Appendix C - Demo Programs
This section contains a brief overview of the demo programs that come with the CIDLib distribution. These demo programs are partly testing programs for me and learning programs for you. They lean a lot more towards learning programs for you, but they do provide me with good coverage of a substantial amount of my classes within a relatively normal usage pattern.
One way in which these programs are test programs for me is that that they all put a try/catch around the main work of the program and catch any exceptions that come out of them. This is to help me in debugging, and you might not do this yourself in such trivial programs. It also catches any kernel errors. Theoretically kernel errors never propogate up to any client code. However, if they do, I want to be sure to catch them and find out where one leaked through. So all of the demos catch kernel errors, though you would never probably bother to do this yourself in your applications.
The demo programs are not intended to be the ultimate implementation examples. In fact, I sometimes do them differently on purpose just to show different ways to achieve things using the CIDLib services. There are different ways to skin cats and I try to show some of them. I do however try to stay within the stylistic guidelines that I’ve set and not to show any bad usage of CIDLib, unless the program purposefully does that and explains itself as such.
The demo programs are arranged according to category and numbered. So the demo programs for streams are named Streams1, Streams2, etc... In some cases these subsequent demos in each category are progressively more complex and realistic implementations of the same basic concept, such as the Ray Tracer demos. In some cases, they just show different aspects of the same concepts or different uses of the same classes.
The demos are presented below grouped into their respective categories, in alphabetical order not in any order that you should examine them in.
�Collections
The collection demos are pretty extensive since collections are a big subject and are used very often. In many cases, other demo programs end up demonstrating the use of collections just because its hard to write a program of any significance without using them. These demos do not represent any progressively complex implementations, just different aspects of the many ways that collections can be used.
Collect1
This program demonstrates a very basic use of collections. It uses the most simple collection, a bag, which is an unordered collection into which you just ‘throw’ things to hold them. In this case, the file system is demonstrated as well.
The file system classes (TFileSys, TFindBuf, ect..) allow you to iterate directories and get an object of information (a TFindBuf object) for each of the files or subdirectories you find. This program creates a bag of TFindBuf objects and iterates the current directory, putting the information for each file into the bag.
Once the directory is fully allocated, a cursor is created for the bag and iterated to dump out the information for each file found. It also demonstrates the ability to control the output format of the TFindBuf objects, which uses a formatting string. This scheme, used by most CIDLib classes that support formatting control, is built upon the underlying token replacement scheme supported by the TString class. The format set is one of the standard ones provided by TFindBuf, though you can set up any format you want, which just shows the file size and the path to the file.
This program is not a practical program, in that it could made much simpler. The TFileSys class provides a single method that will fill in a collection for you, so you don’t have to iterate directories yourself. Also, there was no need to save up the objects and then dump them, since we could have just dumped them as we iterated them. But it demostrates a lot of important fundamentals of collections.
Collect2
This program demonstrates a more complex collection type, the hash map. A hash map contains objects which have ‘key fields’ inside them. This is one attribute of the object that is used to identify the object in the collection (as apposed to the whole object’s value.) The key field must support hashing itself by providing a method named hashCalcHash().
Maps do not allow multiple keys with the same value in the collection, so they are very good for collection information for instance on unique categories. Keep in mind that only the key field must be unique, while the rest of the data in the object is of no concern to the map. A good example would be a hash map in which social security number is the key. The social security field of the elements must be unique, but the rest of the element fields (information that you are storing about each social security number) are totally unknown to the map and can have any form.
This program has a little static array of names. It creates a simple class THashData, that has a string for the name field and a counter for how many times that name is found. The main body of the program just pulls names out of this array and sees if they are in the map yet. If not, then an element is added for that name and the counter set to 1. If the name is already in the map, the counter is just bumped up.
This program also demonstrates some formatted text output via the text stream classes, in that it generates a little columnar report on the results after all of the names have been processed.
Collect3
This program demonstrates the ability of collections to be thread safe. Collection are not, by default, threadsafe because the overhead is unneeded if access to the collection is already naturally synchronized or merely single threaded. During construction you must indicate whether you want to make the collection thread safe or not, and that attribute cannot be changed for the life of the collection.
To simulate a program that would require a thread safe collection, this program creates two types of threads, ‘adders’ and ‘removers’. These threads both act on a global sorted bag of Tinteger objects, adding and removing values according their own random schedules. Each thread will sleep for a small random time. When it wakes up, it will generate another small random value.
The thread will then lock the collection and see if the element is present. First it just checks to see if any elements are in the collection. If not, then obviously the element is not present. If there are elements, it searchs for the element.
If the thread is an adder and the element is not already in the bag, it will add the element. If the thread is a remover and the element is in the bag, it removes it.
Since the work done by each thread to determine the presence of the element and add or remove accordingly requires multiple operations, the collection must be locked externally in order to make the operations atomic. In other words, we cannot depend upon just the natural per-method locking to insure atomicity in this case. A TLocker object is used to do the locking, which insures that the lock is undone in the case of a normal exit or an exception.
The main thread starts up the threads, then just sleeps for a while. When it wakes up it asks the theads to shutdown and waits for them to die. When they are all dead, it displays the elements that survived removal. The output should be sorted by value since this is a sorted bag.
Though this program is not very realistic in what it does, many, more realistic, programs might follow this exact same pattern, where there are producer threads putting data elements into a collection and consumer threads pulling the elements out and doing something with them.
This program also demonstrates how to create a TThread derivative. In many cases, a TThread object is fine and it is just given a thread function to run. This is good for ad hoc or ‘one of’ threads, such as the main thread of most programs. But, if you want to provide a thread that provides a kind of ‘canned’ functionality, you can create a derived class and override the _eProcess() method. This program uses this the latter method for its threads. This is the most object oriented way to have per-thread instance data, though you can do the same with a thread function by passing it a void pointer when its started. The advantage of a derivative is that the data can be passed at construction time, in a type safe way, and stored away in members.
Collect4
This program is also a demonstration of multi-threaded access to a collection. It is similar to Collect3, but demonstrates a slightly different architecture. In this case, the main thread is the consumer thread and the collection is a Queue of TString objects. It creates a set of producer threads, all of which sleeps for a random amount of time, then wakes up and puts its thread name onto the queue. The thread name represents in this trivial demo program some kind of more meaningful object in a real program.
The main thread loops, blocking on input from the queue. When elements appear in the queue, the main thread pulls the element out and displays it. It just waits until it receives a particular number of elements, then it asks the worker threads to shutdown and waits for them to die.
This is a pretty common architecture, where there is a single consumer thread that blocks on input to a queue, to which multiple threads write. This is a way to naturally serialize data output for instance, since each thread can drop its data on the queue then go about its business. The reader thread just reads them off, one at a time, and does whatever it needs to do with them. This provides a natural sort of serialization since there is only a single reader thread. This is not to say that you cannot have multiple reader threads, its just that a single reader is a common architecture and is what is being modelled here.
A common real world example of this situation would be a message logging subsystem., that logs messages from threads to a remote server. You would not want to have every thread have its own connection to the server, or even to have to block while the message is sent. Instead, threads can put their messages on the queue and go on about their business. A single read thread can maintain a single server connection, and ‘spool’ the messages out. In fact, it can be more efficient and ‘bunch’ messages together if there are more that one available, and send them in a single network transaction.
An important difference between this demo program and the previous one is that the threads in this one only require a single call to add or remove an element from the collection. So, unlike Collect3, there is no need for any external locking of the collection. A thread safe collection insures that each single method call is atomic. Its only when you have to do multiple operations atomically that you have to lock the collection explicitly.
�File System
The file system demo programs cover a good bit of ground, but there are not a lot of classes involved. Pretty much any non-trivial class will have to deal with files, so learning these classes is important.
Keep in mind though that much file I/O in object oriented systems is done via a set of classes known as ‘streams’ and they are handled in a separate category of their own. This is partly because streams can use things other than files as their data sinks/sources. The demo programs here only demonstrate the more ‘raw’ file system services that underly streams.
There are really two kinds of file system actions that you can do. There are those things that you can do to (or with) files without opening them. These are things like deleting, renaming, moving, getting information on, finding, etc... These types of operations are done via the TFileSys, TDirIter, and TFindBuf classes mainly, TFileSys being the primary class for this type of work.
The other kinds of operations on files are those operations that are done to the contents of files and require that the file be opened. The basic file class is TFileBase and a family of file classes, with different capabilities as makes sense for that particular kind of file, such as TBinaryFile and TTextFile.
FileSys1
This program is basically a somewhat limited implementation of the standard command line “DIR” command. Its output is pretty much identical to a standard DIR command, though the only standard option it supports is the /S option which causes a recursive directory search into subdirectories.
This program demonstrates how you get to command line parameters, which it checks to see what the user wants to do a directory of and whether it should be a recursive directory search. This is done via the TSysInfo class, which provides access to lots of system and process information.
Once the parameters are parsed and confirmed, the program queries and displays volume information for the volume that the directory search is targeted for. This includes the volume label and serial number.
If the search is not to be recursive, then a simple loop using a TDirIter is done to iterate the path that the user provided and information is dumped for each match. If the operation is to be recursive, then a local recursive function is called which basically does the same operation for each directory level, but with a little extra text output. The recursive search is careful not to search special directories, which represent the current and parent directories, so as to avoid an unending loop.
The standard format of a TFindBuf object, when dumped to a text stream, is just like that of the standard DIR command so no formatting is required; however, TFindBuf can support any kind of output format you want, using the standard token replacement scheme built into CIDLib’s string class, TString. Most CIDLib classes that support multiple formatting schemes will do so in the same way.
FileSys2
This program is volume oriented. It asks TFileSys for a list of all of the volumes available in the system. This list, which is just a list of ‘volume paths’ includes all of the volumes even if they are not ready or of a file system type that the host OS understands. A ‘volume path’ is just a path to the root of a volume, which is a root directory of a drive under NT or OS/2 such as “X:\” where X is the drive letter.
This list is obtained by providing a collection of TString objects, which is filled in with all of the available paths. Since the list is returned in whatever is the natural order for the host OS, a bag is used since it does not try to order its elements. Once the list is obtained, a cursor is created for the collection and is iterated to look at each element. For each element a TVolumeInfo object is created. This object will query information on the volume that can be used or displayed.
The creation of each TVolumeInfo object is protected with a try/catch in order to catch any volumes that are not ready or not support. If the volume is a removable drive with no media in it or a partition not understood by the host OS, an error will be thrown. If this case we want to know all of the available partitions and display whether they are ready or not; however, if you just want a list of available volumes, there is another method that will fill in a collection of TVolumeInfo objects with the available volumes.
A nicely formatted reported is displayed for all of the volumes located. This output demonstrates the text stream formatting support of CIDLib, making a nice columnar report. If a volume was not ready or not supported that is indicated on that volume’s output line.
FileSys3
This program is a convenient little utility that renames all of the files in a directory to match a particular pattern, which includes an increasing number. So, for instance, it will rename all of the files to something like FileNameXXX, where XXX is a 3 digit number. You use the standard token replacement scheme to generate the naming pattern, so you can create a pretty complex new name. In the above example, the pattern would be probably FileName%(1,3,0). This means that token ‘1’ (which is the one that this program looks for) should be replaced with the number, and it should be right formatted into a 3 digit field, which is zero padded. The first file would be named FileName001, the second FileName002, etc...
The usage for this demo program is:
	FileSys3 dir pattern
where dir is the directory whose files are to be renamed. It can be full or partial as long as it is valid. pattern is a file name patter as indicated above. See the online docs for the TString class for details on the token replacement system.
�Fractals
CIDLib provides an object oriented fractal engine framework, which these programs demonstrate. The fractal framework is very much a plug in framework into which various fractal types and rendering engines can be plugged. Its very flexible and powerful and easily supports multiple threaded rendering if you have a multiple CPU machine.
Fractal1
This is a very simple demo program that renders a canned fractal that is just set up by the program. The rendering is done using a single threaded renderer. The image rendered is a Mandelbrot, and is the ‘big picture’ view that you are familar with if you have played with any fractals.
The main thread sets up the rendering session by creating a fractal object to render. It sets up the fractal parameters that control how the fractal is rendered. It then fractal rendering engine to do the work. For this program it creates a TFracSingleEngine which is a single threaded rendering engine that just uses the local CPU. It gives the engine the fractal object that was created, and tells it about the size of the image we want to generate.
A TStatusController object is created. This is a simple abstract class that allows another thread to signal status to a thread that is waiting on it to do something. In this case a TStatusControllerTTY object is created, which lets the worker thread just output its status information to the standard output. The main thread then kicks off the rendering engine and waits for the engine to indicate completion via the status controller object.
Once complete, the main thread wakes up and creates a file stream to output the fractal data to. The file is a TBinaryFileStream, which allows us to stream data to a binary file. It opens the file stream and streams the data out. The output format is a simple dump format supported by some public domain ray tracers and fractal programs. This image can be displayed using the DispRGB utility program.
The output is translated from the escape time data of a fractal to RGB colors using a color palette object, using the TClrPalette class. The palette object is told to construct itself with one of the standard predefined palettes. The use of the palette class here is very simplistic but shows some of its power and simplicity. It is told to construct itself to a standard 256 color palette, though it could have been any user defined palette in a more realistic fractal program.
The escape time iterations are often not the same as the number of colors in the palette, so they must be mapped down into the range of available colors. In this case, the iteration maximum is set to 20,000 which is substantially larger than the available colors in our palette. To accomplish this mapping the program uses a TLogMap object, which does a logarithmic mapping of one set of indexes to another. TLogMap is of the TValueMap family of classes which are for mapping from one set of values to another.
�Process Control
These demo programs show how CIDLib supports threads and processes and how they are controlled and relate to each other. Most non-trivial applications will tend to make use of threads, and threading is a heavy subject that is often difficult to understand and use safely. CIDLib tries to make threading simple and safe, and builds in synchronization mechanisms to make common thread interactions very easy and safe.
Process1
This program demonstrates some of the power of the CIDLib ‘process registry’. Every CIDLib program is automatically installed into a process registry that is available to other CIDLib programs. This registry lets program find each other easily, or find multiple instantiations of themselves, or limit the number of instantiations of themselves, or find other shared resources of other processes.
This program just queries all of running processes from the registry and outputs a simple report that shows information about them. The TProcessRegistry class has a method that will fill in a collection of TRegProcessInfo objects. Each registry process info object contains the registry information for one process in the registry. Since we have no desire to particularly order the output, we just use a bag collection.
Once the registry is called to get a list of process information objects, a cursor is created for the bag and it is iterated. A line of information if output for each process. The text stream support of CIDLib is demonstrated by outputting the information in a nice columnar report. The important concept it displays is that of the TStreamFmt class, which contains a whole set of stream formatting options. One is set up for each column, and is inserted into the stream just before the data for that column, setting up the stream as required for that column’s data.
This program is deceptively simple and shows the power of a comprehensive class framework.
Process2
This program is a little cutsey, but demonstrates some important threading concepts. A derived class of TThread is created which plays a little song. The primary concept here is that you can create thread derivatives both to allow threads to have their own per-thread data storage and to provide an internal thread function (as apposed to having the user provide one.) This scheme is very powerful for providing canned thread classes that do a particular type of work with minimal help from the client code.
The main thread creates the worker thread, starts it, and then waits for it to end. The worker thread just reads a static array of TNode structures. Each note structure represents a note to play. The thread just runs through the list and plays each note via the CIDLib facility object, facCIDLib.
CIDLib does its sound generation via an installed TAudio object, so it is independent of the sound generation mechanism. The default object installed just uses the system speaker. If a derivative is provided for more advanced sound generation and plugged in, then any sounds generated via facCIDLib will go through that new audio object.
This program is really very small, and there is more song data than program code it seems. But it demonstrates some fundamentals of threading.
Process3
This program demonstrates the ability to execute external applications via the TExternalProcess class. It executes the Process2 program, waits for it to die, then displays its return code.
�RTTI
These demo programs demonstrate the RTTI system. RTTI can be a crutch if misused, but a powerful tool if used correctly. CIDLib provides its own RTTI system instead of using the C++ mechanisms. The reason behind this decision is consistency of architecture. By providing its own RTTI system, CIDLib can be far more consistent than it would if it was made up of a hodge podge of its own style and substance and that of the standard RTTI system. CIDLib’s RTTI is quite powerful and useful, and does not loose much for what it provides in return, which exceeds the standard RTTI system in many cases.
RTTI1
This program has no real rhyme or reason, its just a straightfoward enumeration of the RTTI capabilities of CIDLib. It creates a simple class with full RTTI support and then just shows you all of the tricks you can do with such a class.
I won’t try to reiterate all of the RTTI capabilities here because they are covered elsewhere and the program is nicely commented, so just trace through it in the debugger and see what it does. Its pretty impressive what you can do with this system.
�Streams
Streams are powerful and flexible objects that are used for sequential data I/O. They are limited in that they don’t support random access, but they are very powerful in that they can use almost any source of data as the underlying storage for the data. Each stream uses a ‘stream implementation’ object as its data sink/source. All stream implementation classes are derived from a common stream implementation, which defines the abstract API via which streams access the data stream.
Streams fall into two major categories, binary and text mode. Binary files are for, suprise, streaming in and out data in binary format. Text mode streams format their data into a textual representation. Binary streams handle the streaming of objects via the MStreamable mixin interface and text streams handle the streaming of objects via the MFormattable mixin interface. They both provide operators for streaming in and out all of the fundamental data types.
Streams1
This program demonstrates some very simple use of text streams. There is a sample text file in the project directory that contains lines of text in the form:
Word - Definition text
So its a file of words and their definitions, separated by a dash. The program opens a text file stream for this file. A text file stream is a text stream which uses a text file as its data sink/source. The stream is used to read in the lines of the file one at a time and output them in a nice columnar format. It uses TStreamFmt objects to set up formats for each column. It uses the string class’ ability to stream out tokens from its buffer to pull out the two separate parts of the input line.
Streams2
This program demonstrates some simple use of binary streams, and how streams can stream to and from various data sources. The main work of the program is done in a local function that streams a couple of objects (TPoints, TAreas, T3DVector, and TRGBClr) out to a stream. It then resets the stream and streams them back into another set of objects, so that the originals are left unchanged. It then compares the originals to the ones that were streamed in to insure that the data streamed out was streamed back in successfully.
The main body of the program creates two different streams, and calls the worker function for both of them. This shows how streams are interchangeable. One of the streams is based on a file and the other is based on a memory buffer, but the streaming code does not know or care since it just works via the binary streaming interface.
Just for fun the program displays the number of bytes used after it streams out each object. This shows you how much space each object is taking in the stream.
Streams3
This program begins to demonstrate some of the real power of CIDLib. It shows how to polymorphic streaming to deal with the persistence of a heterogenous collection of objects. Lets say you are writing a graphics app, in which your data (the things drawn by the user) consists of a lot of different types of shape objects, all of which your program deals with via some abstract base shape class. When you stream the objects in and out, you don’t want to have to have some kind of enum or something that indicates what kind of object each one is.
Polymorphic streaming does all of the work for you. As long as the classes that derive from your desired base class all support the standard CIDLib RTTI and dynamic typing, you can stream out objects without knowing exactly what type they are, and stream them back in without knowing what types were streamed (though you know they were all derived from some base class.)
In order to simulate this scenario, the program creates a small hierarchy of classes, all derived from a TBaseWidget class, that represent a set of graphics objects (lines, circles, boxes, and filled boxes.) This is just a simple TTY output program though, so their Draw() method just outputs their type and their member data.
The program does not have any user input, so first there is a call to a function that just puts some object into a collection. The collection needs to be a heterogenous collection so it must store pointers. Since all CIDLib collections are ‘by value’, it uses the TCntPtr class which is a class that wraps a pointer and reference counts it. So the test objects are allocated and added to the collection. In a real application of course, user input would cause objects to be added to this collection. The collection only knows that it is dealing with objects derived from TBaseWidget because it stores objects as a pointer to that TBaseWidget.
Once the collection has been filled with some objects, the program creates a cursor for the collection an iterates through the objects. For each one it calles the PolymorphicWrite() method, which will write an object polymorphically to a binary stream. This method stores type information first, then streams out the object itself. As it streams each one out, it calls the Draw() method to output the object’s information.
When the object’s have all been streamed out, the program resets the stream back to the beginning and flushes the collection, cleaning out all of its contents. It then loops until it hits the end of the stream, calling PolymorphicRead() to read in the objects again. PolymorphicRead() reads in the type information that PolymorphicWrite() wrote out. It uses this information to dynamically create a new object of that type, which it then asks to stream itself in from the stream. It confirms, using CIDLib RTTI, that the new object streamed in can be legally looked at via the passed base class pointer. If not, it throws and exception.
Each object read in is added back into the collection. The cursor for the collection is then reset and iterated, asking each object to ‘draw’ its contents again. The output from this round should be identical to the output from the previous round.
In order to support polymorphic streaming, the classes must support dynamic creation (the ability to create an object just by knowing its class name at runtime.) This support is provided by using the RTTIData2() macro instead of the RTTIData() macro. The RTTIData() macro provides all of the normal RTTI support and is used when dynamic creation is not required. RTTIData2() registers a ‘factory object’ along with the regular information that is registered for a CIDLib class that supports RTTI. This factory object handles the creation of a new object by name. It uses the default constructor to do this.
If you don’t want to expose your default constructor, use the BefriendFactory() macro to make the factory function a friend of your class. Then you can hide your default constructor and the dynamic typing code can still find it. This is often useful because the only reason a default constructor is provided is to allow for streaming and dynamic creation.
This program demonstrates this concept. It hides all of its default constructors, but uses the BefriendFactory() to allow access to them by the magic RTTI code.
Streams4
This program is just like the Streams3 version except that it uses the TSmartPolyStreamer class, which is a more efficient way to do polymorphic streamer. TSmartPolyStreamer does a sort of symbolic mapping scheme for types so that a particular type’s information is only ever stored once on the stream. After that, a very small symbol is used to represent that class for all other objects of that type. This can drastically reduce the amount of storage required for polymorphic storage of objects. You can compare the difference in even the very small output files of this and the previous streaming demo to see the savings. As more and more objects of each type are written out, the savings grows more and more.
Streams5
This program is just a simple demonstration of the TTextStream class’ ability to stream in numeric and boolean types. It uses a TConsole object, a derivative of TTextStream, to do the streaming because it supports command line editing and recall. It just prompts for various types of numeric data, gets the input, and displays whether it was valid or not.
�Ray Tracer
This section describes the ray tracer demo programs. CIDLib supports a very powerful and flexible ray tracer engine, which is fully object oriented and extensible. The programs in this section demonstrate successively more and more realistic and powerful programs that use the ray tracer engine to create images.
Keep in mind that the ray tracer outputs 24 bit graphics. If you don’t have 24 bit graphics hardware, the operating system’s graphics subsystem will attempt to do the best it can. For ray traced images, the best it can usually sucks pretty bad, so don’t expect much if you don’t have at least 16 bit color. Even 16 bit color though will not look terribly good without quanitzation of the image, which is something that would not be done by the ray tracer but some external utility.
Tracer1
This first program demonstrates the fundamentals of the ray tracer, using its C++ language interface. Basically this program sets up a canned scene and traces it using a canned set of rendering options, on a single thread. It outputs the scene data to a file using a very simple dump file (the Dis format) that can be viewed using the DispRGB utility program.
The scene that this program sets up is the canonical ray tracing scene of a sphere floating over a checkerboard plane. The sphere does though have a very nice marble like texture and the image looks very nice, if you have the 24 bit graphics hardware to display it.
First the program gets the user settable parameters from the command line. The command line parameters are:
	Tracer1 outfile hhh vvv
The outfile parameter is the name to give to the output file. Don’t bother with an extension, it will be set to .Dis. The hhh and vvv parameters are the horizontal and vertical size of the image, in pixels. They are limited to 16 to 4096. Be aware that a big image takes a lot of memory and a long time to do. This program only uses single threaded rendering, so even if you have multiple CPUs you won’t go any faster with this version.
The file name you provided is provided with the .Dis extension, then it is used to create a binary file stream that will be used to stream out the data. Just for variety, this program demonstrates how to create such a stream manually, which consists of creating a binary file object, then a binary file base stream implementation object of type TFileBinStreamImpl which is given the binary file object, then creating a TBinaryStream object and giving it the implementation object (i.e. telling it, stream to and from this file.) The implementation object is then asked to open or create the file. In most cases though, you would avoid all of this work and just create a TBinaryFileStream object, which does all of this work for you!
As with any ray tracer program it sets up a TViewGeometry object. The overall scene is represented by such a ‘view’ object, and it contains all the information needed to do the rendering. It has members for all of the overall rendering settings, plus you also give it all of the scene objects and light sources that you create and it adopts them and becomes responsible for them.
Once the basic view attributes are set up, including the image size information that you provided on the command line, the program starts creating the scene objects and putting them into the view object. First it creates a light source. A scene does not have to have a light source, but it won’t be very interesting. The ambient lighting setting of each object allows the objects to be visible without a light source, but they won’t look very natural.
Next the ‘floor’ is created. It is an TRTPlane object which is flat on the x-z plane. A checkboard texture object is created for it, using black and white as the checker colors. This object is set up with the desired texture attributes then inserted into the object. The object is then inserted into the view.
Next the sphere is created in a similar way. The sphere created, then a TTxtrWood texture is created for it and applied to it. Although its a wood texture, the way its set up here actually creates a very marble like texture.
Once the scene objects are set up and in the view object, its time to start doing the rendering. Basically its just a nested loop, with the y coordinates (the rows) done in the outer loop and the x coordinates (the columns) done in the inner loop. A TBaseArray template is instantiated for use as a raw line buffer. It is used to fill in a row’s worth of color data and write it to the file. Since we are dealing a defined format here, we cannot just stream out color objects.
The priority of the thread is bumped own using a thread priority janitor object. This insures that the thread’s priority will be restored when the current scope block is exited, either normally or by way of an exception.
For each pixel in the image, the view object is asked to render that pixel via its TracePel() method. That pixel is given the current x,y pixel coordinates and an TRGBClr object to fill in with the enventual rendered color for that pixel. Once the pixel color is gotten its put into the raw buffer array discussed above. Once a row of pixels is accumulated it is written out to the file by streaming the base array object to the output stream that was created.
The program outputs a message each time it completes another 10 rows. When its completed, you can us the DispRGB program to view the resulting .Dis file.
Tracer2
This program is somewhat similar to the Tracer1 program, but instead of using the C++ interface, it uses the scene description language (or SDL) of the ray tracer to allow the user to define the scene using a text file. This allows a single rendering program to render many different scenes, since the description of the scene is totally outside of the rendering program.
This is not to say that the SDL is necessarily the best way to use the ray tracer. If you are a developer and comfortable with the C++ interface, you can create some incredible scenes because you have the full power of C++ to allow you to programatically manipulate the scene in many ways. Its just that the SDL is a very convenient way to define scenes and, for the non-developer, probably the only practical alternative.
The basic rendering loop of the program is pretty much identical to Tracer1, above, so read its description first. The differences here are that this program takes more parameters on the command line, so it has to do more command line parsing and verifying, it times the rendering work so that you can benchmark now long it takes to render particular images, and it builds the scene description by parsing the SDL file.
The parsing of the SDL file is handled totally by the view object. The ray tracer has its own SDL parser that parses the file and creates and objects and textures as required.
The usage for this program is:
	Tracer2 scenefile outfile hhh vvv [/option=val]
where scenefile is the SDL file that contains the scene to render. Outfile is the output binary file to which the scene will be rendered. As with the previous demo, it outputs a .Dis file so you don’t have to provide the extension and it can be displayed with the DispRGB program. hhh and vvv are the horizontal and vertical sizes of the output image in pixels. The options are /Quality=x, /Sample=x, and /Threshold=x and control the image quality, sampling scheme and the threshold used when the sampling scheme is statistical. Run the program without any parameters and it will show you the options.
Tracer3
Tracer three is pretty much the same as Tracer2 in as far as the user parameters, flow of control, and overall steps it takes. The only real difference is that it supports multi-threaded rendering and a scene file include path. If you have a multiple CPU machine you can use the /Threads= command line parameter to kick off multiple rendering threads. And you can use the /Include= to set a path where it should find any scene files, unlike the previous ones where you had to explicitly provide the path to scene files.
Because of the highly parallel nature of per-pixel tracing in a ray tracer, and the highly CPU bound nature of the tracing algorithms, this program will get almost a 100% increase in speed for each thread (assuming you have a CPU per thread.) I’ve gotten very good results with my dual Pro system.
Of course you can run multiple threads, even if you don’t have a multiple CPU machine and just want to see it work. Its just that you won’t get any gain and in fact you will probably take a performance hit since you now have two almost constantly CPU bound threads fighting for the CPU. This will cause lots of thread context swaps.
�

