktop.

1.2 Design Goals of Java
The design requirements of Java are driven by the nature of the computing
environments in which software must be deployed.

The massive growth of the Internet and the World-Wide Web leads us to a
completely new way of looking at development and distribution of software.
To live in the world of electronic commerce and distribution, Java must enable
the development of secure, high performance, and highly robust applications on
multiple platforms in heterogeneous, distributed networks.
Introduction to Java 12

1

Operating on multiple platforms in heterogeneous networks invalidates the
traditional schemes of binary distribution, release, upgrade, patch, and so on.
To survive in this jungle, Java must be architecture neutral, portable, and
dynamically adaptable.

The Java system that emerged to meet these needs is simple, so it can be easily
programmed by most developers; familiar, so that current developers can easily
learn Java; object oriented, to take advantage of modern software development
methodologies and to fit into distributed client-server applications;
multithreaded, for high performance in applications that need to perform
multiple concurrent activities, such as multimedia; and interpreted, for
maximum portability and dynamic capabilities.

Together, the above requirements comprise quite a collection of buzzwords, so
let’s examine some of them and their respective benefits before going on.

1.2.1 Simple, Object Oriented, and Familiar

Primary characteristics of Java include a simple language that can be
programmed without extensive programmer training while being attuned to
current software practices. The fundamental concepts of Java are grasped
quickly; programmers can be productive from the very beginning.

Java is designed to be object oriented from the ground up. Object technology has
finally found its way into the programming mainstream after a gestation
period of thirty years. The needs of distributed, client-server based systems
coincide with the encapsulated, message-passing paradigms of object-based
software. To function within increasingly complex, network-based
environments, programming systems must adopt object-oriented concepts.
Java provides a clean and efficient object-based development environment.

Programmers using Java can access existing libraries of tested objects that
provide functionality ranging from basic data types through I/O and network
interfaces to graphical user interface toolkits. These libraries can be extended
to provide new behavior.

Even though C++ was rejected as an implementation language, keeping Java
looking like C++ as far as possible results in Java being a familiar language,
while removing the unnecessary complexities of C++. Having Java retain many
of the object-oriented features and the “look and feel” of C++ means that
programmers can migrate easily to Java and be productive quickly.
13 The Java Language Environment—October 1995

1

1.2.2 Robust and Secure

Java is designed for creating highly reliable software. It provides extensive
compile-time checking, followed by a second level of run-time checking.
Language features guide programmers towards reliable programming habits.
The memory management model—no pointers or pointer
arithmetic—eliminates entire classes of programming errors that bedevil C and
C++ programmers. You can develop Java language code with confidence that
the system will find many errors quickly and that major problems won’t lay
dormant until after your production code has shipped.

Java is designed to operate in distributed environments, which means that
security is of paramount importance. With security features designed into the
language and run-time system, Java lets you construct applications that can’t
be invaded from outside. In the networked environment, applications written
in Java are secure from intrusion by unauthorized code attempting to get
behind the scenes and create viruses or invade file systems.

1.2.3 Architecture Neutral and Portable

Java is designed to support applications that will be deployed into
heterogeneous networked environments. In such environments, applications
must be capable of executing on a variety of hardware architectures. Within
this variety of hardware platforms, applications must execute atop a variety of
operating systems and interoperate with multiple programming language
interfaces. To accommodate the diversity of operating environments, the Java
compiler generates bytecodes—an architecture neutral intermediate format
designed to transport code efficiently to multiple hardware and software
platforms. The interpreted nature of Java solves both the binary distribution
problem and the version problem; the same Java language byte codes will run
on any platform.

Architecture neutrality is just one part of a truly portable system. Java takes
portability a stage further by being strict in its definition of the basic language.
Java puts a stake in the ground and specifies the sizes of its basic data types
and the behavior of its arithmetic operators. Your programs are the same on
every platform—there are no data type incompatibilities across hardware and
software architectures.
Introduction to Java 14

1

The architecture-neutral and portable language environment of Java is known
as the Java Virtual Machine. It’s the specification of an abstract machine for
which Java language compilers can generate code. Specific implementations of
the Java Virtual Machine for specific hardware and software platforms then
provide the concrete realization of the virtual machine. The Java Virtual
Machine is based primarily on the POSIX interface specification—an industry-
standard definition of a portable system interface. Implementing the Java
Virtual Machine on new architectures is a relatively straightforward task as
long as the target platform meets basic requirements such as support for
multithreading.

1.2.4 High Performance

Performance is always a consideration. Java achieves superior performance by
adopting a scheme by which the interpreter can run at full speed without
needing to check the run-time environment. The automatic garbage collector runs
as a low-priority background thread, ensuring a high probability that memory
is available when required, leading to better performance. Applications
requiring large amounts of compute power can be designed such that
compute-intensive sections can be rewritten in native machine code as required
and interfaced with the Java environment. In general, users perceive that
interactive applications respond quickly even though they’re interpreted.

1.2.5 Interpreted, Threaded, and Dynamic

The Java interpreter can execute Java bytecodes directly on any machine to
which the interpreter and run-time system have been ported. In an interpreted
environment such as Java system, the link phase of a program is simple,
incremental, and lightweight. You benefit from much faster development
cycles—prototyping, experimentation, and rapid development are the normal
case, versus the traditional heavyweight compile, link, and test cycles.

Modern network-based applications, such as the HotJava World-Wide Web
browser, typically need to do several things at the same time. A user working
with HotJava can run several animations concurrently while downloading an
image and scrolling the page. Java’s multithreading capability provides the
means to build applications with many concurrent threads of activity.
Multithreading thus results in a high degree of interactivity for the end user.
15 The Java Language Environment—October 1995

1

Java supports multithreading at the language level with the addition of
sophisticated synchronization primitives: the language library provides the
Thread class, and the run-time system provides monitor and condition lock
primitives. At the library level, moreover, Java’s high-level system libraries
have been written to be thread safe: the functionality provided by the libraries is
available without conflict to multiple concurrent threads of execution.

While the Java compiler is strict in its compile-time static checking, the
language and run-time system are dynamic in their linking stages. Classes are
linked only as needed. New code modules can be linked in on demand from a
variety of sources, even from sources across a network. In the case of the
HotJava browser and similar applications, interactive executable code can be
loaded from anywhere, which enables transparent updating of applications.
The result is on-line services that constantly evolve; they can remain innovative
and fresh, draw more customers, and spur the growth of electronic commerce
on the Internet.

1.3 The Java Base System
The complete Java system includes a number of libraries of utility classes and
methods of use to developers in creating multi-platform applications. Very
briefly, these libraries are:

java.lang —the collection of base types (language types) that are always
imported into any given compilation unit. This where you’ll find the
declarations of Object (the root of the class hierarchy) and Class , plus
threads, exceptions, wrappers for the primitive data types, and a variety of
other fundamental classes.

java.io —streams and random-access files. This is where you find the rough
equivalent of the Standard I/O Library you’re familiar with on most UNIX
systems. A further library is called java.net , and provides support for
sockets, telnet interfaces, and URLs.

java.util —container and utility classes. Here you’ll find classes such as
Dictionary , HashTable , and Stack , among others, plus encoder and
decoder techniques, and Date and Time classes.

java.awt —an Abstract Windowing Toolkit that provides an abstract layer
enabling you to port Java applications easily from one window system to
another. This library contains classes for basic interface components such as
events, colors, fonts, and controls such as buttons and scrollbars.
Introduction to Java 16

1

1.4 The Java Environment—a New Approach to Distributed Computing
Taken individually, the characteristics discussed above can be found in a
variety of software development environments. What’s completely new is the
manner in which Java and its run-time system have combined them to produce
a flexible and powerful programming system.

Developing your applications using Java results in software that is portable
across multiple machine architectures, operating systems, and graphical user
interfaces, secure, and high performance. With Java, your job as a software
developer is much easier—you focus your full attention on the end goal of
shipping innovative products on time, based on the solid foundation of Java.
The better way to develop software is here, now, brought to you by the Java
language environment.
17 The Java Language Environment—October 1995

Java—Simple and Familiar 2
You know you’ve achieved perfection in design,
Not when you have nothing more to add,

But when you have nothing more to take away.

Antoine de Saint Exupery.

In his science-fiction novel, The Rolling Stones, Robert A. Heinlein comments:

Every technology goes through three stages: first a crudely simple and
quite unsatisfactory gadget; second, an enormously complicated group of
gadgets designed to overcome the shortcomings of the original and
achieving thereby somewhat satisfactory performance through extremely
complex compromise; third, a final proper design therefrom.

Heinlein’s comment could well describe the evolution of many programming
languages. Java presents a new viewpoint in the evolution of programming
languages—creation of a small and simple language that’s still sufficiently
comprehensive to address a wide variety of software application development.
While Java superficially like C and C++, Java gained its simplicity from the
systematic removal of features from its predecessors. This chapter discusses
two of the primary design features of Java, namely, it’s simple (from removing
features) and familiar (because it looks like C and C++). The next chapter
18

2

discusses Java’s object-oriented features in more detail. At the end of this
chapter you’ll find a discussion on features eliminated from C and C++ in the
evolution of Java.

Design Goals
Simplicity is one of Java’s overriding design goals. Simplicity and removal of
many “features” of dubious worth from its C and C++-based ancestors keep
Java relatively small and reduce the programmer’s burden in producing
reliable applications. To this end, Java design team examined many aspects of
the “modern” C and C++ languages* to determine features that could be
eliminated in the context of modern object-oriented programming.

Another major design goal is that Java look familiar to a majority of
programmers in the personal computer and workstation arenas, where a large
fraction of system programmers and application programmers are familiar
with C and C++. Thus, Java “looks like” C++. Programmers familiar with C,
Objective C, C++, Eiffel, Ada, and related languages should find their Java
language learning curve quite short—on the order of a couple of weeks.

To illustrate the simple and familiar aspects of Java, we follow the tradition of
a long line of illustrious programming books by showing you the HelloWorld
program. It’s about the simplest program you can write that actually does
something. Here’s HelloWorld implemented in Java.

 class HelloWorld {
 static public void main(String args[]) {
 System.out.println("Hello world!");
 }
 }

This example declares a class named HelloWorld . Classes are discussed in the
next chapter on object-oriented programming, but in general we assume the
reader is familiar with object technology and understands the basics of classes,
objects, instance variables, and methods.

Within the HelloWorld class, we declare a single method called main() which
in turn contains a single method invocation to display the string "Hello world!"
on the standard output. The statement that prints "Hello world!" does so by

* Now enjoying their silver anniversaries
19 The Java Language Environment—October 1995

2

invoking the println method of the out object. The out object is a class
variable in the System class that performs output operations on files. That’s all
there is to HelloWorld .

2.1 Main Features of the Java Language
Java follows C++ to some degree, which carries the benefit of it being familiar
to many programmers. This section describes the essential features of Java and
points out where the language diverges from its ancestors C and C++.

2.1.1 Primitive Data Types

Other than the primitive data types discussed here, everything in Java is an
object. Even the primitive data types can be encapsulated inside library-
supplied objects if required. Java follows C and C++ fairly closely in its set of
basic data types, with a couple of minor exceptions. There are only three
groups of primitive data types, namely, numeric types, Boolean types, and
arrays.

Numeric Data Types
Integer numeric types are 8-bit byte , 16-bit short , 32-bit int , and 64-bit long .
The 8-bit byte data type in Java has replaced the old C and C++ char data
type. Java places a different interpretation on the char data type, as discussed
below.

There is no unsigned type specifier for integer data types in Java.

Real numeric types are 32-bit float and 64-bit double . Real numeric types
and their arithmetic operations are as defined by the IEEE 754 specification. A
floating point literal value, like 23.79 , is considered double by default; you
must explicitly cast it to float if you wish to assign it to a float variable.

Character Data Types
Java language character data is a departure from traditional C. Java’s char data
type defines a sixteen-bit Unicode character. Unicode characters are unsigned
16-bit values that define character codes in the range 0 through 65,535. If you
write a declaration such as

 char myChar = ‘Q’;
Java—Simple and Familiar 20

2

you get a Unicode (16-bit unsigned value) type that’s initialized to the Unicode
value of the character Q. By adopting the Unicode character set standard for its
character data type, Java language applications are amenable to
internationalization and localization, greatly expanding the market for world-
wide applications.

Boolean Data Types
Java has added a boolean data type as a primitive type, tacitly ratifying
existing C and C++ programming practice, where developers define keywords
for TRUE and FALSE or YES and NO or similar constructs. A Java boolean
variable assumes the value true or false . A Java boolean is a distinct data
type; unlike common C practice, a Java boolean type can’t be converted to
any numeric type.

2.1.2 Arithmetic and Relational Operators

All the familiar C and C++ operators apply. Because Java lacks unsigned data
types, the >>> operator has been added to the language to indicate an
unsigned (logical) right shift. Java also uses the + operator for string
concatenation; concatenation is covered below in the discussion on strings.

2.1.3 Arrays

In contrast to C and C++, Java language arrays are first-class language objects.
An array in Java is a real object with a run-time representation. You can declare
and allocate arrays of any type, and you can allocate arrays of arrays to obtain
multi-dimensional arrays.

You declare an array of, say, Point s (a class you’ve declared elsewhere) with a
declaration like this:

 Point myPoints[];

This code states that myPoints is an uninitialized array of Point s. At this
time, the only storage allocated for myPoints is a reference handle. At some
future time you must allocate the amount of storage you need, as in:

 myPoints = new Point[10];
21 The Java Language Environment—October 1995

2

to allocate an array of ten references to Point s that are initialized to the null
reference. Notice that this allocation of an array doesn’t actually allocate any
objects of the Point class for you; you will have to also allocate the Point
objects, something like this:

 int i;

 for (i = 0; i < 10; i++) {
 myPoints[i] = new Point();
 }

Access to elements of myPoints can be performed via the normal C-style
indexing, but all array accesses are checked to ensure that their indices are
within the range of the array. An exception is generated if the index is outside
the bounds of the array.

To get the length of an array, use the length() accessor method on the array
object whose length you wish to know: myPoints.length() returns the
number of elements in myPoints . For instance, the code fragment:

 howMany = myPoints.length();

would assign the value 10 to the howMany variable.

The C notion of a pointer to an array of memory elements is gone, and with it,
the arbitrary pointer arithmetic that leads to unreliable code in C. No longer
can you walk off the end of an array, possibly trashing memory and leading to
the famous “delayed-crash” syndrome, where a memory-access violation today
manifests itself hours or days later. Programmers can be confident that array
checking in Java will lead to more robust and reliable code.

2.1.4 Strings

Strings are Java language objects, not pseudo-arrays of characters as in C.
There are actually two kinds of string objects: the String class is for read-only
(immutable) objects. The StringBuffer class is for string objects you wish to
modify (mutable string objects).

Although strings are Java language objects, Java compiler follows the C
tradition of providing a syntactic convenience that C programmers have
enjoyed with C-style strings, namely, the Java compiler understands that a
string of characters enclosed in double quote signs is to be instantiated as a
String object. Thus, the declaration:

 String hello = "Hello world!";
Java—Simple and Familiar 22

2

instantiates an object of the String class behind the scenes and initializes it with
a character string containing the Unicode character representation of "Hello

world! ".

Java has extended the meaning of the + operator to indicate string
concatenation. Thus you can write statements like:

System.out.println("There are " + num + " characters in the file.");

This code fragment concatenates the string "There are " with the result of
converting the numeric value num to a string, and concatenates that with the
string " characters in the file." . Then it prints the result of those
concatenations on the standard output.

Just as with array objects, String objects provide a length() accessor
method to obtain the number of characters in the string.

2.1.5 Multi-Level Break

Java has no goto statement. To break or continue multiple-nested loop or
switch constructs, you can place labels on loop and switch constructs, and
then break out of or continue to the block named by the label. Here’s a small
fragment of code from Java’s built-in String class:

test : for (int i = fromIndex; i + max1 <= max2; i++) {
 if (charAt(i) == c0) {
 for (int k = 1; k<max1; k++) {
 if (charAt(i+k) != str.charAt(k)) {

continue test ;
 }
 } /* end of inner for loop */
 }
 } /* end of outer for loop */

The continue test statement is inside a for loop nested inside another for
loop. By referencing the label test , the continue statement passes control to
the outer for statement. In traditional C, continue statements can only
continue the immediately enclosing block; to continue or exit outer blocks,
programmers have traditionally either used auxiliary Boolean variables whose
only purpose is to determine if the outer block is to be continued or exited;
23 The Java Language Environment—October 1995

2

alternatively, programmers have (mis)used the goto statement to exit out of
nested blocks. Use of labelled blocks in Java leads to considerable
simplification in programming effort and a major reduction in maintenance.

The notion of labelled blocks dates back to the mid-1970s, but it hasn’t caught
on to any large extent in modern programming languages. Perl is another
modern programming language that implements the concept of labelled
blocks. Perl’s next label and last label are equivalent to continue label and
break label statements in Java.

2.1.6 Memory Management and Garbage Collection

C and C++ programmers are by now accustomed to the problems of explicitly
managing memory: allocating memory, freeing memory, and keeping track of
what memory can be freed when. Explicit memory management has proved to
be a fruitful source of bugs, crashes, memory leaks, and poor performance.

Java completely removes the memory management load from the programmer.
C-style pointers, pointer arithmetic, malloc, and free do not exist. Automatic
garbage collection is an integral part of Java and its run-time system. While Java
has a new operator to allocate memory for objects, there is no explicit free
function. Once you have allocated an object, the run-time system keeps track of
the object’s status and automatically reclaims memory when objects are no
longer in use, freeing memory for future use.

Java’s memory management model is based on objects and references to objects.
Because Java has no pointers, all references to allocated storage, which in
practice means all references to an object, are through symbolic “handles”. The
Java memory manager keeps track of references to objects. When an object has
no more references, the object is a candidate for garbage collection.

Java’s memory allocation model and automatic garbage collection make your
programming task easier, eliminate entire classes of bugs, and in general
provide better performance than you’d obtain through explicit memory
management. Here’s a code fragment that illustrates when garbage collection
happens. It’s an example from the on-line Java language programmer’s guide:

class ReverseString {
 public static String reverseIt(String source) {
 int i, len = source.length();
 StringBuffer dest = new StringBuffer(len);

 for (i = (len - 1); i >= 0; i--) {
Java—Simple and Familiar 24

2

 dest.appendChar(source.charAt(i));
 }
 return dest.toString();
 }
}

The variable dest is used as a temporary object reference during the execution
of the reverseIt method. When dest goes out of scope (the reverseIt
method returns), the reference to that object has gone away and it’s then a
candidate for garbage collection.

2.1.7 The Background Garbage Collector

The Java garbage collector achieves high performance by taking advantage of
the nature of a user’s behavior when interacting with software applications
such as the HotJava browser. The typical user of the typical interactive
application has many natural pauses where they’re contemplating the scene in
front of them or thinking of what to do next. The Java run-time system takes
advantage of these idle periods and runs the garbage collector in a low priority
thread when no other threads are competing for CPU cycles. The garbage
collector gathers and compacts unused memory, increasing the probability that
adequate memory resources are available when needed during periods of
heavy interactive use.

This use of a thread to run the garbage collector is just one of many examples
of the synergy one obtains from Java’s integrated multithreading
capabilities—an otherwise intractable problem is solved in a simple and
elegant fashion.

2.1.8 Integrated Thread Synchronization

Java supports multithreading, both at the language (syntactic) level and via
support from its run-time system and thread objects. While other systems have
provided facilities for multithreading (usually via “lightweight process”
libraries), building multithreading support into the language itself provides the
programmer with a much easier and more powerful tool for easily creating
thread-safe multithreaded classes. Multithreading is discussed in more detail
in Chapter 5.
25 The Java Language Environment—October 1995

2

2.2 Features Removed from C and C++
The earlier part of this chapter concentrated on the principal features of Java.
This section discusses features removed from C and C++ in the evolution of
Java.

The first step was to eliminate redundancy from C and C++. In many ways, the C
language evolved into a collection of overlapping features, providing too many
ways to say the same thing, while in many cases not providing needed
features. C++, in an attempt to add “classes in C”, merely added more
redundancy while retaining many of the inherent problems of C.

2.2.1 No More Typedefs, Defines, or Preprocessor

Source code written in Java is simple. There is no preprocessor, no #define and
related capabilities, no typedef , and absent those features, no longer any need
for header files. Instead of header files, Java language source files provide the
definitions of other classes and their methods.

A major problem with C and C++ is the amount of context you need to
understand another programmer’s code: you have to read all related header
files, all related #define s, and all related typedef s before you can even begin
to analyze a program. In essence, programming with #defines and typedef s
results in every programmer inventing a new programming language that’s
incomprehensible to anybody other than its creator, thus defeating the goals of
good programming practices.

In Java, you obtain the effects of #define by using constants. You obtain the
effects of typedef by declaring classes—after all, a class effectively declares a
new type. You don’t need header files because the Java compiler compiles class
definitions into a binary form that retains all the type information through to
link time.

By removing all this baggage, Java becomes remarkably context-free.
Programmers can read and understand code and, more importantly, modify
and reuse code much faster and easier.
Java—Simple and Familiar 26

2

2.2.2 No More Structures or Unions

Java has no structures or unions as complex data types. You don’t need
structures and unions when you have classes; you can achieve the same effect
simply by declaring a class with the appropriate instance variables.

The code fragment below declares a class called Point .

 class Point extends Object {
 double x;
 double y;

methods to access the instance variables
 }

The following code fragment declares a class called Rectangle , that uses
objects of the Point class as instance variables.

 class Rectangle extends Object {
 Point lowerLeft;
 Point upperRight;

methods to access the instance variables
 }

In C you’d define these classes as structures. In Java, you simply declare
classes. You can make the instance variables as private or as public as you
wish, depending on how much you wish to hide the details of the
implementation from other objects.

2.2.3 No More Functions

Java has no functions. Object-oriented programming supersedes functional and
procedural styles. Mixing the two styles just leads to confusion and dilutes the
purity of an object-oriented language. Anything you can do with a function
you can do just as well by defining a class and creating methods for that class.
Consider the Point class from above. We’ve added public methods to set and
access the instance variables:

 class Point extends Object {
 double x;
 double y;
27 The Java Language Environment—October 1995

2

 public void setX(double x) {
 this.x = x;
 }
 public void setY(double y) {
 this.y = y;
 }
 public double x() {
 return x;
 }
 public double y() {
 return x;
 }
 }

If the x and y instance variables are private to this class, the only means to
access them is via the public methods of the class. Here’s how you’d use
objects of the Point class from within, say, an object of the Rectangle class:

 class Rectangle extends Object {
 Point lowerLeft;
 Point upperRight;

 public void setEmptyRect() {
 lowerLeft.setX(0.0);
 lowerLeft.setY(0.0);
 upperRight.setX(0.0);
 upperRight.setY(0.0);
 }
 }

It’s not to say that functions and procedures are inherently wrong. But given
classes and methods, we’re now down to only one way to express a given task.
By eliminating functions, your job as a programmer is immensely simplified:
you work only with classes and their methods.

2.2.4 No More Multiple Inheritance

Multiple inheritance—and all the problems it generates—has beed discarded
from Java. The desirable features of multiple inheritance are provided by
interfaces—conceptually similar to Objective C protocols.
Java—Simple and Familiar 28

2

An interface is not a definition of an object. Rather, it’s a definition of a set of
methods that one or more objects will implement. An important issue of
interfaces is that they declare only methods and constants. No variables may
be defined in interfaces.

2.2.5 No More Goto Statements

Java has no goto statement*. Studies illustrated that goto is (mis)used more
often than not simply “because it’s there”. Eliminating goto led to a
simplification of the language—there are no rules about the effects of a goto
into the middle of a for statement, for example. Studies on approximately
100,000 lines of C code determined that roughly 90 percent of the goto
statements were used purely to obtain the effect of breaking out of nested
loops. As mentioned above, multi-level break and continue remove most of
the need for goto statements.

2.2.6 No More Operator Overloading

There are no means provided by which programmers can overload the
standard arithmetic operators. Once again, the effects of operator overloading
can be just as easily achieved by declaring a class, appropriate instance
variables, and appropriate methods to manipulate those variables.

2.2.7 No More Automatic Coercions

Java prohibits C and C++ style automatic coercions. If you wish to coerce a data
element of one type to a data type that would result in loss of precision, you
must do so explicitly by using a cast. Consider this code fragment:

 int myInt;
 double myFloat = 3.14159;

 myInt = myFloat;

The assignment of myFloat to myInt would result in a compiler error
indicating a possible loss of precision and that you must use an explicit cast.
Thus, you should re-write the code fragments as:

* However, goto is still a reserved word.
29 The Java Language Environment—October 1995

2

 int myInt;
 double myFloat = 3.14159;

 myInt = (int)myFloat;

2.2.8 No More Pointers

Most studies agree that pointers are one of the primary features that enable
programmers to inject bugs into their code. Given that structures are gone, and
arrays and strings are objects, the need for pointers to these constructs goes
away. Thus, Java has no pointers. Any task that would require arrays,
structures, and pointers in C can be more easily and reliably performed by
declaring objects and arrays of objects. Instead of complex pointer
manipulation on array pointers, you access arrays by their arithmetic indices.
The Java run-time system checks all array indexing to ensure indices are within
the bounds of the array.

You no longer have dangling pointers and trashing of memory because of
incorrect pointers, because there are no pointers in Java.

2.3 Summary
To sum up this chapter, Java is:

• Simple—the number of language constructs you need to understand to get
your job done is minimal.

• Familiar—Java looks like C and C++ while discarding the overwhelming
complexities of those languages.

Now that you’ve seen how Java was simplified by removal of features from its
predecessors, read the next chapter for a discussion on the object-oriented
features of Java.
Java—Simple and Familiar 30

2

31 The Java Language Environment—October 1995

Java is Object Oriented 3
My Object All Sublime
I Will Achieve in Time

Gilbert and Sullivan—The Mikado

To stay abreast of modern software development practices, Java is object
oriented from the ground up. The point of designing an object-oriented
language is not simply to jump on the latest programming fad. The object-
oriented paradigm meshes well with the needs of client-server and distributed
software. Benefits of object technology are rapidly becoming realized as more
organizations move their applications to the distributed client-server model.

Unfortunately, “object oriented” remains misunderstood, over-marketed as the
silver bullet that will solve all our software ills, or takes on the trappings of a
religion. The cynic’s view of object-oriented programming is that it’s just a new
way to organize your source code. While there may be some merit to this view,
it doesn’t tell the whole story, because you can achieve results with object-
oriented programming techniques that you can’t with procedural techniques.

An important characteristic that distinguishes objects from ordinary
procedures or functions is that an object can have a lifetime greater than that of
the object that created it. This aspect of objects is subtle and mostly
32

3

overlooked.In the distributed client-server world, this creates the potential for
objects to be created in one place, passed around networks, and stored
elsewhere, possibly in databases, to be retrieved for future work.

As an object-oriented language, Java draws on the best concepts and features
of previous object-oriented languages, primarily Eiffel, SmallTalk, Objective C,
and C++. Java goes beyond C++ in both extending the object model and
removing the major complexities of C++. With the exception of its primitive
data types, everything in Java is an object, and even the primitive types can be
encapsulated within objects if the need arises.

3.1 Object Technology in Java
To be truly considered “object oriented”, a programming language should
support at a minimum four characteristics:

• Encapsulation—implements information hiding and modularity (abstraction)

• Polymorphism—the same message sent to different objects results in behavior
that’s dependent on the nature of the object receiving the message

• Inheritance—you define new classes and behavior based on existing classes
to obtain code re-use and code organization

• Dynamic binding—objects could come from anywhere, possibly across the
network. You need to be able to send messages to objects without having to
know their specific type at the time you write your code. Dynamic binding
provides maximum flexibility while a program is executing

Java meets these requirements nicely, and adds considerable run-time support
to make your software development job easier.

3.2 What Are Objects?
At its simplest, object technology is a collection of analysis, design, and
programming methodologies that focuses design on modelling the
characteristics and behavior of objects in the real world. True, this definition
appears to be somewhat circular, so let’s try to break out into clear air.

What are objects? They’re software programming models. In your everyday life,
you’re surrounded by objects: cars, coffee machines, ducks, trees, and so on.
Software applications contain objects: buttons on user interfaces, spreadsheets
33 The Java Language Environment—October 1995

3

and spreadsheet cells, property lists, menus, and so on. These objects have state
and behavior. You can represent all these things with software constructs called
objects, which can also be defined by their state and their behavior.

In your everyday transportation needs, a car can be modelled by an object. A
car has state (how fast it’s going, in which direction, its fuel consumption, and
so on) and behavior (starts, stops, turns, slides, and runs into trees).

You drive your car to your office, where you track your stock portfolio. In your
daily interactions with the stock markets, a stock can be modelled by an object.
A stock has state (daily high, daily low, open price, close price, earnings per
share, relative strength), and behavior (changes value, performs splits, has
dividends).

After watching your stock decline in price, you repair to the cafe to console
yourself with a cup of good hot coffee. The espresso machine can be modelled as
an object. It has state (water temperature, amount of coffee in the hopper) and
it has behavior (emits steam, makes noise, and brews a perfect cup of java).

3.3 Basics of Objects
In the programming implementation of an object, its state is defined by its
instance variables. Instance variables are private to the object. Unless explicitly
made public or made available to other “friendly” classes, an object’s instance
variables are inaccessible from outside the object.

An object’s behavior is defined by its methods. Methods manipulate the instance
variables to create new state; an object’s methods can also create new objects.

The small picture to the left is a commonly used graphical representation of an
object. The diagram illustrates the conceptual structure of a software
object—it’s kind of like a cell, with an outer membrane that’s its interface to the
world, and an inner nucleus that’s protected by the outer membrane.

An object’s instance variables (data) are packaged, or encapsulated, within the
object. The instance variables are surrounded by the object’s methods. With
certain well-defined exceptions, the object’s methods are the only means by
which other objects can access or alter its instance variables. In Java, classes can
declare their instance variables to be public , in which cases the instance
variables are globally accessible to other objects. Declarations of accessibility
are covered in later in Access Specifiers.

Instance
Variables

Method

Method

M
et

h
od

M
eth

od
Java is Object Oriented 34

3

3.3.1 Classes

A class is a software construct that defines the instance variables and methods of
an object. A class in and of itself is not an object. A class is a template that
defines how an object will look and behave when the object is created or
instantiated from the specification declared by the class. You obtain concrete
objects by instantiating a previously defined class. You can instantiate many
objects from one class definition, just as you can construct many houses that
area all the same from a single architect’s drawing. Here’s the basic declaration
of a very simple class called Point

 class Point extends Object {
 public double x; /* instance variable */
 public double y; /* instance variable */
 }

As mentioned, this declaration merely defines a template from which real
objects can be instantiated, as described next.

3.3.2 Instantiating an Object from its Class

Having declared the size and shape of the Point class above, any other object
can now create a Point object—an instance of the Point class—with a
fragment of code like this:

 Point myPoint; // declares a variable to refer to a Point object

 myPoint = new Point(); // allocates an instance of a Point object

Now, you can access the variables of this Point object by referring to the names
of the variables, qualified with the name of the object:

 myPoint.x = 10.0;
 myPoint.y = 25.7;

This referencing scheme, similar to a C structure reference, works because the
instance variables of Point were declared public in the class declaration.
Had the instance variables not been declared public , objects outside of the
package within which Point was declared could not access its instance
variables in this direct manner. The Point class declaration would then need
to provide accessor methods to set and get its variables. This topic is discussed in
a little more detail after the discussion on constructors.
35 The Java Language Environment—October 1995

3

3.3.3 Constructors

When you declare a class in Java, you can declare optional constructors that
perform initialization when you instantiate objects from that class. You can also
declare an optional finalizer, discussed later. Let’s go back to our Point class
from before:

 class Point extends Object {
 public double x; /* instance variable */
 public double y; /* instance variable */

 Point() { /* constructor to initialize to default zero value */
 x = 0.0;
 y = 0.0;
 }
 /* constructor to initialize to specific value */
 Point(double x, double y) {
 this.x = x; /* set instance variables to passed parameters */
 this.y = y;
 }
 }

Methods with the same name as the class as in the code fragment are called
constructors. When you create (instantiate) an object of the Point class, the
constructor method is invoked to perform any initialization that’s needed—in
this case, to set the instance variables to an initial state.

This example is a variation on the Point class from before. Now, when you
wish to create and initialize Point objects, you can get them initialized to their
default values, or you can initialize them to specific values:

 Point lowerLeft;
 Point upperRight;

 lowerLeft = new Point(); /* initialize to default zero value */
 upperRight = new Point(100.0, 200.0); /* initialize to non- zero */

The specific constructor that’s used when creating a new Point object is
determined from the type and number of parameters in the new invocation.
Java is Object Oriented 36

3

The this Variable
What’s the this variable in the examples above? this refers to the object
you’re “in” right now. In other words, this refers to the receiving object. You
use this to clarify which variable you’re referring to. In the two-parameter
Point method, this.x means the x instance variable of this object, rather
than the x parameter to the Point method.

In the example above, the constructors are simply conveniences for the Point
class. There are situations, however, where constructors are necessary,
especially in cases where the object being instantiated must itself instantiate
other objects. Let’s illustrate this by declaring a Rectangle class that uses two
Point objects to define its bounds:

 class Rectangle extends Object {
 private Point lowerLeft;
 private Point upperRight;

 Rectangle() {
 lowerLeft = new Point();
 upperRight = new Point();
 }
 . . .

instance methods appear in here
 . . .
 }

In this example, the Rectangle() constructor is vitally necessary to ensure
that the two Point objects are instantiated at the time a Rectangle object is
instantiated, otherwise, the Rectangle object would subsequently try to
reference points that have not yet been allocated, and would fail.

3.3.4 Methods and Messaging

If an object wants another object to do some work on its behalf, then in the
parlance of object-oriented programming, the first object sends a message to the
second object. In response, the second object selects the appropriate method to
invoke. Java method invocations look similar to functions in C and C++.

Using the message passing paradigms of object-oriented programming, you
can build entire networks and webs of objects that pass messages between
them to change state. This programming technique is one of the best ways to

Instance

Variables

Method

Method

M
et

h
od

M
eth

od

Instance

Variables

Method

Method

M
et

h
od

M
eth

od

Message
37 The Java Language Environment—October 1995

3

create models and simulations of complex real-world systems. Let’s redefine
the declaration of the Point class from above such that its instance variables
are private , and supply it with accessor methods to access those variables.

 class Point extends Object {
 private double x; /* instance variable */
 private double y; /* instance variable */

 Point() { /* constructor to initialize to zero */
 x = 0.0;
 y = 0.0;
 }
 /* constructor to initialize to specific value */
 Point(double x, double y) {
 this.x = x;
 this.y = y;
 }
 public void setX(double x) { /* accessor method */
 this.x = x;
 }
 public void setY(double y) { /* accessor method */
 this.y = y;
 }
 public double getX() { /* accessor method */
 return x;
 }
 public double getY() { /* accessor method */
 return y;
 }
 }

These method declarations provides the flavor of how the Point class
provides access to its variables from the outside world. Another object that
wants to manipulate the instance variables of Point objects must now do so
via the accessor methods:

 Point myPoint; // declares a variable to refer to a Point object

 myPoint = new Point(); // allocates an instance of a Point object

 myPoint.setX(10.0); // sets the x variable via the accessor method
 myPoint.setY(25.7);

Making instance variables public or private is a design tradeoff the designer
makes when declaring the classes. By making instance variables public, you
are exposing some of the details of the implementation of the class, thereby
providing higher efficiency and conciseness of expression at the possible
Java is Object Oriented 38

3

expense of hindering future maintenance efforts. By hiding details of the
internal implementation of a class, you have the potential to change the
implementation of the class in the future without breaking any code that uses
that class.

3.3.5 Finalizers

You can also declare an optional finalizer that will perform necessary tear-down
actions when the garbage collector is about to free an object. This code
fragment illustrates a finalize method in a class.

 /**
 * Close the stream when garbage is collected.
 */
 protected void finalize() {
 try {
 file.close();
 } catch (Exception e) {
 }
 }

This finalize method will be invoked when the object is about to be garbage
collected, which means that the object must shut itself down in an orderly
fashion. In the particular code fragment above, the finalize method merely
closes an I/O file stream that was used by the object, to ensure that the file
descriptor for the stream is closed.

3.3.6 Subclassing

Subclassing is the mechanism by which new and enhanced objects can be
defined in terms of existing objects. One example: a zebra is a horse with
stripes. If you wish to create a zebra object, you notice that a zebra is kind of
like a horse, only with stripes. In object-oriented terms, you’d create a new
class called Zebra, which is a subclass of the Horse class. In Java language
terms, you’d do something like this:

 class Zebra extends Horse {
Your new instance variables and new methods go here

 }

The definition of Horse , wherever it is, would define all the methods to
describe the behavior of a horse: eat, neigh, trot, gallop, buck, and so on. The
only method you need to override is the method for drawing the hide. You
39 The Java Language Environment—October 1995

3

gain the benefit of already written code that does all the work—you don’t have
to re-invent the wheel, or in this case, the hoof. The extends keyword tells the
Java compiler that Zebra is a subclass of Horse. Zebra is said to be a derived
class—it’s derived from Horse, which is called a base class.

Here’s an example of subclassing a variant of our Point class from previous
examples to create a new three-dimensional point called ThreePoint :

 class Point extends Object {
 protected double x; /* instance variable */
 protected double y; /* instance variable */

 Point() { /* constructor to initialize to zero */
 x = 0.0;
 y = 0.0;
 }
 }

 class ThreePoint extends Point {
 protected double z; /* the z coordinate of the point */

 ThreePoint() { /* default constructor */
 x = 0.0; /* initialize the coordinates */
 y = 0.0;
 z = 0.0;
 }
 ThreePoint(double x, double y, double z) {/* specific constructor */
 this.x = x; /* initialize the coordinates */
 this.y = y;
 this.z = z;
 }
 }

Notice that ThreePoint adds a new instance variable for the z coordinate of
the point. The x and y instance variables are inherited from the original Point
class, so there’s no need to declare them in ThreePoint . However, notice we
had to make Point ’s instance variables protected instead of private as in
the previous examples. Had we left Point ’s instance variables private , even
its subclasses would be unable to access them, and the compilation would fail.

Subclassing enables you to use existing code that’s already been developed
and, much more important, tested, for a more generic case. You override the
parts of the class you need for your specific behavior. Thus, subclassing gains
Java is Object Oriented 40

3

you reuse of existing code—you save on design, development, and testing. The
Java run-time system provides several libraries of utility functions that are
tested and are also thread safe.

3.3.7 Access Control

When you declare a new class in Java, you can indicate the level of access
permitted to its instance variables and methods. Java provides four levels of
access specifiers. Three of the levels must be explicitly specified if you wish to
use them. They are public , protected , and private .

The fourth level doesn’t have a name—it’s often called “friendly” and is the
access level you obtain if you don’t specify otherwise. The “friendly” access
level indicates that your instance variables and methods are accessible to all
objects within the same package, but inaccessible to objects outside the
package.

The friendly access level comes in handy if you’re creating packages of classes
that are related to each other and can access each other’s instance variables
directly. A geometry package consisting of Point and Rectangle classes, for
instance, might well be easier and cleaner to implement, as well as more
efficient, if the Point ’s instance variables were directly available to the
Rectangle class. Outside of the geometry package, however, the details of
implementations are hidden from the rest of the world, giving you the freedom
to changed implementation details without worrying you’ll break code that
uses those classes. Packages are a Java language construct that gather
collections of related classes into a single container. For example, all Java I/O
system code is collected into a single package. The primary benefit of packages
is organizing many class definitions into a single unit. The secondary benefit
from the programmer’s viewpoint is that the “friendly” instance variables and
methods are available to all classes within the same package, but not to classes
defined outside the package.

public methods and instance variables are available to any other class
anywhere.

protected means that instance variables and methods so designated are
accessible only to subclasses of that class, and nowhere else.

private methods and instance variables are accessible only from within the
class in which they’re declared—they’re not available even to their subclasses.
41 The Java Language Environment—October 1995

3

3.3.8 Class Variables and Class Methods

Java follows conventions from other object-oriented languages in providing
class methods and class variables. Normally, variables you declare in a class
definition are instance variables—there is one of those variables in every
separate object that’s created (instantiated) from the class. A class variable, on
the other hand, is local to the class itself—there’s only a single copy of the
variable and it’s shared by every object you instantiate from the class.

To declare class variables and class methods, you declare them as static . This
short code fragment illustrates the declaration of class variables:

 class Rectangle extends Object {
 static final int version = 2;
 static final int revision = 0;
 }

The Rectangle class declares two static variables to define the version and
revision level of this class. Now, every instance of Rectangle that you create
from this class will share these same variables. Notice they’re also defined as
final because you want them to be constants.

Class methods are methods that are common to an entire class. When would
you use class methods? Usually, when you have behavior that’s common to
every object of a class. For example, suppose you have a Window class. A
useful item of information you can ask the class is the width of the border
around the window. There’s no point in having an instance method to obtain
this information that’s shared by every instance of Window—it makes more
sense to have just one class method to return the border width.

Class methods can operate only on class variables. Class methods can’t access
instance variables, nor can they invoke instance methods. Like class variables,
you declare class methods by defining them as static .

3.3.9 Abstract Methods

Abstract methods are a powerful construct in the object-oriented paradigm. To
understand abstract methods, we look at the notion of an abstract superclass. An
abstract superclass is a class in which you define methods that aren’t actually
implemented by that class—they only provide place-holders such that
subsequent subclasses must override those methods and supply their actual
implementation.
Java is Object Oriented 42

3

This all sounds wonderfully, well, abstract, so why would you need an abstract
superclass? Let’s look at a concrete example, no pun intended. Let’s suppose
you’re going to a restaurant for dinner, and you decide that tonight you want
to eat fish. Well, fish is somewhat abstract—you generally wouldn’t just order
fish; the waiter is highly likely to ask you what specific kind of fish you want.
When you actually get to the restaurant, you will find out what kind of fish
they have, and order a specific fish, say, sturgeon, or salmon, or opakapaka.

In the world of objects, an abstract class is like generic fish—the abstract class
defines generic state and generic behavior, but you’ll never see a real live
implementation of an abstract class. What you will see is a concrete subclass of
the abstract class, just as opakapaka is a specific (concrete) kind of fish.

Suppose you are creating a drawing application. The initial cut of your
application can draw rectangles, lines, circles, polygons, and so on.
Furthermore, you have a series of operations you can perform on the
shapes—move, reshape, rotate, fill color, and so on. You could make each of
these graphic shapes a separate class—you’d have a Rectangle class, a Line
class, and so on. Each class needs instance variables to define its position, size,
color, rotation and so on, which in turn dictates methods to set and get at those
variables.

At this point, you realize you can collect all the instance variables into a single
abstract superclass called Graphical , and implement most of the methods to
manipulate the variables in that abstract superclass. The skeleton of your
abstract superclass might look something like this:

abstract class Graphic extends Object {
 protected Point lowerLeft; // lower left of bounding box
 protected Point upperRight; // upper right of bounding box
 . . .

more instance variables
 . . .
 public void setPosition(Point ll, Point ur) {
 lowerLeft = ll;
 upperRight = ur;
 }
 abstract void drawMyself(); // abstract method
 }

}

43 The Java Language Environment—October 1995

3

Now, you can’t instantiate the Graphical class, because it’s declared
abstract . You can only instantiate a subclass of it. When you implement the
Rectangle class or the Circle class, you’d extend (subclass) Graphical .
Within Rectangle , you’d provide a concrete implementation of the
drawMySelf() method that draws a rectangle, because the definition of
drawMySelf() must by necessity be unique to each shape inherited from the
Graphical class. Let’s see a small fragment of the Rectangle class
declaration, where its drawMySelf() method operates in a somewhat
PostScript’y fashion:

abstract class Rectangle extends Graphical {
 void drawMySelf() { // really does the drawing
 moveTo(lowerLeft.x, lowerLeft.y);
 lineTo(upperRight.x, lowerLeft.y);
 lineTo(upperRight.x, upperRight.y)
 lineTo(lowerLeft.x, upperRight.y);
 . . .

and so on and so on
 . . .
 }
}

Notice, however, that in the declaration of the Graphical class, the
setPosition() method was declared as a regular (public void) method.
All methods that can be implemented by the abstract superclass can be
declared there and their implementations defined at that time. Then, every
class that inherits from the abstract superclass will also inherit those methods.

You can continue in this way adding new shapes that are subclasses of
Graphical , and most of the time, all you ever need to implement is the
methods that are unique to the specific shape. You gain the benefit of re-using
all the code that was defined inside the abstract superclass.

3.4 Summary
This chapter has conveyed the essential aspects of Java as an object-oriented
language. To sum up:

• Classes define templates from which you instantiate (create) distinct concrete
objects.

• Instance variables hold the state of a specific object.
Java is Object Oriented 44

3

• Objects communicate by sending messages to each other. Objects respond to
messages by selecting a method to execute.

• Methods define the behavior of objects instantiated from a class. It is an
object’s methods that manipulate its instance variables. Unlike regular
procedural languages, classes in an object-oriented language may have
methods with the same names as other classes. A given object responds to a
message in ways determined by the nature of that object, providing
polymorphic behavior.

• Subclassing provides the means by which a new class can inherit instance
variables and methods from any already defined class. The newly declared
class can add new instance variables (extra state), can add new methods
(new behavior), or can override the methods of its superclass (different
behavior). Subclassing provides code reuse.

Taken together, the concepts of object-oriented programming create a powerful
and simple paradigm for software developers to share and re-use code and
build on the work of others.
45 The Java Language Environment—October 1995

Architecture Neutral, Portable,
and Robust 4
With the phenomenal growth of networks, today’s developers must “think
distributed”. Applications—even parts of applications—must be able to
migrate easily to a wide variety of computer systems, a wide variety of
hardware architectures, and a wide variety of operating system architectures.
They must operate with a plethora of graphical user interfaces.

Clearly, applications must be able to execute anywhere on the network without
prior knowledge of the target hardware and software platform. If application
developers are forced to develop for specific target platforms, the binary
distribution problem quickly becomes unmanageable. Various and sundry
methods have been employed to overcome the problem, such as creating “fat”
binaries that adapt to the specific hardware architecture, but such methods are
not only clumsy but are still geared to a specific operating system. To solve the
binary-distribution problem, software applications and fragments of
applications must be architecture neutral and portable.

Reliability is also at a high premium in the distributed world. Code from
anywhere on the network should work robustly with low probabilities of
creating “crashes” in applications that import fragments of code.

This chapter describes the ways in which Java has addressed the issues of
architecture neutrality, portability, and reliability.
46

4

4.1 Architecture Neutral
The solution that the Java system adopts to solve the binary-distribution
problem is a “binary code format” that’s independent of hardware
architectures, operating system interfaces, and window systems. The format of
this system-independent binary code is architecture neutral. If the Java run-time
system is made available on a given hardware and software platform, an
application written in Java can then execute on that platform without the need
to perform any special porting work for that application.

4.1.1 Byte Codes

The Java compiler doesn’t generate “machine code” in the sense of native
hardware instructions—rather, it generates bytecodes: a high-level, machine-
independent code for a hypothetical machine that is implemented by the Java
interpreter and run-time system.

One of the early examples of the bytecode approach was the UCSD P-System,
which was ported to a variety of eight-bit architectures in the middle 1970s and
early 1980s and enjoyed widespread popularity during the heyday of eight-bit
machines. Coming up to the present day, current architectures have the power
to support the bytecode approach for distributed software. Java bytecodes are
designed to be easy to interpret on any machine, or to dynamically translate
into native machine code if required by performance demands.

The architecture neutral approach is useful not only for network-based
applications, but also for single-system software distribution. In today’s
software market, application developers have to produce versions of their
applications that are compatible with the IBM PC, Apple Macintosh, and fifty-
seven flavors of workstation and operating system architectures in the
fragmented UNIX marketplace.

With the PC market (through Windows 95 and Windows NT) diversifying onto
many CPU architectures, and Apple moving full steam from the 68000 to the
PowerPC, production of software to run on all platforms becomes almost
impossible until now. Using Java, coupled with the Abstract Window Toolkit,
the same version of your application can run on all platforms.
47 The Java Language Environment—October 1995

4

4.2 Portable
The primary benefit of the interpreted byte code approach is that compiled
Java language programs are portable to any system on which the Java
interpreter and run-time system have been implemented.

The architecture-neutral aspect discussed above is one major step towards
being portable, but there’s more to it than that. C and C++ both suffer from the
defect of designating many fundamental data types as “implementation
dependent”. Programmers labor to ensure that programs are portable across
architectures by programming to a lowest common denominator.

Java eliminates this issue by defining standard behavior that will apply to the
data types across all platforms. Java specifies the sizes of all its primitive data
types and the behavior of arithmetic on them. Here are the data types:

byte 8-bit two’s complement
short 16-bit two’s complement
int 32-bit two’s complement
long 64-bit two’s complement

float 32-bit IEEE 754 floating point
double 64-bit IEEE 754 floating point

char 16-bit Unicode character

The data types and sizes described above are standard across all
implementations of Java. These choices are reasonable given current
microprocessor architectures because essentially all central processor
architectures in use today share these characteristics. That is, most modern
processors can support two’s-complement arithmetic in 8-bit to 64-bit integer
formats, and most modern processors support single- and double-precision
floating point.

The Java environment itself is readily portable to new architectures and
operating systems. The Java compiler is written in Java. The Java run-time
system is written in ANSI C with a clean portability boundary which is
essentially POSIX-compliant. There are no “implementation-dependent” notes
in the Java language specification.
Architecture Neutral, Portable, and Robust 48

4

4.3 Robust
Java is intended for developing software that must be robust, highly reliable,
and secure, in a variety of ways. There’s strong emphasis on early checking for
possible problems, as well as later dynamic (run-time) checking, to eliminate
error-prone situations.

4.3.1 Strict Compile-Time and Run-Time Checking

The Java compiler employs extensive and stringent compile-time checking so
that syntax-related errors can be detected early, before a program is deployed.

One of the advantages of a strongly typed language (like C++) is that it allows
extensive compile-time checking, so bugs can be found early. Unfortunately,
C++ inherits a number of loopholes in its compile-time checking from C.
Unfortunately, C++ and C are relatively lax, most notably in the area of method
or function declarations. Java imposes much more stringent requirements on
the developer: Java requires explicit declarations and does not support C-style
implicit declarations.

Many of the stringent compile-time checks at the Java compiler level are
carried over to the run time, both to check consistency at run time, and to
provide greater flexibility. The linker understands the type system and repeats
many of the type checks done by the compiler, to guard against version
mismatch problems.

The single biggest difference between Java and C or C++ is that Java’s memory
model eliminates the possibility of overwriting memory and corrupting data.
Instead of pointer arithmetic, Java has true arrays and strings, which means
that the interpreter can check array and string indexes. In addition, a
programmer can’t write code that turns an arbitrary integer into an object
reference by casting.

While Java doesn’t pretend to completely remove the software quality
assurance problem, removal of entire classes of programming errors
considerably eases the job of testing and quality assurance.
49 The Java Language Environment—October 1995

4

4.4 Summary
Java—an architecture-neutral and portable programming language—provides an
attractive and simple solution to the problem of distributing your applications
across heterogeneous network-based computing platforms. In addition, the
simplicity and robustness of the underlying Java language results in higher
quality, reliable applications in which users can have a high level of confidence.
The next chapter contains a brief discussion of Java’s interpreted
implementation.
Architecture Neutral, Portable, and Robust 50

4

51 The Java Language Environment—October 1995

Interpreted and Dynamic 5
Programmers using “traditional” software development tools have become
resigned to the artificial edit-compile-link-load-throw-the-application-off-the-
cliff-let-it-crash-and-start-all-over-again style of current development practice.

Additionally, keeping track of what must be recompiled when a declaration
changes somewhere else strains the capabilities of development tools—even
fancy “make”-style tools such as found on UNIX systems. This development
approach bogs down as the code bases of applications grow to hundreds of
thousands of lines.

Better methods of fast and fearless prototyping and development are needed.
The Java language environment is one of those better ways, because it’s
interpreted and dynamic.

As discussed in the previous chapter on architecture-neutrality, the Java
compiler generates byte codes for the Java Virtual Machine*, which was
introduced briefly in Chapter 4. The notion of a virtual interpreted machine is
not new. But the Java language brings the concepts into the realm of secure,
distributed, network-based systems.

The Java language virtual machine is a strictly defined virtual machine for
which an interpreter must be available for each hardware architecture and
operating system on which you wish to run Java language applications. Once

* One of the ancestors of the virtual machine concept was the UCSD P System, developed by Kenneth Bowles
at the University of California at San Diego in the late 1970s.
52

5

you have the Java language interpreter and run-time support available on a
given hardware and operating system platform, you can run any Java language
application from anywhere, always assuming the specific Java language
application is written in a portable manner.

The notion of a separate “link” phase after compilation is pretty well absent
from the Java environment. Linking, which is actually the process of loading
new classes by the Class Loader, is a more incremental and lightweight process.
The concomitant speedup in your development cycle means that your
development process can be much more rapid and exploratory, and because of
the robust nature of the Java language and run-time system, you will catch
bugs at a much earlier phase of the cycle.

5.1 Dynamic Loading and Binding
The Java language’s portable and interpreted nature produces a highly dynamic
and dynamically-extensible system. The Java language was designed to adapt to
evolving environments. Classes are linked in as required and can be
downloaded from across networks. Incoming code is verified before being
passed to the interpreter for execution.

Object-oriented programming has become accepted as a means to solve at least
a part of the “software crisis”, by assisting encapsulation of data and
corresponding procedures, and encouraging reuse of code. Most programmers
doing object-oriented development today have adopted C++ as their language
of choice. But C++ suffers from a serious problem that impedes its widespread
use in the production and distribution of “software ICs”. This defect is known
as the fragile superclass problem.

5.1.1 The Fragile Superclass Problem

This problem arises as a side-effect of the way that C++ is usually
implemented. Any time you add a new method or a new instance variable to a
class, any and all classes that reference that class will require a recompilation,
or they’ll break. Keeping track of the dependencies between class definitions
and their clients has proved to be a fruitful source of programming error in
C++, even with the help of “make”-like utilities.The fragile superclass issue is
sometimes also referred to as the “constant recompilation problem.” You can
avoid these problems in C++, but with extraordinary difficulty, and doing so
53 The Java Language Environment—October 1995

5

effectively means not using any of the language’s object-oriented features
directly. By avoiding the object-oriented features of C++, developers defeat the
goal of re-usable “software ICs”.

5.1.2 Solving the Fragile Superclass Problem

The Java language solves the fragile superclass problem in several stages. The
Java compiler doesn’t compile references down to numeric values—instead, it
passes symbolic reference information through to the byte code verifier and the
interpreter. The Java interpreter performs final name resolution once, when
classes are being linked. Once the name is resolved, the reference is rewritten
as a numeric offset, enabling the Java interpreter to run at full speed.

Finally, the storage layout of objects is not determined by the compiler. The
layout of objects in memory is deferred to run time and determined by the
interpreter. Updated classes with new instance variables or methods can be
linked in without affecting existing code.

At the small expense of a name lookup the first time any name is encountered,
the Java language eliminates the fragile superclass problem. Java programmers
can use object-oriented programming techniques in a much more
straightforward fashion without the constant recompilation burden
engendered by C++. Libraries can freely add new methods and instance
variables without any effect on their clients. Your life as a programmer is
simpler.

5.1.3 Java Language Interfaces

An interface in the Java language is simply a specification of methods that an
object implements. The concept of an interface in the Java language was
borrowed from the Objective-C concept of a protocol. An interface does not
include instance variables or implementation code. You can import and use
multiple interfaces in a flexible manner, providing the benefits of multiple
inheritance without the inherent difficulties created by the usual rigid class
inheritance structure.
Interpreted and Dynamic 54

5

5.1.4 Run-Time Representations

Classes in the Java language have a run-time representation. There is a class
named Class , instances of which contain run-time class definitions. If you’re
handed an object, you can find out what class it belongs to. In a C or C++
program, you may be handed a pointer to an object, but if you don’t know
what type of object it is, you have no way to find out. In the Java language,
finding out based on the run-time type information is straightforward.

It is also possible to look up the definition of a class given a string containing
its name. This means that you can compute a data type name and easily have
it dynamically-linked into the running system.

5.2 Summary
The interpreted and dynamic nature of Java provides several benefits:

• The interpreted environment enables fast prototyping without waiting for
the traditional compile and link cycle,

• The environment is dynamically extensible, whereby classes are loaded on
the fly as required,

• The fragile superclass problem that plagues C++ developers is eliminated
because of deferral of memory layout decisions to run time.
55 The Java Language Environment—October 1995

Security in Java 6
Security commands a high premium in the growing use of the Internet for
products and services ranging from electronic distribution of software and
multimedia content, to “digital cash”. The area of security with which we’re
concerned here is how the Java compiler and run-time system restrict
application programmers from creating subversive code.

The Java language compiler and run-time system implement several layers of
defense against potentially incorrect code. The environment starts with the
assumption that nothing is to be trusted, and proceeds accordingly. The next
few sections discuss the Java security models in greater detail.

6.1 Memory Allocation and Layout
One of the Java compiler’s primary lines of defense is its memory allocation
and reference model. First of all, memory layout decisions are not made by the
Java language compiler, as they are in C and C++. Rather, memory layout is
deferred to run time, and will potentially differ depending on the
characteristics of the hardware and software platforms on which the Java
system executes.

Secondly, Java does not have “pointers” in the traditional C and C++ sense of
memory cells that contain the addresses of other memory cells.The Java
compiled code references memory via symbolic “handles” that are resolved to
real memory addresses at run time by the Java interpreter. Java programmers
56

6

can’t forge pointers to memory, because the memory allocation and referencing
model is completely opaque to the programmer and controlled entirely by the
underlying run-time system.

Very late binding of structures to memory means that programmers can’t infer
the physical memory layout of a class by looking at its declaration. By
removing the C and C++ memory layout and pointer models, the Java
language has eliminated the programmer’s ability to get behind the scenes and
manufacture pointers to memory. These features must be viewed as positive
benefits rather than a restriction on the programmer, because they ultimately
lead to more reliable and secure applications.

6.2 The Byte Code Verification Process
What about the concept of a “hostile compiler”? Although the Java compiler
ensures that Java source code doesn’t violate the safety rules, when an
application such as the HotJava Browser imports a code fragment from
anywhere, it doesn’t actually know if code fragments follow Java language
rules for safety: the code may not have been produced by a known-to-be
trustworthy Java compiler. In such a case, how is the Java run-time system on
your machine to trust the incoming bytecode stream? The answer is simple: the
Java run-time system doesn’t trust the incoming code, but subjects it to bytecode
verification.

The tests range from simple verification that the format of a code fragment is
correct, to passing each code fragment through a simple theorem prover to
establish that it plays by the rules:

• it doesn’t forge pointers,

• it doesn’t violate access restrictions,

• it accesses objects as what they are (for example, InputStream objects are
always used as InputStream s and never as anything else).

A language that is safe, plus run-time verification of generated code,
establishes a base set of guarantees that interfaces cannot be violated.
57 The Java Language Environment—October 1995

6

6.2.1 The Byte Code Verifier

The bytecode verifier traverses the bytecodes, constructs the type state
information, and verifies the types of the parameters to all the bytecode
instructions.

The illustration shows the flow of data and control from Java language source
code through the Java compiler, to the bytecode verifier and hence on to the
Java interpreter. The important issue is that the Java bytecode loader and the
bytecode verifier make no assumptions about the primary source of the
bytecode stream—the code may have come from the local system, or it may
have travelled halfway around the planet. The bytecode verifier acts as a sort
of gatekeeper: it ensures that code passed to the Java interpreter is in a fit state
to be executed and can run without fear of breaking the Java interpreter.
Imported code is not allowed to execute by any means until after it has passed
the verifier’s tests. Once the verifier is done, a number of important properties
are known:

• There are no operand stack overflows or underflows

Compile Time

Java
Source

Java
Compiler

Java Byte
Codes

Run Time

Bytecode
Loader

Byte Code
Verifier

Interpreter

Run time

Code
Generator

hardware

move through

byte codes

network or

file system
Security in Java 58

6

• The types of the parameters of all bytecode instructions are known to
always be correct

• Object field accesses are known to be legal—private, public, or protected

While all this checking appears excruciatingly detailed, by the time the
bytecode verifier has done its work, the Java interpreter can proceed, knowing
that the code will run securely. Knowing these properties makes the Java
interpreter much faster, because it doesn’t have to check anything. There are no
operand type checks and no stack overflow checks. The interpreter can thus
function at full speed without compromising reliability.

6.3 Security Checks in the Bytecode Loader
While a Java program is executing, it may in its turn request that a particular
class or set of classes be loaded, possibly from across the network. After
incoming code has been vetted and determined clean by the bytecode verifier,
the next line of defense is the Java bytecode loader. The environment seen by a
thread of execution running Java bytecodes can be visualized as a set of classes
partitioned into separate name spaces. There is one name space for classes that
come from the local file system, and a separate name space for each network
source.

When a class is imported from across the network it is placed into the private
name space associated with its origin. When a class references another class, it
is first looked for in the name space for the local system (built-in classes), then
in the name space of the referencing class. There is no way that an imported
class can “spoof” a built-in class. Built-in classes can never accidentally
reference classes in imported name spaces—they can only reference such
classes explicitly. Similarly, classes imported from different places are
separated from each other.

6.4 Security in the Java Networking Package
Java’s networking package provides the interfaces to handle the various
network protocols (FTP, HTTP, Telnet, and so on). This is your front line of
defense at the network interface level. The networking package can be set up
with configurable levels of paranoia. You can

• Disallow all network accesses

• Allow network accesses to only the hosts from which the code was imported
59 The Java Language Environment—October 1995

6

• Allow network accesses only outside the firewall if the code came from
outside

• Allow all network accesses

6.5 Summary
Java is secure to survive in the network-based environment. The architecture-
neutral and portable aspects of the Java language make it the ideal development
language to meet the challenges of distributing dynamically extensible software
across networks.
Security in Java 60

6

61 The Java Language Environment—October 1995

Multithreading in Java 7
Sophisticated computer users become impatient with the do-one-thing-at-a-
time mindset of the average personal computer. Users perceive that their world
is full of multiple events all happening at once, and they like to have their
computers work the same way.

Unfortunately, writing programs that deal with many things happening at once
can be much more difficult than writing in the conventional single-threaded C
and C++ style. You can write multithreaded applications in languages such as
C and C++, but the level of difficulty goes up by orders of magnitude, and
even then there are no assurances that vendors’ libraries are thread-safe.

The term thread-safe means that a given library function is implemented in such
a manner that it can be executed by multiple concurrent threads of execution.

The major problem with explicitly programmed thread support is that you can
never be quite sure you have acquired the locks you need and released them
again at the right time. If you return from a method prematurely, for instance,
or if an exception is raised, for another instance, your lock has not been
released; deadlock is the usual result.

7.1 Threads at the Java Language Level
Built-in support for threads provides Java programmers with a powerful tool to
improve interactive performance of graphical applications. If your application
needs to run animations and play music while scrolling the page and
62

7

downloading a text file from a server, multithreading is the way to obtain fast,
lightweight concurrency within a single process space. Threads are sometimes
also called lightweight processes or execution contexts.

Threads are an essential keystone of Java. The Java library provides a Thread
class that supports a rich collection of methods to start a thread, run a thread,
stop a thread, and check on a thread’s status.

Java thread support includes a sophisticated set of synchronization primitives
based on the widely used monitor and condition variable paradigm introduced
twenty years ago by C.A.R. Hoare and implemented in a production setting in
Xerox PARC’s Cedar/Mesa system. Integrating support for threads into the
language makes them much easier to use and more robust. Much of the style of
Java’s integration of threads was modelled after Cedar and Mesa.

Java’s threads are pre-emptive, and depending on platform on which the Java
interpreter executes, threads can also be time-sliced. On systems that don’t
support time-slicing, once a thread has started, the only way it will relinquish
control of the processor is if another thread of a higher priority takes control of
the processor. If your applications are likely to be compute-intensive, you
might consider how to give up control periodically by using the yield()
method to give other threads a chance to run; doing so will ensure better
interactive response for graphical applications.

7.2 Integrated Thread Synchronization
Java supports multithreading at the language (syntactic) level and via support
from its run-time system and thread objects. At the language level, methods
within a class that are declared synchronized do not run concurrently. Such
methods run under control of monitors to ensure that variables remain in a
consistent state. Every class and instantiated object has its own monitor that
comes into play if required.

Here are a couple of code fragments from the sorting demonstration in the
HotJava web browser. The main points of interest are the two methods stop
and startSort , which share a common variable called kicker (it kicks off
the sort thread):

public synchronized void stop() {
 if (kicker != null) {
 kicker.stop();
63 The Java Language Environment—October 1995

7

 kicker = null;
 }
}

private synchronized void startSort() {
 if (kicker == null || !kicker.isAlive()) {
 kicker = new Thread(this);
 kicker.start();
 }
}

The stop and startSort methods are declared to be synchronized —they
can’t run concurrently, enabling them to maintain consistent state in the shared
kicker variable. When a synchronized method is entered, it acquires a
monitor on the current object. The monitor precludes any other
synchronized methods in that object from running. When a synchronized
method returns by any means, its monitor is released. Other synchronized
methods within the same object are now free to run.

If you’re writing Java applications, you should take care to implement your
classes and methods so they’re thread-safe, in the same way that Java run-time
libraries are thread-safe. If you wish your objects to be thread-safe, any
methods that may change the values of instance variables should be declared
synchronized . This ensures that only one method can change the state of an
object at any time. Java monitors are re-entrant: a method can acquire the same
monitor more than once, and everything will still work.

7.3 Multithreading Support—Conclusion
While other systems have provided facilities for multithreading (usually via
“lightweight process” libraries), building multithreading support into the
language as Java has done provides the programmer with a much more
powerful tool for easily creating thread-safe multithreaded classes.

Other benefits of multithreading are better interactive responsiveness and real-
time behavior. Stand-alone Java run-time environments exhibit good real-time
behavior. Java environments running on top of popular operating systems
provide the real-time responsiveness available from the underlying platform.
Multithreading in Java 64

7

65 The Java Language Environment—October 1995

Performance and Comparisons 8
This chapter addresses two issues of interest to prospective adopters of Java,
namely, what is the performance of Java, and how does it stack up against other
comparable programming languages? Let’s first address the performance
question and then move on to a brief comparison with other languages.

8.1 Performance
Java has been ported to and run on a variety of hardware platforms executing
a variety of operating system software. Test measurement of some simple Java
programs on current high-end computer systems such as workstations and
high-performance personal computers show results roughly as follows:

new Object 119,000 per second
new C() (class with several methods) 89,000 per second
o.f() (method f invoked on object o) 590,000 per second
o.sf() (synchronized method f invoked on object o) 61,500 per second

Thus, we see that creating a new object requires approximately 8.4 µsec,
creating a new class containing several methods consumes about 11 µsec, and
invoking a method on an object requires roughly 1.7 µsec.

While these performance numbers for interpreted bytecodes are usually more
than adequate to run interactive graphical end-user applications, situations
may arise where higher performance is required. In such cases, the Java
bytecodes can be translated on the fly (at run time) into machine code for the
66

8

particular CPU on which the application is executing. For those accustomed to
the normal design of a compiler and dynamic loader, this is somewhat like
putting the final machine code generator in the dynamic loader.

The bytecode format was designed with generating machine codes in mind, so
the actual process of generating machine code is generally simple. Reasonably
good code is produced: it does automatic register allocation and the compiler
does some optimization when it produces the bytecodes. Performance of
bytecodes converted to machine code is roughly the same as native C or C++.

8.2 The Java Language Compared
There are literally hundreds of programming languages available for
developers to write programs to solve problems in specific areas. Programming
languages cover a spectrum ranging across fully interpreted languages such as
UNIX Shells, awk, TCL, Perl, and so on, all the way to “programming to the
bare metal” languages like C and C++.

Languages at the level of the Shells and TCL, for example, are fully interpreted
high-level languages. They deal with “objects” (in the sense they can be said to
deal with objects at all) at the system level, where their objects are files and
processes rather than data structures. Some of these languages are suitable for
very fast prototyping—you can develop your ideas quickly, try out new
approaches, and discard non-working approaches without investing enormous
amounts of time in the process. Scripting languages are also highly portable.
Their primary drawback is performance; they are generally much slower than
either native machine code or interpreted bytecodes. This tradeoff may well be
reasonable if the run time of such a program is reasonably short and you use
the program infrequently.

In the intermediate ground come languages like Perl, that share many
characteristics in common with Java. Perl’s ongoing evolution has led to the
adoption of object-oriented features, security features, and it exhibits many
features in common with Java, such as robustness, dynamic behavior,
architecture neutrality, and so on.

At the lowest level are compiled languages such as C and C++, in which you
can develop large-scale programming projects that will deliver high
performance. The high performance comes at a cost, however. Drawbacks
include the high cost of debugging unreliable memory management systems
and the use of multithreading capabilities that are difficult to implement and
67 The Java Language Environment—October 1995

8

use. And of course when you use C++, you have the perennial fragile
superclass issue. Last but definitely not least, the binary distribution problem
of compiled code becomes unmanageable in the context of heterogeneous
platforms all over the Internet.

The Java language environment creates an extremely attractive middle ground
between very high-level and portable but slow scripting languages and very
low level and fast but non-portable and unreliable compiled languages. The
Java language fits somewhere in the middle of this space. In addition to being
extremely simple to program, highly portable and architecture neutral, the Java
language provides a level of performance that’s entirely adequate for all but
the most compute-intensive applications.
Performance and Comparisons 68

8

Prospective adopters of the Java language need to examine where the Java
language fits into the firmament of other languages. Here is a basic comparison
chart illustrating the attributes of the Java language—simple, object-oriented,
threaded, and so on—as described in the earlier parts of this paper.

From the diagram above, you see that the Java language has a wealth of
attributes that can be highly beneficial to a wide variety of developers. You can
see that Java, Perl, and SmallTalk are comparable programming environments
offering the richest set of capabilities for software application developers.

Feature exists

Feature somewhat exists

Feature doesn’t exist
Simple

Object

Oriented

Robust

Secure

Interpreted

Dynamic

Portable

Neutral

Threads

Garbage

Collection

Exceptions

Performance

Java SmallTalk TCL Perl Shells C C++

High Medium Low Medium Low High High
69 The Java Language Environment—October 1995

8

8.3 A Major Benefit of Java: Fast and Fearless Prototyping
Very dynamic languages like Lisp, TCL, and SmallTalk are often used for
prototyping. One of the reasons for their success at this is that they are very
robust—you don’t have to worry about freeing or corrupting memory.

Similarly, programmers can be relatively fearless about dealing with memory
when programming in Java. The garbage collection system makes the
programmer’s job vastly easier; with the burden of memory management
taken off the programmer’s shoulders, storage allocation errors go away.

Another reason commonly given that languages like Lisp, TCL, and SmallTalk
are good for prototyping is that they don’t require you to pin down decisions
early on—these languages are semantically rich.

Java has exactly the opposite property: it forces you to make explicit choices.
Along with these choices come a lot of assistance—you can write method
invocations and, if you get something wrong, you get told about it at compile
time. You don’t have to worry about method invocation error.

8.4 Summary
From the discussion above, you can see that the Java language provides high
performance, while its interpreted nature makes it the ideal development
platform for fast and fearless prototyping. From the previous chapters, you’ve
seen that the Java language is extremely simple and object oriented. The
language is secure to survive in the network-based environment. The
architecture-neutral and portable aspects of the Java language make it the ideal
development language to meet the challenges of distributing dynamically
extensible software across networks.

Now We Move On to the HotJava World-Wide Web Browser
These first eight chapters have been your introduction to the Java language
environment. You’ve learned about the capabilities of Java and its clear
benefits to develop software for the distributed world. Now it’s time to move
on to the next chapter and take a look at the HotJava™ World-Wide Web
browser—a major end-user application developed to make use of the dynamic
features of the Java language environment.
Performance and Comparisons 70

8

71 The Java Language Environment—October 1995

The HotJava
World-Wide Web Browser 9
It’s a jungle out there,
So drink your Java

T-shirt caption from Printer’s Inc Cafe, Palo Alto, California

The HotJava™ Browser (“HotJava”) is a new World-Wide Web browser
implemented entirely in the Java programming language. HotJava is the first
major end-user application created using the Java programming language and
its run-time system as a base. HotJava not only showcases the powerful
features of the Java environment, it also provides an ideal platform for
distributing Java programs across the Internet—the most complex, distributed,
heterogeneous network in the world.HotJava and its rapidly growing Web
population of Java language programs called applets (mini-applications), are
the most compelling demonstration of the dynamic capabilities of Java.

HotJava includes many innovative features and capabilities above and beyond
the first generation of static Web browsers. HotJava is extensible. Its foremost
feature is its ability to download Java programs (applets) from anywhere, even
across networks, and execute them on the user’s machine. HotJava builds on
the network-browsing techniques established by Mosaic and other Web
browsers and expands them by adding dynamic behavior that transforms static
documents into dynamic applications.
72

9

HotJava goes far beyond the current generation of statically-oriented Web
browsers and brings a much needed measure of interactivity to the concept of
the Web browser. It transforms the existing static data display of current
generation Web browsers into a new and dynamic viewing system for
hypertext, described below. It enables creation and display of animation-
oriented applications. World-Wide Web content developers can have their
applications distributed across the Internet with the click of a button on the
user’s client computer.

9.1 The Evolution of Cyberspace
The Internet has evolved into an amorphous ocean of data stored in many
formats on a multiplicity of network hosts. Over time, various data storage and
transmission protocols have evolved to impose some order on this chaos. One
of the fastest growing areas of the net—the one we’re primarily interested in
here—is the World-Wide Web (WWW), which uses a hypertext-based markup
system to enable users to navigate their way across the oceans of data.

The concept of hypertext is by no means new, but its realization has spanned
decades. The idea behind hypertext was described in an essay by Vannevar
Bush in 1945, and evangelized by Theodore (Ted) Nelson in the 1960s and
1970s. Although Apple Computer’s HyperCard product for Macintosh
provided an early if somewhat primitive implementation, the real power of
hypertest comes from the ability to create inter-document links across multiple
host computers on the network. The first practical if small implementation of a
network-based hypertext system was created by Tim Berners-Lee at CERN,
using the NEXTSTEP development environment to create what would blossom
into HTML (HyperText Markup Language), HTTP (HyperText Transport
Protocol), and the WWW (World-Wide Web, or W3).

Web browsers combine the functions of fetching data with figuring out what
the data is and displaying it if possible. One of the most prevalent file formats
browsers deal with is HyperText Markup Language, or HTML— a markup
language that embeds simple text-formatting commands within text to be
formatted. The main key to the hypertext concept is HTML’s use of links to
other HTML pages either on the same host or elsewhere on the Internet.

A user in search of gold mining data, for instance, can follow links across the
net from Mountain View, California, to the University of the Witwatersrand,
South Africa, and arrive back at commercial data providers in Montreal,
Canada, all within the context of tracing links in hypertext “pages”. For a topic
73 The Java Language Environment—October 1995

9

of timely relevance to the World-Wide Web, a user interested in aspects of
multimedia law relative to the World-Wide Web can tune in to the home page
at www.oikoumene.com/oikoumene for links to intellectual property issues.

9.1.1 First Generation Browsers

What we could call the “first-generation” Web browsers—exemplified by NCSA
Mosaic and the first release of Netscape Navigator—provide an illusion of
being interactive. By using the (somewhat limited) language of HTML these
browsers provide hypertext links on which you can click. The browser goes off
across the network to fetch the data associated with that link, downloads the
data, and displays it on your local screen. As we said, this is an illusion of
interactivity.

This illustration depicts roughly the “interactive” flow of control in the first-
generation Web browsers. As you see, it’s not really interactive—it’s just a
fancy data fetching and display utility.

HotJava brings a new twist to the concept of client-server computing. The
general view of client-server computing is a big centralized server that clients
connect to for a long time and from which they access data and applications. It
is roughly a star with a big server in the middle and clients arrayed around it.
The new model exemplified by the World-Wide Web is a wide-spread
collection of independent nodes with short-lived connections between clients
and many servers. The controlling intelligence shifts from the server to the
client and the answer to “who’s in charge?” shifts from the server to the client.

The primary problem with the first-generation web browsers is that they’re
built in a monolithic fashion with their awareness of every possible type of
data, protocol, and behavior hard wired in order for them to navigate the Web.
This means that every time a new data type, protocol, or behavior is invented,
these browsers must be upgraded to be cognizant of the new situation. From
the viewpoint of end users, this is an untenable position to be in. Users must
continually be aware of what protocols exist, which browsers deal with those
protocols, and which versions of which browsers are compatible with each
other. Given the growth of the Internet, this situation is clearly out of control.

Display
Text
and

Images

Click
Link

Decode
URL

Fetch
Data

ht
tp

ht
m

l

sm
tp

ur
l

gi
f

nn
tp

ft
p

substrate

A conventional browser:
a monolithic chunk, all
bound tightly together.
The HotJava World-Wide Web Browser 74

9

9.1.2 The HotJava Browser—A New Concept in Web Browsers

HotJava solves the monolithic approach and moves the focus of interactivity
away from the Web server and onto the Web client—that is, to the computer on
which the user is browsing the Web. Because of its basis in the Java system, a
HotJava client can dynamically download segments of code that are executed
right there on the client machine. Such Java-based “applets” (mini-
applications) can provide full animation, play sound, and generally interact
with the user in real time.

HotJava removes the static limitations of the Mosaic generation of Web
browsers with its ability to add arbitrary behavior to the browser. Using
HotJava, you can add applications that range from interactive science
experiments in educational material, to games and specialized shopping
applications. You can implement interactive advertising, customized
newspapers, and a host of application areas that haven’t even been thought of
yet. The capabilities of a Web browser whose behavior can be dynamically
updated are open-ended.

Furthermore, HotJava provides the means for users to access these applications
in a new way. Software migrates transparently across the network as it’s
needed. You don’t have to “install” software—it comes across the network as
you need it—perhaps after asking you to pay for it. Content developers for the
World-Wide Web don’t have to worry about whether or not some special piece
of software is installed in a user’s system—it just gets there automatically. This
transparent acquiring of applications frees content developers from the
boundaries of the fixed media types such as images and text and lets them do
whatever they’d like.

9.1.3 The Essential Difference

The central difference between HotJava and other browsers is that while these
other browsers have knowledge of the Internet protocols hard-wired into them,
HotJava understands essentially none of them. What it does understand is how
75 The Java Language Environment—October 1995

9

to find out about things it doesn’t understand. The result of this lack of
understanding is great flexibility and the ability to add new capabilities very
easily.

9.1.4 Dynamic Content

One of the most visible uses of HotJava’s ability to dynamically add to its
capabilities is something we call dynamic content. For example, someone could
write a Java program to implement an interactive chemistry simulation,
following the rules of the HotJava API. People browsing the net with HotJava
could easily get this simulation and interact with it, rather than just having a
static picture with some text. They can do this and be assured that the code
that brings their chemistry experiment to life doesn’t also contain malicious
code that damages the system. Code that attempts to be malicious or which has
bugs essentially can’t breach the walls placed around it by the security and
robustness features of Java.

ht
tp

ht
m

l sm
tp

ur
l

gi
f

nn
tp

ft
p

HOTJAVA

ne
w

1

ne
w

2

ne
w

3

 HotJava is the coordinator of a federation of pieces, each
with individual responsibility. New pieces can be added at
any time. Pieces can be added from across the network,
without needing to be concerned with what CPU architecture
they were designed for and with reasonable confidence that
they won’t compromise the integrity of a user’s system.
The HotJava World-Wide Web Browser 76

9

For example, the following is a snapshot of HotJava in use. Each diagram in
the document represents a different sort algorithm. Each algorithm sorts an
array of integers. Each horizontal line represents an integer: the length of the
line corresponds to the value of the integer and the position of the line in the
diagram corresponds to the position of the integer in the array.

In a book or HTML document, the author has to be content with these static
illustrations. With HotJava the author can enable the reader to click on the
illustrations and see the algorithms animate:

Using these dynamic facilities, content providers can define new types of data
and behavior that meet the needs of their specific audiences, rather than being
bound by a fixed set of objects.

9.1.5 Dynamic Types

HotJava’s dynamic behavior is also used for understanding different types of
objects. For example, most Web browsers can understand a small set of image
formats (typically GIF, X11 pixmap, and X11 bitmap). If they see some other
type, they have no way to deal with it. HotJava, on the other hand, can
dynamically link the code from the host that has the image allowing it to
display the new format. So, if someone invents a new compression algorithm,
77 The Java Language Environment—October 1995

9

the inventor just has to make sure that a copy of its Java code is installed on
the server that contains the images they want to publish; they don’t have to
upgrade all the browsers in the world. HotJava essentially upgrades itself on
the fly when it sees this new type.

The following is an illustration of how HotJava negotiates with a server when
it encounters an object of an unknown type:

9.1.6 Dynamic Protocols

The protocols that Internet hosts use to communicate among themselves are
key components of the net. For the World-Wide Web (WWW), HTTP (HyperText
Transfer Protocol) is the most important of these communication protocols.
Within WWW documents, a reference to another document (even to a
document on another Internet host computer) is called a URL, meaning a
Uniform Resource Locator. The URL contains the name of the protocol, HTTP, that
is used to find that document. Most of the current generation of Web browsers
have the knowledge of HTTP built-in. Rather than having built-in protocol
handlers, HotJava uses the protocol name to link in the appropriate handler as
required, allowing new protocols to be incorporated dynamically.

Browser Network Server

User asks
for object

doesn’t
Browser

understand
object type

Object
Displayed

Object

code to
Java

support
object

request

reply

request

reply

T
im

e

The HotJava World-Wide Web Browser 78

9

The dynamic incorporation of protocols has special significance to how
business is done on the Internet. Many vendors are providing new Web
browsers and servers with added capabilities, such as billing and security.
These capabilities most often take the form of new protocols. So each vendor
comes up with their unique style of security (for example) and sells a server
and browser that speak this new protocol. If a user wants to access data on
multiple servers on which each has proprietary new protocols, the user needs
multiple browsers. This is incredibly clumsy and defeats the synergistic
cooperation that makes the World-Wide Web work.

With HotJava as a base, vendors can produce and sell exactly the piece that is
their added value, and integrate smoothly with other vendors, creating a final
result that is seamless and very convenient for the end user.

Protocol handlers get installed in a sequence similar to how content handlers
get installed: The HotJava Browser is given a reference to an object (a URL). If
the handler for that protocol is already loaded, it will be used. If not, the
HotJava Browser will search first the local system and then the system that is
the target of the URL.

Products from
Vendor A

VATP
Server

Web
Browser

Proprietary
Protocol

Products from
Vendor B

VBTP
Server

Web
Browser

Proprietary
Protocol

?

Which browser
should the poor
user run?

Products from
Vendor A

VATP
Server

Web
Browser

Proprietary
Protocol

Products from
Vendor B

VBTP
Server

B

Proprietary
Protocol

!

No problem!

A

79 The Java Language Environment—October 1995

9

9.2 Freedom to Innovate
Innovation on the Internet follows a pattern: initially: someone develops a
technology. They’re free to try all kinds of things since no one else is using the
technology and there are no compatibility issues. Slowly, people start using it,
and as they do, compatibility and interoperability concerns slow the pace of
innovation. The Internet is now in a state where even simple changes that
everyone agrees will have significant merit are very hard to make.

Within a community that uses HotJava, individuals can experiment with new
facilities while at the same time preserving compatibility and interoperability.
Data can be published in new formats and distributed using new protocols and
the implementations of these will be automatically and safely installed. There
is no upgrade problem.

One need not be inventing new things to need these facilities. Almost all
organizations need to be able to adapt to changing requirements. TheHotJava
browser’s flexibility can greatly aid that. As new protocols and data types
become important, they can be transparently incorporated.

9.3 Implementation Details
The basic structure of HotJava is instructive. It is easiest understood from the
operation of Mosaic.

Mosaic starts with a URL and fetches the object referenced by that URL using
the specified protocol. The host and localinfo fields are passed to the protocol
handler. The result of this is a bag of bytes that contains the object that has
been fetched. These bytes are inspected to determine the type of the data
(HTML document or JPEG image, for example). From this type information,
code is invoked to manipulate and view the data.

Time

User Population

Ability to innovate
The HotJava World-Wide Web Browser 80

9

That’s all there is to Mosaic. It’s essentially very simple. But despite this, the
Mosaic program is actually huge since it must contain specialized handlers for
all of these data types. It’s bundled together into one big monolithic lump.

In contrast, HotJava is very small, since all of the protocol and data handlers
are brought in from the outside. For example, when it calls the protocol
handler, instead of having a table that has a fixed list of protocols that it
understands, HotJava instead uses this type string to derive a Java language
class name. The protocol handler for this type is dynamically linked in if it is
missing. They can be linked in from the local system, or they can be linked in
from definitions stored on the host where the URL was found, or anywhere
else on the net that HotJava suspects might be a good place to look. In a similar
fashion, HotJava can dynamically locate and load the code to handle different
types of data objects and different ways of viewing them.

9.4 Security
Network security is of paramount importance to Internet users, especially with
the exponential growth of Internet commerce. Network-based applications
must be able to defend themselves against a veritable gallimaufry of network
viruses, worms, Trojan horses, and other forms of intruders. This section
discusses the layers of defense provided by Java, the Java run-time system, and
the higher-level protocols of HotJava itself.

One of the most important technical challenges in building a system like
HotJava is making it secure. Downloading, installing,and executing fragments
of code importedfrom across the network is potentially an open invitation to
all sorts of problems. On the one hand, such a facility provides great power
that can be used to achieve very valuable ends; on the other hand, the facility
could potentially be subverted to become a breeding ground for computer
viruses. The topic of safety is a very broad one and doesn’t have a single
answer. HotJava has a series of facilities that layer and interlock to provide a
fairly high degree of safety.

9.4.1 The First Layer—the Java Language Interpreter

The first layer of security in Java applications come from the ground rules of
Java itself. These features have been described in detail in previous chapters in
this paper.
81 The Java Language Environment—October 1995

9

When HotJava imports a code fragment, itdoesn’t actually know whether or
not the code fragment follows Java language rules for safety. As described
earlier, imported code fragments are subjected to a series of checks, starting
with straightforward tests that the format of the code is correct and ending
with a series of consistency checks by the Bytecode Verifier.

9.4.2 The Next Layer—the Higher Level Protocols

Given this base set of guarantees that interfaces cannot be violated, higher
level parts of the system implement their own protection mechanisms. For
example, the file access primitives implement an access control list that
controls read and write access to files by imported code (or code invoked by
imported code). The defaults for these access control lists are very restrictive. If
an attempt is made by a piece of imported code to access a file to which access
has not been granted, a dialog box pops up to allow the user to decide whether
or not to allow that specific access.

These access restrictions err on the conservative side, which makes
constructing some very useful extensions impossible or awkward. We have a
mechanism whereby public keys can be securely attached to code fragments
that allows code with trusted public keys to have fewer restrictions. This
mechanism isn’t in the public release for legal reasons.

9.5 HotJava—the Promise
The HotJava Web browser, based upon the foundations of the Java
environment, brings a hitherto unrealized dynamic and interactive capability to
the World-Wide Web. Dynamic content, dynamic data types, and dynamic
protocols provide content creators with an entirely new tool that facilitates the
burgeoning growth of electronic commerce and education.

The advent of the dynamic and interactive capabilities provided by the
HotJava Web browser brings the World-Wide Web to life, turning the Web into
a new and powerful business and communication tool for all users.
The HotJava World-Wide Web Browser 82

9

83 The Java Language Environment—October 1995

Further Reading 10
I’ve got a little list.
I’ve got a little list.

Gilbert and Sullivan—The Mikado

The Java Programmer’s Guide

Sun Microsystems

http://java.sun.com/progGuide/index.html

This is the draft version of the Java/HotJava Programmer’s Guide.

Pitfalls of Object-Oriented Development, by Bruce F. Webster
Published by M&T Books.

A collection of “traps to avoid” for people adopting object technology.
Recommended reading—it alerts you to the problems you’re likely to
encounter and the solutions for them.

The Design and Evolution of C++, by Bjarne Stroustrop
Published by Addison Wesley

A detailed history of how we came to be where we are with C++.
84

10
NEXTSTEP Object-Oriented Programming and the Objective C Language.
Addison Wesley Publishing Company, Reading, Massachusetts, 1993.

The book on Objective C. A good introduction to object-oriented programming
concepts.

Discovering Smalltalk. By Wilf Lalonde.
Benjamin Cummings, Redwood City, California, 1994.

An introduction to Smalltalk.

Eiffel: The Language. By Bertrand Meyer.
Prentice-Hall, New York, 1992.

An introduction to the Eiffel language, written by its creator.

An Introduction to Object-Oriented Programming. By Timothy Budd.
Addison Wesley Publishing Company, Reading, Massachusetts.

An introduction to the topic of object-oriented programming, as well as a
comparison of C++, Objective C, SmallTalk, and Object Pascal.

Monitors: An Operating System Structuring Concept. By C. A. R. Hoare.
Communications of the ACM, volume 17 number 10, 1974. Pages 549-557.

The original seminal paper on the concept of monitors as a means to
synchronizing multiple concurrent tasks.
85 The Java Language Environment—October 1995

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
415 960-1300
FAX 415 969-9131

For U.S. Sales Office locations, call:
800 821-4643
In California:
800 821-4642

Australia: (02) 844 5000
Belgium: 32 2 716 7911
Canada: 416 477-6745
Finland: +358-0-525561
France: (1) 30 67 50 00
Germany: (0) 89-46 00 8-0
Hong Kong: 852 802 4188
Italy: 039 60551
Japan: (03) 5717-5000
Korea: 822-563-8700
Latin America: 415 688-9464
The Netherlands: 033 501234
New Zealand: (04) 499 2344
Nordic Countries: +46 (0) 8 623 90 00
PRC: 861-849 2828
Singapore: 224 3388
Spain: (91) 5551648
Switzerland: (1) 825 71 11
Taiwan: 2-514-0567
UK: 0276 20444

Elsewhere in the world,
call Corporate Headquarters:
415 960-1300
Intercontinental Sales: 415 688-9000

	Introduction to Java
	1.1 Beginnings of the Java Language Project
	1.2 Design Goals of Java
	1.3 The Java Base System
	1.4 The Java Environment—a New Approach to Distrib...

	Java—Simple and Familiar
	2.1 Main Features of the Java Language
	2.2 Features Removed from C and C++
	2.3 Summary

	Java is Object Oriented
	3.1 Object Technology in Java
	3.2 What Are Objects?
	3.3 Basics of Objects
	3.4 Summary

	Architecture Neutral, Portable, and Robust
	4.1 Architecture Neutral
	4.2 Portable
	4.3 Robust
	4.4 Summary

	Interpreted and Dynamic
	5.1 Dynamic Loading and Binding
	5.2 Summary

	Security in Java
	6.1 Memory Allocation and Layout
	6.2 The Byte Code Verification Process
	6.3 Security Checks in the Bytecode Loader
	6.4 Security in the Java Networking Package
	6.5 Summary

	Multithreading in Java
	7.1 Threads at the Java Language Level
	7.2 Integrated Thread Synchronization
	7.3 Multithreading Support—Conclusion

	Performance and Comparisons
	8.1 Performance
	8.2 The Java Language Compared
	8.3 A Major Benefit of Java: Fast and Fearless Pro...
	8.4 Summary

	The HotJava World-Wide Web Browser
	9.1 The Evolution of Cyberspace
	9.2 Freedom to Innovate
	9.3 Implementation Details
	9.4 Security
	9.5 HotJava—the Promise

	Further Reading

